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Abstract. We introduce tropical spectrahedra, defined as the images by the nonarchimedean
valuation of spectrahedra over the field of real Puiseux series. We provide an explicit polyhedral
characterization of generic tropical spectrahedra, involving principal tropical minors of size at
most 2. One of the key ingredients is Denef–Pas quantifier elimination result over valued fields.
We obtain from this that the nonarchimedean valuation maps semialgebraic sets to semilinear
sets that are closed. We also prove that, under a regularity assumption, the image by the
valuation of a basic semialgebraic set is obtained by tropicalizing the inequalities which define
it.

1. Introduction

Spectrahedra are one of the main generalizations of polyhedra. They are real convex semial-
gebraic sets, defined by a single matrix inequality of the form

Q(0) + x1Q
(1) + · · ·+ xnQ

(n) < 0 ,

where Q(0), . . . , Q(n) are real symmetric matrices, and < denotes the Loewner order. (Recall
that, for real symmetric matrices A,B, the Loewner order is such that A < B if all the eigenval-
ues of A−B are nonnegative.) Spectrahedra arise in a number of applications from engineering
sciences and combinatorial optimization [BPT13, GM12]. Several theoretical questions concern-
ing spectrahedra have been raised, such as the Helton–Nie conjecture [HN09], recently disproved
by Scheiderer [Sch18]. Other, like the generalized Lax conjecture [Vin12] or the complexity of
checking the emptiness [Ram97], are still unsettled.

Spectrahedra can be considered more generally over any real closed field. In tropical geometry,
one often works with the usual field of real Puiseux series (with rational exponents), or with a
larger field of generalized Puiseux series with real exponents, as we do here.

Main results. In this paper, we introduce tropical spectrahedra. These are defined as the im-
ages by the nonarchimedean valuation of spectrahedra over the field of real generalized Puiseux
series. Our main result (Theorem 5.17) provides an explicit polyhedral characterization of trop-
ical spectrahedra, when the valuation of the defining matrices satisfy a genericity condition. We
suppose first that the defining matrices have a Metzler type sign pattern. Metzler matrices are
fundamental in mathematical modelling, since they yield dynamical systems whose flow is order
preserving. However, we focus on these matrices because the tropicalization of the (generic)
spectrahedra that they define is remarkably transparent (Theorem 5.13). Then, we show how
to recover the tropicalization of a spectrahedron whose defining matrices have a general sign
pattern by “gluing” tropicalizations of spectrahedra satisfying the Metzler condition. Our re-
sults are synthesized by Theorem 5.18, which shows, still under a genericity condition, that the
tropicalization of a spectrahedron is obtained by requiring only the positivity of principal tropical
minors of order at most 2. The genericity condition is expressed explicitly as a flow condition
in a directed hypergraph (Lemma 5.23 and Theorem 5.24).
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To this end, we study, more generally, tropical semialgebraic sets, defined as the images by the
nonarchimedean valuation of semialgebraic sets over the field of real generalized Puiseux series.
We exploit quantifier elimination methods in valued fields by Denef [Den86] and Pas [Pas89],
which imply that such sets are semilinear. Moreover, we show that tropical semialgebraic sets
are always closed. It follows that, under a regularity assumption, the image by the valuation
of a basic semialgebraic set is obtained by “tropicalizing” each polynomial inequality arising in
the definition of this set. This shows in particular that this image is a polyhedral complex with
an explicit description in terms of piecewise linear inequalities (Corollary 4.8).

Related work. A general question, in tropical geometry, consists in providing combinatorial
characterizations of nonarchimedean amoebas, i.e., images by the nonarchimedean valuation of
algebraic sets over nonarchimedean fields. Kapranov’s theorem on amoebas of hypersurfaces, or
Viro’s patchworking method for real algebraic curves [Vir89] and its extensions [Stu94, Bih02],
address this question in different settings. In parallel, general results have been developed in
model theory of valued fields, in particular by Weispfenning [Wei84], Denef [Den84, Den86],
and Pas [Pas89, Pas90a]. The fact that nonarchimedean amoebas have a polyhedral structure
follows from these works.

Excepting tropical polyhedra, there are few works dealing with tropical semialgebraic sets.
The most closely related works are those of Yu [Yu15] and Alessandrini [Ale13].

Yu characterized the image by the nonarchimedean valuation of the cone of positive semidef-
inite matrices over real Puiseux series, showing that it is determined by 2× 2 principal tropical
minors. We show that 2×2, together with 1×1, tropical minors still determine generic tropical
spectrahedra.

Alessandrini studied the log-limits of real semialgebraic sets. His approach, based on o-
minimal models, shows in particular that the image by the nonarchimedean valuation of a
semialgebraic set over the field of absolutely convergent real generalized Puiseux series is a
polyhedral complex. We avoid the recourse to o-minimal techniques by using Denef–Pas quan-
tifier elimination instead. A by-product is that the property holds for any real closed valued
field.

Applications and consequences of the main results. A general issue in computational
optimization is to develop combinatorial algorithms for semidefinite programming. The present
work, providing an explicit characterization of tropical spectrahedra, leads to combinatorial
algorithms to solve a class of generic semidefinite feasibility problems over nonarchimedean
fields. This is developed in the companion work [AGS18], where it is shown that feasibility
problems for generic tropical spectrahedra are equivalent to solving mean payoff stochastic
games with perfect information, also known as “turn-based” mean payoff stochastic games. This
allows one to apply game algorithms to solve nonarchimedean semidefinite feasibility problems.
The reference [AGS18] focuses on algorithmic aspects, relying on the present work for structural
results. Conversely, tropical spectrahedra offer new methods to study turn-based mean payoff
stochastic games. Recall that the complexity of these games is one of the fundamental unsettled
problems in algorithmic game theory: these games are in NP ∩ coNP, but they are not known
to be in P (see [AM09] and the references therein). In the recent joint work of the authors
with Katz [AGKS18], we associate “primal” and “dual” tropical spectrahedra to a turn-based
mean payoff stochastic game. We show that metric characteristics of these spectrahedra define
a condition number, allowing one to parametrize the complexity of these games.

The present work has also more theoretical consequences. In [AGS19], we use the charac-
terization of tropical spectrahedra to show that an analogue of the Helton–Nie conjecture over
nonarchimedean fields is true “up to taking the valuations”, i.e., the images by the valuation of
convex semialgebraic sets over a nonarchimedean field coincide with the images by the valuation
of projected spectrahedra, over the same field.

Organization of the paper. In Section 2, we recall basic notions and results from tropical
geometry and from the theory of valued fields. In Section 3, we apply the quantifier elimination
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results of Denef and Pas to show that tropical semialgebraic sets have a polyhedral structure.
This allows us to show, in Section 4, that tropical semialgebraic sets are finite unions of closed
polyhedra. In Section 5, we introduce tropical spectrahedra. We first provide an explicit
combinatorial description in the simpler situation in which the input matrices have a Metzler
sign pattern (Section 5.2), and subsequently remove this assumption (Section 5.3). These results
hold under a condition that is shown to be satisfied generically in Section 5.4.

2. Preliminaries

2.1. Puiseux series. The main example of nonarchimedean structure which we use in this
paper is the field K of (formal generalized real) Puiseux series. This field is defined as follows.
It consists of formal series of the form

(1) x =
∞∑
i=1

cλit
λi ,

where t is a formal parameter, (λi)i>1 is a strictly decreasing sequence of real numbers that is
either finite or unbounded, and cλi ∈ R \ {0} for all λi. There is also a special, empty series,
which is denoted by 0. We denote by lc(x) the coefficient cλ1 of the leading term in the series
x, with the convention that lc(0) = 0. The addition and multiplication in K are defined in a
natural way. Moreover, K can be endowed with a linear order >, which is defined as x > y
if lc(x − y) > 0. We denote K>0 the set of nonnegative series x, i.e., satisfying x > 0. The
valuation of an element x ∈ K as in (1) is defined as the greatest exponent λ1 occurring in the
series. It is known that K is a real closed field (see [Mar10] for instance). We use the specific
field K to keep the exposition concrete. Our main results, however, work for any real closed
field sent surjectively to R by a nonarchimedean valuation. Other convenient choices of such
fields include the field of Hahn series (series with well-ordered support) with real coefficients and
real exponents [Rib92], or its subfield consisting of those series that are absolutely convergent
for t large enough, or the subfield of K consisting of series subject to the same convergence
requirement (see [vdDS98] for more information on the two latter fields).

2.2. Tropical algebra. In this section, we briefly introduce the basic concepts of tropical
algebra and its connection with the nonarchimedean field of Puiseux series.

We denote by val : K → R ∪ {−∞} the function which maps a Puiseux series x ∈ K to its
valuation. We use the convention val(0) = −∞. It is immediate to see that the map val satisfies
the following properties

val(x+ y) 6 max(val(x), val(y))(2)

val(xy) = val(x) + val(y)(3)

meaning that val is a nonarchimedean valuation. Moreover, the equality holds in (2) if the
leading terms of x and y do not cancel, which is the case if val(x) 6= val(y) or if x,y > 0.

Loosely speaking, the tropical semifield T can be thought of as the image of K by the non-
archimedean valuation. We use the “max-plus” convention, so the base set of T is defined
to be R ∪ {−∞}. It is endowed with the addition x ⊕ y := max(x, y) and the multiplication
x � y := x + y. The term “semifield” refers to the fact that the addition does not have an
opposite law. We use the notation

⊕n
i=1 ai = a1⊕ · · ·⊕ an and a�n = a� · · ·� a (n times). We

also endow T with the standard order >. The map val yields an order-preserving morphism of
semifields from K>0 to T. This follows from (3) and from the equality case in (2). We refer the
reader to [But10, MS15] for more information on the tropical semifield.

We note that in the valued fields literature, the valuation map is usually defined using the
min-plus notation. More precisely, in the definition of Puiseux series, one usually requires
the sequence of exponents (λi)i>1 to be strictly increasing, and then the valuation of a series is
defined as the smallest exponent occurring in this series. This leads to a map val : K→ R∪{+∞}
that satisfies val(x1+x2) > min(val(x1), val(x2)). This definition is equivalent to the one above—
it is enough to replace val(x) by − val(x) in order to alternate between the two definitions. In
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this paper, we prefer to use the max-plus notation, since it yields an order preserving map from
K>0 to T, allowing more direct arguments. Our convention also corresponds to an analytic
interpretation of t as a “large positive parameter”, and it is consistent with earlier work of us
on related problems, see [AGS18, ABGJ18].

