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Abstract

Let M C R? be a compact, smooth and boundaryless manifold with dimension m and
unit reach. We show how to construct a function ¢ : R? — R?~™ from a uniform (e, k)-
sample P of M that offers several guarantees. Let Z, denote the zero set of . Let M
denote the set of points at distance € or less from M. There exists g9 € (0, 1) that decreases
as d increases such that if € < g, the following guarantees hold. First, Z, N M is a faithful
approximation of M in the sense that Z, N M is homeomorphic to M, the Hausdorff
distance between Z, N M and M is O(m5/ 2¢2), and the normal spaces at nearby points in
Z,0N M and M make an angle O(m?/ke). Second, ¢ has local support; in particular, the
value of ¢ at a point is affected only by sample points in P that lie within a distance of
O(me). Third, we give a projection operator that only uses sample points in P at distance
O(me) from the initial point. The projection operator maps any initial point near P onto
Zy,N M in the limit by repeated applications.
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1 Introduction

Sensory devices and numerical experiments may generate numerous data points in R? for some
large d due to the large number of attributes of the data that are being monitored. It is often
believed that the data points are governed by some hidden processes with fewer controlling
parameters, and therefore, the data points may lie in some m-dimensional manifold M for
some m < d. This motivates the study of manifold reconstruction.

In computational geometry, there are several known results that offer provably faithful
reconstructions in the sense that the reconstruction is topologically equivalent to M, the Haus-
dorff distance between the reconstruction and M decreases as the sampling density increases,
and the angular error between the tangent spaces at nearby points in the reconstruction and
M decreases as the sampling density increases. These include the weighted cocone complex
by Cheng, Dey and Ramos [13], the weighted witness complex by Boissonnat, Guibas and
Oudot [9], and the tangential Delaunay complex by Boissonnat and Ghosh [§]. These recon-
structions are m-dimensional simplicial complexes with the given sample points as vertices.
The corresponding reconstruction algorithms have to deal with the challenging issue of “sliver
removal” in high dimensions.

Solutions of partial differential equations on manifolds are required in quite a few areas such
as biology [33], image processing [41} [43], weathering [I§], and fluid dynamics [36, 37]. The
underlying manifold is often specified by a point cloud. It has been reported [31] that local
reconstructions of a manifold in the form of zero level sets of local functions are preferred for
solving partial differential equations on the manifold. Several numerical methods for solving
partial differential equations on level sets have been developed [5], 22} 3T, 38].

In this paper, we propose an implicit reconstruction for manifolds with arbitrary codimen-
sion in R%. Let M be a compact, smooth, and boundaryless manifold with unit reach. Let
P be a uniform (e,k)-sample of M, that is, every point in M is at distance ¢ or less from
some point in P and the number of sample points inside any d-ball of radius ¢ is at most some
constant x. We assume that the following information is specified in the input: (i) the manifold
dimension m, (ii) a neighborhood radius -y = 4¢, and (iii) approximate tangent spaces at points
in P such that the true tangent space at each point in P makes an angle at most m~y with the
given approximate tangent space at that point. There are many algorithms for estimating the
manifold dimension (e.g. [12] 14} 25| 30, 40]). When the sample points satisfy some local uni-
formity condition (e.g., a constant upper bound on the number of sample points inside any ball
of radius € centered in M), the neighborhood radius v can be set by measuring the maximum
distance from a sample point to its kth nearest neighbor for some appropriate k. If the sample
points are drawn from an independent and identical distribution on M, a recently proposed
reach estimator can be used to set v [3]. There are many algorithms for estimating tangent
spaces (e.g. [4, 11l 23], 32, 39]), which give an O(e) angular error.

We use the conditions of 7 = 4e and angular error at most m+ in order to keep the number
of unknown parameters small. One may worry about satisfying these two conditions simulta-
neously, but it is not a concern as we explain below. Suppose that the estimation algorithms
return an angular error bound of ce for some known constant ¢ > 1 and a value ¢ such that
e < ¢ = 0(g). We can set v = max{4/, cl}. Then, the angular error is at most ce < ¢/ < my.
Moreover, letting ¢’ = max{f, %}, the input sample can be viewed as a uniform (¢’, k’)-sample,
where ¢/ = e = v/4 and x’ = (2¢' 4 1)%k, because a packing argument shows that if any d-ball
of radius € contains at most x sample points, then any d-ball of radius e contains at most
(2¢' + 1)% sample points.

Our main result is a formula for a function ¢ : R? — RY™™ using the (e, k)-sample P
and the neighborhood radius 7 such that the zero set of ¢ near M forms a reconstruction of
M. Let Z, denote the zero set of ¢. Let M denote the set of points at distance € or less



from M. We prove that there exists ¢g € (0,1) that decreases as d increases such that if
€ < gg, the following guarantees hold. First, Z, N /T/l\ is a faithful approximation of M in the
sense that Z, N M is homeomorphic to M, the Hausdorff distance between Z, N M and M is
O(m®/?4?) = O(m®/2¢?), and the normal spaces at nearby points in Z, N M and M make an
angle O(mz\/ﬁ) = O(m?\/ke). Second, ¢ has local support; in particular, the value of ¢ at a
point is affected only by sample points in P that lie within a distance of m~. Third, we give
a projection operator that only uses sample points in P at distance m+ from the initial point.
The projection operator maps any initial point near P onto Z, N M in the limit by repeated
applications.

Implicit surfaces in three dimensions have been extensively studied, particularly in computer
graphics and solid modeling (e.g. [2, [10} 26, 29]). Two functions have been defined in [17, 28]
and shown to give faithful reconstruction of the underlying surface in three dimensions. In
R<, a function is defined in [7] and shown to give faithful reconstruction of (d — 1)-dimensional
manifold. There seems to be no prior work with provable guarantees on implicit reconstructions
of manifolds in R? with codimension less than d — 1. In the computer graphics community,
similar functions have been proposed as projection operators by Adamson and Alexa [I] for
designing a complex of surface patches connected via vertices and curves in three dimensions.
Each surface patch is the set of stationary points under a projection operator. For each surface
patch, some input points with prescribed tangent spaces are given for defining the corresponding
projection operator, but these input points need not form an e-sample of the resulting surface
patch. It is discussed how to generalize the framework to R for a complex of submanifolds.
However, no mathematical guarantee was provided in [I] for R? or R<,

Although the zero set of our function ¢ has a subset near M that is a faithful reconstruction,
 should not be confused to be an smooth implicit function as in the Implicit Function Theorem.
If the normal bundle of M is topologically non-trivial, one cannot define a smooth implicit
function whose zero set is a faithful reconstruction of M.

We provide the definition of our function ¢ in the next section. Afterwards, we give the
proofs of the theoretical guarantees.

2 Function formulation

We use lowercase and uppercase letters in mathsf font to denote column vectors and matrices,
respectively. A point is always specified as a column vector. Given a matrix K, we use col(K) to
denote the column space of K. We call the unit eigenvectors of a square matrix corresponding
to the k largest (resp. smallest) eigenvalues the k most dominant (rvesp. least dominant) unit
eigenvectors.

Recall that v = 4¢ is the input neighborhood radius. We will make use of a weight function
w: R* = R defined as

C (x—pl)
WP = = - al)’

h(s) = (1 - T;)Qm <275 * 1) , if s € [0,m],

0, if s > mry.

where

Note that h is differentiable in (0, 00) and h/(s) = 0 for s > m-y. This weight function is inspired
by the Wendland functions [42].



Since approximate tangent spaces at the sample points are specified in the input, we can
assume that a d x m matrix T, is given for each p € P such that T, has orthogonal unit
columns and col(Tp) is the approximate tangent space at p. Define the following matrix and
vector space for each point x € R%:

& = ZpePw(Xa p) 'Tp'Téa
Ly = space spanned by the (d—m) least dominant unit eigenvectors of Cy.

The (d — m) least dominant unit eigenvectors of T, - T:; span an approximate normal space
of M at p. So Ly is the “weighted average” of the approximate normal spaces at the sample
points near x.

Define a class ® of functions g : R — R4~™ ags follows:

O=<0:0Kx = Z w(x,p) - B’;’X - (x—p) p, where B, x is any d x (d — m) matrix
peP
with linearly independent columns such that col(B,x) = Ly.

Evaluating o(x) requires only the sample points at distance m~y or less from x, and w gives more
weight to sample points nearer x. Different choices of B,y at each x € R? give rise to different
functions in ®. A natural choice is a d X (d — m) matrix consisting of d — m orthogonal unit
vectors that span Ly. We denote the corresponding function in ® by ¢ and so

p(x) = > w(x,p)-BL - (x—p).

peP

We will show that every function in ® has the same zero set. Z, as a whole is not a good
reconstruction of M. Indeed, by definition, ¢(x) = 0 for any x € R? at distance my or more
from M. We focus on the subset M of R? (i.e., the set of points at distance € or less from M).
We show that Z, N M is a faithful reconstruction of M.

3 Preliminaries

3.1 Definitions

Given a matrix or vector, the corresponding italic lowercase letter with subscripts denotes
an element. For example, k;; denotes the (7,j) entry of a matrix K and v; denotes the i-th
coordinate of a vector v. We use |; to denote a j x j identity matrix and 0;; an i X j zero

matrix. The 2-norms of v and K are ||v|| = (3, U?)l/Q and ||K|| = max { [|Kv]| : ||v|]| =1}.

We use B(x,r) to denote the geometric d-ball centered at x with radius . We use Z(v, E)
to denote the angle between a vector v and its projection in an affine subspace E. The angle
Z(E,F) between two affine subspaces E and F', where dim(F) < dim(F), is max{Z(v, F) :
vector v in E}.

The normal space of M at a point z, denoted N, is the linear subspace of R? that comprises
of all vectors normal to M at z. Each vector in IV, has d coordinates although N, has dimension
d —m. The tangent space of M at z, denoted T3, is the orthogonal complement of NN,.

The medial axis of M is the closure of the set of points in R? that have two or more closest
points in M. The local feature size at a point z € M is the distance from z to the medial axis.
We assume that the reach or minimum local feature size of M is 1.

Let v denote the nearest point map. That is, for every point x that does not belong to the
medial axis of M, v(x) is the point in M nearest to x.



3.2 Basic results

We need the following basic results on e-sampling theory, matrices, and linear subspaces.

Lemma 3.1 ([13] 23])
(i) For ally,z€ M, if ||y — z|| < & for some & < 1,y is at distance £2/2 or less from z + Ty.
(i) For ally,z e M, if |ly —z|| <& for a small enough §, then Z(Ny, N;) < 4€.

Lemma 3.2 Let P be a uniform (e, k)-sample of M. For any x € R? and any t € [1, \/%],
|PNB(x,te)| < (4t +1)™

Proof. We first show an upper bound on the minimum number of balls with radii € such that
their union contains M N B(x, te), which will imply the desired result. We pick a maximal set
S of points in M N B(x,te) such that any two of them are at distance ¢ or more apart. It
implies that M N B(x,te) C U,esB(z,¢). Otherwise there exists a point z € M N B(x, te) such
that the distance between z and S is larger than e, then we can get a larger set by adding z
to S, a contradiction to the definition of S. Let S’ denote the projection of S onto x + Ty (x)-
By Lemma B.1]1), the distance between any two points in ' is at least £ — (t€)? > £/2 when
t < \/2» Thus any two balls centered at points in S’ with radius £/4 are interior-disjoint. Since
the projection of MM B(x, te) into x+ T}, is contained in (x +T,,(x)) N B(x, te), || is no more
than the size of a maximal packing of interior-disjoint m-dimensional balls with radius /4 in
(x+ Ty x)) N B(x, te +¢/4), which is at most the volume of (x+T),)) N B(x, te +¢/4) divided by

(€/4)™Vy,, where V;, is the volume of a unit m-ball. Thus, |S| = |5'| < % (4t 4+1)™

Then, |P N B(x,te)| < (4t + 1)k by the definition of uniform (e, k)-sampling. =]

Partition a square matrix K into blocks:
Kii - Kyr
Krl e Krr
The matrices K;; are square, but they may have different dimensions. For j # 4, K;; may be
square or rectangular. For any i,j,k € [1,7], K and Kj; have the same number of columns

and K;; and K;; have the same number of rows. Each row of blocks (Kﬂ e Kir) defines a
generalized gershgorin set G; as follows. Let n; be the dimension of Kj;.

