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PROPERTY TESTING AND EXPANSION IN CUBICAL

COMPLEXES

DAVID GARBER AND UZI VISHNE

Abstract. We consider expansion and property testing in the
language of incidence geometry, covering both simplicial and cu-
bical complexes in any dimension. We develop a general method
for the transition from an explicit description of the cohomology
group, which need not be trivial, to a testability proof with lin-
ear ratio between errors. The method is demonstrated by testing
functions on 2-cells in cubical complexes to be induced from the
edges.

1. Introduction

Property testing is a key concept in randomized algorithms and algo-
rithms of sublinear complexity [3]. The goal of the test is to distinguish
members of a set (“property”) from those at positive fractional distance
from it.
To demonstrate this notion, consider symmetric functions f :V ×

V→{1,−1} where V is a finite set. Say that such a function is “special”
if it has the form fij = αiαj for α :V→{1,−1}. To efficiently test f for
being special, one verifies that fijfjkfki = 1 for random indices i, j, k.
A special function will always pass the test. It is also the case that if
the probability of success is close to 1, then f can be well-approximated
by some special function.
This example is given in [7], where the authors made the significant

observation that expansion in simplicial complexes (introduced in [6]
and [4]) is a form of property testing. Indeed, the product along edges
of the triangle {i, j, k} is an entry of the differential δ1f associated
to the complete simplicial complex, and such entries are computed in
constant time.
A somewhat weaker property, that a symmetric function has the

form fij = ±αiαj for a fixed sign, is tested by the product along the
square, fijfjkfkℓfℓi = 1, see [2]. Since this is an entry of the cubical
differential δ1f , one is led to study expansion in cubical complexes.
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2 DAVID GARBER AND UZI VISHNE

We re-prove this result in Section 8, to help the reader follow our main
application Section 9, which is an analogous result in higher dimen-
sion: testing functions defined on squares for being approximated by
functions defined on edges, by taking the product along the faces of a
cube (see Section 2).

The main contributions of the paper are:

(1) We cast property testing and expansion into the general frame-
work of cohomology on incidence geometry. This covers ex-
pansion in simplicial or cubical complexes, in any dimension
(Subsection 3.4).

(2) Expansion is a form of property testing (Theorem 3.9).
(3) Computing the first and second cohomology of the complete

cubical complex (Sections 5 and 6), by a delicate analysis of
non-symmetric functions on the edges.

(4) Testing functions on squares to be defined by edges (Sections 2
and 9).

(5) A general technique to bound the expansion constant in a co-
homological setting, which is necessary when the cohomology is
nonvanishing. (Section 7).

(6) Outline of a proof for testability which should deal with the
analogous statements in any dimension (Section 10).

Section 4 briefly introduces cubical complexes, on which our two
examples are based.

We thank Roy Meshulam, Ilan Newman, and an anonymous referee
for their helpful comments.

2. Testing functions on 2-cells

This section describes our main application in simple terms. Let V
be a finite set. We consider functions from V 4 = V × V × V × V to
µ2 = {1,−1}. Can such a function g be written in the form

(1) gijkℓ = ±fijfkjfkℓfiℓ,

where f :V × V→µ2 (in this order of the indices)?
The symmetric group S4 acts on the set of functions V 4→µ2 by

permuting the indices. An obvious necessary condition for (1) is that g
be symmetric under the subgroup 〈(13), (24)〉. A necessary condition
for (1) to hold for a symmetric function f is that g is symmetric under
the action of the dihedral group D4 on the indices. Namely, such
functions are defined on squares over V .
It is not hard to see that if g is defined on squares, and has the

form (1), then the product of the values of g over the faces of any cube
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is 1. We call this the cube condition. In Corollary 6.10 we show that
every function g satisfying the cube condition (for all cubes) is of the
form (1) for some f (not necessarily symmetric).

A probabilistic analog follows, showing that the cube condition tests
a function g defined on squares for being of the form (1):

Theorem 2.1. There is a constant ω > 0 such that if a function g on
the squares fails the cube condition with probability at most p, then g
can be approximated by a function of the form (1), with an error rate
of at most ω−1p.

Insisting on f being symmetric poses a problem, because not every
function on squares satisfying the cube condition is of the form (1)
with f symmetric. However, in Subsection 6.5 we define a function
[−1] (which equals −1 for exactly 2

3
of the squares), and then we have:

Theorem 2.2. There is a constant ω > 0 such that if a function g on
the squares fails the cube condition with probability at most p, then g
or [−1]g can be approximated by a function of the form (1) with a
symmetric f , with an error rate of at most ω−1p.

Namely, the cube condition on g tests for the property that g or
[−1]g are of the form (1) with f symmetric.

A more precise formulation of Theorems 2.1 and 2.2 is given in Corol-
laries 9.5 and 9.6. The proof is based on the description of the space
of “directed boundaries” B2( ~X) in Section 6, and follows from Corol-
lary 9.4.

3. Expansion and property testing

After a brief introduction to testing and to incidence geometry (see
[9]), we phrase the notions of expansion and property testing in the
language of incidence geometry. This will naturally lead to the obser-
vation that a lower bound on the expansion constant proves testability
with linear ratio of errors.

3.1. Testing as an algorithm. We briefly recall the standard defi-
nition of a testable property, with minor adjustments. For a set X ,
let C(X) denote the space of functions X→µ2 = {1,−1}. The normal-
ized Hamming distance is defined by dist(f, g) = ||fg|| where

||f || = Pr {f(x) 6= 1}

for x ∈ X chosen uniformly at random.
Let X be a set. An ǫ-test for a subset P ⊆ C(X) is a randomized

algorithm with a constant number q of queries whose input is f ∈ C(X)
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and whose output is YES with probability ≥ 2/3 if f ∈ P , and NO
with probability ≥ 2/3 if dist(f, P ) ≥ ǫ. The set P is testable if it
has an ǫ-test for every ǫ > 0. Here dist(f, P ) = minp∈P dist(f, p).
We are more interested in one-sided tests. A one-sided (ǫ, η)-test

is a randomized algorithm with q queries whose input is f ∈ C(X)
and whose output is YES with probability 1 if f ∈ P , and NO with
probability ≥ η if dist(f, P ) ≥ ǫ.
We consider one-sided tests obtained from the following scheme.

Let Y be a set, and δ :C(X)→C(Y ) a function such that each entry of
δf is a product of a bounded number q of entries of f (Definition 7.3
elaborates on this idea).

Remark 3.1. Let P = Ker(δ). Suppose dist(f, P ) ≥ ǫ implies ||δf || ≥
η. Then, verification that (δf)y = 1 for a random y ∈ Y is a one-sided
(ǫ, η)-test for P .

The expansion version of a test follows:

Remark 3.2. If ||δf || ≥ ω ·dist(f, P ), then verification that (δf)y = 1
for a random y ∈ Y is a one-sided (ǫ, ωǫ)-test for P .