It is convenient to keep track not only of the valuation of a series but also of its sign. To
this end, we define the sign of a series x ∈ K as +1 if x > 0, −1 if x < 0, and 0 otherwise.
We denote it by sign(x). Besides, we introduce the signed valuation, denoted by sval, which
associates the couple (sign(x), val(x)) with a series x ∈ K. We denote by T± the image of K
by sval. We refer to it as the set of signed tropical numbers. For brevity, we denote an element
of the form (ε, a) by a if ε = 1, 	a if ε = −1, and −∞ if ε = 0. Here, 	 is a formal symbol.
We call the elements of the first and second kind the positive and negative tropical numbers,
respectively. We denote by T+ and T− the corresponding sets. In this way, (−2) is tropically
positive, but 	(−2) is tropically negative. Also, T is embedded in T±, i.e., T = T+ ∪ {−∞}.
We shall extend the valuation maps val and sval to vectors and matrices in a coordinate-wise
manner.

In T±, we define a modulus function, |·| : T± → T, as |−∞| = −∞ and |a| = |	a| = a for
all a ∈ T+. We point out that � straightforwardly extends to T± using the standard rules
for the sign, for instance 2 � (	3) = 	5. In contrast, we only partially define the tropical
addition ⊕ to elements of T± of identical sign, e.g., 2 ⊕ 3 = 3 and (	2) ⊕ (	3) = 	3. Such a
partially defined operation will be enough for the present purposes. We note, however, that we
may extend the addition operation so that it is everywhere defined, by embedding T± in the
symmetrized tropical semiring [AGG09], or by allowing the addition to be multivalued in the
setting of hyperfields [Vir10, CC11, BB19].

Moreover, we use the notion of tropical polynomials. A (signed) tropical polynomial over the
variables X1, . . . , Xn is a formal expression of the form

P (X) =
⊕
α∈Λ

aα �X�α1
1 � · · · �X�αn

n ,(4)

where Λ is a finite subset of {0, 1, 2, . . . }n, and aα ∈ T± \ {−∞} for all α ∈ Λ. We set
Λ+ := {α ∈ Λ : aα ∈ T+} and Λ− := {α ∈ Λ : aα ∈ T−}. We shall occasionally write Λ(P ) or
Λ±(P ) to emphasize the dependence in P . We say that the tropical polynomial P vanishes on
the point x ∈ Tn± if two of the terms aα � x�α1

1 � . . .� x�αn
n which have the greatest modulus

do not have the same sign. If P does not vanish on x, we define P (x) as the tropical sum of the
terms which have the greatest modulus. As an example, if P (X) = 2�X�31 �X

�4
2 ⊕ (	0�X2),

then P (1,	5) = 25, P (1,−5) = 	(−5), whereas P vanishes on (1,−5/3).
Furthermore, if Λ is empty, then we define P (x) = −∞ for all x ∈ Tn±. The next definition

and lemma relate the structure laws of T± and the ones of K.

Definition 2.1. If

(5) P (X) =
∑
α∈Λ

aαX
α1
1 . . . Xαn

n ∈ K[X1, . . . , Xn]

is a polynomial over Puiseux series, then we define its formal tropicalization, denoted trop(P ),
as the tropical polynomial

trop(P ) :=
⊕
α∈Λ

sval(aα)�X�α1
1 � · · · �X�αn

n .

Lemma 2.2. Let P (X) ∈ K[X1, . . . , Xn] and let P := trop(P ). Then, for all x ∈ Kn,
sval(P (x)) = P (sval(x)) provided that P does not vanish on sval(x).

Proof. Let P be as in (5). If P is a zero polynomial, then the claim is trivial. Otherwise, let
x := sval(x) and aα := sval(aα) for all α ∈ Λ. Note that for every α ∈ Λ we have the equalities

sval(aαx
α1
1 . . .xαn

n ) = aα � x�α1
1 � . . .� x�αn

n ,

val(aαx
α1
1 . . .xαn

n ) = |aα � x�α1
1 � . . .� x�αn

n | .
4



Let Λ ⊂ Λ denote terms that maximize the modulus of aα � x�α1
1 � . . .� x�αn

n . Write P (x) as

P (x) =
(∑
α∈Λ

aαx
α1
1 . . .xαn

n

)
+
(∑
α/∈Λ

aαx
α1
1 . . .xαn

n

)
.

Since P does not vanish on sval(x), the terms aαx
α1
1 . . .xαn

n such that α ∈ Λ have the same
sign. Furthermore, note that sval(x + y) = sval(x) ⊕ sval(y) provided that x and y have the
same sign. In particular, we have the equality

sval
(∑
α∈Λ

aαx
α1
1 . . .xαn

n

)
=
⊕
α∈Λ

aα � x�α1
1 � · · · � x�αn

n = P (x) .

Moreover, observe that sval(x+ y) = sval(x) whenever val(y) < val(x). Hence, we get

sval(P (x)) = sval
(∑
α∈Λ

aαx
α1
1 . . .xαn

n

)
= P (x) . �

Given a polynomial P as in (5), we denote by P+ the polynomial obtained by summing
the terms aαX

α1
1 . . . Xαn

n such that aα > 0. Similarly, P− refers to the sum of the terms
−aαXα1

1 . . . Xαn
n verifying aα < 0. In this way, P = P+ − P−. We also use the analogues

of these polynomials in the tropical setting. If P is the tropical polynomial given in (4), we
define P+ (resp. P−) as the tropical polynomial obtained by summing the terms |aα| �X�α1

1 �
. . .�X�αn

n where aα ∈ T+ (resp. T−). Observe that the quantities P+(x) and P−(x) are well
defined for all x ∈ Tn, since the tropical polynomials P+ and P− only involve tropically positive
coefficients. In particular, if P is as in (5), and if P = trop(P ), observe that P+ = trop(P+)
and P− = trop(P−).

Throughout the paper, we denote the set {1, . . . , k} by [k].

2.3. Tropical polynomial inequalities and polyhedral complexes. Given a tropical poly-
nomial P as in (4), we say that P is nonzero if the set Λ is nonempty. For every such tropical
polynomial and every point x ∈ Rn we define the set of maximizing multi-indices at x as

Argmax(P, x) :=
{
α ∈ Λ : ∀β ∈ Λ, |aα|+ 〈α, x〉 > |aβ|+ 〈β, x〉

}
,

where 〈·, ·〉 refers to the usual scalar product. If P is a nonzero tropical polynomial and we fix
a multi-index α ∈ Λ, then the set

W = cl({x ∈ Rn : Argmax(P, x) = α})

is a polyhedron that is either empty or full-dimensional. (Here and in the sequel, cl(·) refers to
the closure of a subset of Rn with respect to the Euclidean topology.) Moreover, the family of
these polyhedra, together with their faces, forms a polyhedral complex whose support is equal
to Rn. More precisely, a polyhedron V is a (possibly empty) cell of this complex if and only if
there exists a subset L ⊂ Λ such that

(6) V = cl({x ∈ Rn : Argmax(P, x) = L}) .

We denote this complex by C(P ). The union of all (n− 1)-dimensional polyhedra belonging to
C(P ) is called a tropical hypersurface. In other words, a tropical hypersurface is the set of all
points x ∈ Rn such that Argmax(P, x) has at least two elements.

For the purpose of this work, given a nonzero tropical polynomial P , it is also convenient to
consider the set

S>(P ) := {x ∈ Rn : P+(x) > P−(x)} .
To describe this set, we consider the family C>(P ) of positive cells of C(P ). We say that a cell
V ∈ C(P ) as in (6) is positive if there exists at least one α ∈ L such that aα ∈ T+ or if V is
empty. The family C>(P ) is a polyhedral complex whose support is equal to S>(P ).

5



Given a system of nonzero tropical polynomials P1, . . . , Pm, one can regard the refinements of
complexes defined by P1, . . . , Pm. More precisely, we define C(P1, . . . , Pm) and C>(P1, . . . , Pm)
as

C(P1, . . . , Pm) =
{
∩mi=1Wi : ∀i, Wi ∈ C(Pi)

}
,

C>(P1, . . . , Pm) =
{
∩mi=1Wi : ∀i, Wi ∈ C>(Pi)

}
.

The families C(P1, . . . , Pm) and C>(P1, . . . , Pm) are polyhedral complexes. The support of the
former is equal to Rn while the support of the latter coincides with

S>(P1, . . . , Pm) := {x ∈ Rn : ∀i, P+
i (x) > P−i (x)} .

Finally, in this work we consider polyhedral complexes with regular supports. Recall that a
closed set S ⊂ Rn is called regular if S = cl(int(S)) (here and in the sequel, int(·) denotes the
interior of a subset of Rn). If C is a polyhedral complex, then its support is regular if and only if
C is pure and full-dimensional. A basic property of such complexes appears in the next lemma.

Lemma 2.3. Suppose that the polyhedral complex C>(P1, . . . , Pm) has a regular support. Then
this support, S>(P1, . . . , Pm), coincides with the closure of the set

S>(P1, . . . , Pm) := {x ∈ Rn : ∀i, P+
i (x) > P−i (x)} .

Proof. The set S>(P1, . . . , Pm) is closed since the tropical polynomial functions P±i are contin-
uous, and obviously, S>(P1, . . . , Pm) ⊂ S>(P1, . . . , Pm). Therefore,

cl(S>(P1, . . . , Pm)) ⊂ S>(P1, . . . , Pm) .

Consider now y ∈ S>(P1, . . . , Pm). Since this set is regular, y belongs to a full-dimensional
cell W of C>(P1, . . . , Pm). We have W = ∩16i6mWi, where Wi is a full-dimensional cell of
C>(Pi). This implies that Wi = cl({x ∈ Rn : Argmax(Pi, x) = Li}) where Li is a one ele-
ment subset of Λ+(Pi). We conclude that P+

i (x) > P−i (x) holds for all x ∈ int(Wi), and
so, int(W) ⊂ S>(P1, . . . , Pm). Taking any ȳ in the interior of W, we see that the half-open
segment [ȳ, y[ is contained in the interior of W, and thus in S>(P1, . . . , Pm). It follows that
y ∈ cl(S>(P1, . . . , Pm)). �

2.4. Valued fields. In this section, we recall some basic information about valued fields. We
refer to [EP05, Chapter 2] for a complete account. If K is a field and Γ is an ordered abelian
group, then a surjective function val : K → Γ ∪ {−∞} is called a valuation if it fulfills the
following three conditions:

(7)

val(x) = −∞ ⇐⇒ x = 0 ,

∀x1, x2 ∈K, val(x1x2) = val(x1) + val(x2) ,

∀x1, x2 ∈K, val(x1 + x2) 6 max(val(x1), val(x2)) .

A tuple (K, Γ, val) is called a valued field. Under these conditions, O := {x ∈K : val(x) 6 0}
is a subring of K and M := {x ∈ K : val(x) < 0} is its maximal ideal. The quotient field
k := O/M is called the residue field. We denote by res the canonical projection from O to k.
The valuation is called trivial if Γ = {0}. Otherwise, it is called nontrivial. Recall that, as
explained in Section 2.2, we use the “max-plus” sign-convention to define the valuation, i.e.,
the map − val is a valuation in the sense of [EP05].