Gi=< ue

R [ < 2 ol
ni) j#i

It follows that the numbers in G; are at least the smallest eigenvalue of K;; minus >, . [[Kyj |
and at most the maximum eigenvalue of K;; plus ), £ IKi;ll. The eigenvalues of K;; are defined
to be in G; using a continuity argument [20)].

Lemma 3.3 ([20]) Consider any partition of a square matriz K into blocks. Every eigenvalue
of K lies in some generalized gershgorin set G; with respect to this partition. Moreover, if a
generalized gershgorin set G; is disjoint from the union of the other generalized gershgorin sets,
then G; contains exactly n; eigenvalues of K, where n; is the dimension of K.

Lemma 3.4 ([24]) Let (U V) be a d x d orthogonal matrixz, where U is dxr and V is dx (d—r).
Let K be a dxr matriz with orthogonal unit columns. Then, Z(col(U), col(K)) = arcsin(||V*-K]|).
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Lemma 3.5 ([19, Lemma 1.1]) Let My be an s x s real symmetric matriz with eigenvalues
M, ..., g in an arbitrary order. Let v; denote a unit eigenvector of My corresponding to X\;. If
M1 4+ My is a real symmetric matriz, o is an eigenvalue of M1+ Mo, and e is a unit eigenvector
of My + My corresponding to o, then for every r € [1,s — 1|, the angle between e and the space
spanned by {vi,...,v,} is at most arcsin (|[Mz||/ minep 41,4 [Xi — o).

Lemma 3.6 Let V and W be two linear subspaces of the same dimension k in R? such that
0=2(V,W)<m/2.

(i) For each orthonormal basis {v1,...,vi} of V, there exists an orthonormal basis {w1, ..., wg}
of W such that Z(v;,w;) < 0 fori e [1,k] and Z(v;,w; —v;) € [”29 7r+9] fori,j e [1,K].

(ii) If k > d/2, then there exist orthonormal bases {vi,...,vi} and {wi,...,wi} of V and
W, respectively, such that v; = w; for i € [1,2k —d], Z(vi,w;) < 0 for i € [1,k], and
Z(vi,wj—vj) € [“Tg, ”—*9] fori,j € [1,k]. Hence, for any distincti and j, ifi € [1,2k—d]
or j € [1,2k —d], then v; L w;.

Proof. 'We make use of principal angles and principal vectors [0, 21} [35]. Pick unit vectors

a; € V and by € W that minimizes Z(a1,by). For i € [2,k], pick unit vectors a; € V and

b; € W that minimizes Z(a;, b;) subject to a; L a; and b; L b; for all j € [1,7 — 1]. The angles

Z(a1,by),..., Z(ak, bg) are called the principal angles. The vectors {a1,...,ax} and {by,...,bg}

are called principal vectors. Note that {ai,...,ar} and {by,...,bx} are orthonormal bases of

V and W, respectively. The alternative definition of principal angles in [2I] implies that for
€ [1,k],0; <0 =Z(V,W). It is also known that a; L b; for ¢ # j [6, 21].

Consider (i). Given an orthonormal basis {vi,...,vix} of V, for each i € [1,k]|, v; =
Zle c;irar for some real coefficients ¢;,’s. Correspondingly, define w; = Zf 1czrbr. Note
that ||w;|| = (Zf LEN2 = |lv]| = 1. Also, for i # j, wiw, = Ef | CirCjr = Viv; = 0. So
{wi,...,wg} is an orthonormal ba51s of W.

For i € [1,k], viw, = Zf Lc2alb, > cosf because Z(a,,b,) < 6 and Zr L =il = 1.

It follows that Z(VZ,WZ) < . Since v; and w; are unit vectors and Z(v;,w;) < 0, v; + w; is an
angle bisector between v; and w;. Hence, Z(v;,v; + w;) < 6/2. It suffices to show that for any
i,j € [1,k], vi+w; L w;—v;, which then implies that ‘% — Z(vi,wj — vj)‘ < Z(viyvitw;) < 0/2,
completing the proof of (i). To see that v; +w; L w; —v;, we check (v; + w;)! - (w; — v;) =
Zle(cirar + cirby )t Zle(cﬂbr —¢jray). Recall that a, and b, are unit vectors and for r # s,
a, L ag, b, L by, and a, L b,. Therefore, Zle(cirar + cirby)t - Zle(cjrbr — ¢jray) = 0.
Consider (ii). Since k > d/2, the dimension of V N W is at least 2k — d. Pick an arbitrary
subset {uy,..., u2k_d} of the orthonormal basis of V N W. Set v; = w; = u; for i € [1,2k — d].

Complete {vi,...,vor_q} arbitrarily to an orthonormal basis {vi,...,v;} of V. Then, we con-
struct w; as the same way as in (i) for j € [2k —d + 1, k]. £l
Lemma 3.7 Let Ey and E5 be two k-dimensional linear subspaces. Let {uy,...,ux} be a basis of

Ey consisting of unit vectors such that for any distinct i,j € [1,k], Z(u;,u;) € [1/2— ¢, 7/24 @]
for some ¢ € [0,arcsin (1)). For any 0 € [O,arcsin( %—sinqﬁ)), if Z(ui, E9) < 0 for all

< \/Esinﬁ )
€ [1,k], then Z(E1, Es) < arctan(\/m

Proof. Orient space such that Fy is spanned by the first k& coordinate axes of R%. Then, for
all i € [1, k], we can write
u; = <VZ> )
Wi
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where v; consists of the first k coordinates and w; consists the remaining d — k£ coordinates.

Note that
(Okul) i E2 and ( Vi ) S E2.
W; Odfk,l

Since Z(u;, F2) < 0 by assumption, we have [w;|| < sinf. As a result, ||v;|| € [cos @, 1]. For any

i # j, we have
i)+ () € foos (5 + 0) veos (5 - )]
= Vvi-v;+w-w; € [—sing,sin g
= |- vi| < |lwil| - [jwj]| +sing < sin? 6 + sin ¢.

Let n be a vector in Fj that makes the angle Z(FE1, Es) with E,. By flipping the orientation
of any u;’s if necessary, we can ensure that n is a convex combination of {ui,...,ux}, ie.,

k
n= Z i <VZ> for some \;’s in [0, 1] such that S_¥ | A; = 1. Note that flipping the orientation
i=1

Wi

of an}7 u; preserves the angle Z(u;, E2) and the fact that for any distinct ¢, j € [1, k], Z(us,u;) €
[7/2 — ¢, m/2+ ¢]. Hence,

k W k e
LBy ) — arctan (HE:MWII> < orctan S Adwi

k
[1225=1 Aavill \/Zle SR AN vy
sin 6
< arctan
\/0052 05 F A2 — (sin? 0 + sin o) Dt NiNj
sin 6
= arctan

\/2?21 A2 — (sin? 0 + sin ¢) <Zf:1 )\i>2

Viksiné
< arctan .
V1 —ksin?6 — ksing¢

The last step uses the fact that Z?Zl A? is minimized when \; = 1/k for all 4. Hl

4 Accuracy of L,

The main result of this section is Lemma below: for every point z € M and every point x
near z, N, is approximated by Ly. We need the following technical result. Recall that v is the
nearest point map.

Lemma 4.1 Let x be a point at distance 2 or less from M. Assume a coordinate frame

I
such that the columns of ( m ) form an orthonormal basis of T, . Partition Cy into

Odfm,m
<C11 Ci2
Ca1 Ca
(d—m). Then, ||Ci2|| and ||Ca1|| are O(m~), ||Caz|| is O(m3~?), and the smallest eigenvalue of
Cy1 is at least 1 — O(m?2).

), where Cy1 is m xm, Cig is m x (d—m), Co1 is (d—m) xm, and Cag is (d—m) x



Yo

Proof. Consider any sample point p € P. Partition T, into <Z
p

), where Yy is m x m and Z,
is (d —m) x m. For all p € PN B(x,my),

Ip = vl < llp = X[l + [x = ()| < my + 28 < (m + 1)y
Then, Z(T,, Ty (x)) < 4(m + 1)y by Lemma ii).

Since < b > and <O7In’d_m> form a d x d orthogonal matrix, we obtain
d—m

Od—m,m
arcsin(||Zp|) = arcsin(([(Oa—m,m la—m) - Tpll)
= Z(T,x),col(Tp)) (. Lemma [3.4))
< A(Tpa Tu(x)) + Z(Tpa COl(Tp))
< A(m+ 1)y +my.

(We use the assumption that the input approximate tangent spaces have angular errors at most
mry. Although an angular error of O(m-y) also works, an exact bound of m~y makes explicit the
input requirement for constructing the formula of ¢.) Hence, we have

Vpe PNB(x,m), |Zpl = O(my). (1)

Because w(x, p) vanishes for all p ¢ B(x,my), Ci2 = > cprpxmy) @ P) - Yp - Z;,. Since
the columns in Tj have unit 2-norm, we get ||Yp| < 1. Thus,

1Cr2l = o wkp) Y Zhl < Y wlp) - [1Zpll = O(m).
pe PNB(x,m~) pe PNB(x,m~)
Similarly,
1Car| = Yo wp)-Zy- Y < Y wp) - [1Zp] = O(m),
pePNB(x,m~) pePNB(x,m~y)
ICooll = | D wp)-Z,-Zp[ < Y wlxp) - [1Z,)* = O(m*y?).
pe PNB(x,m~) pe PNB(x,m~)

Since Tf) T, = Y,t) Yo+ Zf) - Z,, the minimum eigenvalue of Yf) -Y, is at least the minimum
eigenvalue of T - T, minus [|Z], - Z,||. Therefore,

. . 2,2

minimum eigenvalue of Y} - Y, > 1 — O(m*y?). (2)
Yo Yé has the same eigenvalues as Y,’; -Y,. The smallest eigenvalue of a real symmetric matrix
M is minyo(vt - M - v)/||v||%. Then, using the relation Cy; = > pePrB(xmey) W P) - Yy Yy, we

conclude that the smallest eigenvalue of Cq; is at least the sum of the smallest eigenvalues of
w(x,p) - Y, - YL This sum is at least 1 — O(m?y?) by (2).

We are ready to show that the angle between L, and any nearby normal space of M is

O(my/m7).

Lemma 4.2 For every point z € M and every point x € B(z,2¢), Z(Lx, N;) = O(my/m).



lm,
Od—m,m
basis of T,(,). Let Ax be the d X m matrix whose columns are the m most dominant unit

Proof. Adopt a coordinate frame such that the columns of < ) form an orthonormal

eigenvectors of C,. Thus, col(Ay) is the orthogonal complement of L. Let e = (v\\//> be any

column vector of Ay, where v consists of the first m coordinates and w consists of the last d —m
coordinates. Then, Z(e, T, ()) = arctan(|lw||/||v|).