3.2. Incidence geometries. The incidence geometry introduced here
is used to place X , Y and δ from the previous subsection in a unified
framework.
A pre-geometry is a set of elements with prescribed types, with an

incidence relation � which is a reflexive and symmetric (sic) binary
relation such that distinct elements of the same type are not incident
in each other. As usual, x ≺ y is a shorthand for x � y and x 6= y.
A set of elements incident in each other is a flag. A geometry is a
pre-geometry in which every flag is contained in a flag with one element
of every type.
Let G be a pre-geometry with three types, say 0, 1 and 2. Write

G = G0 ∪ G1 ∪ G2, where Gi is the set of elements of type i. We say
that G is even if for every x ∈ G0 and z ∈ G2, the number of y ∈ G1

for which x ≺ y ≺ z is even, and (somewhat diverging from standard
terminology) thin if this number is always 0 or 2. Every thin pre-
geometry is even.

Example 3.3. Let (G,≺) be a pre-geometry with three types. Let ≺ij

denote the restriction of ≺ to Gi×Gj. If ≺01 and ≺12 have full domain
and range, and ≺02 =≺12 ◦ ≺01, then G is a geometry.

We denote µ2 = {1,−1}. As usual, C i(G, µ2) = C i(G) is the space of
cochains, namely functions Gi→µ2, which is a group under pointwise
multiplication. The constant functions, in any type, will be denoted 1
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and −1. For i = 0, 1 we define the differentials δi :C i(G)→C i+1(G) by

(δif)(y) =
∏

x≺y

f(x)

for every y ∈ Gi+1, where the product is over x ∈ Gi such that x ≺ y.
Let Z1(G) ⊆ C1(G) be the kernel of δ1; elements of Z1(G) are usu-

ally called cocycles. Let B1(G) ⊆ C1(G) be the image of δ0; these
are the coboundaries. For f ∈ C0(G) we have that (δ1δ0f)(z) =
∏

x≺y≺z f(x), so if G is even then δ1δ0 = 0, and than B1(G) ⊆ Z1(G).
The cohomology group of an even geometry G is the quotient group
H1(G) = Z1(G)/B1(G).

Example 3.4. Let X be a simplicial complex. For a fixed d ≥ 0, the
dth incidence geometry of X is the geometry G in which Gi is the set
of (d − 1 + i)-cells of X (i = 0, 1, 2), with (symmetrized) inclusion as
the incidence relation. This is a thin geometry. The cohomology H1(G)
is then the simplicial cohomology group Hd(X).
Taking X to be a cubical complex (see Section 4 below) works just as

well.

Recall that for f ∈ C i(G), we denote ||f || = Pr {f(x) 6= 1} where
x ∈ Gi is chosen uniformly at random.

Definition 3.5. For f ∈ C1(G), we denote the coset [f ] = f · B1(G)
and

||[f ]|| = min
f ′∈[f ]

||f ′||.

The degree of z ∈ G2 is the number of y ∈ G1 incident to z.
Most often, G represents an infinite series of geometries, and is not
a fixed object. We say that G is bounded if there is some fixed q
such that deg(z) ≤ q for all z ∈ G2 (so, for example, “the” complete
2-dimensional simplicial complex on n vertices, for arbitrary n, “is”
bounded with q = 3 because every triangle has three edges). Un-
der this assumption, the computation of each entry of δ1g requires a
bounded number of queries on g.

Since the coefficients are in a field, the short exact sequence

(2) 1 // B1(G) �
� // Z1(G)

θ // H1(G) // 1

splits, and Z1(G)∼=B1(G) × H1(G). A subspace H ≤ Z1(G) will be
called independent if B1(G) ∩ H = 0, equivalently if the restriction
θ|H :H→H1(G) is an injection.
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3.3. Testing. Let G be a bounded even incidence geometry on the
three types 0, 1, 2. We specialize Remark 3.1 to δ1 :C1(G)→C2(G).

Definition 3.6. Let H ≤ Z1(G) be an independent subspace. If for
every g ∈ C1(G) there is α ∈ H for which

||[g · α]|| ≤ ω−1||δ1g||

for some (typically small) constant ω > 0, then verification that (δ1f)z =
1 for a random z ∈ G2 is a one-sided (ǫ, ωǫ)-test for B1(G) ·H for ev-
ery ǫ. When this is the case, we say that the differential δ1 tests

B1(G) ·H, and B1(G) ·H is testable (with ratio ω).

(The condition depends on H only through the product B1(G) ·H .)
In other words, δ1 tests the space B1(G) · H if whenever δ1g is

nearly 1, the function g can be “corrected” by an element of H so
that it is nearly of the form δ0f for some f ∈ C0(G). From an algorith-
mic perspective, this means that after testing the equality (δ1g)x = 1
for a relatively small number of cells x ∈ G2, we may conclude that up
to H , g can be well-approximated in the form δ0f , where the quality
of the approximation improves as ω increases. The correction by an
element of H is necessary precisely because not every element of Z1(G)
is of the form δ0f . For this reason, δ1 can only test B1(G) · H when
H ∼=H1(G).

Remark 3.7. Assume H ∼=H1(G). If g ∈ Z1(G), then α = ψθ(g),
where ψ :H1(G)→H ⊆ Z1(G) splits (2), satisfies ||[g · α]|| = 0, so the
requirement in Definition 3.6 holds trivially for such g.

In the case when H1(G) = 0, B1(G) is testable if for every g ∈ C1(G)
we have that ||[g]|| ≤ ω−1||δ1g||. This is essentially the definition of
membership testability in [7, Defn. 3], where we consider the number
of errors in the function δ1g rather than the probability of a q-query
algorithm to fail to recognize that g 6∈ B1(G).

3.4. The expansion constant. Again let G be a bounded even inci-
dence geometry on the three types 0, 1, 2.

Definition 3.8. The expansion constant of G with respect to an
independent subspace H ≤ Z1(G) is

ωH(G) = min
g

max
α∈H

||δ1g||

||[g · α]||

where the external minimum is taken over all functions g ∈ C1(G) for
which g 6∈ Z1(G).
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As with simplicial complexes, we say that a family of incidence
geometries is a family of expanders if their expansion constant is
bounded away from zero. Again, when H1(G) = 0,

ω(G) = min
g

||δ1g||

||[g]||

is the coboundary expansion constant as defined in [7, Defn. 1] (and
the references therein). On the other hand when H ∼=H1(G), we obtain
the cosystolic expansion constant appearing in [4] (called F2-cocycle ex-
pansion in [8, Defn. 1.4]). We comment that in this case the expansion
constant can also be viewed as the operator norm of the inverse map
(δ1)−1 :B2(G)→C1(G)/Z1(G).

The following result, that expansion implies testability, generalizes
[7, Thm. 8] (where it is proved for H = 0).

Theorem 3.9. Let H ≤ Z1(G) be an independent space as above. Let
ωH(G) be the expansion constant of G with respect to H. Let ω > 0 be
a constant. Then δ1 tests the space B1(G) ·H with ratio ω, if and only
if ω ≤ ωH(G).

Proof. By Remark 3.7, δ1 tests the space B1(G) ·H with ratio ω if for

every g ∈ C1(G)−Z1(G) there is some α ∈ H for which ω ≤ ||δ1g||
||[g·α]||

. In

other words, for every g ∈ C1(G)−Z1(G), ω ≤ maxα∈H
||δ1g||
||[g·α]||

. But this

condition is precisely saying that ω ≤ ming maxα∈H
||δ1g||
||[g·α]||

= ωH(G).

�

Let us demonstrate the language of incidence geometry by casting
the classical linearity test [1] in this form.