A map csec : Γ → K∗ is called a cross-section if it is a multiplicative morphism such that
val ◦csec is the identity map. A map ac : K → k is called an angular component if it fulfills the
following conditions:

• ac(0) = 0;
• ac is a multiplicative morphism from K∗ to k∗;
• the function from O to k, mapping x to ac(x) if val(x) = 0, and to 0 otherwise, is a

surjective morphism of rings whose kernel is equal to M.
6



Not every valued field admits an angular component [Pas90b]. Nevertheless, if it admits a
cross-section csec, then ac(x) := res(csec(− val(x))x) for x 6= 0 defines an angular component.
For example, if K is a field of Puiseux series defined in Section 2.1, then csec(y) = ty is a
cross-section, and lc is an angular component. In fact, every real closed valued field has a
cross-section, as shown by the following lemma.

Lemma 2.4. Suppose that K is real closed. Then (K, Γ, val) admits a cross-section. (In
particular, it has an angular component.)

Proof. The case where the valuation is trivial is obtained by taking a cross-section equal to 1.
Therefore, we assume that the valuation is nontrivial. First, observe that in this case Γ is a
divisible group, as any positive element of K admits an nth root for every nonzero natural
number n. Moreover, since Γ is ordered, it is also torsion free. Therefore, given a nonzero
natural number n and y ∈ Γ , the equation nz = y has a unique solution z in Γ . It follows that
we can regard Γ as a vector space over Q. Let {yi}i∈I be a basis of this space. For every i take
xi ∈ K such that xi > 0 and val(xi) = yi. For every finite subset J ⊂ I and every (αj) ∈ QJ

define

csec(
∑
j∈J

αjyj) =
∏
j∈J

x
αj

j .

It is obvious that csec is a cross-section. �

Finally, we recall the notion of a convex valuation. Suppose that K is an ordered field with
a total order >. We say that the valuation val is convex with respect to > if it satisfies the
following property: for every x1 ∈ O and every x2 ∈K we have the implication

0 6 x2 6 x1 =⇒ x2 ∈ O .

If K is a real closed field, it has a unique total order. In this case, the convexity property is
understood in the sense of this order. It can be shown that if K is real closed and val is convex,
then k is also real closed (see [EP05, Theorem 4.3.7]). The field of Puiseux series is an example
of a real closed field with convex valuation.

3. Semilinearity of tropical semialgebraic sets

The goal of this section is to prove the following theorem.

Theorem 3.1. Let K be a real closed field equipped with a nontrivial and convex valuation val.
Furthermore, suppose that the set S ⊂ Kn is semialgebraic. Then every stratum of val(S) is
semilinear.

Let us detail the notions used in this statement. If K is a real closed field, then we say that
a subset S ⊂Kn is basic semialgebraic if it is of the form

S = {x ∈Kn : ∀i = 1, . . . p, Pi(x) > 0 ∧ ∀i = p+ 1, . . . , q, Pi(x) = 0} ,
where Pi ∈K[X1, . . . , Xn] are polynomials. We say that S is semialgebraic if it is a finite union
of basic semialgebraic sets. Similarly, if Γ is a divisible ordered abelian group, then we say that
a set S ⊂ Γn is basic semilinear if it is of the form

S = {g ∈ Γn : ∀i = 1, . . . , p, fi(g) > h(i), ∀i = p+ 1, . . . , q, fi(g) = h(i)} ,
where fi ∈ Z[X1, . . . , Xn] are homogeneous linear polynomials with integer coefficients and

h(i) ∈ Γ . We say that S is semilinear if it is a finite union of basic semilinear sets.
Finally, since we are interested in valuations of semialgebraic sets defined in valued fields,

we work with Γ ∪ {−∞} rather than Γ . Any set S ⊂ (Γ ∪ {−∞})n is naturally stratified as
follows: the support of a point x ∈ (Γ ∪ {−∞})n is defined as the set of indices k ∈ [n] such
that xk 6= −∞. Given a nonempty subset K ⊂ [n], and a set S ⊂ (Γ ∪ {−∞})n, we define the

stratum of S associated with K as the subset of Γ |K| formed by the projection (xk)k∈K of the
points x ∈ S with support K.
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The rest of Section 3 is devoted to the presentation of the proof of Theorem 3.1, which
relies on model theoretic results in valued fields. After a preliminary section on model theory
(Section 3.1), we explain how Theorem 3.1 is obtained from a quantifier elimination technique
in valued fields of Denef and Pas (Section 3.2).

3.1. Languages and structures. In this section we recall some basic notions from model
theory. We refer to [Mar02, Chapter 1] and [TZ12, Chapter 1] for more information. In model
theory, a language L is a collection of symbols that are divided into three sets: a set of constant
symbols, a set of function symbols, and a set of relation symbols. For example, Log := (0,+,6)
is the language of ordered groups, while Lor := (0, 1,+,−, ·,6) is the language of ordered rings.

An L-structure is a tuple M := (M,L), where M is a nonempty set (called a domain) and
every symbol of L can be interpreted in M . For instance, if Γ = (Γ, 0,+,6) is an ordered
abelian group, then we can interpret the symbol 0 as zero in Γ , the symbol + as addition, and
the symbol 6 as order in Γ . Thus, every ordered abelian group is an Log-structure.

The formalism introduced above enables us to study the first-order formulas over L (or L-
formulas). The atoms of these formulas are constructed by applying relation symbols to terms
built out of variables, and functions and constants from L.

Given an L-formula ψ and a variable x, an occurrence of x is said to be bound if it is located
within the scope of a subformula of the form ∀x . . . or ∃x . . . . Other occurrences of the variable
x are said to be free. By extension, the variable x is said to be free when it occurs freely in the
formula ψ. Up to renaming some of the variables, we can suppose that free variables do not
have bound occurrences.

We often denote an L-formula ψ as ψ(X), where X = (x1, . . . , xn) is a string of free variables
that occur in ψ. IfM is an L-structure with domain M and we fix a vector X ∈Mn, then ψ(X)
can be interpreted as a meaningful statement about M. This statement can be either true or
false. For example, if we fix an ordered abelian group Γ , then the Log-formula ∀x1(x1 > 0 →
∃x2(x2 > 0∧x1 = x2+x2)) has no free variables. It is interpreted in Γ as “for every nonnegative
element x1 ∈ Γ , there exist a nonnegative element x2 ∈ Γ such that x1 is equal to x2 added
to x2.” Note that this is true if we take Γ = (Q,+,6), but false if we take Γ = (Z,+,6).
Similarly, the Log-formula ∃x2(x1 = x2 +x2) has one free variable x1. If we take Γ = (Z,+,6),

then ψ(2) is true, but ψ(1) is false. We denote “ψ(X) is true inM” asM |= ψ(X). A formula
without free variables is called a sentence. A set S ⊂ Mn is called definable (in L) if there
exists a number m > 0, a vector b ∈Mm, and an L-formula ψ(x1, . . . , xn+m) such that

S = {x ∈Mn : M |= ψ(x1, . . . , xn, b)} .

Example 3.2. Take an Log-structure M = (Γ, 0,+,6), where Γ is a divisible ordered abelian
group. Suppose that ψ(x1, . . . , xn+m) is a quantifier-free Log-formula (i.e., a formula that does

not contain quantifier symbols). Then S = {x ∈ Γn : M |= ψ(x1, . . . , xn, b)} is a semilinear set.
Conversely, every semilinear set can be written in such form.

If L is a language, then any set of L-sentences is called a theory. In our context, one can think
that a theory is a set of axioms. If Th is a fixed theory in L, then we say that an L-structureM
is a model of Th when we have M |= ψ for every ψ ∈ Th. Furthermore, if ψ is an L-sentence
that does not necessarily belong to Th, then we say that ψ is a logical consequence of Th, if ψ
is true in every model of Th. We say that L-formulas ψ(X), φ(X) are equivalent in Th if the
sentence ∀x1 . . . ∀xn ψ(X) ↔ φ(X) is a logical consequence of Th. We say that the theory Th
admits quantifier elimination if every L-formula is equivalent in Th to a quantifier-free formula.
Finally, we say that a theory Th is complete if for every L-sentence ψ, either ψ or ¬ψ is a logical
consequence of Th.

Example 3.3. The theory of real closed fields, denoted Thrcf , is a theory in the language of
ordered rings Lor. It consists of the usual axioms of ordered fields, the axiom ∀x1(x1 > 0 →
∃x2(x1 = x2 · x2)) that governs the existence of square roots, and an infinite set of axioms that
states the fact that every polynomial of an odd degree has a root. In other words, for every

8



n > 1, Thrcf contains the axiom ∀x0 . . . ∀x2n∃x(x2n+1 +x2nx
2n+ · · ·+x1x+x0 = 0). A classical

result due to Tarski states that this theory admits quantifier elimination and is complete (see
[Mar02, Theorem 3.3.15 and Corollary 3.3.16]). As an immediate corollary one sees that if K
is a real closed field, then a set S ⊂Kn is definable in Lor if and only if it is semialgebraic.

In the next section, we use divisible ordered abelian groups which arise as value groups of
nonarchimedean real closed fields. Since the valuation map may evaluate to −∞, we need to
deal with divisible ordered abelian groups with bottom element. In more details, we denote
by Logb := (0,−∞,+,6) the language of ordered groups with bottom element. The theory of
nontrivial divisible ordered abelian groups with bottom element, denoted Thdoagb, consists of
the axioms of divisible ordered abelian groups, the nontriviality axiom ∃y(y 6= 0 ∧ y 6= −∞),
and the axioms that extend the addition and order to −∞, namely ∀y(−∞ + y = −∞) and
∀y(y > −∞). As stated in the next proposition, this theory admits quantifier elimination and
is complete. It follows from the fact that the same result holds in the case of groups without
bottom element [Mar02, Corollary 3.1.17].

Proposition 3.4. The theory Thdoagb admits quantifier elimination and is complete. Moreover,
any Logb-formula θ(Y ) with Y = (y1, . . . , ym) and m > 1 is equivalent to a quantifier-free
formula of the form∨

Σ⊂[m]

(
(∀σ ∈ Σ, yσ 6= −∞

)
∧ (∀σ /∈ Σ, yσ = −∞) ∧ ψΣ

)
,

where every ψΣ is a quantifier-free Log-formula over a subset of variables in {yσ}σ∈Σ.

This proposition can be easily proven from [Mar02, Corollary 3.1.17] using double induction
over m and the length of θ. We omit the proof for brevity. We emphasize that every ψΣ
is a Log-formula, i.e., a formula that does not contain the symbol −∞. As a consequence of
Proposition 3.4 and the discussion in Example 3.2, we get the following characterization of
definable sets.