Cin G
Car Cao
is m x (d —m), Co1 is (d —m) x m, and Cag is (d — m) x (d — m). Let o be the eigenvalue of
Cx corresponding to e. Then,

_ (G G2 (v) _ v
e (e e () =70
which implies that

]l = [[(ola—m — Co2) " Carv]| < [[(ola—m — Co2) || - [|Canl-
Following the definition of generalized gershgorin sets (Section , define

1
Gy = eR: <|IC )
! {“ € =gy = “”}

1
Gy = eR: <c .
2 {“ |(Caz — plg—pm) Y| = | 21||}

The numbers in G are at least the minimum eigenvalue value of Cy; minus ||Cy2||, which is
at least 1 — O(m~y + m?y?) by Lemma The numbers in G are at most ||Caz| + ||Ca1]| =
O(my + m?+?) by Lemma Since every number in G; is greater than any number in
G9, by Lemma (1 contains the m largest eigenvalues of Cy. Thus, ¢ belongs to G; and
o > 1— O(my + m?y?) which is asymptotically greater than ||Cas|| = O(m?4?) (Lemma .
Therefore,

We show that Z(e, T, ()) = O(my). Partition Cy into < >, where Ci1 is m x m, Cqg

1
O(my +m?y?)’

(01— — C22) Y| < .

By Lemma ICa1|| = O(mry), and therefore,

O(my)
O(m~y + m?4?)
As aresult, 1 > |lv[| > 1 —[|w|| > 1 = O(m). Thus, Z(e, T, ) = arctan(||w||/|v|][) = O(m~).

Since e is any column vector of Ay, the angle bound in the previous paragraph applies to all
column vectors of A,. We can apply Lemma with E1 = col(As), B2 = Ty, {u1,..-,Um}

equal to the columns of Ay, ¢ = 0, k = m, and ¢ equal to the O(m~y) bound on Z(e, T, )
Then,

Wl < [l ldm = Co2) 7 - 1Can || < 7 = O(my).

1—0(m?*y?)

Since ||v(x) —z|| < |lx — v(x)|| + ||[x — z|| < 4e, Lemma (ii) implies that (7)), Tz) < 16e.
Hence,

Z(col(Ay), Ty) < arctan (O(’”W> — O(my/m).

Lo N,) = Z(col(A),Ty)
< Z(COI(AX), Ty(x)) + A(sz(x)) Tz)

O(my/m).



5 Projection into L,

For every point z € M and every unit vector n € N,, we want to bound the instantaneous

change in the normalized projection of n in Ly as x moves. If we view the projection as a map

f, this is equivalent to analyzing the Jacobian of f which is given in Lemmas and below.

To this end, some technical results are needed. First, we need to study the variation of C, as x

moves (Lemma. Second, we need to bound the turn of Ly if x moves slightly (Lemma .
Let 0 > 0 denote an arbitrarily small change in the coordinate xj of x. Define

_ oh(lx—pl)

A(lhe = pl)) = F 0

- O

For simplicity, we omit the dependence of Ah(||x — p||) on % in the notation.

Lemma 5.1 Let x be a point at distance 2¢ or less from M. Assume a coordinate frame such

that the columns of (O b ) form an orthonormal basis of T,(x. Define the d x d matriz
d—m,m

AC, = (‘;CU : 5k> , where c;; is the (i, j) entry of Cx. The following properties hold when &y, is
T,
small enough.

O(my) - 2 pep [AR(lIx = plD)]
2 pep IlIx = plD)

(i) [AG <

O(my) - 2pep [AR(Ix = pl)]
2per PlIx = pl)

(ii) Them largest eigenvalues of Cxk+ACy are at least 1—O(my)—

Proof. Using standard calculus, we obtain

1
AG = h(|Ix —pl]) - Ah(|[x—q|) - (T, - T, =T, - T¢
Sy i o | 2, M=l -l —alh - (Tq Ty =T, T)
Partition C; and AC, as follows:
C11 C12 ACH AC12
Ce= : AC, =
<C21 CQZ) (AC21 AC?Z)

where Cy; and ACyp are m x m, Cio and ACy9 are m x (d—m), Co; and ACq; are (d —m) x m,
and Cg2 and ACy are (d —m) x (d —m).

Y . .
P), where Y, is an m x m matrix

For every sample point p € P, partition T, into Ty = (Z
P

and Z, is a (d —m) x m matrix.
By (1)) and (2), for every sample point p € PN B(x, mv), ||Zy|| = O(my) and the eigenvalues
of Y, - Y} are at least 1 — O(m?~?). Moreover,

Yo - Yol = Y5 - Yol = 1T, - Ty = Z5 - Zo | < IITpl* + 1Z5]* = 1+ O(m*y%),

which also implies that
1Yol = 1+ O(m*?).

Because for any real symmetric matrix M, [M|| = maxyo (v/ - M- v) /||v||?, we conclude that
1Yq Y4 =Y, - Yi| is at most the maximum eigenvalue of Y, - Y/ minus the minimum eigenvalue
of Y, - Y't). Therefore,

I¥q Yo = Yo Ypll < 1+0(m*y?) — (1-0(m*y?)) = O(m*y?).

9



Moreover,
HYq'Zg—Yp-Ztéll < IIYqHQ- IIZqH+2||YpH-HZp2H N
1Zq-Zq =25 Zpll < I Zall* +11Zp]° = O(m*7).

O(m),

On the other hand, for every sample point p € P\ B(x, m7),

h(l[x = pll) = 0, Ah(|lx = pll) = 0.
Consequently,
| S Blx = pl) - AR(x = all) - (Yq - Y = Y, - YE)|

(X pep PIx = pl))?
> paer X = pll) - [AA(Ix = all)] - [IYq - Yg = Yo - Yol

[ACh] =

- (Zpep h(|lx — pll))?
_ O(m?y?) - Y e p |AR(|[x — p|])] o
Secrh(x—pl)
By symmetry,
h(|[x — - Ah(||x — (Y. Zt Y. . 7¢
1ACul — [ACa | | S hllx = pl) - AR(lx—al) - (Yq - 2 = Y, - Z0)|

(O per MlPx = pl)?
Y pqer Mx = pID) - [AA([Ix = alD] - [Yq - Zg = Y, - Z |
(X per Mlx = pl)?
O(m7) - 3 pep [AR(Ix = pl)] n
2 pep Mx=pl) ’

IN

Similarly,

| Zpqer Allix = Pl - Al = all) - (Zq - 24~ Z, - Z0)|
(Zper bl = pI))?
paer hllix = Pl - [AR(Ix = al) - Z - Z4 = Z, - 24|
- (Zper bl — pIDY?
O(m*+%) - Zpep |8A(x = p)| 5
Sperhllx—pl)

From the discussion of generalized gershgorin sets (Section [3.2]), we have

[ACa| =

IAG] < max{[|ACy | + [[ACw|, [|ACa | + [[ACs:|}- (6)

The correctness of (i) is then proved by plugging into @ the inequalities , , and .
Define the following generalized gershgorin sets:

1
@ | <|Ciz + ACio| ¢,
1 {M H(Cll + ACH — :u’lm)_lH = || 12 12”}
1
@ - : < ||Ca1 + AC }
’ {M ||(C22 + ACqy — )uld—m)_IH H 21 21”

We give a lower bound for the values in G; and an upper bound for the values in Gs.

10



Consider (G;. The minimum eigenvalue of Ci; + ACyy is at least the minimum eigenvalue
of Ci1 minus ||ACy1|. Therefore, by Lemma [4.1] and (3),

O(m?~?) - Ah(||x —
minimum eigenvalue of C1; + ACy; > 1 — O(m?4?) (™) ZpEP |2 ll
2pep RIx = pl])

On the other hand, by Lemma and ,

[Ci2 + ACpaf| < [|Craf| + [[ACs2||
O(my) - > pep |AR(Ix = p|)]
> pep P(Ix=pll)

The values in G are at least the minimum eigenvalue value of C;; + AC;; minus [|Cia + ACya||.

Therefore,
O(m) - > pep [AR([Ix — pl])|
>_pep h(lx—=pll)

< O(mv)+ (7)

min{p : p € G1} >1—O(my) —

(8)
Consider G3. By Lemma and ,

[Co2 + ACaof| < ||Caol| + [|ACo|
O(m*y?) - 3 e p |AR([|x — pl])]
>pep P(Ix=pl)

< O(m*y) +

By symmetry and ,

O(my) - >pep |AR(][x = pl])]
2pep h(lIx=pl))

The values in Go are at most ||Cag + ACag|| + ||C21 + ACa1||. Therefore,

O(my) - > opep [AR(Ix = pl)] ()
2pep MIx = pl])

It follows from and @ that G; and G5 are disjoint because every number in (G2 is much
smaller than those in G;. Lemma implies that G; contains the m largest eigenvalues of
Cx + AC,. The correctness of (ii) then follows from (g]). Hl

|Ca1 + ACo1|| = [|Ci2 + ACyo|| < O(mry) +

max{p : p € G2} = O(m~y) +

We need another technical result on bounding |AA(||x—pl|)| from above and h(||x—q]|) from
below, where q is the nearest sample point to v(x).

Lemma 5.2 Let x be any point at distance 2 or less from M.

2m—1
(i) For allp € P, |Ah(|x—p|)| < (1 = ’Xp”) .0 (7”‘5’“)

(ii) h(|][x —q]|) > 0.06, where q is the nearest sample point to v(x).

Proof. Consider (i). Since Ah(||x—p||) = 0 for any p € P\ B(x, m7), we only need to consider
the case of ||x — p|| < my. Taking derivative gives

2m—1
_ 2l — _
Ah(x - p])] < 2m<1—|XpH> (”XP”H).M.(;H
my g my|jx — p]|

2
x=pI\™ 2z — Pl
1- LA L
my Ylx = pll

2m—1
< (1_H><—p||> .O<m5k>7
my v

11




establishing the correctness of (i).
Consider (ii). As P is a uniform (e, k)-sample, ||q — v(x)|| < e. Therefore, ||q — x|| <
[x — v(xX)|| + [[¥(x) — q]| < 3e. Then,

ey = (1= Baly ™ 2l )

2m
> (1 _ 36)
my
B . 3 2m
N 4m ’
The minimum of (1 — %)Qm is achieved at m = 1, and it is equal to 0.0625. Hl

The following lemma allows us to ignore the contribution of the points near the boundary
ZPGPﬂB(x,nL'y) |Ah(HX_p”)|
pE PNB(x,m~y) h(”X_pH) :

of B(x,m7y) in

Lemma 5.3 Let x be any point at distance 2¢ or less from M. Let P be a uniform (g, k)-sample

of M. Let r = \/me/3. Then,
2m—1 2m—1
$ <1 Cix PH> < (23k41)- > <1 I P|> ‘
mry mry
pe PNB(x,m~) pe PNB(x,my—r)
Proof. Observe that

F (5

2m—1
<1 CIx pl!) N
my
peEPNB(x,m~) pe PNB(x,my—r)

s,

PEPNB(x,my)\B(x,my—r)

We prove the lemma by bounding the two terms on the right hand side above.
We show a lower bound for the first term. As P is a uniform (e, k)-sample, there exists some
point q € P such that ||[q—v(x)|| < e. Therefore, |[q—x|| < ||x—v(x)||+|lv(x)—q|| < 3e < my—r.