Example 3.10. Let V be a vector space over F2, of finite dimension
≥ 2. Blum, Luby and Rubinfeld [1] showed in their 1993 foundational
paper that a single condition f(x + y) = f(x) + f(y) tests a function
f :V→F2 for linearity: the probability that a random condition fails is
proportional to the distance of f from the space Hom(V,F2) of linear
functions.
Let us construct an incidence geometry G for which δ1 realizes this

test. As G0 we take a basis of the dual space of V ∗. We take G1 =
V − {0}, and G2 = {{a, b, c} ⊆ V : a+ b+ c = 0}. Then C1(G) can
be identified with functions f :V→F2 satisfying f(0) = 0. With the
notation of Example 3.3, we set ϕ≺01 v if ϕ(v) = 1; v≺12 ℓ if v ∈ ℓ; and
≺02=≺12 ◦ ≺01. It follows that G = G0∪G1∪G2 is a thin geometry. For
α ∈ C0(G) we have that (δ0α)v =

∑

ϕ≺v αϕ =
∑

ϕ αϕϕ(v) so that δ0α =
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∑

ϕ αϕϕ, which shows that B1(G) are precisely the linear functions. It

also follows that H1(G) = 0. Since (δ1f){a,b,c} = f(a) + f(b) + f(c),
δ1 is the Blum-Luby-Rubinfeld linearity test.

As another example, consider the 3-dimensional Bruhat-Tits build-
ing B = Ã3(F ) associated with PGL4(F ), where F is a local field.
In [8, Theorem 1.8] the authors proved that the family of Ramanujan
non-partite quotients of B is a family of expanders. As a corollary, we
now have:

Corollary 3.11. Let X be a non-partite Ramanujan quotient of the
building B. Then δ2 :C2(X)→C3(X) tests the space Z2(X).

The expansion constant of the hypercube was computed by Gro-
mov [4], also see [5, Section 4].

4. Cubical complexes

This section briefly presents cubical complexes. Fix a vertex set V .
A cubical cell of dimension d, or a d-cell, on V is a subset of 2d ver-
tices in V, endowed with the graph structure of the d-dimensional cube
{0, 1}d. A subgraph of a cell c which is itself a cell is called a face of c.
A face of maximal dimension is a wall of c. We let c′ ≺ c denote that c′

is a face of c. A cubical complex on V is a collection of cubical cells,
of varying dimensions, which includes with a cell all of its faces, and
such that every point i ∈ V is a 0-cell. The empty set is considered
a (−1)-cell of the complex. We let Xd denote the collection of d-cells
in the complex X . The dimension of X is the largest dimension of a
cell.
The cohomology we consider on X is with coefficients in the group

µ2 = {1,−1} of two elements. Let Cd(X) be the functions from Xd

to µ2. The differential map

δd :Cd(X)→Cd+1(X)

is defined by (δdf)c =
∏

c′≺c fc′, ranging over the 2d walls of c (there
are 4 walls if d = 2, and so on). For example (δ0α)ij = αiαj for
α ∈ C0(X). A face of co-dimension 2 is a wall in exactly two walls, and
so δd+1δd = 0. Example 3.4 connects this setup to incidence geometry
in the obvious manner.
As usual, we set Zd(X) = Ker(δd) and Bd(X) = Im(δd−1), so that

Bd(X) ⊆ Zd(X), and the cubical cohomology is the quotient Hd(X) =
Zd(X)/Bd(X). In any dimension d ≥ 0, the constant function −1 ∈
Cd(X) is in fact in Zd(X), because the (d+1)-cube has an even number
of faces.
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The complete cubical complex of dimension d is the cubical
complex in which every subset of 2d vertices forms a d-cell in all the
(2d)!/(2dd!) possible ways. In dimension 1 this is the complete graph.
The complete 2-dimensional complex on {1, 2, 3, 4} has three 2-cells,
corresponding to the enumerations of the vertex set as vertices of a
square. We compute the first and second cohomology groups of a com-
plete cubical complex in Sections 5 and 6, respectively.

Although functions on cells are most natural to consider, we will
occasionally need functions on arbitrary tuples of vertices.

Definition 4.1. We denote by X [k] the set of k-tuples with distinct en-
tries in the vertex set of X, and by F k(X) the set of functions X [k]→µ2.

For example F 1(X) = C0(X) and F 2(X) = C1( ~X) (see Subsec-
tion 6.2), whereas C1(X) are the symmetric functions X [2]→µ2. In

general Cd(X) ⊆ F 2d(X), with proper inclusion for d > 0 due to the
symmetry of cells in the left-hand side.

5. The first cohomology of the complete cubical
complex

Let X be the complete cubical complex of dimension 2, on at least
three vertices. We define a function ∆ :C1(X)→F 3(X) by

(3) (∆f)ijk = fijfjkfki.

Lemma 5.1. Let f ∈ C1(X). Then f ∈ Z1(X) if and only if ∆f is a
constant function.

Proof. First assume fijfjkfki is independent of the triple. For any
square (ijkℓ) we have that

(δ1f)ijkℓ = fijfjkfkℓfℓi = (fijfjkfki)(fikfkℓfℓi) = 1,

so that f ∈ Z1(X).
On the other hand, let f ∈ Z1(X). Clearly, (∆f)ijk does not de-

pend on the order of the indices. For distinct i, j, k, ℓ we have that
(∆f)ijk(∆f)jkℓ = (δ1f)ijℓk = 1. It follows that if |{i, j, k} ∩ {i′, j′, k′}| =
2 then (∆f)ijk = (∆f)i′j′k′; but one can get from a fixed triple to any
triple by changing one entry at a time, proving that θ = (∆f)ijk is a
constant. �

We can now describe the functions in Z1(X).

Theorem 5.2. Let f ∈ C1(X). Then f ∈ Z1(X) if and only if there
are a constant θ ∈ µ2 and a function α ∈ C0(X) such that

(4) fij = θαiαj .
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Proof. If fij = θαiαj, then

(δ1f)ijkℓ = fijfjkfkℓfℓi = θ4α2
iα

2
jα

2
kα

2
ℓ = 1

for every distinct i, j, k, ℓ, and so f ∈ Z1(X).
Now assume f ∈ C1(X) is in the kernel of δ1. By Lemma 5.1,

θ = fijfjkfki is a constant. Fix some vertex i0. Choose αi0 ∈ µ2

arbitrarily, and let αj = θαi0fi0j for every j 6= i0. This solves (4) if
i0 ∈ {i, j}; otherwise, θαiαj = θ3α2

i0
fi0ifi0j = θ(∆f)i0ijfij = fij , as

claimed. �

Following Lemma 5.1 we define

(5) ∆ :Z1(X)→µ2

by ∆f = fi0i1fi1i2fi2i0 , where i0, i1, i2 is any triple of distinct vertices.
This map is onto, because the constant function (−1)ij = −1 maps
to −1.

Proposition 5.3. Ker(∆) = B1(X). More explicitly, in the presenta-
tion (4) we have that θ = ∆f .

Proof. Let f ∈ Z1(X). By Theorem 5.2 we may write f = θ·δ0α for α ∈
C0(X). Now for distinct i0, i1, i2, ∆f = fi0i1fi1i2fi2i0 = θ3α2

i0
α2
i1
α2
i2
= θ.

Therefore ∆f = 1 if and only if f ∈ B1(X). �

Corollary 5.4. The first cohomology of X is H1(X)∼=µ2.