Corollary 3.5. Suppose that Γ is a nontrivial divisible abelian group. Then S ⊂ (Γ ∪{−∞})n
is definable in Logb if and only if every stratum of S is semilinear.

3.2. Quantifier elimination in real closed valued fields. In this section, we want to show
quantifier elimination over real closed fields equipped with a nontrivial and convex valuation.
We suppose that K is a real closed field and val : K → Γ∪{−∞} is a valuation that is nontrivial
and convex. We denote by k the residue field of (K, Γ, val), and by ac we denote any angular
component of this field. Under these conditions, Γ is divisible and k is real closed, as noted in
Section 2.4. In order to describe such structures, we consider the following three-sorted language

Lrcvf := (LK,LΓ ,Lk, val, ac) .
Here, LK and Lk denote the language of ordered rings (respectively associated with K and k),
LΓ denotes the language of ordered groups with bottom element, val is a symbol for valuation
map, and ac is a symbol for angular component. In the language Lrcvf , any formula has three
kinds of variables, one kind for every sort. Let x1, x2, . . . denote the variables associated with K,
y1, y2, . . . denote the variables associated with Γ ∪ {−∞}, and z1, z2, . . . denote the variables
associated with k. If θ is a Lrcvf -formula, then we denote it as θ(X,Y, Z), where X,Y, Z
are sequences of free variables associated with K, Γ ∪ {−∞}, k respectively. The constant,
function, and relation symbols of the language Lrcvf are implicitly typed. For instance, the
addition symbol of LK takes two elements of the sort K, and returns an element of the same
sort. The symbol val yields an element of the sort Γ from an element of the sort K. Then,
Lrcvf -formulas are built from the symbols of the language Lrcvf and variables in such a way that
every term and atom is well typed. We refer to [TZ12, Chapter 1] for a formal treatment of
multisorted languages.

Let us denote by Thrcvf the theory of valued fields with angular component which are real
closed and have a nontrivial and convex valuation. More precisely, the theory consists of the
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axioms of the theory of real closed fields for K, the axioms of the theory of ordered abelian
groups with bottom element for Γ ∪ {−∞}, the axioms of ordered fields for k, the axioms
specifying that val is a nontrivial and convex valuation, and the axioms specifying that ac is
an angular component. Note that the latter axioms imply that k is indeed the residue field
of (K, Γ, val). In the next theorem, we show that this theory admits quantifier elimination.
The cornerstone of the proof is a result due to Pas [Pas89, Pas90a], which establishes that the
theory of henselian valued fields with angular component admits elimination of quantifiers over
the K-variables. We refer to [CLR06] for more recent generalizations of Pas’s result.

Theorem 3.6. The theory Thrcvf admits quantifier elimination and is complete. Moreover,
any Lrcvf-formula θ(X,Y, Z) is equivalent in Thrcvf to a formula of the form

m∨
i=1

(
φi
(
val(fi1(X)), . . . , val(fiki(X)), Y

)
∧ ψi

(
ac(fi(ki+1)(X)), . . . , ac(fili(X)), Z

))
,

where, for every i = 1, . . . ,m, fi1, . . . , fili ∈ Z[X] are polynomials with integer coefficients, φi
is a quantifier-free LΓ -formula, and ψi is a quantifier-free Lk-formula.

Proof. Let θ(X,Y, Z) denote any Lrcvf -formula. Recall that the order 6 in any real closed field
can be defined as x1 6 x2 ⇐⇒ ∃x3(x2 − x1 = x23). This enables us to inductively eliminate all
occurrences of the symbols 6 of the languages LK and Lk. Therefore, θ(X,Y, Z) is equivalent

in Thrcvf to a formula θ̂(X,Y, Z) without the symbol 6. Moreover, by [EP05, Theorem 4.3.7],
(K, Γ, val) is henselian. This enables us to apply the quantifier elimination of Pas [Pas89,
Theorem 4.1]. (To be more precise, we use the formulation given in [CLR06, Theorem 4.2].) As

a result, θ̂(X,Y, Z) is equivalent in Thrcvf to a formula of the form

(8)

m∨
i=1

(
φi
(
val(fi1(X)), . . . , val(fiki(X)), Y

)
∧ ψi

(
ac(fi(ki+1)(X)), . . . , ac(fili(X)), Z

))
,

where, for every i = 1, . . . ,m, fi1, . . . , fili ∈ Z[X] are polynomials with integer coefficients,
φi is an LΓ -formula, and ψi is an Lk-formula. Then, we apply Proposition 3.4 and [Mar02,
Theorem 3.3.15] to eliminate the quantifiers in the formulas φi and ψi. This shows the last part
of the statement.

In the case where θ is a sentence, the formulas φi and ψi are also sentences. The completeness
results in Proposition 3.4 and [Mar02, Corollary 3.3.16] applied to each subformula φi and ψi
in (8) allow to prove that either θ or ¬θ is a logical consequence of Thrcvf . �

As a corollary, we obtain Theorem 3.1.

Proof of Theorem 3.1. Let Γ denote the value group of K and k denote the residue field. The
structure M = (K, Γ ∪ {−∞},k,Lrcvf) is a model of Thrcvf . Let φ(x1, . . . , xn+m) be an LK-
formula and b ∈ Km be a vector such that S = {x ∈ Kn : K |= φ(x, b)}. Take the formula
θ(xn+1, . . . , xn+m, y1, . . . , yn) in Lrcvf defined as

∃x1 . . . ∃xn
(
φ(x1, . . . , xn+m) ∧ val(x1) = y1 ∧ · · · ∧ val(xn) = yn

)
.

We obviously have
val(S) = {y ∈ (Γ ∪ {−∞})n : M |= θ(b, y)} .

By Theorem 3.6, θ is equivalent to a formula of the form
m∨
i=1

(
φi
(
val(fi1(X)), . . . , val(fiki(X)), Y

)
∧ ψi

(
ac(fi(k1+1)(X)), . . . , ac(fili(X))

))
,

where we denote X := (xn+1, . . . , xn+m), Y := (y1, . . . , yn), every φi is an LΓ -formula, every ψi
is an Lk-formula, and fi1, . . . , fili are polynomials with integer coefficients. If we fix X to be

equal to b, then this formula is equivalent to a formula of the form∨
i∈I

φi
(
ξi1, . . . , ξiki , Y

)
,
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where I is a subset of [m] and we denote val
(
fik(b)

)
= ξik ∈ Γ . Hence, val(S) is definable in

LΓ . By Corollary 3.5, val(S) has semilinear strata. �

4. Closedness of tropical semialgebraic sets

In this section we strengthen Theorem 3.1 by showing that the strata of val(S) are not only
semilinear but also closed. More precisely, we show the following theorem.

Theorem 4.1. Let K be a real closed field equipped with a nontrivial and convex valuation val.
Suppose that set S ⊂Kn is semialgebraic. Then every stratum of val(S) is closed in the product
topology of the order topology of the value group Γ .

Furthermore, if S is closed, then val(S) is closed in the product topology of the order topology
of Γ ∪ {−∞}.

Remark 4.2. Theorems 3.1 and 4.1 should be compared with Theorem 3.11 and Theorem 4.10
of Alessandrini [Ale13], dealing with log-limits of sets that are definable in certain o-minimal
polynomially bounded structures. The fact that we obtain the present results using quantifier
elimination has two advantages. First, it gives a constructive proof, while the proofs in [Ale13]
rely on compactness arguments. Second, our methods apply to arbitrary real closed valued
fields, while the analysis of [Ale13] is restricted to fields whose value group is a subgroup of R.
On the other hand, the results of [Ale13] allow to go beyond the semialgebraic setting; they
apply for instance to the o-minimal structure of real numbers with restricted analytic functions.

Remark 4.3. We point out that every subset of (Γ ∪ {−∞})n that is closed in the product
topology of the order topology of Γ ∪{−∞} has closed strata, but the converse is not true. For
example, the set R2 ∪ {−∞} has closed strata, but is not closed in the product topology of the
order topology of T2.

To prove Theorem 4.1, we first consider the case of Puiseux series, K = K. The proof needs
a few auxiliary lemmas. Hereafter, Kn

>0 := {x ∈ K : ∀k,xk > 0} denotes the open positive
orthant of Kn. Let us fix a basic semialgebraic set S ⊂ Kn

>0 defined as

(9) S := {x ∈ Kn
>0 : ∀i = 1, . . . p,Pi(x) > 0 ∧ ∀i = p+ 1, . . . , q,Qi(x) = 0}

for some polynomials P1, . . . ,Pp,Qp+1, . . . ,Qq ∈ K[X1, . . . , Xn]. Equivalently, we put S under
the form

(10) S = {x ∈ Kn
>0 : ∀i = 1, . . . p,Pi(x) > 0 ∧ ∀i = p+ 1, . . . , q,Pi(x) > 0} ,

where we set Pi := −Q2
i for all i = p+1, . . . , q. Denote Pi := trop(Pi) for all i = 1, . . . , q. In the

next lemma, we highlight a property of the full-dimensional cells of the complex C(P1, . . . , Pq)
whose interior is contained in val(S).

Lemma 4.4. Suppose that W is a full-dimensional cell of C(P1, . . . , Pq) such that int(W) ∩
val(S) 6= ∅. Let w ∈ int(W), and w ∈ val−1(w) ∩Kn

>0 be an arbitrary lift. Then w ∈ S.

Proof. Take a point z ∈ S such that z := val(z) ∈ int(W). For every i = 1, . . . , q we have
Pi(z) > 0. By Lemma 2.2 and the fact val is order preserving, we obtain P+

i (z) > P−i (z). Since
W is a full-dimensional cell of C(P1, . . . , Pq), we have the equality int(W) = ∩qi=1int(Wi), where,
for every i, Wi is a full-dimensional cell of C(Pi). In particular, Argmax(Pi, z) has only one
element and we have P+

i (z) > P−i (z). Furthermore, we have Argmax(Pi, z) = Argmax(Pi, w)

for any point w ∈ int(W). This implies that P+
i (w) > P−i (w). Therefore, if w ∈ val−1(w)∩Kn

>0

is an arbitrary lift of w, then by Lemma 2.2 we have val(P+
i (w)) > val(P−i (w)) and hence

w ∈ S. �

Lemma 4.5. Let A ∈ Qm×n be any matrix. Define a function f : Kn
>0 → Km

>0 as

f(x)i := xAi1
1 xAi2

2 . . .xAin
n .