Then,
2m—1
(1 Cx qll)
my

5 (-

pePNB(x,my—r)

Vv

vV
7 N
—_
|

w
Sk
N————

[
3

AV
VN
—
|

S

S e

N———
")
3

The quantity (1 — %)Qm achieves its minimum of 1/16 when m = 1. Hence,

2m—1
Z <1_ ||X—P||) Zi-
mry 16

pe PNB(x,m~y—r)
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We show an upper bound for the second term. For any point p € B(x,m7y) \ B(x,my — ),

2m—1
_ ol ieves its maxi ) = (k)
(1 e achieves its maximum of (mv) = (12 m)

By Lemma |P N B(x,my)\ B(x,my—r)| <|PNB(x,my)| < (4m~vy/e + 1)"k. Therefore,

when |x — p|| = my — 1.

Z <1 B HX—P’> 2m—1 _ (16m N 1)m/€ < 1 >2m—1
pEPNB(x,my)\ B(x,my—r) mry 12y/m
< (A7)™kym/122m 1
< 17r/12.
Therefore, the second term is at most the first term multiplied by 23k. 0

We bound the turn of Ly when x moves slightly in the next result.

Lemma 5.4 For every point x at distance at most 2¢ from M and for every vector Ax €
Ny U Ty, if [|AX|| is small enough and x + Ax is at distance 2¢ or less from M, then

v

£(Ly, Ly ax) = O(km? | Ax|)).

lm,
Od—m,m
basis of T, (), and Ax points in the direction of the xj-axis for some k € [1,d]. Let 05 = [|Ax]|.

Every entry of Cy;ax is some algebraic function in ;. By Taylor’s Theorem, the (i, j) entry
of Cutax is equal to the (4, 5) entry of Cx + AC, plus or minus an O(67) term. Therefore,

Cx—i—Ax = Cx + ACx + Z7

Proof. Adopt a coordinate frame such that the columns of < form an orthonormal

where Z is a d x d matrix in which every entry is £0(62). It follows that
1Z|l = O(doy). (10)

Since Z = Cypax — (Cx + ACy), Z is real symmetric.
Let e be one of the m most dominant unit eigenvectors of Cyyax. Let o be the eigenvalue
of Cy4ax corresponding to e. Therefore,

Cirax-e=(Ck+AC+Z) - e =oe.

Let Ay be the d x m matrix consisting of the m most dominant unit eigenvectors of C,. So
col(Ay) is the linear subspace spanned by these eigenvectors. Let A be the set of the d —m
smallest eigenvalues of C. We apply Lemma with My = G, My = ACy + Z, and r = m:

' JAC, + Z]
_ S
Z(col(Ax),e) < arcsin (min,\e/\ A= ol
< arcsin (M%) . (11)

minyep |A — o]
We bound Z(col(Ax),e) by showing an upper bound for ||[AC.|| and a lower bound for |A — o|.

For all p € P\ B(x,m7), h(||x — p||) = Ah(x — p) = 0. Then, Lemmas (i), (1) and
imply that

2 Jx—pll ) "
O(’ITL 5/€) ’ ZpéPﬁB(x,m'y) (1 - T’y)
5 1= Dl )™ (2xpll g
pe PNB(x,m~) mey ~
_ 2m—1

O("imz(sk) ’ ZpEPﬁB(x,m'yfr) (1 B llmﬂ?‘I)

5 (1__\v—pn>2m'(mV—pH4_1>’
pe PNB(x,my—r) my ¥

13
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where r = y/me/3. In the denominator, (1 — w) (M + 1) is at its minimum of 2@5 —

% + % = Q(y/m) when ||x — p|| = my — r. It follows that
|AC = O(km®/%6y,). (12)
Lemmas and imply that
max{\: XA € A} = O(mv). (13)

We write Cy; + ACy as the sum Cyyax + (—Z) and apply Weyl’s inequality [27, Theorem 3.3.16]
to conclude that the eigenvalue o is at least the m-th largest eigenvalue of Cy + ACy minus the
largest eigenvalue of —Z. Then, by Lemma (ii) and ,

O(m7) - > pep [AR(Ix = pl)]

o>1-0(my) - > per h(lIx—pl)

— 0(dé?).

Together with , we obtain

| O(m7) - pep IAR(Ix — pl)|
Rip A —ol = 1= 0my) = === il

As 0y, approaches zero, both Ah(||x—p||) and O(dé?) approach zero. But > pep MlIx=pl|) > 0.06
by Lemma (ii). Therefore, for a sufficiently small ¢,

— O(dd?).

Ja constant 7 > 0 such that min{A € A : [\ —o|} > n. (14)

Plugging , and into gives

O(km3/26;,) + O(ds?)
n

Z(col(Ax),e) < arcsin ( ) = O(km®/25y,).

Since e is any one of the m most dominant unit eigenvectors of Cyiax, the angle bound
O(mn?’/ 25%) holds for all the m most dominant unit eigenvectors of C,; Ax. Then, by Lemma
col(Ay) makes an O(km?d;,) angle with the space spanned by the m most dominant unit eigen-
vectors of Cyiax. It follows that /(Ly, Ly ax) = O(km?25y). ]

Next, we need a technical result on the angle between a vector in some linear subspace to
its projection in another linear subspace.

Lemma 5.5 Let Ey and Ey be two (d — m)-dimensional linear subspaces that make an angle
¢ < m/2. Let n be a unit vector in RL. Let u; be the projection of n in E; for i € [1,2].
Let {vi,...,Vag—m} and {wy,...,Wq_,} be bases of E1 and Es, respectively, that satisfy either
Lemma (z) or Lemma (zz) Let ay = S (ntv;)? and let ag = Z?;;iQmH((Wi —v;)tn)2.
If aq > ag + (2m2¢?)/ cos ¢, then

t 2 242
B Y Ty Ay
lur[ffuz] a1 Vai —aio

Proof. By Lemma [3.6]

Vie [l,d—2m)], Vi = W, (15)
Vie [l,d—m)], L(vi,w;) < ¢, (16)
Vij,€[Ld—m],  Zlvi,wj —vj) € [(m = ¢)/2, (7 + $)/2]. (17)



If m > d/2, then is vacuous because [1,d — 2m] is an empty range. There is no harm done
as d —m < d/2 in this case and Lemma [3.6[i) is applicable, leading to and only. If
m < d/2, then Lemma (ii) is applicable, leading to , and .
Since u; is the projection of n into E;, we have
up = (vi - Vaem)(V1 - Vg_m)'n, (18)
up = (Wi - - Wam)(Wp - - Wg_pm)in. (19)

We first bound u}u, from below. Standard algebra gives

uluy, = E nfv,viw,win + E ntvivﬁijé»n. (20)
i€[1,d—m] i#j,
ijell,d—m]

We analyze the second term in . By , if i # j and 7 or j belongs to [1,d — 2m], then
v; L wj;. It implies that vﬁwj = 0 in the second term in whenever ¢ or j belongs to
[1,d — 2m]. The remaining case is that both ¢ and j belong to [d — 2m + 1,d — m).
Define a vector h; for ¢ € [1,d —m] as follows:
ViE[l,d—m], h; =w; —v,.

It follows from that

/(v .
IIh:]| = 2sin ("QW) < ¢ (21)
We rewrite (20) using w; = v; + h; for i € [d —2m + 1,d — m]:
uluy, = Z nfvviw,win -+ Z nv,vi(vj + h;)(v; +h,)'n
i€[1,d—m)] i#j,
1,j€[d—2m~+1,d—m)]
= Z nvviwwin 4 Z (ntvivfhjvﬁn + ntvivghjhg-n). (22)
1€[1l,d—m]

1#],
1,j€[d—2m+1,d—m]
Notice that if m > d/2, then d — 2m + 1 < 1, which implies that [d —2m + 1,d — m] acts as the
range [1,d — m]. In this case, Lemma [3.6(i) is applicable and so is vacuous, meaning that
there is no simplification from to .
By , we get
Vi€ [l,d—m], viw; > cose. (23)

Moreover,

Vi, j €[l,d—m], vth

ih; [Ivil[l[h]l cos(£(vi, hyj))

[[h;ll cos(£(vi, wj — vj))
—||h;l sin(¢/2)

—sin(6/2). (24)
By substituting and into the first and second terms in , respectively, we obtain

VERVE

ulu, > cos¢ Z nfv,win - qﬁsin? Z (ntvivﬁ»n—l—ntvih;n)

2
i€[1,d—m] i#j,
1,j€[d—2m~+1,d—m)]

= cos¢ g n‘v,win —  ¢sin 5 g ntviwg-n
i€[1,d—m] i#4,
i,j€[d—2m~+1,d—m)]
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Both nv; and Wj»n are at most 1, which implies that ntviw§n < 1. Therefore,

uluy > cos ¢ E nfv,win | —m2¢?.

i€[l,d—m]
Recall from the lemma statement that a; = 397 (n'v,)? and oy = Z?:_Cyizmﬂ(hﬁn)z. We
define one more quantity:
d—m
o3 = Z n'v;hin.
i=d—2m+1

Standard algebraic manipulation shows that a; 4+ a3 = Zle[l d—m] " tv,win, and therefore,

ubuy > (a1 + az)cos g — m?¢?.

> e =
i€[1l,d—m)]
Juzll = (nfw;)?
16[1(1 m|

(ntv;)? Z (ntw;)?
16[1 d—2m)] zE[d—Qm-ﬁ-l,d—m]

\/ ()2 + S (n(vi+h)?
1€[1,d—2m)|

i€[d—2m+1,d—m]

= Y e S @i+ (hn)2)

i€[1,d—m)] i€[d—2m+1,d—m]

= Vo1 + 2a3 + as.

By definition,

[Jus

I

Consequently,

ulu, (a1 + a3) cos ¢ — m2¢?
lur{flugll [ [[[ ]|
(1 + a3) cos g — m*®

/a1 var T 205 tog

Treating a3 as a free variable while fixing the other values, we can apply standard calculus
2
to show that the right hand side of (25 is minimized when ag = —ay— ™= ¢* under the condition

cos ¢

242
that oy > ao+ 2225‘2 . (This condition ensures that the denominator \/oz1 + 2013 + aag is real

and positive.) This condition is assumed to be satisfied in the lemma statement. Substituting
2 42
a3 = —ag — TOS¢¢ into (25)) gives

(25)

ulu, (a1 — ag) cos ¢ — 2m2¢>
Julllluzll = /e (a1 — ap — 2m2¢2/ cos §)
(a1 — o) cos ¢ — 2m2¢?
o af — ajas

a9 2m2¢p?
= 1— —cos¢— —
aq i — a1

16
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We are ready to bound the instantaneous change in the normalized projection of a normal
vector of M into Ly as x moves, which is the main result of this section.

Lemma 5.6 Let z be any point in M. Let n be any unit vector in N,. Define the function
f: B(z,2¢) — Ly such that f(x) is the normalized projection of n into Ly, i.e., f(x) is the unit
vector in Ly parallel to the projection of n in Ly. For every point x in the interior of B(z,2¢)
and every k € [1,d), ||0f(x)/0zk|| = O(km?).

Proof. Let x be a point in the interior of B(z,2¢). Consider any index k € [1,d]. Let Ax be a
vector parallel to the zj-axis such that x + Ax € B(z,2¢) and 0 = ||Ax|| is arbitrarily small.
Let ¢ denote the angle Z(Ly, Lytax). By Lemma ¢ = O(km?dy,). Since ¢ < 7/2, there
are orthonormal bases of Ly and Ly;ax that satisfy either Lemma (1) or Lemma (ii). Let
{vi,...,Vg—m} and {wq,...,w4_,,} be such orthonormal bases of Ly and Lyiax, respectively.
We want to apply Lemma so we need to verify that a; > ag + (2m2¢?)/ cos ¢, where
a1 = Y (ntvi)? and ag = Y300, ((ws — vi)'n)?.