Proof. H1(X) = Z1(X)/B1(X) = Z1(X)/Ker(∆)∼= Im(∆) = µ2. �

6. The second cohomology of the complete cubical
complex

In this section we consider the complete cubical complex X of di-
mension 3. In Theorem 6.12 we prove that H2(X) = µ2×µ2, obtaining
along the way a detailed description of key subgroups of Z2(X).
The description of functions with vanishing δ2 requires extending

Cd(X) to functions which are not necessarily symmetric. Once devel-
oped, the same technique characterizes a somewhat more general set
of functions, as we will see below.

6.1. Generalized differentials. Let X be a cubical complex. For ev-
ery d < d′, let δdd

′

:Cd(X)→Cd′(X) be the map defined for f ∈ Cd(X)
by letting (δdd

′

(f))c be the product of f(x) over the d-dimensional faces
x ≺ c.
In particular, δd = δd,d+1 is the ordinary d-dimensional differential.
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C1(X) C1( ~X)
Noo Z2(X)

µ2 Z1(X)
∆oo C1( ~X)′

Noo
~δ1 // B2( ~X)

1 B1(X)
∆oo C1( ~X)′′

Noo
~δ1 // B2(X)

1 C1(X)
Noo δ1 // B2(X)

Figure 1. Subspaces of C1( ~X) and C2(X). Solid lines
represent bottom-to-top inclusion; arrows are maps; the
double line is equality.

Remark 6.1. Let d < d′ < d′′. The number of d′-cells which are faces
of a given d′′-cell and containing a given d-cell is

(

d′′−d

d′−d

)

. Therefore,

δd
′d′′δdd

′

=

(

d′′ − d

d′ − d

)

δdd
′′

,

where
(

d′′−d

d′−d

)

is taken modulo 2.

In particular, since δ01 = δ0 and δ23 = δ2,

(6) δ03 = δ13δ0 = δ2δ02.

6.2. Asymmetric functions. This subsection, as well as Subsections 6.3
and 6.4, develop the relations exhibited in Figure 1.
Let C1( ~X) denote the space of functions on the directed underlying

graph of X , with values in µ2. There is a norm function

N :C1( ~X)→C1(X)

defined by (Nf)ij = fijfji. There is also an embedding C1(X)→֒C1( ~X),
defined by inducing a function from the undirected graph X1 to the di-
rected graph ~X1 by forgetting directions. Under this embedding,

C1(X) =
{

f ∈ C1( ~X) : Nf = 1
}

.

Similarly, we set

C1( ~X)′ =
{

f ∈ C1( ~X) : Nf ∈ Z1(X)
}

,

C1( ~X)′′ =
{

f ∈ C1( ~X) : Nf ∈ B1(X)
}

;

so that C1(X) ⊆ C1( ~X)′′ ⊆ C1( ~X)′ ⊆ C1( ~X).
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Remark 6.2. We may extend δ1 :C1(X)→C2(X) to a function ~δ1 from

C1( ~X) (to functions on directed 2-cells), by

(7) (~δ1f)ii′i′′i′′′ = fii′fi′′i′fi′′i′′′fii′′′

(in this particular order of the arrows, depicting the directed graph K2,2).

Under this definition, C1( ~X)′ is the space of functions f for which
~δ1f ∈ C2(X), namely for which ~δ1f is symmetric under the action of

the dihedral group D4. Indeed, ~δ1f is a-priory symmetric with respect

to 〈(13), (24)〉 ⊆ S4, so full symmetry is attained when (~δ1f)ii′i′′i′′′ =

(~δ1f)i′i′′i′′′i, but this is equivalent to δ
1(Nf) = 1, namely Nf ∈ Z1(X).

We thus define B2( ~X) =
{

~δ1f : f ∈ C1( ~X)′
}

.

Proposition 6.3. B2(X) ⊆ B2( ~X) ⊆ Z2(X).

Proof. The left inclusion is obvious because the restriction of ~δ1 to
C1(X) is δ1. Let f ∈ C1( ~X)′. In order to prove the right inclusion, we

need to verify that δ2~δ1f = 1. Let c be a 3-cell, namely a cube, whose 1-
skeleton is bipartite. Choose an even-odd partition of the vertices of c,
induced by the 1-skeleton of the cell (000,011,101,110 vs. 001,010,100
and 111). Direct the edges of c to go from the even to the odd vertices,
and present each wall s of c as s = (ii′i′′i′′′) where i is even. Now every
edge appears in the two faces of c twice in the same direction, so that

(δ2~δ1f)c = 1 by cancelation, regardless of f . �

6.3. The functions in C1( ~X)′′. Define the head and tail functions

ηh, ηt :C
0(X)→C1( ~X) by (ηhα)ij = αi and (ηtα)ij = αj. Note that

(8) N(ηhα) = ηh(α)ηt(α) = δ0α ∈ B1(X).

Proposition 6.4. We have that C1( ~X)′′ = C1(X) Im(ηh).

Proof. Let α ∈ C0(X). By (8) and the definition, ηhα ∈ C1( ~X)′′.

This proves the inclusion ⊇. On the other hand, if f ∈ C1( ~X)′′ then
Nf = δ0α for some α ∈ C0(X), and then N(f · ηhα) = Nf · δ0α = 1,
so that f · ηhα ∈ C1(X) and f ∈ C1(X) Im(ηh). �

Let Z1( ~X) = Ker(~δ1) ∩ C1( ~X)′ =
{

f ∈ C1( ~X)′ : ~δ1f = 1
}

.

Proposition 6.5. We have that Z1( ~X) ⊆ C1( ~X)′′.

Proof. Let f ∈ C1( ~X)′ be such that ~δ1f = 1. Let i, j, k be distinct
vertices. Since Nf ∈ Z1(X), ∆(Nf) = (Nf)ij(Nf)jk(Nf)ki. Let
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a 6= i, j, k be a fourth vertex. We have that

∆(Nf) = (~δ1f)iajk(~δ
1f)jaki(~δ

1f)kaij = 1,

since the edges from i, j, k to a cancel. (This computation is formalized
in Remark 6.18). By Proposition 5.3, Nf ∈ B1(X), and thus f ∈

C1( ~X)′′. �

Proposition 6.6. Let f ∈ C1( ~X)′. Then ~δ1f ∈ B2(X) if and only if

f ∈ C1( ~X)′′.

Proof. First assume f ∈ C1( ~X)′′. We apply Proposition 6.4: Up to an
element of C1(X), whose image under δ1 is clearly in B2(X), we may
assume f = ηhα for α ∈ C0(X). Now

(~δ1(ηhα))ijkℓ = (ηhα)ij(ηhα)kj(ηhα)kℓ(ηhα)iℓ = α2
iα

2
k = 1,

so that ~δ1f ∈ B2(X).

Now, if ~δ1f ∈ B2(X) = δ1(C1(X)), then by definition there is g ∈

C1(X) such that ~δ1(fg) = 1, and f ∈ C1(X)Z1( ~X) ⊆ C1( ~X)′′ by
Proposition 6.5. �

6.4. The second differential. Our goal here is to describe Z2(X),
namely those functions g ∈ C2(X) for which δ2g = 1. Slightly more
generally, we consider functions g ∈ C2(X) for which there is α ∈
C0(X) such that δ2g = δ03α. Explicitly, this condition holds if for
every cube, denoting the vertices in a disjoint pair of faces by [ijkℓ]
and [i′j′k′ℓ′], we have that

gijj′i′ gjkk′j′ gi′j′k′ℓ′ gkk′ℓ′ℓ gii′ℓ′ℓ gijkℓ = αiαjαkαℓαi′αj′αk′αℓ′ .