Let S ⊂ Kn
>0 be any semialgebraic set. Then f(S) ⊂ Km

>0 is semialgebraic and we have

val(f(S)) = A
(
val(S)

)
.
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Proof. The first claim follows from the fact that the class of semialgebraic sets is closed under
semialgebraic transformations [BPR06, Proposition 2.83]. The second claim follows from the
identity val(f(x)i) = Ai

(
val(x)

)
. �

Lemma 4.6. Suppose that S ⊂ Kn
>0 is a semialgebraic set. Then val(S) ⊂ Rn is a union of

finitely many closed polyhedra.

Proof. We proceed by induction over the dimension n. First, suppose that n = 1. Since K is
a real closed field, every semialgebraic set in K is a finite union of points and open intervals.
Observe that the image by the valuation of an open interval in K>0 is an interval that is closed
in R. Therefore, the claim is true for n = 1.

Second, suppose that the claim holds in dimension n− 1. Observe that it is enough to prove
the claim for basic semialgebraic sets. Fix a basic semialgebraic set S ⊂ Kn

>0 as in (10) and

take the polyhedral complex C := C(P1, . . . , Pq). Let W̃1, . . . , W̃r denote the cells of C. By
Theorem 3.1, val(S) is a finite union of relatively open polyhedra. Denote these polyhedra by

ri(Ṽ1), . . . , ri(Ṽs), where each Ṽj is a closed polyhedron and ri denotes the relative interior. For
every (i, j), let Wij be a polyhedron such that

ri(Wij) = ri(W̃i) ∩ ri(Ṽj) .
Observe that val(S) is a union of ri(Wij). We consider an element w∗ of cl(val(S)). Let us look
at two cases.

Case I: There is a full-dimensional polyhedron Wij such that w∗ ∈ Wij . In this case, let
H = {w ∈ Rn : 〈a,w〉 = 〈a,w∗〉} be any hyperplane intersecting the interior of Wij , and such

that a ∈ Qn. Consider w(1), w(2), . . . a sequence such that w(h) ∈ H ∩ int(Wij) for all h and

w(h) → w∗. Take the set Y ⊂ Kn
>0 defined as

Y = S ∩
{
x ∈ Kn

>0 :
∏
k∈[n]

xakk = t〈a,w
∗〉
}
.

For every h define w(h) ∈ val−1(w(h)) ∩ Kn
>0 as w

(h)
k = tw

(h)
k for all k ∈ [n]. Note that every

w(h) belongs to the interior of the full-dimensional polyhedron W̃i. Consequently, w(h) belongs
to Y by Lemma 4.4. Take l ∈ [n] such that al 6= 0 and let π : Kn

>0 → Kn−1
>0 denote the

projection that forgets the l-th coordinate. Similarly, let π : Rn → Rn−1 denote the projection
that forgets the l-th coordinate. By the induction hypothesis and Lemma 4.5, val(π(Y )) is a

closed subset of Rn−1 and we have val(π(Y )) = π(val(Y )). The sequence π(w(h)) converges to
π(w∗). Therefore, we have π(w∗) ∈ π(val(Y )). In other words, there exists a point w∗ ∈ Y
such that π(val(w∗)) = π(w∗). Moreover, we have val(w∗) ∈ H and w∗ ∈ H. Since al 6= 0, this
implies that val(w∗) = w∗. Therefore w∗ ∈ val(S).

Case II: If w∗ does not belong to any full-dimensional polyhedron Wij , then we denote by
I the set of all indices (i, j) such that Wij contains w∗. We can take ρ > 0 so small that the
closed Chebyshev ball B(w∗, ρ) does not intersect any polyhedron Wij with (i, j) /∈ I. Let

w(1), w(2), . . . be a convergent sequence of elements of Rn, w(h) → w∗ such that w(h) ∈ val(S)
for all h. Every polyhedron Wij such that (i, j) ∈ I is not full-dimensional. Therefore, it is
included in an affine hyperplane Hij . Let X =

⋃
(i,j)∈I Hij be a union of these hyperplanes.

Observe that we have w∗ ∈ X and that val(S) ∩ B(w∗, ρ) ⊂ X. Let v ∈ Qn be any rational
vector such that v /∈ (X−w∗). (Here, by X−w∗ we mean the translation of X by vector −w∗.)
Note that the affine line w∗ + span(v) intersects X only in w∗.

Let A ∈ Q(n−1)×n be a rational matrix such that ker(A) = span(v). Take the function
f : Kn

>0 → Kn−1
>0 defined as

(f(x))k :=

n∏
l=1

xAkl
l , k = 1, 2, . . . , n− 1 .

Let U := {x ∈ Kn
>0 : ∀l,xl ∈ [tw

∗
l −ρ, tw

∗
l +ρ]}. By Lemma 4.5, the set f(S ∩ U) ⊂ Kn−1

>0
is semialgebraic and we have val(f(S ∩ U)) = A(val(S ∩ U)). Therefore, by the induction
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hypothesis, the set A(val(S ∩ U)) is closed. For every w(h), let w(h) ∈ S denote any element

of S such that val(w(h)) = w(h). For h large enough we have w(h) ∈ B(w∗, ρ/2) and hence

w(h) ∈ S ∩U . Moreover, the sequence Aw(h) converges to Aw∗. Since A(val(S ∩U)) is closed,
there is w∗ ∈ S ∩ U such that Aw∗ = A val(w∗). As w∗ ∈ U , we have val(w∗) ∈ B(w∗, ρ).
Therefore

val(w∗) ∈
(

(w∗ + span(v)) ∩B(w∗, ρ) ∩ val(S)
)
.

On the other hand, we have val(S) ∩ B(w∗, ρ) ⊂ X and (w∗ + span(v)) ∩ X = w∗. Hence
val(w∗) = w∗ and w∗ ∈ val(S).

�

Lemma 4.7. Suppose that S ⊂ Kn is a nonempty bounded closed semialgebraic set. Let K ⊂ [n]
be a set of indices such that for every a ∈ K>0 the set {x ∈ S : ∀k ∈ K, xk ∈ [0,a]} is nonempty.
Then there exists a point y ∈ S such that yk = 0 for all k ∈ K.

Proof. We prove that the statement holds for any real closed field K. Fix an Lor-formula
ψ(x1, . . . , xn+m). For every vector b ∈Km we define the semialgebraic set Sb by

Sb := {x ∈Kn : K |= ψ(x1, . . . , xn, b)} .
The statement “for all (xn+1, . . . , xn+m), if the set S(xn+1,...,xn+m) is nonempty, bounded, closed,
and the set {x ∈ S(xn+1,...,xn+m) : ∀k ∈ K, xk ∈ [0, a]} is nonempty for every a > 0, then there
exists a point y ∈ S(xn+1,...,xn+m) such that yk = 0 for all k ∈ K” is a sentence in the language
of ordered rings Lor. It is true in R, hence it is true in K by the model completeness of real
closed fields ([Mar02, Corollary 3.3.16]). �

The lemmas above lead to the main theorem of this section.

Proof of Theorem 4.1. We first prove the result for a semialgebraic set S included in the closed
positive orthant Kn

>0. Let K ⊂ [n] be any nonempty subset and let XK ⊂ Kn be the set defined
as

XK := {x ∈ Kn : xk 6= 0 ⇐⇒ k ∈ K}.
The sets XK and subsequently S ∩ XK are semialgebraic. Let π : Kn → KK denote the
projection on the coordinates from K. Similarly, let π : Tn → TK denote the projection on
the coordinates from K. Observe that the stratum of val(S) associated with K is equal to
π(val(S∩XK)) = val(π(S∩XK)). Moreover, the set π(S∩XK) is included in KK

>0. Therefore
the first claim follows from Lemma 4.6.

To prove the second claim, suppose that S is closed. Let x ∈ Tn be any point that does
not belong to val(S). Let K ⊂ [n] be the support of x. For any M,N > 0 we denote
Ik(M,N) = [−∞,−M [ if k /∈ K and Ik(M,N) = ]xk − 1

N , xk + 1
N [ otherwise. Similarly, we

denote Ik(M,N) = [0, t−M+1] ⊂ K>0 for k /∈ K and Ik(M,N) = [txk−
2
N , txk+

2
N ] ⊂ K>0 other-

wise. We want to show that there is an open neighborhood of x that does not belong to val(S).
Suppose that this is not the case. Then, for any M,N > 0, the set

∏n
k=1 Ik(M,N) contains

a point from val(S). Therefore, the set S(M,N) := S ∩
∏n
k=1 Ik(M,N) is nonempty, on top of

being closed and bounded. If we fix N > 0, then, by Lemma 4.7, there is a point y(N) ∈ S(1,N)

such that y
(N)
k = 0 for all k /∈ K. In other words, the set π(S ∩XK) contains a point that

belongs to
∏
k∈K [txk−

2
N , txk+

2
N ]. Hence, the stratum of val(S) associated with K contains a

point that belongs to
∏
k∈K [xk − 2

N , xk + 2
N ]. Since this is true for all N > 0, and the strata of

val(S) are closed, we have x ∈ val(S), which gives a contradiction.
Second, suppose that S ⊂ Kn is any semialgebraic set. Given a vector δ ∈ {+1,−1}n, we

denote by fδ the involution which maps x ∈ Kn to the vector with entries δkxk. With this
notation, S is the union of the sets of the form S ∩ fδ(Kn

>0). Moreover, the set fδ(S ∩ fδ(Kn
>0))

is a semialgebraic set included in Kn
>0, and its image under the valuation map coincides with

that of S ∩fδ(Kn
>0). The claim follows by applying the result of the previous paragraph to each

of the sets fδ(S ∩ fδ(Kn
>0)).

13



x1

x2

Figure 1. Polyhedral complex C>(P ).

To prove the claim for an arbitrary field K we use Theorem 3.6. We fix an Lor-formula
ψ(x1, . . . , xn+m). For every vector b ∈Km we can look at the semialgebraic set

Sb := {x ∈Kn : K |= ψ(x1, . . . , xn, b)} .
The statement “for all (xn+1, . . . , xn+m), the image by valuation of the set S(xn+1,...xn+m) has
closed strata” is a sentence in Lrcvf . It is true in K and hence, by the completeness result of
Theorem 3.6, it is also true in K. The same is true for the statement “for all (xn+1, . . . , xn+m),
if S(xn+1,...xn+m) is closed, then its image by valuation is closed.” �

As a by-product, we get the following result, which generalizes the proposition of Develin
and Yu [DY07, Proposition 2.9] on polyhedra to basic semialgebraic sets.

Corollary 4.8. Suppose that S ⊂ Kn
>0 is a semialgebraic set defined as

S := {x ∈ Kn
>0 : P1(x) �1 0, . . . ,Pm(x) �m 0} ,

where Pi ∈ K[X1, . . . , Xn] are nonzero polynomials and � ∈ {>, >}m. Let Pi := trop(Pi) for
all i and suppose that C>(P1, . . . , Pm) has regular support. Then

val(S) = {x ∈ Rn : ∀i, P+
i (x) > P−i (x)} .