First, as < ch‘l;;i2m+1 lw; — v;||2. Since Z(vi,w;) < ¢ for i € [d —2m + 1,d — m] by
Lemma we obtain ||w; — v;|| = 2sin % < ¢. It follows that

as < mo? = O(k*m>83).

Second, observe that a; = H(v1 e Vigem)(vp - vd,m)tn}|27 where (V1 -+ Vg_m)(V1 =+ Vg_m)in
is the projection of n into L. Therefore, a1 > cos?(Z(Lx, N;)). Then, Lemma implies that

a1 > cos?(O(my/m)) > 1 — O(m3~?).

2m2¢2
cos ¢

approaches zero as dp — 0, we get a1 > ao + 2m?¢? Then, by Lemma

cos ¢
t 92 242
Wby /1_%%%,_#’
[[u[[f|uz] ay a? — ajay
where u; and us are the projections of n into Ly and Lyi ax, respectively. Finally,
H(‘?f(x) 2 . 1 ( Uy up >t( Uy up >
— = lim - — —
Oy, 0k=0 6 \luz|l - fJuall /- \fu2ll  JJur
1 2uf
~ lim L (2_ wz)
50 0 [Ju[[fluz]
1 Am? ¢
< dim = (2-2,/1- Pcosgs O
0 —0 5]{: (65} \/m
1 4m?¢?
lim — 2—2(1—”) cosg+ — ).
5k—0 0y aq af — o

We have shown earlier that ap < m¢? and oy > 1 — O(m3+?). Using these relations and the

As ag +
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facts that cos ¢ > 1 — ¢?/2 and ¢ = O(km? ), we obtain

Haf(x) . T 2_2<1_m¢2> <1_¢2>+4m2¢2
0 —0 5k (e75] 2 a% —a1m¢2

- 1im12<2—2<1_m¢2_¢2+m¢4>+ 4m?¢? )

8xk

0 —0 5k o 2 2001 a% — a1m¢2
< lim % O </€2m55£> O(Kk*m®6%)
00 O a1 \/oz% — O(a1ﬁ2m5(5i)

We use Lemma 5.6/ to bound ||J;(x)||. Multiplying the bound in Lemma |5.6/ by v/d already
gives a bound. We give a tighter analysis that yields a bound independent of d.

Lemma 5.7 Let z be any point in M. Let Jy be the Jacobian of the function f : B(z,2¢) — Ly
defined in Lemma . For any point x in the interior of B(z,2e), |Jf(x)|| = O(km3).

Proof. Fix a unit vector n € N, as required in the definition of f in Lemma Let x be a
point in the interior of B(z,2¢). Let R be any d x d orthogonal matrix. Apply the orthogonal
transformation induced by R to RY. Then define the function g : B(Z/,2¢) — Ly, where Z = R-z
and X' = R - x, such that g(x') is the normalized projection of R - n into L.

First, we show that f(x) = Rt-g(x’). Let £ be the length of the projection of n into Ly. Let Q
be any d x (d —m) matrix whose columns form an orthonormal basis of Ly. It follows from the
definition of f that f(x) = 1-Q-Q!-n. Since an orthogonal transformation preserves lengths, ¢ is
also the length of the projection of R-n into Ly. Then, g(xX') = +-R-Q-Q"-R*-R-n = }-R-Q-Q"n,
which implies that f(x) = Rt g(x').

We show that Js(x) = R" - Jg(x') - R. Let Ax be an arbitrarily short vector. By Taylor’s
Theorem,

f(x+Ax) = f(x) +Jf(x) - Ax + ey, (26)

where ey /||Ax|| converges to the zero vector as ||Ax|| — 0. Similarly,
g(R-x+R-Ax) = g(x) + Jg(X) - R- Ax + ey, (27)

where e,4/||R - Ax|| converges to the zero vector as ||R - Ax|| — 0. Since R is fixed, it means
that e,/||Ax| tends to the zero vector as ||Ax|| — 0. We multiply both sides of by R
and then subtract the resulting equation from . Some terms cancel each other because
fix+Ax) =Rl -g(R- (x+ Ax)) and f(x) =R!-g(xX) =R!- g(R-x). We obtain

(Jr(x) = R* - Jy(X) - R) - Ax =R" - ey — ey.
Therefore,
1(J70) = R"- Jg(x) - R) - Ax|| < [[R" - e[ + llesll -

We are free to choose the direction of Ax. We choose it such that H (Jy —=RF-Jy(xX) - R) - AXH =
[[45(x) = R - Jg(X) - R|| - [|Ax||, i.e., Ax is an eigenvector corresponding to the largest eigenvalue
of Jp(x) — R'- J4(x') - R. Then,

[Rieg||  lleyll

" |
19769 =R 4o0) Rl < Tm g+ ax)
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Since the right hand side tends to zero as ||Ax|| — 0, we conclude that

. t /
i 3560 = R 4,) R] =0,
which implies that J;(x) = R" - J,(X) - R.

By definition, [[Jf(x)|| = |[J¢(x) - v|| for some unit vector v. We choose R to be the d x d
orthogonal matrix such that R-v = (1,0,...,0)". Then, |[R-Jf(x)-v|| = |R-Js(x)-R-R-v| =
14g(x') - (1,0,...,0)"||, which is the 2-norm of the first column of J, (). Lemma is indepen-
dent of the coordinate frame. So we can apply Lemma to g and conclude that the 2-norm
of the first column of J,(x') is O(km3). As a result, |R-J¢(x)-v|| = O(km?). Since multiplying

any vector with an orthogonal matrix preserves the 2-norm of the vector, we conclude that
GOl = 119700) VIl = IR - J5(x) - v[| = O(sm?).

6 Faithful reconstruction

In this section, we prove our main result that Z, N M is a faithful reconstruction of M. Recall
the class ® of functions p : R — RI—™;

®=<(p:0(x) = Zw(x, p) - BZ?X - (x—p) p, where B, is any d x (d —m) matrix
peP
with linearly independent columns such that col(B,x) = L.

We claim that the choice of B,y has no impact on the zero-set Z, as long as the columns of
Box are linearly independent. In this section, we will prove some useful properties of functions
in ®. These properties will allow us to show that Z, N M is a faithful approximation of M.

We will study properties of Z, N M by analyzing Z, N M for another function o€ d
conveniently chosen for the analysis. Since we will conduct some local analysis, we are only
concerned with functions that are defined near some chosen points in M. This motivates us to
define for every point z € M the following class ®, of functions:

®, = {0:0:B(z,2) = RI™, p(x) = Zw(x, p) Bl - (x—p) ¢, where B,y is
peP
any d x (d —m) matrix with linearly independent columns such that col(B,x) = L.

®, is a local version of ®. The next result shows that functions in ®, with overlapping domains
have consistent zero sets.

Lemma 6.1 Lety and z be two arbitrary points in M that are not necessarily distinct. For
every point x € B(y,2¢) N B(z,2¢), if there exists o € ®y such that o(x) = 0g—m, 1, then for every
RS <I>y Uo,, Q(X) = Od—m,l-

Proof. Take two functions g, 0 € ®, U ®,. Fix a point x € B(y, 2¢) N B(z,2¢). By definition,
o(x) = ZpEP w(x,p) - B;X - (x—p) and p(x) = Zpepw(x, p) - B%jx - (x —p). The columns of B,
and Bgx form two bases of Ly, which means that there is a (d —m) x (d —m) invertible matrix
R such that R- B}, = Bj,. If 0(x) = 0g—m,1, then g(x) = >° cpw(x,p) -R-B,, - (x —p) =
R- Q(X) = Od—m,l- E]

We define a particular function o, € ®, to analyze the properties of Z, N M in a small
neighborhood of z.
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Definition 1 Let z be any point in M. Let {vi,...,vq_m} be any set of unit vectors forming
a basis of N,. For i € [1,d —m], let f,, be the function that maps every x in B(z,2¢) to
the normalized projection of v; in Ly. Define a canonical function g, : B(z,2¢) — R&™
with respect to z and {vi,...,Va—m} such that for all x € B(z,2¢), 0,(x) = >, cpw(x,P)

[fv1(x)a s 7fvd,m(x)]t : (X_ P)-

We show that whenever ¢ is sufficiently small, o, belongs to ®, and g, is continuous in the
interior of B(z,2¢).
Lemma 6.2 Let o, be the canonical function with respect to a pointz € M and some set of unit
vectors {vi,...,Vqg_m} forming a basis of N, for which there exists some ¢ € [0, arcsin (ﬁ))
such that for any distinct i,j € [1,d—m)], Z(v;,v;) € [1/2—¢,m/2+ ¢|. There exists eg € (0,1)
that decreases as d increases such that for every point z € M, if € < eqg, then o, € ®, and g, is
continuous in the interior of B(z,2¢).

Proof. To show that g, € ®,, it suffices to prove that {f,, (x),..., fv,_, (x)} form a basis of Ly,
which boils down to showing that {f,,(x),..., fv,_, (x)} are linearly independent.

Since Z(Ly, N;) = O(m+/m~y) by Lemma we get Z(fy,(x),vi) = O(my/m~). Assume
to the contrary that f,,(x),..., fu,_,, (x) are linearly dependent. Then,

a (fVl (X)>C01((fvz(x) e fvd,m(x)))) =0.

Since Z (v, col((fu,(x) -+ fuy_,, (X)) = O(my/m~) for all i € [2,d — m], Lemma [3.7] implies
that

2 (col((v2 -+ Va0l (fua®) -+ Fup,, 6)))) = O (m/m —m?7)
By triangle inequality, £ (v1,col((va - Vg—m))) < Z(vi, fu; (X)) + Z (fu, (X),col((va -+ vg_pm)))-
The dimension of col((va - - - V4_n,)) is at least the dimension of col((fy, (x) - -+ fv,_,. (x))). Thus,
Z(fur(x),c0l((v2 -+ Vaem))) < £ (for (%), c0l((Fup (%) -+ fup_, (X)) +
£ (col((va =+ Vam)), col((fur () -+ fug_,, (%)) -

Combining the above observations, we obtain

Z(v,col((vz -+ Vd—m))) Z(vi, fu (X)) + £ (fur (%), col((v2 - -+ Va—m)))

(vi, fuu (x)) +Z (fV1 (x), col((fup (x) - -+ de—m(X)))) +
(col((va -+ va—m)); col((fup () =+ fou (X))
O(mv/ dm —m? 7).

1 .
Recall that v = 4e < 4eg. Assume that g9 < Cam=E for some appropriate constant

C > 1. Then Z(vyi,col(va---vg_,)) < 7/6. Note that eg decreases as d increases. Let u be the
normalized projection of vy in col(vy - - vg_,,). It means that

vl u > cos(m/6) = V3/2.

IN A

£
£

We can write u = Z?:_Qm Aiv; for some A;. Let k = argmax;_js 4, |Ai[. We take the dot
product of u and sign(\;)vg. This dot product is equal to |Ag|||vi||? + sign(Ax) D itk AivE vy,
and it is at most 1 as u and vy, are unit vectors. Since Z(v;,v;) € [g — ¢, 5+ ¢], the projection
of v; in the direction of v; has magnitude at most sin ¢. It follows that

L= =D v
i+k
> | Ak = (d —m — 2)|\g|sin ¢.
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We get [Ax] < 1/(1 — (d—m —2)sing) < 1.5 because sin¢ < 3= by assumption of the
lemma. Thus,

d—m d—m
Viu= Z Avh v <sing - Z |Ai| < 1.5(d —m)sin¢ < 0.5.
=2 i=2

This is a contradiction because we have derived earlier that v} - u > 1/3/2. We conclude that
{fu(x), ..., fu,_,, (x)} are linearly independent, and therefore, o, € ®,.