We assume |X0| ≥ 10, so there are sufficiently many 3-cells to play
with.

Proposition 6.7. Let g ∈ C2(X). Assume δ2g ∈ Im(δ03). Then for
every distinct a, b, i, i′, j, j′ we have that

(9) gaibjgajbj′gaj′bi′gai′bi = 1.

Proof. Let s, t, s′, t′ be distinct vertices, disjoint from a, b, i, i′, j, j′ (this
is possible because |X0| ≥ 10). Consider the following four 3-cells, in
which identical faces are denoted by the same circled number:

s
✿✿✿

t
✂✂
✂/.-,()*+1

i a
/.-,()*+4 /.-,()*+3
b

✞✞
j

✾✾/.-,()*+2
t′ s′

s
✿✿✿

t
��
�/.-,()*+1

i a
/.-,()*+4 /.-,()*+7
b

✞✞
j′

❀❀/.-,()*+6
t′ s′

s
❁❁

t
✄✄
✄/.-,()*+5

i′ a
/.-,()*+8 /.-,()*+3
b

☎☎
☎

j
✾✾/.-,()*+2

t′ s′

s
❁❁

t
��
�/.-,()*+5

i′ a
/.-,()*+8 /.-,()*+7
b

✆✆
✆

j′
❀❀/.-,()*+6

t′ s′
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The product of (δ2g)c ranging over the four 3-cells is 1 by assumption,
because each vertex appears an even number of times. But this product
is the left-hand side of (9), because all the other faces, including [sts′t′],
cancel. �

For a subgroup A ⊆ C2(X), we let ±A denote the subgroup 〈−1, A〉
generated by A and the constant function −1.

Theorem 6.8. We have that

Z2(X) Im(δ02) = ±B2( ~X) Im(δ02).

Proof. Following Proposition 6.3 the inclusion ⊇ is clear because −1 ∈
Z2(X). For vertices a, b, let Xab denote the cubical complex obtained
from X by removing the vertices a, b and every cell passing through
either of them. Let g ∈ Z2(X). Abusing notation, we define fab ∈
C1(Xab) and fij ∈ C1(X ij) by fab

ij = gaibj . By Proposition 6.7 we have

that δ1(fab) = 1. Therefore, by Theorem 5.2, there are θab ∈ µ2 and
αab ∈ C0(Xab) such that

(10) fab
ij = θabαab

i α
ab
j

for every i, j. Since fab = f ba, we may assume θba = θab and αba = αab

as well. In particular we may view θ as an element of C1(X). By
Proposition 5.3, θab = ∆(fab), which we may calculate by fixing distinct
i, j, k as fab

ij f
ab
jkf

ab
ki . Since

f ij
ab = gibja = gaibj = fab

ij ,

we have that

(δ1θ)abcd = θabθbcθcdθda

= ∆(fab)∆(f bc)∆(f cd)∆(f da)

= (fab
ij f

ab
jkf

ab
ki )(f

bc
ij f

bc
jkf

bc
ki )(f

cd
ij f

cd
jkf

cd
ki )(f

da
ij f

da
jk f

da
ki )

= δ1(fij)abcdδ
1(fjk)abcdδ

1(fki)abcd

which by applying Proposition 6.7 thrice is equal to 1. So θ ∈ Z1(X).
Therefore, by Theorem 5.2, there are θ′ ∈ µ2 and β ∈ C0(X) such that

(11) θab = θ′βaβb

for all a and b. Substituting (11) in (10) we again have

θ′βiβjα
ij
a α

ij
b = θijαij

a α
ij
b = f ij

ab = gibja = gaibj = fab
ij = θabαab

i α
ab
j = θ′βaβbα

ab
i α

ab
j ,

so fixing i = i0 we get that

αab
j = βi0βjβaβbα

ab
i0
αi0j
a αi0j

b ;
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substituting this and (11) back in (10), we get that

gaibj = θabαab
i α

ab
j

= (θ′βaβb)(βi0βiβaβbα
ab
i0
αi0i
a α

i0i
b )(βi0βjβaβbα

ab
i0
αi0j
a αi0j

b )

= θ′ · βaβbβiβj · α
i0i
a α

i0i
b αi0j

a αi0j
b .

Namely, defining p ∈ C1( ~X) by pck = αi0k
c ,

(12) g = θ′ · δ02(β) · ~δ1p.

This shows that in fact ~δ1p is a well-defined element of C2(X), proving

by Remark 6.2 that p ∈ C1( ~X)′ and g ∈ ± Im(δ02)B2( ~X). �

Proposition 6.9. Z2(X) ∩ Im(δ02) ⊆ B2( ~X).

Proof. Let α ∈ C0(X), and assume δ02α ∈ Z2(X). By (6), δ03α =
δ2δ02α = 1. Applying this equality to arbitrary pairs of 3-cells with 7
joint vertices, we conclude that α is a constant, and then δ02α = α4 =
1. �

Corollary 6.10. Z2(X) = ±B2( ~X) and Z2(X)/B2( ~X)∼= µ2.

Proof. Recall that the lattice of subgroups in an abelian group is mod-
ular. Notice that −1 ∈ Z2(X). Now

Z2(X) = Z2(X) ∩ (Z2(X) Im(δ02))
Thm 6.8
= Z2(X) ∩ (±B2( ~X) Im(δ02))

= ±[Z2(X) ∩ (B2( ~X) Im(δ02))]
modularity

= ±[(Z2(X) ∩ Im(δ02))B2( ~X)]
Prop 6.9
= ±B2( ~X).

It remains to show that −1 6∈ B2( ~X). Otherwise, −1 = ~δ1f for some

f ∈ C1( ~X)′. Let a, b, i, j, k be distinct vertices, and consider the three
2-cells (aibj), (aibk), (ajbk): by assumption we have that

−1 = faifajfbifbj = faifakfbifbk = fajfakfbjfbk,

but multiplication results in a contradiction. �

6.5. B2( ~X) and B2(X). Fix a linear ordering < of the vertices. Let
[−1] ∈ C2(X) be the function defined for a 2-cell c by
{

[−1]c = +1 if the vertices of c can be read in increasing order,

[−1]c = −1 otherwise.

We also tautologically set [+1]c = +1.
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Let ψ ∈ C1( ~X)′ be the order function associated to <, defined by
ψij = +1 if i < j and ψij = −1 otherwise. Clearly Nψ = −1.

Remark 6.11. ~δ1ψ = −[−1]. The diagram below depicts the three
possible orderings of the vertices of a 2-cell, with the values of ψ denoted
on the edges and the value of δ1ψ circled in the center, indeed being
opposite to the respective value of [−1].

1
+ //

+
��

76540123−

2OO
−

4 oo
+

3

1
+ //

+
��

76540123+

3OO
−

2 oo
−

4

1
+ //

+
��

76540123+

4OO
+

3 oo
+

2

Theorem 6.12. The second cohomology of X is H2(X)∼= µ2 × µ2.