Proof. Denote S> := {x ∈ Rn : ∀i, P+
i (x) > P−i (x)} and suppose that x ∈ S. Since val is order

preserving, we have val(x) ∈ S> by Lemma 2.2. Therefore val(S) ⊂ S>. On the other hand, if
we take any point x such that P+

i (x) > P−i (x) for all i, then any lift x ∈ val−1(x)∩Kn
>0 belongs

to S. Hence, we have the inclusion

{x ∈ Rn : ∀i, P+
i (x) > P−i (x)} ⊂ val(S) ⊂ {x ∈ Rn : ∀i, P+

i (x) > P−i (x)}
and the claim follows from Lemma 2.3 and Theorem 4.1. �

Example 4.9. Take P = 0⊕(X�21 �X
�2
2 )⊕(2�X1�X2)⊕(	2�X�21 )⊕(	2�X�22 ). Then C>(P )

is depicted in Figure 1. This support of this complex is not regular and Corollary 4.8 does not
apply. Indeed, take P (x1,x2) = 1+x2

1x
2
2+t2x1x2−t2x2

1−t2x2
2. We have trop(P ) = P , but the

set val({(x1,x2) ∈ K2
>0 : P (x1,x2) > 0}) does not contain the open segment ](−1,−1), (1, 1)[.

Remark 4.10. The result of Corollary 4.8 may be thought of as a semialgebraic analogue of the
Kapranov’s theorem [EKL06, Theorem 2.1.1]. This theorem characterizes an image by valuation
of a complex hypersurface. A difference is that Kapranov’s theorem involves only one polynomial
equality constraint, while Corollary 4.8 applies to several polynomial inequality constraints. On
the other hand, Kapranov’s theorem does not require any additional assumptions, while the
purity condition of Corollary 4.8 cannot be dropped, as shown by Example 4.9. Furthermore, we
note that Kapranov’s theorem can be generalized to fields with higher rank value groups [Aro10,
Ban15]. We do not pursue this direction here, but we note that higher rank analogues of
Corollary 4.8 can be deduced from it using the quantifier elimination result of Theorem 3.6.
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After this manuscript was submitted, the tropicalization of semialgebraic sets was further
studied in the work of Jell, Scheiderer, and Yu [JSY18]. The main focus of [JSY18] is to
study the real analytification of semialgebraic sets, but the authors also obtain results about
the topology of tropicalized sets, similar to the results proved above. In order to facilitate the
comparison between the two papers, we now briefly discuss these results.

The authors of [JSY18] use a more expressive notion of tropicalization that also captures the
sign structure of the set. More precisely, instead of using the valuation map val : K → T, they
use the signed valuation map sval : K → T±. In order to equip the space of signed tropical
numbers with a topology, we extend the order on T to an order on T± in the natural way, by
supposing that negative tropical numbers are smaller than the positive tropical numbers (so
that 	3 < 	(−2) < −∞ < (−2) < 3). This induces an order topology on T± and a product
topology on Tn±. We also note that T± is homeomorphic to R, with the homeomorphism given
by the map

T± 3 a 7→

{
sign(a) exp(|a|) if a 6= −∞
0 otherwise.

This also implies that Tn± is homeomorphic to Rn. In particular, if S ⊂ Kn is a semialgebraic
set, then we can study the topological properties of its image sval(S) ⊂ Tn±. (We also note that
the authors of [JSY18] do not use sval, but its homeomorphic version given above. Since these
maps differ by a homeomorphism, this choice does not impact the topological results.) Similarly
to Rn, the space Tn± has 2n (closed) orthants, defined in the following way. If µ ∈ {−1,+1}n,
then the µ-orthant of Tn± is defined as

Tn±,µ := {x ∈ Tn± : ∀k, sign(xk) ∈ {0, µk}} .

We note that the orthants are closed in the topology of Tn±. Moreover, they are homeomorphic
to Tn, with the homeomorphism given by the absolute value map

(11) T±,µ 3 (x1, . . . , xn) 7→ (|x1|, . . . , |xn|) ∈ Tn .

We can also divide Tn± into 3n strata, in the following way. If σ ∈ {−1, 0,+1}n is a vector of
signs, then we define the σ-stratum of Tn± as

(12) Tn,(σ)± := {x ∈ Tn± : ∀k ∈ [n], sign(xk) = σk} .

We point out that in Section 3 we defined “stratum” as a set of points with only finite co-
ordinates. However, in the present context it is more convenient to consider σ-strata as sets
of points with some coordinates equal to −∞, as in (12). We note that the strata of Tn± are
generally not closed in the topology of Tn±. More precisely, if σ 6= 0 and

∑
k |σk| = p, then

Tn,(σ)± is homeomorphic to Tp+ and the homeomorphism is given by the sign-forgetting projec-

tion π(σ) : Tn,(σ)± → Tp+ defined as π(σ)(x1, . . . , xn) := (|xk1 |, . . . , |xkp |), where {k1, . . . , kp} are
the indices such that σki 6= 0.

The following result about the topology of sval(S) follows from Theorem 4.1, compare with
[JSY18, Theorem 6.5].

Corollary 4.11. If S ⊂ Kn is a semialgebraic set, then sval(S)∩Tn,(σ)± is closed in the induced

topology of Tn,(σ)± for every σ ∈ {−1, 0,+1}n. Moreover, if S is closed, then sval(S) is closed in
the topology of Tn±.

Proof. To prove the first part, fix S ⊂ Kn and σ ∈ {−1, 0,+1}n. If σ = 0, then the claim
is trivial. Otherwise, consider the semialgebraic set Sσ := {x ∈ S : ∀k, sign(xk) = σk} and

note that sval(S) ∩ Tn,(σ)± = sval(Sσ). Denote p :=
∑

k |σk| and K := {k ∈ [n] : σk 6= 0}.
Let S := val(Sσ) ⊂ Tn and let SK ⊂ Tp+ denote the stratum of S associated with K. By
Theorem 4.1, the set SK is closed in the topology of Tp+. Therefore, the claim follows from the

fact that sval(Sσ) = (π(σ))−1(SK), where π(σ) : Tn,(σ)± → Tp+ is the sign-forgetting projection.
15



To prove the second part, fix a vector µ ∈ {−1,+1}n, let

Kn
µ := {x ∈ Kn : ∀k, sign(xk) ∈ {0, µk}}

denote the corresponding orthant of the Puiseux series, and let Sµ := S ∩Kµ. By Theorem 4.1,
the set val(Sµ) is closed in the topology of Tn. Moreover, sval(Sµ) ⊂ Tn±,µ is the preimage
of val(Sµ) under the absolute value map given in (11). Hence, sval(Sµ) is a closed subset
of Tn±,µ and therefore it is also a closed subset of Tn±. The claim follows from the fact that
sval(S) =

⋃
µ∈{−1,+1}n sval(Sµ). �

5. Tropical spectrahedra

5.1. Tropicalization of nonarchimedean spectrahedra. We now introduce the notion of
tropical spectrahedra.

Definition 5.1. A set S ⊂ Tn is said to be a tropical spectrahedron if there exists a spectrahe-
dron S ⊂ Kn

>0 such that S = val(S).

If S = val(S), then we refer to S as the tropicalization of the spectrahedron S, and S is said
to be a lift (over the field K) of S.

Recall that we have the following characterization of positive semidefinite matrices:

Proposition 5.2. A symmetric matrix A ∈ Km×m is positive semidefinite if and only if every
principal minor of A is nonnegative.

Given symmetric matricesQ(0), . . . ,Q(n) ∈ Km×m and x ∈ Kn, we denote byQ(x) the matrix

pencil Q(0) +x1Q
(1) + · · ·+xnQ(n). Proposition 5.2 provides a description of the spectrahedron

S = {x ∈ Kn
>0 : Q(x) < 0} by a system of polynomial inequalities of the form detQI×I(x) > 0,

where I is a nonempty subset of [m], and detQI×I(x) corresponds to the (I × I)-minor of the
matrix Q(x). Following this, we obtain that the tropical spectrahedron S is included in the
intersection of the sets {x ∈ Tn : trop(P )+(x) > trop(P )−(x)} where P is a polynomial of the
form detQI×I(x). In general, this inclusion may be strict. We refer to [ABGJ15, Example 15]
for an example in which S is a polyhedron. Nevertheless, under the regularity assumption stated
in Corollary 4.8, both sets coincide. In fact, we prove that, under similar assumptions, tropical
spectrahedra have a description that is much simpler than the one provided by Corollary 4.8.
This description only involves principal tropical minors of order 2.

Our results are divided into three parts. In Section 5.2 we deal with spectrahedra defined by
Metzler matrices Q(0), . . . ,Q(n) (i.e., matrices in which the off-diagonal entries are nonpositive).
This enables us to use a lemma that is similar to Corollary 4.8 in order to give a description of
tropical spectrahedra under a regularity assumption.

In Section 5.3 we switch to non-Metzler matrices. In this case, tropical spectrahedra may not
be regular, even under strong genericity assumptions. Nevertheless, we are able to extend our
previous analysis to this case and give a description, involving only principal minors of size at
most 2, of non-Metzler spectrahedra, under a regularity assumption over some associated sets.

Finally, the purpose of Section 5.4 is to show that the regularity assumptions used in Sec-
tions 5.2 and 5.3 hold generically.

Let us start with some introductory remarks. First, observe that in order to characterize the
class of tropical spectrahedra, it is enough to restrict ourselves to tropical spectrahedral cones,
as the image of a spectrahedron can be deduced from the image of its homogenized version.
This is formally stated in the next lemma.

Lemma 5.3. Let Q(0), . . . ,Q(n) ∈ Km×m be a sequence of symmetric matrices. Define

S := {x ∈ Kn
>0 : Q(0) + x1Q

(1) + · · ·+ xnQ(n) < 0}
and

Sh := {(x0,x) ∈ Kn+1
>0 : x0Q

(0) + x1Q
(1) + · · ·+ xnQ(n) < 0} .

Then
val(S) = π({x ∈ val(Sh) : x0 = 0}) ,
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where π : Tn+1 → Tn denotes the projection that forgets the first coordinate.

Proof. We start by proving the inclusion ⊂. Take any x ∈ val(S) and its lift x ∈ S ∩ val−1(x).
Observe that the point (1,x) belongs to Sh. Therefore, the point (0, x) belongs to val(Sh) and
x belongs to π({x ∈ val(Sh) : x0 = 0}). Conversely, let x belong to π({x ∈ val(Sh) : x0 = 0}).
Then (0, x) belongs to val(Sh). In other words, there exists a lift (z,x) ∈ Sh such that val(z) = 0
and val(x) = x. Take the point (1,x/z). This point also belongs to Sh. Moreover, x/z belongs
to S. Hence, the point x = val(x/z) belongs to val(S). �

Second, let us explain our approach to the tropicalization of spectrahedra. It relies on the
next elementary lemma. The latter should be compared with a result of Yu [Yu15] that shows
that the set of images by the valuation of the set of positive semidefinite matrices A over the
field of Puiseux series is determined by the inequalities val(Aii)+val(Ajj) > 2 val(Aij) for i 6= j.