By Lemma for i € [1,d —m], fy, is differentiable and hence continuous in the interior
of B(z,2¢). Because g, is a sum of products of continuous functions, g, is also continuous in
the interior of B(z,2¢) [34, Ch 2: Corollary 3.7].

Next, we show that the gradient of g, varies monotonically.

Lemma 6.3 Let z be any point in M. Let v; be any unit vector in N,. For any x € B(z,2¢),
let 07i(x) = > pepw(x,p) - fu; (x)t - (x — p). Let T be any value greater than 1. For every t > 1
and every point x € B(z,te"),

o [[Voi(X)| € [1 = O(thy/me™ " + km'y), 1+ O(tky/me™ ! + km'y)| and
° Vf . VQz,i(X) >1-— O(t/ﬁﬁg""l + I‘im4’y),

Proof. From the definition of g,;(x) = > ,cpw(x,P) - fu; (x)t- (x — p), we obtain

IVeritll < D7 (wx,p) +wx,p) - 15, ()l - x = pll ) +

peP

S Vi) - fu () - (x—p)]|- (28)

peP

Consider the first term in (28). By Lemma 45, )| = O(km3). For any p € B(x,m7),
w(x, p) vanishes. If p € B(x, m7), then

5, GOl - lIx = pll = O(rm*). (29)

Therefore,
S (w6 p) +wx,p) - 15, (N - 1x — pll) < 1+ Osm’). (30)
peP

Consider the second term in . For any point p ¢ B(x,m7v), Vw(x,p) is a zero vector. If
p € Blx,m), then [p— v(x)[| < |p — x|l + |x — v()]| < m7 + 7 = O(m7y). By Lemma B.1[0),
p—v(x) makes an angle 7/2 —O(m~y) with N, . It follows from Lemmathat p—v(x) makes
an angle /2 — O(m+/m~) with Ly. Therefore, the projection of p — v(x) onto Ly has length
less than O(my/m~) - O(my) = O(m®/?4?). Since f,.(x) is a unit vector in Ly, the projection
p—v(x) in Ly has length at least | f,,(x)" - (p — v(x))| = | fv,(¥)" - (p — x)| = [[x—v(x)||. Therefore,

()" (= p)| < [lx = v(9)| + O(m*29?) < 7 + O(m®/?4?). (31)

We conclude that

Y Vel p) - fu ()" (x=p)|| < Ote™ +m*29?) - 3 | Vew(x,p)] - (32)

peP peP
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Since

dh(||x— X— dh(lx— aS
(Sper bl pl) “ - 5y — b~ o) Sper “ESH" - 7Ry

Vw(x,p) = ? |
(Zper hllix—pID)
we obtain 25 o |dh(| /4|l Il
peP X—P X—P
F; [Vw(x, p)|l < > oer hlllx— pll)

By Lemma [5.2(i), differentiating h(||x — p||) with respect to [|x — p|| gives

‘dh(HX - pH)’ <0 <m> , (1 Cx= pH>2m_1.
dix—=pl |7 \~v my
On the other hand,

CEIEDS (1 _ IIXWZVPH)?”"” <2HX; Pll 1> _

pEP peEP

For all p € P\ B(x,mv), h(|[x—p||) =0 and ‘%—}T\”)‘ = 0. Then,

Z [Vw(x,p)|| < © <%> ZPGPHB(x,mV) (1 — ||>;:7pH>2m—1
peP P - Zpepmg(x,mv) (1 _ ||xm;$u)2m (QHX;P” N 1) .

Let r = \/me/3. By Lemmal.3|

O (%) ’ ZperB(x,m'y—r) (1 - ||Xm;7pu>2m—1

Z ||Vw(x, p)H < lIx—pl| 2m 2|Ix—p]| :
pEP EpePﬂB(x,m'yfr) (1 T omy > ( vy + 1)
In the denominator, the term (1 — w> (M + 1) achieves its minimum 2@5 — %
sy — Q(vm) when |[x — pl[| = my — 7. It follows that
> IVw(x, p)|| = O(sv/m/7). (33)
peP
Substituting into gives
> Vw(xp) - fu,(x) - (x—p)|| = O(tuy/me™ ! + km®). (34)

peP

By substituting and into , we have
[Vori(X)|| <1+ O(tky/me™ ! + kmy),

establishing the upper range limit for ||V g,i(x)||. Symmetrically,

IVoratll = > (wlxp) = w(x,p) - 5, (Il - I = o)

peP

> Vwlx,p) fo,(x)" - (x—p)

peEP
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By and , we have
IVori(x)|| > 1—O(km*y) — O(tsy/me™ ' + km3y) = 1 — O(tky/me™* 4+ kmy),

establishing the lower range limit for ||V, ;(x)]|.
Observe that

Vi Vezi(x) = Y wxp) Vi fu () + Y wlxp) Vi Jp, (0" (x—p) +

peP peP
szt ’ VUJ(X, P) ) fVi (X)t ’ (X - P)-
peP

Therefore,

Vom0 = S wlap) v fu (0 — |3 wlep) v (90 - (x— p)| -

peP peP

ng ’ VW(X, P) ’ fvi(x)t ’ (X - P) :

peP

Since Z(fy,(x),vi) is O(my/m~y) by Lemma we get vl - f,.(x) > 1 —O(m?+?), which implies
that > pw(x, p)-vi- fu, (x) > 1—0(m3~4?). The second term is at most > pep WX P) (g, I
Ix — pl| < O(km?y) by (29). The third term is at most > opep VW) - A ()8 (x = p)l,
which is O(tky/me™ 1+ rkm3y) by and (33). As a result, vi- Vo, ;(x) > 1—O(tky/me™ ! +
kmiy). Hl

The next result shows that every point z in M is near Z,,.

Lemma 6.4 Let g, be the canonical function with respect to a point z € M and an orthonormal
basis {vi,...,Vg_m} of N;. There exists eg € (0,1) and ¢, > 1 such that if ¢ < g¢, then

Zy, N B(z,cmy?) N (z+ N,) # 0 and Z,, N (B(z,2¢) \ B(z,cmy?)) N (z+ N;) = 0. The value &g
decreases as d increases, and ¢, is linear in m>/2.

Proof. We first show that Z,, N (B(z, 2¢) \ B(z, cmy?)) N (z+ N,) is empty. For all i € [1,d —m)]
and all point x € B(z,2¢), let 0, = Y e pw(X,p) - fu, (¥)" - (x = p).

We claim that there exists a value ¢, > 1 that is linear in m®? such that for every x €
B(z,2¢) N (z+ Ny) and every i € [1,d —m], if v} - (x — 2) > ¢y, then g,;(x) > 0. We ignore
all p € P\ B(x,m7y) because w(x,p) = 0 in this case, so such points have no influence over
02(x). PN B(x,m7) is non-empty because, by uniform (g, x)-sampling, there is a point q € P
such that [|q —z|| < e which implies that [|q —x|| < [[x —z|[ + [lg — z|| < 3¢ < mr. For every
p € PN B(x,mvy),

Vi (x=p) 2 vi-(x—2) = vj - (z—p)].
The first term is bounded from below as v! - (x —z) > ¢;,7? by assumption. Consider the second
term. Since |p —z|| < [|p — x|| + [[x — z|| < my +2e < (m + 1), Lemma [3.1](i) implies that the
second term |v! - (z — p)| is at most (m + 1)242/2. Tt follows that

Vi (x=p) = ey’ = (m+1)*y /2.
For i € [1,d —m], define h;(x) = f,,(x) — v;. Lemma 4.2/ implies that

Z(Ly, Ny)
2

Ihi(x)]] < 2sin = O(my/m~).
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Observe that

Vi (x=p)+hi(x)" - (x—p)

emy? = (m+1)%7%/2 — [|hi(x)]| - [Ix — p
emy? — (m+1)%92/2 — O(m®/?4?)

0,

Fur(x)" - (x = p)

(AR ANV

whenever ¢, is a large enough value that is linear in m®/?

our claim.

We can symmetrically show that if v} - (x —z) < —¢n7?, then g,:(x) < 0. Thus, g (0) N
B(z,2¢) N (z + N,) lies in a (d — m)-dimensional slab S,, C z + N, that is bounded by two
(d — m — 1)-dimensional flats orthogonal to v; and at distance ¢, 7% from z. It follows that
(Z,, N (B(z,2¢) N (z+ N,)) \ Sy, = 0. By Lemma Z,, is identical for any choice of the
orthonormal basis {vi,...,vg_m} of N;. It means that we can set v; to be any unit vector
v € N; and the proof above still works. Observe that (. Sy = B(z, ¢my?) N (z+ N;). Hence,
Z,, N (B(z,2¢) \ B(z,emy?)) N (z+ N;) = 0.

To establish that Z,,NB(z, c;my?)N(z+N,) # 0, it suffices to show that (7" gz_zl (0) contains
a point in =™ S,,. This is because (=™ S,, is contained in B(z, ¢;nv/d — m~?), and for g <
1/(16¢my/d —m), we have B(z,cmyVd —m~?) C B(z,e) as cpv/d — my? < 16¢,,/d — me? <
16¢,,/d — mege. Then, the fact that Z,, N (B(z,2¢) \ B(z,cmy?)) N (z+ N,) = 0 implies that
Nd=m g;ll (0) contains a point in B(z, ¢;,y?) N (z + Ny).

In fact, we choose an even smaller 9 such that /g < 1/(16¢,,v/d —m), which gives
emVd —m~? < €32, This will allow us apply Lemma later. The exponent 3/2 is an
arbitrary choice. Any number greater than 1 will do.

Let C = ﬂf:_{ﬂ Sy;. It is a (d — m)-dimensional cube that lies in z + N, has z as its center,
and has side length 2c,,72. The facets of C are orthogonal to the directions vy, ..., Vg_,.

Adopt a coordinate frame such that vi,...,v4_,, are the first d — m coordinate axes of R
For i € [1,d — m], define H; to be the set of maximal line segments that lie inside C' and are
parallel to the direction v;.

First, we claim that every line segment [ € H; intersects o, 11(0) at exactly one point. We

. As aresult, g,;(x) > 0. This proves

have shown earlier that g,; has opposite signs at the endpoints of [. So N 0,. 11(0) # (). Suppose

to the contrary that [N gz_il (0) contains two distinct points y; and ya. So y; —ys is parallel to v;.
Assume without loss of génerality that y; — y2 has the same orientation as v;. By Lemma 6.3
(y1 —y2)t - Vogi(x) > 0 for every x € B(z, cmv/d — my?) C B(z,£%?). But then g, ;(x) increases
strictly monotonically from ys to y;, which implies that g, ;(y;) > 0. This is a contradiction
because y1 € o, Zl (0), thereby establishing our claim.

Define a function g; : C — [—cmy?, em7y?] such that g;(x) = b; x, where

° (xl,.. . ,wi_l,b@x,xi_u,...,xd) € C and
® Qz,i(l'l,---,l'iflybi,x,$i+1,---,-Td) =0.