Explicitly, Z2(X) = 〈−1, [−1], B2(X)〉 and B2( ~X) = 〈−[−1], B2(X)〉.

Proof. We first show that B2( ~X)/B2(X)∼=µ2. The argument will be

easier to follow using Figure 1. By definition of C1( ~X)′′, the induced
norm map

N : C1( ~X)′/C1( ~X)′′ −→ Z1(X)/B1(X)

is a well-defined embedding into H1(X) = µ2 (Corollary 5.4). Simi-

larly, by the definition of B2( ~X) and Proposition 6.6, ~δ1 induces an

isomorphism from C1( ~X)′/C1( ~X)′′ to B2( ~X)/B2(X). To conclude the

proof, we will show that C1( ~X)′ 6= C1( ~X)′′. We have that −1 6∈ B1(X)

because ∆(−1) = −1; so since ψ ∈ C1( ~X)′ chosen above satisfies

Nψ = −1, we conclude that ψ 6∈ C1( ~X)′′. It follows that ~δ1ψ = −[−1]

generates B2( ~X)/B2(X)∼=µ2.

By Corollary 6.10, Z2(X) = ±B2( ~X) = (±1)[±1]B2(X), and the
index [Z2(X) :B2(X)] is equal to 4, but the quotient is a group of
exponent 2, so it equals µ2 × µ2. �

Corollary 6.13. Let g ∈ Z2(X). Then there are unique θ, π ∈ µ2, and
some f ∈ B2(X), such that

(13) g = θ · [π] · δ1f.

Remark 6.14. Let < and <′ be two linear orders on the set of vertices.
Let [−1] and [−1]′ be the corresponding functions as defined above. By
Theorem 6.12, [−1][−1]′ ∈ B2(X), which we now demonstrate explic-
itly. Let ψ and ψ′ be the order functions associated to the order rela-
tions. Since Nψ = Nψ′ = −1, N(ψψ′) = 1, so that ψψ′ ∈ C1(X),
and as computed in Remark 6.11, δ1(ψψ′) = [−1][−1]′.
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6.6. Detecting maps. We define ∆′,∆′′ :Z2(X)→µ2 by setting

∆′(g) = gijkℓ gikjℓ gijℓk, and ∆′′(g) = gaibj gajbk gakbi;

where the vertices are arbitrary.

Proposition 6.15. The maps ∆′ and ∆′′ are well-defined on Z2(X).

Proof. Applying Corollary 6.13, we need to verify the claim for three
types of functions.

(1) Since each formula involves three entries of the function, ∆′(−1) =
∆′′(−1) = −1 are well-defined.

(2) The consecutive indices involved in ∆′ and ∆′′ cover each pair in
the graphs (K4 and K2,3, respectively) twice, hence ∆′(δ1f) =
∆′′(δ1f) = 1 are well-defined.

(3) Now consider g = [−1]. Since ∆′(g) is the product of the
three possible orderings of the vertices of a square, we have that
∆′([−1]) = (+1)(−1)(−1) = 1. Now consider ∆′′([−1]). There
are 5! ways to order the indices a, b, i, j, k, but only

(

5
2

)

= 10 up
to symmetry of the graph K2,3. We note that [−1]aibj = +1 if
and only if the arcs connecting i with j and a with b through the
upper half plane intersect. It is now easy to see that [−1]aibj ,
[−1]ajbk and [−1]akbi are all −1 if a, b are consecutive or if i, j, k
are consecutive; and that they are equal to +1,+1,−1 other-
wise. In both cases the product is −1, so ∆′′([−1]) = −1 is
well-defined.

�

More explicitly, we have

∆′(−1) = −1, ∆′([−1]) = +1, ∆′(δ1f) = +1;

∆′′(−1) = −1, ∆′′([−1]) = −1, ∆′′(δ1f) = +1

for every f ∈ C1(X).

Corollary 6.16. For g ∈ Z2(X),

(1) g ∈ B2( ~X) if and only if ∆′′(g) = 1, and
(2) g ∈ B2(X) if and only if ∆′(g) = ∆′′(g) = 1.

Moreover, in the presentation (13), θ = ∆′(g) and π = ∆′(g)∆′′(g).

Although unnecessary in this section, we record an explicit proof for
the fact that ∆′ is well-defined on Z2(X).

Proposition 6.17. Let g ∈ C2(X). Let i, j, k, ℓ and i′, j′, k′, ℓ′ be eight
distinct vertices. Then

(14) (∆′g)ijkℓ(∆
′g)i′j′k′ℓ′
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is a product of three entries of δ2g.

Proof. Take the product of δ2g over the three cubes on the vertices
i, j, k, ℓ, i′, j′, k′, ℓ′ depicted below. The “side” faces cancel, and only
the product of the top and bottom faces remain, which is equal to +1
by assumption.

i
✼✼
✼ j

✆✆/.-,()*+1
i′ j′

/.-,()*+6 /.-,()*+3
ℓ′

✆✆
✆

k′
❀❀
❀/.-,()*+4

ℓ k

i
✾✾

k
✄✄/.-,()*+2

i′ k′
/.-,()*+6 /.-,()*+3
ℓ′

✞✞
✞

j′
✾✾
✾/.-,()*+5

ℓ j

i
✾✾
✾ j

✝✝/.-,()*+1
i′ j′

/.-,()*+2 /.-,()*+5
k′

✄✄
✄

ℓ′
✿✿
✿/.-,()*+4

k ℓ

�

Remark 6.18. ∆′ ◦ ~δ1 = ∆ ◦ N on C1( ~X)′. Indeed, for f ∈ C1( ~X)′

and arbitrary vertices i, j, k, ℓ,

∆′(~δ1f) = (fijfiℓfkjfkℓ)(fikfiℓfjkfjℓ)(fijfikfℓjfℓk)

= (fkjfjk)(fkℓfℓk)(fjℓfℓj) = ∆(Nf).

7. Similarity of functions

The elementary observations of this section will be repeatedly used in
the testability proofs in the coming sections. We adopt the following
notation, motivated by topological uniformity. Recall Definition 4.1
for X [k] and F k(X).

Definition 7.1. Let f, f ′ ∈ F k(X). We write f ∼p f
′ if

||ff ′|| = Pr {fx 6= f ′
x} ≤ p,

where the probability is taken by letting the vector x ∈ X [k] be uni-
formly random. The same notation is used for functions in Cd(X) and
function X [k] ×X [k]→µ2.

We freely use the facts that f ∼p f
′ if and only if ff ′ ∼p 1, and that

f ∼p f
′ ∼p′ f

′′ implies f ∼p+p′ f
′′.

Lemma 7.2. Let f :X [k]→µ2. Let f×f be the function X [k]×X [k]→µ2

defined by (f × f)α,β = fαfβ.

(1) If f ∼p θ for a constant θ ∈ µ2, then f × f ∼2p 1.
(2) If f × f ∼p′ 1, then f ∼( 1

2
+p′)p′ θ for some constant θ ∈ µ2.