Lemma 5.4. Let A ∈ Km×m be a symmetric matrix. Suppose that A has nonnegative entries
on its diagonal and that the inequality AiiAjj > (m− 1)2A2

ij holds for all pairs (i, j) such that
i 6= j. Then A is positive semidefinite.

Proof. If A is a zero matrix, then there is nothing to show. From now on we suppose that
A has at least one nonzero entry. First, let us suppose that A has positive entries on its

diagonal. In this case, let B ∈ Km×m be the diagonal matrix defined by Bii := A
−1/2
ii for all

i. Observe that A is positive semidefinite if and only if the matrix D := BAB is positive

semidefinite. Moreover, D has ones on its diagonal and Dij = A
−1/2
ii AijA

−1/2
jj for all i 6= j.

Hence |Dij | 6 1/(m− 1) for all i 6= j. Therefore D is diagonally dominant and hence positive
semidefinite.

Second, if A has some zeros on its diagonal, let I = {i ∈ [m] : Aii 6= 0}. Since the inequality
AiiAjj > (m− 1)2A2

ij holds, we have Aij = 0 if either i /∈ I or j /∈ I. Let AI denote the sub-
matrix formed by the rows and columns with indices from I. Then A is positive semidefinite if
and only if AI is positive semidefinite. Finally, AI is positive semidefinite by the considerations
from the previous paragraph. �

Given a spectrahedron S = {x ∈ Kn
>0 : Q(x) < 0} we define two sets Sout, S in ⊂ Kn

>0 as

Sout :=
{
x ∈ Kn

>0 : ∀i,Qii(x) > 0 , ∀i 6= j,Qii(x)Qjj(x) > (Qij(x))2
}
,

S in :=
{
x ∈ Kn

>0 : ∀i,Qii(x) > 0 ,∀i 6= j,Qii(x)Qjj(x) > (m− 1)2(Qij(x))2
}
.

Proposition 5.2 shows that S ⊂ Sout, while Lemma 5.4 shows that S in ⊂ S. In order to
describe the set val(S), we will exhibit conditions that ensure that the tropicalizations of S in

and Sout coincide, i.e., val(Sout) = val(S) = val(S in).

5.2. Tropical Metzler spectrahedra. In this section, we study the spectrahedra that are
defined by Metzler matrices. Recall that a square matrix A ∈ Km×m is a (negated) Metzler
matrix if its off-diagonal coefficients are nonpositive. Similarly, we say that a matrix M ∈ Tm×m±
is a tropical Metzler matrix if Mij ∈ T− ∪ {−∞} for all i 6= j. Let Q(1), . . . , Q(n) ∈ Tm×m± be
symmetric tropical Metzler matrices. Given i, j ∈ [m], we refer to Qij(X) as the tropical
polynomial:

Qij(X) := Q
(1)
ij �X1 ⊕ · · · ⊕Q(n)

ij �Xn .

Definition 5.5. If Q(1), . . . , Q(n) ∈ Tm×m± are symmetric tropical Metzler matrices, we define

the tropical Metzler spectrahedron S(Q(1), . . . , Q(n)) described by Q(1), . . . , Q(n) as the set of
points x ∈ Tn that fulfill the following two conditions:

• for all i ∈ [m], Q+
ii (x) > Q−ii (x);

• for all i, j ∈ [m], i < j, Q+
ii (x)�Q+

jj(x) > (Qij(x))�2.
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Observe that the term Qij(x) (i 6= j) is well defined for any x ∈ Tn thanks to the Metzler

property of the matrices Q(k).
Where there is no ambiguity, we denote S(Q(1), . . . , Q(n)) by S. With standard notation, the

constraints defining this set respectively read: for all i ∈ [m],

(13) max
Q

(k)
ii ∈T+

(
Q

(k)
ii + xk

)
> max

Q
(l)
ii ∈T−

(
|Q(l)

ii |+ xl
)
,

and for all i, j ∈ [m] such that i < j,

(14) max
Q

(k)
ii ∈T+

(
Q

(k)
ii + xk

)
+ max
Q

(k′)
jj ∈T+

(
Q

(k′)
jj + xk′

)
> 2 max

l∈[n]

(
|Q(l)

ij |+ xl
)
.

Remark 5.6. The system of constraints (13) and (14) has an interpretation in terms of games.
Indeed, it is shown in [AGS18, AGS19] to be equivalent to an equation of the form x 6 T (x),
where T is the dynamic programming operator of a turn-based stochastic mean payoff game.
The existence of a solution x ∈ Tn, not identically −∞, is equivalent to the existence of an
initial state that is winning. See also [AGKS18, Sko18] for more information on the relation
between tropical spectrahedra and turn-based games.

The next proposition justifies the terminology introduced in Definition 5.5, and ensures that
the set S is indeed a tropical spectrahedron. To this end, we explicitly construct a spectrahedron
S ⊂ Kn

>0 verifying val(S) = S. (This result was already announced in the conference version of
the paper [AGS18]. We provide here the full proof for the sake of completeness.)

Proposition 5.7. The set S(Q(1), . . . , Q(n)) is a tropical spectrahedron.

Proof. Let us define the matrices Q(1), . . . ,Q(n) ∈ Km×m as follows:

• if Q
(k)
ij ∈ T−, then we set Q

(k)
ij := −t|Q

(k)
ij |;

• if Q
(k)
ij ∈ T+ (which, under our assumptions, can happen only if i = j), then Q

(k)
ij :=

mntQ
(k)
ij ;

• if Q
(k)
ij = −∞, then Q

(k)
ij := 0.

Consider the spectrahedron S := {x ∈ Kn
>0 : Q(x) < 0}. We claim that val(S) = S.

We start with the inclusion val(Sout) ⊂ S. Let x ∈ Sout. Observe that for all i 6= j, the
inequality Q+

ii (x)Q+
jj(x) > (Qij(x))2 holds thanks to the fact that Qii(x) > 0. Moreover, we

have val(Q+
ii (x)) = Q+

ii (x), where x = val(x). Similarly, val(Q−ii (x)) = Q−ii (x). As the Q(k) are
tropical Metzler matrices, we have val(Qij(x)) = |Qij(x)| for i 6= j. Since the map val is order
preserving over K>0, we deduce that x ∈ S.

Now, let us prove the inclusion S ⊂ val(S in). Take any x ∈ S and its lift xk = txk , with
the convention that t−∞ = 0. First, as noted in the previous paragraph, we have val(Q+

ii (x)) =

Q+
ii (x) and val(Q−ii (x)) = Q−ii (x). We have chosen the matrices Q(k) and the point x in such a

way that

(15) Q+
ii (x) =

∑
Q

(k)
ii ∈T+

mntQ
(k)
ii +xk > mntQ

+
ii(x) .

Similarly, we have Q−ii (x) =
∑

Q
(k)
ii ∈T−

t|Q
(k)
ii |+xk 6 ntQ

−
ii(x). Since Q+

ii (x) > Q−ii (x), we deduce

that Q−ii (x) 6 1
mQ

+
ii (x), and so Qii(x) > (1 − 1

m)Q+
ii (x) > 0. Second, for all i 6= j we have

0 > Qij(x) > −nt|Qij(x)|. Using (15) and the fact that Q+
ii (x)�Q+

jj(x) > (Qij(x))�2, we obtain

Qij(x)2 6
1

m2
Q+
ii (x)Q+

jj(x) .
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x1

x2

Figure 2. A tropical Metzler spectrahedron.

Therefore, by the previous inequalities,

Qii(x)Qjj(x)− (m− 1)2Qij(x)2

>
(

1− 1

m

)2
Q+
ii (x)Q+

jj(x)− (m− 1)2Qij(x)2 > 0 .

Hence x ∈ S in. Therefore, by Proposition 5.2 and Lemma 5.4 we have val(S) ⊂ val(Sout) ⊂
S ⊂ val(S in) ⊂ val(S), which implies that val(S) = S. �

Example 5.8. IfA(1), . . . , A(p) are matrices, then tdiag(A(1), . . . , A(p)) refers to the block diagonal

matrix with blocks A(s) on the diagonal and all other entries equal to −∞. Let Q(0), Q(1), Q(2) ∈
T9×9
± be symmetric tropical Metzler matrices defined as follows:

Q(0) := tdiag
(

8,	1,	1,

[
−∞ 	3
	3 −∞

]
,

[
2 −∞
−∞ 8

]
,

[
3 −∞
−∞ 9

])
,

Q(1) := tdiag
(
	0, 0,−∞,

[
0 −∞
−∞ −2

]
,

[
−∞ 	0
	0 −∞

]
,

[
0 −∞
−∞ 4

])
,

Q(2) := tdiag
(
	0,−∞, 0,

[
−1 −∞
−∞ −1

]
,

[
0 −∞
−∞ 4

]
,

[
−∞ 	0
	0 −∞

])
.

The intersection of the tropical Metzler spectrahedron S(Q(0), Q(1), Q(2)) with the hyperplane
{x0 = 0} is depicted in Figure 2.

We now focus on the main problem of characterizing the image by the valuation of a
spectrahedron defined by Metzler matrices. Our goal is to show that any spectrahedron
S = {x ∈ Kn

>0 : Q(x) < 0} verifying sval(Q(k)) = Q(k) is mapped to the tropical Metzler

spectrahedron S, provided that some assumptions related to the genericity of the matrices Q(k)

and the regularity of the set S hold. To do so, we prove a weaker result, Theorem 5.12, on the
tropicalization of the spectrahedron restricted to the open positive orthant Kn

>0.

Lemma 5.9. Let A ∈ Tm×m be a symmetric matrix such that Aii ∈ T+ ∪ {−∞} for all i
and Aii � Ajj > A�2ij for all i < j such that Aij 6= −∞. Let A ∈ Km×m be any symmetric

matrix such that sval(A) = A. Then A fulfills the conditions of Lemma 5.4. (In particular, it
is positive semidefinite.)

Proof. Since Aii ∈ T+ ∪ {−∞} for all i, we have Aii > 0 for all i. Moreover, if Aij = −∞,

then AiiAjj > 0 and if Aij 6= −∞, then val(AiiAjj) = Aii � Ajj > A�2ij = val((m − 1)2A2
ij).