Our claim in the previous paragraph ensures the existence and uniqueness of b; x. We show that
gi is continuous. Since g ; is continuous, o, 11(0) is compact [34, Ch 3: Theorem 5.4, Ch 5: The-
orem 2.11], which implies that for any interval [a,b] C R, 0, (0) N {x € C : z; € [a,b]} is
compact. Let m; be the function that projects points in C' onto the linear subspace spanned
by {Vi,..-,Vi—1,Vit1,---,Vd_m}. Since m; is continuous, its image is compact and so is the
following product [34, Ch 5: Theorem 2.9 & Theorem 4.2]:

i (g;}(()) N{xeC e la, b]}) % [—emn2, emn2].
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Observe that this product is homeomorphic to g; '([a,b]). Therefore, g; *([a,b]) is compact for
any interval [a,b] C R, which implies that g; is continuous [34, Ch 2: Theorem 6.10].
Define a function g : C' — C' such that

9() = (91(x), .-, ga-m(x))" -

The function g is continuous as each g; is continuous. Notice that g, Zl (0) N C is the subset of
C that satisfy the equation g;(z1,...,2i,...,24) = x;. Since 0;(x) = (021(X), .-, 0z.4-m (X))’
we conclude that Z, N C' is the subset of C' that satisfy the equation g(x) = x. By the Brouwer
fixed-point theorem [34, Ch 4: Theorem 4.6], there is indeed such a point in C. ]

Recall that v is the map that sends every point in R? to its nearest point in M. We need
to show that Z, N M is compact in order to prove that Z, N M and M are homeomorphic.

Lemma 6.5 Z,N M is compact.

Proof. By Lemmas and for any point z € M, Z, agrees locally with Z,, where o,
is the canonical function with respect to z and any orthonormal basis of NV,. Our strategy is
to construct a finite number of such Z,,’s and prove that each is compact. The lemma then
follows as a finite union of compact sets is compact.

Take a maximal set Y of points in M such that any two of them are at distance €7 or more
apart. It implies that any two balls centered at points in Y with radius €7 /2 are interior-disjoint.
Since M is the product of M and a ball of radius &, M is compact [34, Ch 5: Theorem 4.2]. It
follows that |Y'| is finite. The maximality also implies that MC Uyey B(y,€"). The intersection
ZpNUyey By, €7) is equal to U, ¢y Zp N B(y, ") which is a subset of ¢y Z, N B(v(y),e" +¢)
because ||y — v(y)|| < e. By Lemmas|6.1{and Zo,NB(v(y),e™ +e) = Zy,, NB(y).e" +e).
Therefore,

Z, NMC Z,N U B(y,e") C U Zo,y NB(v(y),e” +¢).
yey yeY
As 9,(y) is continuous in the interior of B(v(y),2¢) by Lemma Zo,,y N Bv(y),e™ +¢)
is compact [34, Ch 3: Theorem 5.4, Ch 5: Theorem 2.11]. It implies that the finite union
Uyey Zo,,) N B(v(y),€™ +¢€) is also compact. Finally, observe that

ZonM= | Z,,, NBw(y),e +¢) | N M,
yey

which is compact because it is the intersection of two compact subsets in R%. Hl

We are ready to prove the faithful approximation of M by Z, N M.

Theorem 6.1 Let M be an m-dimensional compact smooth manifold in R®. Let P be a uniform
(e, k)-sample of M for some constant k > 1. We assume that M has unit reach, m is known,
a neighborhood radius v = 4e, and approzimate tangent spaces with angular errors at most myy
are specified at the points in P. Let M be the set of points within a distance € from M. We
can construct a function ¢ : R® — RI=™ for which there exists eo € (0,1) that decreases as d
increases such that the following properties hold whenever € < gg.

(i) The restriction of the nearest point map to Z, AM is a homeomorphism between Z, N M

and M.
(ii) The Hausdorff distance between Z, N M and M is O(mP?~%) = O(mP/3<?).
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(iii) For all x € Z, N M, Ny(xy makes an O(m?\/ry) = O(m*\/ke) angle with the normal
space of Z, at x.

Proof. Consider (i). Let p denote the restriction of v to Z, N M. First, we show that w is
injective. Suppose to the contrary that there are two points y1,ys € Zsoﬂ/(/l\ such that u(y;) and
1(y2) are the same point z € M. Then, y; and ys belong to z+ N, which implies that y; —ys €
N,. Note that y; and ys lie in B(z,¢). By Lemmas and Z,N B(z,e) = Z,, N B(z,¢).
Then, Lemma implies that y; and y» belong to B(z,tv?) for some large enough ¢ that is
linear in m®2. By Lemma we can define vi = y; —yp and get (y; —y2)' - Voz1(x) > 0 for
all x € B(z,ty?) when &g is sufficiently small. But then 02,1 (x) increases strictly monotonically
from ys to y1, which implies that o, 1(y1) > 0. This is a contradiction because y; belongs to Z,
and hence Z,, by Lemmas and This proves that p is injective.

Next, we show that u is surjective. Let z be any point in M. It follows from Lemmas|6.1]
and ﬂ that there exists a point y € Z, N Mn (z+ N;). We show that p must map y to z.
Suppose that g maps y to another point zp € M, ie. |y — z2|| < |y —z||. We grow a ball B
tangent to M at z by moving its center linearly from z towards y. When B is tiny, it touches
M only at z. When the center of B reaches y, B contains both z and zs. Thus, the radius of
the growing B must become the local feature size of M at z before or when its center reaches
y. Recall that the reach of M is assumed to be 1. Thus, ||y —z|| > 1 > e. This contradicts the
fact that y € Mn (z+ N;), thereby proving that p is surjective.

Since Z, N M avoids the medial axis, the restriction p is continuous. Therefore, u is a
continuous bijection from Zwﬂ/T/l\ to M. The spaces M and Zwﬂf/l\ are compact by assumption
and Lemma respectively, so we conclude from the existence of p that M and Z, N M are
homeomorphic [34, Ch 5: Theorem 2.14]. This proves the correctness of (i).

Consider (ii). By Lemmas |6.1} -, m, and [6.4 -, for any point z € M, there exists a point
x € Z, within a distance of cm~y?, where ¢,, > 1 is some value linear in mb5/2. Therefore,
cmY? = O(m5/2505) < ¢ for a small enough &9. So x € Z, N M. Tt follows that the directed
Hausdorff distance from M to Z, N M is O(m®/?~4%). Conversely, for any point x € ZyN M\,
[v(x) = x| < e and z € v(x) + Ny. By Lemmas and Z, N (B(v(x),2¢) \
B(v(x),cm7?)) N (v(x) + Ny is empty. So [[v(x) — x| < emy? = O(m®/?~4?). 1t follows that
the directed Hausdorff distance from Z, N M to M is O(m®/?~2).

Consider (iii). By Lemma (6.3} for every point x € Z, N M and every unit vector vi € Ny,
[T s £ 1+ Olomtin) kv - g () > 1 Ot Thi

t 4
Vi Vo, ,1(x) <1 — O(km 7)) 2
Z(v1i,Vo,01(x)) <arccos | ———= | <arccos | —————= | = O(m*\/k7).
o Vo) ( IVeu 1 ()l 1+ O(km'y) V)

The vector Vo,(x),1(x) belongs to the normal space of Z, at x. (Recall that Z, agrees with
Zoy locally.) Thus, the angle between N, and the normal space of Z,, at x is O(m?,/k7).

7 Projection operator

Our proof of convergence will make use of the property that B,y is a d x (d — m) matrix
with orthogonal unit columns such that col(Byx) = Ly. Such a matrix can be obtained by an
eigen-decomposition of C.

We rewrite p(x) = 3 cpw(x,p) - B (x—p) = Bl (x —ax), where ax = 3 pw(x, p) - p.
Intuitively, as ¢(ax) = 0, we want to move the current point x; closer to ax. We also want to
move directly onto Z, without much drifting. Therefore, it is desirable to move x; within the
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, ax yéx

X dy ax

(a) (b)

Figure 1: (a) The points x, y, ax, and ay lie on a (d — 1)-dimensional sphere with xay as a
diameter. (b) The circle with center o circumscribes y ay ax. Also, Zaxoy = 2/a, axy.

affine subspace x; + Ly, which is roughly normal to Z,. The projection follows an iterative
scheme:
Xi+1 = X; + Bgo,xi . Bfa,xi . (axi — Xi).

Note that B, - Bfo,Xi - (ax; — %;) is the projection of the vector ay, — x; into Ly,. The iterative
scheme moves the current point x; by this projected vector to the new point x;11. In other
words, x;11 is the projection of ay;, onto the affine subspace x; + Ly, .

We prove two technical results in order to establish the proof of convergence. The first one
shows that any initial point near M is moved to within an O(m7/24?) distance from M after
a single iteration. Let x; denote the nearest point in Z, to x;. The second result shows that
[IXi+1 — Xi|| < [|x; — %;||, which implies that ||x;+1 — Xi+1]| < ||xi — X;]|-

Lemma 7.1 Let P be a uniform (e, k)-sample of M. For every point x within a distance m~y
from P and every d x (d —m) matriz By x that satisfies col(Byx) = Ly, we have ||y — v(x)|| =
O(m™/?~2), where y = x+ B, - BL - (ax — x).

Proof. For every sample point p € B(x,my), ||p — v(xX)|| < ||p —x|| + ||[x — v(X)|| = O(m~). By
Lemma i), the distance between p and v/(x) + T,y is O(m?42). As a, is convex combination
of all p € B(x,m), the distance between a, and v(x) + T}, is also O(m?y?).

Let 4y be the projection of ay into v(x) + N, (4). The vector & — ax is parallel to T,y, so
4y is also at distance O(m?y?) from v(x) + Ty(x). As ax € v(x) + N,(x), the vector &, — v(x) is
orthogonal to T,,,), which implies that [|ax — v(x)|| = O(m??). Therefore, it suffices to prove
that [|ax — yl| = O(m™??) as [ly = v(x)|| < [|lax =yl + |lax — v(x)[| = [[a — y|| + O(m*3?).

Refer to Figure (a). By construction, ax € v(x)+Ny(x). Also, x—v(x) € Ny, implying that
x € v(x) + Ny(x). Therefore, /xayax = /2. From the previous discussion, y is the projection
of ay onto x + Ly. So Zxyax = m/2. As a result, x, y, a, and ay lie on a (d — 1)-dimensional
sphere S that has xayx as a diameter. Since ay is a convex combination of all p € P N B(x, my),
we have ||ax — x|| < m~. Thus, radius(S) = O(my).

Since /xayay = m/2, we have ||a, — x||? + [|ax — ax||? = ||lax — x||?. Tt follows that ||a, —x|| >
l|lax —x]|| /2 or ||y —ay|| > [lax—x]|| /2. We prove that Za, xy = O(m5/2~) if ||a, —x|| > [|ax—x]| /2.
Let {vi,...,Vg-m} and {wi,...,wg_,} be orthonormal bases of N,) and L, respectively,

that satisfy Lemma Note that ax —x € N, and y —x € Ly. Refer to Lemma Let
(ax — x)/|lax — x|| be the unit vector n, let ax — x be the vector uj, let y — x be the vector
ug as specified in Lemma and let ¢ = Z(Lx, Nyx)) = O(my/m~) by Lemma We
need to show that the values a; and ao defined in Lemma [5.5] satisfy the assumption that
a1 > ag + (2m2¢?)/ cos .
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By Lemmal[3.6] Z( vl,wl) < ¢ for i € [1,d—m], which implies that ||v;— wl|| < 2sin(¢/2) < ¢.
By definition, as = Z e 2m_H((Wl vi)'n)?, and therefore, ap < Y070, L flwi — vi]|? <
m¢? = O(m*~?). By definition, a; is the squared norm of the projection of n = (ay—x)/||ax—x||
onto N, (). Since a,—x is the projection of a,—x onto N, (), we get aq = [[ax—x||?/[lax—x]|* > 1/4
because [|a, —x|| > |lax —x||/2 by assumption. This shows that a; > o+ (2m2¢?)/ cos ¢. Then,

242
Lemma implies that Zayxy = Z(uj,us) < arccos (1 /1— 22 cosg— %) One can
verify that the right hand side is arccos(1 — O(m®+?)) and so Za, xy = O(m®/?).