(3) If f × f ∼p′ 1, then f ∼p′ θ for some constant θ ∈ µ2.
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Proof. Let p′ = Pr {(f × f)x,y 6= 1} and p = Pr {fx 6= θ} where θ is the
majority vote on the values of f , so that p ≤ 1

2
. Since p′ = 2p(1 − p),

we have that p ≤ (1
2
+ p′)p′ ≤ p′ ≤ 2p. The fact that Pr {fx 6= θ} =

p ≤ (1
2
+ p′)p′ implies (2). Since (1

2
+ p′)p′ ≤ p′, (2) ⇒ (3). Finally

p′ ≤ 2p implies (1). �

Every formula of the form (say) gijk = (δ0α)ij(δ
0α)jk proves that

if δ0α = 1 then g = 1. This formula also shows that if δ0α ∼p 1

then g ∼2p 1, which is the kind of argument we will repeatedly need
below. Indeed, when (ijk) ∈ X [3] is uniformly distributed, so are
(ij), (jk) ∈ X [2].
However, if a is a fixed vertex and gijk = (δ0α)ia(δ

0α)ja, the first
implication remains, but the probabilistic one breaks down, for (δ0α)∗a
need not be close to 1 ∈ C0(X) even when δ0α ∼ 1 ∈ C1(X), since
errors may congregate around a (the star notation is explained be-
low). We thus need a way to describe connections of the former type.
The name “formal” is alluding to both “formulaic” (for the defining
formula (15)) and “formational” (for the formation u1, . . . , uℓ on the
given vertices.)

Definition 7.3. Let X be a (simplicial or cubical) complex.

(1) A function f ∈ F k(X) is formal in g ∈ F k′(X), of length ℓ, if
there are vectors u1, . . . , uℓ ∈ X [k′] whose vertices are contained
in {v1, . . . , vk}, such that

(15) fσ(v1),...,σ(vk) =

ℓ
∏

i=1

gσ(ui)

for the permutations σ of the vertex set X0, extended in the
obvious manner to act on all vectors.

(2) An operator φ :Cd(X)→F k(X) is formal in φ′ :Cd(X)→F k′(X),
of length ℓ, if φf is formal in φ′f via the same formula of
length ℓ.

Lemma 7.4. Suppose f is formal of length ℓ in g. If g ∼p 1 then
f ∼ℓp 1.

Proof. For a uniformly random vector (σ(v1), . . . , σ(vk)) ∈ X [k], each
σ(ui) is uniformly random, and therefore Pr

{

gσ(ui) 6= 1
}

= p. �

The notion of formality is mostly suitable for complete complexes.
Indeed, for any operator to be formal in δd, it has to be implicitly
assumed that X is complete in dimension d + 1 (because the (d + 1)-
cells uniformly participate in the product).
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In the next section we will need a probabilistic analog of Proposi-
tion 5.3:

Proposition 7.5. The differential δ1 is formal of length 2 in ∆.

Proof. For every f ∈ C1(X), (δ1f)ijkℓ = (∆f)ijℓ(∆f)jkℓ. �

Applying Corollary 7.4 to Proposition 7.5 we get:

Corollary 7.6. If ∆f ∼p 1 then δ1f ∼2p 1.

We use asterisks to denote entries in a function f ∈ F k(X). Replac-
ing an asterisk by a specific value defines a function in F k−1(X). For
example, if f ∈ F 4(X), then fa∗∗∗, f∗a∗∗ ∈ F 3(X).

Lemma 7.7. Suppose f i ∈ F ki(X) for i = 1, . . . , N are functions
such that f i ∼p 1 for each i, where p is fixed. Let s > N be a real
number. If X is large enough, then there is a vertex a ∈ X0 for which
f i
∗···∗a∗···∗ ∼sp 1 for each i. (Prior to the statement, the fixed vertex can
be placed arbitrarily for each i).

Proof. For each i, the proportion of a ∈ X0 for which f i
∗···∗a∗···∗ ∼sp 1

does not hold is at most s−1, so the proportion of vertices for which at
least one of the conditions fail is at most Ns−1 < 1. �

8. Testing B1(X)

The result below is proved in [2, Subsection 7.2] by direct probabilis-
tic methods. We prove it here in order to demonstrate the usage of ∆,
anticipating the more complicated proof in the next section. Let X be
a complete 2-dimensional cubical complex.
Let p > 0 be a constant.

Theorem 8.1. Let f ∈ C1(X). If δ1f ∼p 1, then there are θ ∈ µ2

and α ∈ C0(X) such that f ∼3p θ · δ
0α. (Namely, fij = ±αiαj with

probability of error at most 3p).

Proof. Recall from (3) of Section 5 the function ∆ :C1(X)→F 3(X)
defined by (∆f)ijk = fijfjkfki. In Lemma 5.1 we proved that ∆f is a
constant if and only if f ∈ Z1(X). Moreover, if i, j, k and i′, j′, k′ are
distinct, the proof of Lemma 5.1 shows that

(∆f)ijk(∆f)i′j′k′ = (δ1f)ijj′i′(δ
1f)jkk′j′(δ

1f)kii′k′,

so that ∆f ×∆f is formal of length 3 in δ1f . (The case when {i, j, k}
and {i′, j′, k′} intersect is negligible). By Lemma 7.4, since δ1f ∼p 1,
we have that ∆f × ∆f ∼3p 1. By Lemma 7.2(3), ∆f ∼3p θ for a
constant θ. Let f ′ = θf , so that ∆f ′ ∼3p θ

3θ = 1.
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Choose a vertex a such that (∆f ′)a∗∗ ∼3p 1 (see Lemma 7.7). It
follows that f ′

ij ∼3p f
′
iaf

′
ja = δ0(f ′

∗a), and f ∼3p θ · δ
0(f ′

∗a). �

In the terminology of Section 3, we proved:

Corollary 8.2. The expansion constant of the 1st incidence geometry
of X (composed of vertices, edges and squares), with respect to the
complement 〈−1〉, is at most ω = 1

3
.

Corollary 8.3. The space ±B1(X) is testable. (The tester is the func-
tion δ1 :C1(X)→B2(X), and each entry requires 4 queries).

9. Testing B2(X)

In this section we prove that δ2 tests f ∈ C2(X) for being in B2(X).
Following Subsection 6.6, let ∆′ :C2(X)→F 4(X) and ∆′′ :C2(X)→F 5(X)
be defined (for arbitrary g ∈ C2(X)) by

(∆′g)ijkℓ = gijkℓ gikjℓ gijℓk, (∆′′g)ab;ijk = gaibj gajbk gakbi.

Lemma 9.1. Let g ∈ C2(X). If δ2g ∼p 1, then ∆′g ∼3p θ and ∆′′g ∼6p

π for constants θ, π ∈ µ2.

Proof. In Lemma 6.17 we show that ∆′×∆′ is formal of length 3 in δ2.
Therefore ∆′g×∆′g ∼3p 1 (Lemma 7.4), so ∆′g ∼3p θ by Lemma 7.2(3).
In Proposition 6.7 we show that (∆′′g)ijk(∆

′′g)jkℓ is a product of
four entries of δ2g. By the argument of Lemma 5.1 we see that for
distinct i, j, k, i′, j′, k′, (∆′′g)ijk(∆

′′g)i′j′k′ is a product of 3 · 4 = 12
entries of δ2g, but since the four 3-cells participating in the computation
in Proposition 6.7 only depend on i, j, k, ℓ through the same two entries,
six of those cancel in pairs, and we get ∆′′g × ∆′′g ∼6p 1. The proof
concludes as above. �

We now prove the testability version of Corollary 6.13. Let p > 0 be
a constant.

Theorem 9.2. Let g ∈ C2(X). If δ2g ∼p 1, then there are θ, π ∈ µ2

and f ∈ C1(X) such that g ∼rp θ[π] · δ
1f for a constant r < 1504.

Proof. By Lemma 9.1, there are θ, π ∈ µ2 such that ∆′g ∼3p θ and
∆′′g ∼6p π. Replacing g by θ[π]g and applying Corollary 6.16, we may
from now on assume ∆′g ∼3p 1 and ∆′′g ∼6p 1.
Fix a real number s > 3. By Lemma 7.7 there is a vertex a0 for

which

(∆′g)a0∗∗∗ ∼3sp 1, (∆′′g)a0∗;∗∗∗ ∼6sp 1, (∆′′g)∗∗;a0∗∗ ∼6sp 1.
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Again by Lemma 7.7, building on the first two statements, there is a
vertex b0 for which

(∆′g)a0∗b0∗ ∼3s2p 1, (∆′′g)a0b0;∗∗∗ ∼6s2p 1, (∆′′g)a0∗;b0∗∗ ∼6s2p 1.

Define hij = ga0ib0j , which is symmetric because g ∈ C2(X), so that
h ∈ C1(Xa0b0). Now ∆h = (∆′′g)a0b0;∗∗∗ ∼6s2p 1, so by Proposition 7.5
δ1h ∼12s2p 1. By Theorem 8.1, and using again the fact that ∆h ∼6s2p

1, there is β ∈ C0(X) such that h ∼36s2p δ
0β.

We now define f ′ ∈ C1( ~X) by taking f ′
a0j

= 1 for all j 6= a0, f
′
b0j

= βj
for all j 6= a0, b0, and

f ′
ij = βiga0b0ij

for all i, j disjoint from a0, b0.
We claim that f ′

ji ∼39s2p f
′
ij. Indeed,

ga0b0ijga0b0ji = (∆′g)a0b0ijga0ib0j ∼3s2p ga0ib0j = hij ,

so f ′
ijf

′
ji = βiβjga0b0ijga0b0ji ∼3s2p βiβjhij ∼36s2p 1. By keeping the

entries where f ′
ij = f ′

ji and fixing the value 1 at the other entries, we

obtain f ∈ C1(X) such that f ′ ∼39s2p f .
Using the symmetry of f , and applying ∆′′ twice, we now have that

(δ1f)aibj = faifbifajfbj

∼4·39s2p f ′
aif

′
bif

′
ajf

′
bj

= β2
aβ

2
b ga0b0aiga0b0biga0b0ajga0b0bj

= ga0b0aiga0b0biga0b0ajga0b0bj

= (∆′′g)a0a;b0ij(∆
′g)a0b;b0ij · ga0iajga0ibj

∼9s2p ga0iajga0ibj

= (∆′′g)ij;a0ab · gaibj

∼6sp gaibj ,

so that g ∼(165s2+6s)p δ1f . Taking s > 3 small enough proves the
claim. �

Corollary 9.3. The expansion constant of the 2nd incidence geometry
of the complete 3-dimensional cubical complex X (composed of edges,
squares and all cubes), with respect to the complement 〈[−1],−1〉, is at
most ω = 1

1504
.

Corollary 9.4. Let X be the complete 3-dimensional cubical complex.
Then the differential δ2 :C2(X)→C3(X) tests Z2(X) (each entry of the
test requires 6 queries).
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We can now give a precise formulation of Theorems 2.1 and 2.2,
based on Definition 3.6. Since Z2(X) = ±B2( ~X) = 〈±1, [±1], B2(X)〉,
the proofs follow from Corollary 9.4.

Corollary 9.5. The differential δ2 :C2(X)→C3(X) is a 6-query test
on functions g ∈ C2(X) for being of the form gijkℓ = ±fijfkjfkℓfiℓ for
some f :X × X→µ2. More explicitly, for every g ∈ C2(X) there is f

such that ‖ ± ~δ1f · g‖ ≤ 1504‖δ2g‖.

Corollary 9.6. The differential δ2 :C2(X)→C3(X) is a 6-query test
on functions g ∈ C2(X) for being of the form gijkℓ = ±[±1]fijfkjfkℓfiℓ
for some (symmetric) f ∈ C1(X). More explicitly, for every g ∈ C2(X)
there is a symmetric f such that ‖ ± [±1]δ1f · g‖ ≤ 1504‖δ2g‖.

10. Proving testability in general

The explicit constant in Theorem 9.2 relies on Lemma 9.1, which
requires combinatorial analysis special to that particular case. A soft
version, without an explicit constant, can be proved through a lemma
on formal functions (Definition 7.3).

Lemma 10.1. Assume that φ :Cd(X)→F k(X) is formal in the identity
operator Cd(X)→Cd(X). Assume φf = 1 for every f ∈ Zd(X). Then
φ is formal in δd.

Proof. Let v1, . . . , vk be the vertices from Definition 7.3. Write v =
(v1, . . . , vk).
Let φv :C

d(X)→µ2 be the function defined by φvf = (φf)v. View
Cd(X) as a vector space over the field of two elements, and let V ∗ be
the subspace of the dual space of Cd(X) spanned by the functionals
f 7→ (δdf)c, where c ranges over the d-cells of X . By definition ψ ∈ V ∗

if and only if ψf = 1 for every f ∈ Zd(X). Therefore, by assumption,
φv ∈ V ∗. It follows that φv is a product of, say, m entries of δd(·). The
desired expression is obtained by permuting the vertices. �

We now outline a proof for testability in complexes of higher dimen-
sion. We say that a system of homomorphisms ∆i :C

d(X)→F ki(X)
(i = 1, . . . , u) induce a map from Hd(X), if each ∆ig is a constant
function for g ∈ Zd(X), and this constant function is 1 for g ∈ Bd(X).
Indeed in this case we obtain a homomorphism ∆̃ :Hd(X)→H = (µ2)

u.

Theorem 10.2. Suppose there are formal functions∆i :C
d(X)→F ki(X)

inducing an isomorphism ∆̃ :Hd(X)→H, and a map ∇ :H→Zd(X)
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such that ∇ ◦ ∆̃ splits the short exact sequence

1 // Bd(X) �
� // Zd(X) θ // Hd(X)

∆̃
���

�����

// 1,

H

∇

^^

in a way that for some constant r, if δdg ∼p 1 and ∆ig ∼p 1 for every i
then there is f ∈ Cd−1(X) such that g ∼rp δ

d−1f . Then Bd(X)·∆(H) ≤
Cd(X) is testable (with respect to the constant ω = r−1).

Proof. Let g ∈ Cd(X) be a function satisfying δdg ∼p 1. By assumption
each ∆i is formal, and constant on Zd(X). Therefore ∆i ×∆i satisfies
the conditions of Lemma 10.1, where the entries of δd are uniformly
random when the permutation is applied. So for suitable m, ∆ig ×
∆ig ∼mp 1. By Lemma 7.2(3), there are constants θi such that ∆ig ∼mp

θi. Replacing g by g · ∇(θ1, . . . , θu), we obtain a function satisfying
δdg ∼p 1 and all the conditions ∆ig ∼mp 1. By assumption, there is
now f ∈ Cd−1(X) such that g ∼rp δ

d−1f for a constant r. �

This is the method proving Theorems 8.1 and 9.2.
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