Similarly, we can prove that Za,a,y = O(m5/27) if ||ax — ay|| > |lax — x||/2. We conclude
that Za,xy = O(m®?y) or Za,axy = O(m®?7).

Without loss of generality, assume that Zaya,y = O(m5/ 24). Consider the circumcircle
of ayaxy. Let o be its center. Refer to Figure (b) The angle Za,oy = 2/ayaxy. Then,
|ax — y|| = 2|lo — y|| sin(Zax0y/2) < radius(S) - O(m>/2y) = O(m"/?4?).

Next, we prove that x;;1 is much closer to Z, than x;.

Lemma 7.2 Let P be a uniform (e, k)-sample of M. There exists eg € (0,1) that decreases

as d and Kk increase such that if € < eqg, then for any point y at distance O(m7/272) or less

from M, we have ||y —y|| < A1/4
_ ¢

y =y+ B%y By (ay —y)-

-|ly = y||, where y is the nearest point in Z, " M toy and
y—y y D © y

Proof. Let z = v(y). For i € [1,d —m], let v; be the unit vector in N, such that B,, =
(fur(y)s .-+, fu,_,, (y)) consists of orthogonal unit column vectors. By Lemma Z(Ly,N;) =
O(my/m ), so for any distinct 4,5 € [1,d — m], Z(vs,v;) = /2 £ O(my/m~). This allows us
to prove as in the proof of Lemma that {v1,...,V4_m} are linearly independent and hence
they form a basis of N,.

Let o, be the canonical function with respect to z and the ba81s {Vi,. s Vd—m} of N,. Since
ly = y|| is at most |y — z|| plus the distance from z to Z, N M, by Theorem we have
ly =]l < O(m™?4%) + O(m*?4%) = O(m"/?4?). So HY—ZH <y =yl +1lly—zll= ( 297).
Therefore,

7/242)

segment yy is contained in B(z,tm for some constant ¢,

implying that o,(x) is defined for any point x in the segment yy as long as g < 1/(8tm"/?)
so that tm7/242 < 16tm™/%2c4e < 2¢. By Lemmas and 0; 1(0) agrees with Z, within
B(z,tm"/?4?). Then, the following relations follow from Lemma Lemma Theorem
and the facts that Z(v;, fy,(y)) = O(my/m~) for any i € [1,d — m], and Z(v;, fy,(y)) = 7/2
O(m+/m~) for any distinct 4, j € [1,d — m].

e Foralli € [1,d—m] and all x € B(z,tm7/?4?), | Vo.:(x)| € [1— O(km*y), 14 O(km*y)].

e For all distinct indices i,j € [d — m] and for all pair of points x,x' € B(z,tm7/?~?),
Vo.i(x)t - Vo, j(X) = £O0(km?y).

e Foralli € [d—m], f,(y)" - Vosily) € [1 — O(km*y),1+ O(km*y)].

e For all distinct i, € [d —m], f,(y)! - Voo ;(y) = £0(kmy).

We first prove lower and upper bounds on [|o,(y)||. Since ¥ is the nearest point in Z, N M
to y, the vector y —y belongs to the normal space of Z, at y. Recall that Z, agrees with
Z, locally, so the normal space of Z, at y is spanned by {V,1(y),...,Vo,a-m(y)}. Let
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u= Zd " Xi - Vo,,i(y) denote the unit vector (y —y)/|ly — y||. Standard vector calculus gives

1
0:y) = (/ (Vor1(y+7u), ..., Voga—m(y+7ru)’ - (y—7) d?“)
0

1
- Hy_yH / (VQZ,I()?"’_TU) szd m Y+TU (Z/\ VQZZ ) dr
0

A+ m(ﬂ) O(rm*y)
— Iy -3l - (85)
Mo + Z?;{”(ﬂi) - O(km*y)

Hence,
d—m d—m || —m d—m 2
> A= O(km'y) (Z |Ai|> < Hfl NHZ < Z A+ O(rkm*y) (Z w) . (30)
i=1 i=1 =1 i=1
We claim that if gg is small enough, then
Vie[l,d—m], |\ <1+0((d—m)rm'y). (37)

Let k = argmax;_p; 4_p, [\i]. We take the dot product of Z " Xi - Vozi(y) and Vo, x(y) or
—Vo,1(y) depending on whether )j is non-negative or negative, respectlvely This dot product
is at most 1 4+ O(km*y) as ||[Vo.x(¥)|| = 1+ O(km*y). On the other hand, for each i # k,
i Vori(9)t - Voo r(y) contributes +|\;| - O(km?y). It follows that

Akl (1— O(nm4*y)) — O(km*y) Z IAi] <1+ O(km*y)
itk
= (1= O((d — mysmy))) |As] < 1+ O
= |\] <1+0((d—m)rm*y)).

Since |Ag| = max; |Ai], it establishes our claim.
Since Z " Ni - V,,i(¥) is a unit vector, we get

Z A AIVor @2+ D Nidi - Veriy)' - Ve (y) = 1,

i#j
which implies that
d—m
1= 0(km'y) = O(km"y) > NN < DA <14+ 0(sm'y) +O(km*y) Y [Nk,
i#j i=1 i#j

Using the above relations concerning A;’s, we get an upper bound of the right hand side of

as follows.

d—m d—m 2
S 32 4 Ofwm®) (z w)
=1

i=1

IN

1+ O(K,m4’)/) + O(mn4'y) Z IXiA]

i#]
1+ O(/@m4w) O(km*y) - (d? + O(d*(d — m)rm™ty))
1+ O(d*km™y).

VANVAN
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Symmetrically, we get a lower bound of the left hand side of :

d—m d—m 2
Z A2 — O(kmy) (Z ])\Z|> >1—O(d*wm?y).
i=1 i=1
Thus, we simplify to
(1= O(@rm*y)) - ly =y < lle:WI* < (1 + O(d®wm)) - lly — y[1*. (38)

In other words, ||o.(y)|| is a good approximation of the distance from y to the zero-set of p,.
Next, we give a lower bound on cos Zy’yy. Consider the dot product (y' —y)!- (y —y). By
expanding B, | - (ay —y), we get

y/ —y=Byy- Bfa,y : (ay —y)= Boy - (—o.(y))-

Since By, consists of orthogonal unit column vectors, we get

Iy =yl =By - (—oz(y))l| = lloz(y)l|- (39)
Therefore,
o=y G-y) = lle:y)ll-lly—yll-coszy'yy
< V14 0(Rrmby) - |ly = * - cos 2y'y . (40)

Recall that Z " i - Vozi(y) is the unit vector (y —y)/|ly —y||. By expanding (y' —y)*- (y —y),
we get,

=9 -y) = Boy o) -lly-vl- ZA Vori(9)

d—m t d—m
= D enily) fvi(y)> Ay =91 ) A Voz(y)
i=1 =1
d—md—m
= > 02i(¥) - Aj - fu (V)" Vor; () - ly = ¥l
i=1 j=1
d—m

= 02i(y) - lly =¥l - Bi,

=1

where 3; = \; + Z?;lm(:l:)\i) - O(km*y) for i € [1,d — m]. Note the similarity between the f3;’s

and the vector in (B5). Therefore, |ly — V|| - B = 024(y) + lly — V|| - S0 (£\) - O(rmty) >
02:i(y) — O((d —m)km*y)) - lly — §]| as [\i] <1+ O((d — m)xm?y). Hence,

- 5-) ()2 = Ol(d —mym*) -y =51 Z )

loz(y)|I* = O((d = m)rm™y) - lly =yl - Vd = m - [|ez(y) |
loz()II* = O((d = m)*2rkm*~) - [ly = 3| - H@z( )|

Substituting into the above, we get

Y —y)'-F—y) = (1-0(dxm*y)) - ly - yI*.

v
ling
X

>
>
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Combining with the above inequality gives
cos Zy'yy > 1 — O(d*km?).
Finally, consider triangle y'yy. By the cosine law, we have
Iy =91 = Iy = yI? + lly = 91> = 21y’ =yl ly =9Il cos 2y'y3)""*.

By and ,

Y = ylI> < (1 + O(d*km*y)) - |ly — ¥||*. Therefore,

- - 1/2
Y =51 < lly =9l 2+ 0(drm*y) 2 (1 - O(d2xm*)) (1 — O(d*xm*)))"
< O(dm* k7)) - lly = ¥l
< Ay =9

whenever e is small enough so that y'/4 = O(e!/*) = 0(5(1)/4) cancels the O(dm?/k) factor.
This requires g to decrease as d and k increase.

By combining Lemmas and we prove that the projection operator will bring an
initial point to a point in Z, N M in the limit.

Theorem 7.1 Let ¢ be the function for a uniform (e, k)-sample of an m-dimensional compact
smooth manifold M in R% as specified in Theorem . Define the projection operator X;+1 =

Xi + By - Bl - (ax; —xi), where ay, = 3 pw(xi, p) - p. There exists eg € (0,1) that decreases

as d and k increase such that if € < gqg, then for any initial point xg at distance m~y or less from
some sample point, where 7y is the input neighborhood radius, the following properties hold.

o lim; ,ox; € Z, N M\, where M is the set of points within a distance of € from M.
o Foralli>0, ||x; — v(xo)|| = O(m™/?4%) = O(m"/22).
Proof. For any point x, let x denote the nearest point in Z, N M to x. By Lemma (7.1

[x1 — v(x0)|| = O(m7/24?). Let b be the nearest point in Z, NM to v(xo). Since ||b—v(xg)| =
O(m5/ 242) by Theorem [6.1] triangle inequality implies that for a small enough o,

1 =1 < [lx1 = bl < [lb = v(x0) [l + [x1 = v(xo)
< O(m*?y%) + 0(m"/?4?)
= 0(m™/?~?).
Since ||x; — v(x0)|| = O(m7/?~4?), Lemma is applicable to xj. It ensures that [|xe — Xa|| <

g = %1|| < Y4+ |jx1 — %1]| = O(m7/24%/4), which is smaller than O(m7/24?) and so Lemma 7.2
is applicable to x3. Repeating this argument gives

Ixi = %ill < [[xi — %ia|| = O(m /2y THI/%),
This proves that lim; , z; € Z, N M. By triangle inequality,

i —xi—1|| < [[xi — Xi—1]| + [|xi—1 — Xi—1]|
_ O(m7/2,y(7+i)/4) + O(m7/27(6+i)/4)
_ O(m7/2’y(7+i)/4).
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Therefore, for a small enough &g,

[
ki = v(x0) | < Y lxj = i1l + x1 = v(xo) |
j=2

< ZO(m7/2’7(7+j)/4) + O(m7/272)
=2
= O(m"/?4%).

8 Conclusion

We define a function ¢ from a uniform (e, x)-sample of a compact smooth manifold M in R?
such that the zero-set of ¢ near M is a faithful reconstruction of M. Moreover, we give a
projection operator that will yield a point on the zero-set near M in the limit by iterative
applications. More work is needed to improve the angular error of O(m?y/ke), which is weaker
than the O(e) angular error offered by provably good simplicial reconstructions. It would also
be desirable for € to depend on m only instead of d. Another natural question is how to deal
with non-smooth manifolds and non-manifolds.

Acknowledgment The authors would like to thank the anonymous reviewers for helpful
comments, pointing out mistakes in an earlier version that we subsequently corrected, and
suggesting the removal of some slack in the bounds on Hausdorff distance and angular error.
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