Therefore A fulfills the conditions of Lemma 5.4. �

Lemma 5.10. Let T be the set of points x ∈ Rn that fulfill the following two conditions:
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• for all i ∈ [m] such that Q−ii is nonzero we have Q+
ii (x) > Q−ii (x);

• for all i, j ∈ [m], i < j, such that Qij is nonzero we have Q+
ii (x)�Q+

jj(x) > (Qij(x))�2.

Then cl(T ) ⊂ val(S in ∩ Kn
>0) for every spectrahedron S = {x ∈ Kn

>0 : Q(x) < 0} such that

sval(Q(k)) = Q(k).

Proof. By Theorem 4.1, the set val(S in ∩Kn
>0) is closed. Therefore, it is enough to prove that

T ⊂ val(S in). Fix any x ∈ T and take any lift x ∈ val−1(x) ∩ Kn
>0. Let A := sval(Q(x)). For

any i such that Q−ii is nonzero we have val(Q+
ii (x)) = Q+

ii (x) > Q−ii (x) = val(Q−ii (x)). Therefore

Aii = sval(Qii(x)) = Q+
ii (x) ∈ T+ ∪ {−∞} for all i (even if Q−ii is zero). Furthermore, we

have Aij = Qij(x) for any i < j. Therefore, for any i < j such that Aij 6= −∞, we have

Aii � Ajj > A�2ij . Hence, by Lemma 5.9, Q(x) fulfills the conditions of Lemma 5.4. In other

words, x ∈ S in and x ∈ val(S in ∩Kn
>0). �

Assumption 5.11. We suppose that for every matrix Q(k) and every pair i 6= j such that Q
(k)
ii

and Q
(k)
jj belong to T+ the inequality Q

(k)
ii +Q

(k)
jj 6= 2|Q(k)

ij | holds.

We point out that Assumption 5.11 can be interpreted in terms of the nonsingularity of some
(tropical) minors of order 2 of the matrices Q(k).

Theorem 5.12. Let S = {x ∈ Kn
>0 : Q(x) < 0} be a spectrahedron described by Metzler

matrices Q(1), . . . , Q(n) such that sval(Q(k)) = Q(k). Suppose that Assumption 5.11 holds and

that the set S(Q(1), . . . , Q(n)) ∩ Rn is regular. Then

val(S ∩Kn
>0) = S(Q(1), . . . , Q(n)) ∩ Rn .

Proof. Let T be defined as in Lemma 5.10. Using the same arguments as in the proof of
Proposition 5.7, we can show that val(Sout) ⊂ S, and subsequently, val(Sout ∩Kn

>0) ⊂ S ∩ Rn.
Then, by Lemma 5.10, it is enough to show that cl(T ) = S ∩Rn. Observe that the inequalities
defining S such that Q−ij (i 6 j) is the zero tropical polynomial are trivially satisfied. Therefore,
S can be expressed as the set of points x ∈ Tn verifying:

• for all i ∈ [m] such that Q−ii is nonzero, Q+
ii (x) > Q−ii (x);

• for all i, j ∈ [m], i < j, such that Qij (or, equivalently, Q−ij) is nonzero, Q+
ii (x)�Q+

jj(x) >
(Qij(x))�2.

We denote by Ξ the set of (i, j) ∈ [m]× [m] such that i 6 j and Q−ij is nonzero. Since S ∩ Rn
is supposed to be regular, we propose to use Lemma 2.3, and thus, to exhibit nonzero tropical
polynomials Pij such that

S ∩ Rn = {x ∈ Rn : ∀(i, j) ∈ Ξ,P+
ij (x) > P−ij (x)} ,(16)

and

T = {x ∈ Rn : ∀(i, j) ∈ Ξ,P+
ij (x) > P−ij (x)} .(17)

In other words, we want to express the inequalities of the form Q+
ii (x) > Q−ii (x) and Q+

ii (x) �
Q+
jj(x) > (Qij(x))�2 as tropical polynomial inequalities in which no term appears both on

the left- and on the right-hand side. The inequalities of the first kind already satisfy this
condition, and it suffices to set Pii := Qii for all i ∈ [m] such that (i, i) ∈ Ξ. In contrast,
we have to transform the inequalities of the second kind into equivalent contraints of the form
P+
ij (x) > P−ij (x), where (i, j) ∈ Ξ and i < j. To this end, we use Assumption 5.11. First, observe

that the functions (Qij(x))�2 and
⊕

k(Q
(k)
ij � xk)�2 are equal. Therefore, we can replace the

inequalities Q+
ii (x)�Q+

jj(x) > (Qij(x))�2 by Q+
ii (x)�Q+

jj(x) >
⊕

k(Q
(k)
ij �xk)�2. Now, we can

define a formal subtraction of these tropical expressions. More precisely, for every (i, j) ∈ Ξ
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such that i < j, we define

Pij :=

( ⊕
k 6=l

Q
(k)
ii , Q

(l)
jj ∈T+

(Q
(k)
ii �Q

(l)
jj )� (Xk �Xl)

)
⊕
( ⊕
Q

(k)
ii , Q

(k)
jj ∈T+

or |Q(k)
ij |6=−∞

αk �X�2k

)
,

where αk is given by:

αk :=

{
Q

(k)
ii �Q

(k)
jj if Q

(k)
ii , Q

(k)
jj ∈ T+ and Q

(k)
ii +Q

(k)
jj > 2|Q(k)

ij | ,
	(Q

(k)
ij )�2 otherwise.

Recall that any inequality of the form max(x, α+y) > max(x′, β+y) is equivalent to max(x, α+
y) > x′ if α > β, and to x > max(x′, β + y) if β > α. Therefore, Assumption 5.11 ensures that

P+
ij (x) > P−ij (x) is equivalent to Q+

ii (x)�Q+
jj(x) >

⊕
k(Q

(k)
ij � xk)�2. The same applies to the

nonstrict counterparts of these inequalities. We conclude that (16) and (17) are satisfied. �

Theorem 5.13. Let S = {x ∈ Kn
>0 : Q(x) < 0} be a spectrahedron described by Metzler

matrices Q(1), . . . , Q(n) such that sval(Q(k)) = Q(k). Suppose that Assumption 5.11 is fulfilled

and that every stratum of the set S(Q(1), . . . , Q(n)) is regular. Then

val(S) = S(Q(1), . . . , Q(n)) .

Proof. Fix a nonempty subset K ⊂ [n]. Observe that the stratum of val(S) associated with K

is equal to val(S(K)∩KK
>0), where S(K) is the spectrahedron described by (Q(k))k∈K . Similarly,

the stratum of S associated with K is equal to S(K) ∩ RK , where S(K) denotes the tropical
Metzler spectrahedron described by (Q(k))k∈K . Therefore, we obtain the claim by applying
Theorem 5.12 to every stratum. �

5.3. Non-Metzler spectrahedra. In this section, we abandon the Metzler assumption that
was imposed in the previous section. LetQ(1), . . . , Q(n) ∈ Tm×m± be symmetric tropical matrices.

We introduce the set S(Q(1), . . . , Q(n)) (or simply S) of points x ∈ Tn that fulfill the following
two conditions:

• for all i ∈ [m], Q+
ii (x) > Q−ii (x);

• for all i, j ∈ [m], i < j, we haveQ+
ii (x)�Q+

jj(x) > (Q+
ij(x)⊕Q−ij(x))�2 orQ+

ij(x) = Q−ij(x).

We point out that this generalizes Definition 5.5 to the case of non-Metzler matrices. More
precisely, if the matrices Q(1), . . . , Q(n) ∈ Tm×m± are Metzler, then Q+

ij(x) = −∞ and (Q+
ij(x)⊕

Q−ij(x))�2 = (Qij(x))�2 for all i 6= j and x ∈ Tn. However, if the matrices Q(k) are not Metzler,

then we have two possibilities. IfQij does not vanish on x, then (Q+
ij(x)⊕Q−ij(x))�2 = (Qij(x))�2

and we recover the same kind of inequality as in the Metzler case. On the other hand, if Qij
vanishes on x, then Q+

ij(x) = Q−ij(x) and we ignore the corresponding inequality.
We do not claim that the set S defined above is a tropical spectrahedron. In this work we

only show that this is true under some additional assumptions (which are generically fulfilled
as shown in Section 5.4). First, we need some notation. For every subset

Σ ⊂ {(i, j) ∈ [m]2 : i < j}

we denote

Σ{ := {(i, j) ∈ [m]2 : i < j, (i, j) /∈ Σ} .

For every Σ and every ♦ ∈ {6,>}Σ{
we define SΣ,♦(Q(1), . . . , Q(n)) (or SΣ,♦ for short) as the

set of all x ∈ Tn such that

• for all i ∈ [m], Q+
ii (x) > Q−ii (x);

• for all i, j ∈ [m], i < j, (i, j) ∈ Σ, Q+
ii (x)�Q+

jj(x) > (Q+
ij(x)⊕Q−ij(x))�2;

• for all i, j ∈ [m], i < j, (i, j) ∈ Σ{, Q+
ij(x) ♦(i,j) Q

−
ij(x).
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Observe that we have the equality

(18) S =
⋃
Σ

⋂
♦

SΣ,♦ ,

where the intersection goes over every ♦ ∈ {6,>}Σ{
and the union goes over every Σ ⊂ {(i, j) ∈

[m]2 : i < j}. Moreover, we note that every set SΣ,♦ is a tropical Metzler spectrahedron (we
give a detailed proof of this fact in the proof of Theorem 5.17).

Let Q(1), . . . ,Q(n) ∈ Km×m be any symmetric matrices such that sval(Q(k)) = Q(k), and
S := {x ∈ Kn

>0 : Q(x) < 0} be the associated spectrahedron. We will use the following obser-
vation, which already appeared in the proof of [ABGJ15, Corollary 3.6] on the tropicalization
of polyhedra. We denote by conv(S) the convex hull of the set S ⊂ Kn.

Lemma 5.14. Let a(1), . . . ,a(p) ∈ Kn and b ∈ Kp. Suppose that for every sign pattern δ ∈
{+1,−1}p there is a point xδ ∈ Kn such that for all s ∈ [p] we have δs(〈a(s),xδ〉 − bs) > 0.

Then, there exists a point y ∈ convδ{xδ} such that for all s we have 〈a(s),y〉 = bs.

Proof. If p = 1 then we have two points x(1) and x(2) such that 〈a(1),x(1)〉 > b1 and 〈a(1),x(2)〉 6
b1. Therefore, there exists λ such that 0 6 λ 6 1 and 〈a(1),λx(1) + (1 − λ)x(2)〉 = b1. This
completes the proof for p = 1.

Suppose that the claim is true for p. We will prove it for p+ 1. Take

∆+ := {δ ∈ {+1,−1}p+1 : last entry of δ is equal to +1}
and

∆− := {δ ∈ {+1,−1}p+1 : last entry of δ is equal to −1} .
By the induction hypothesis, there exists a point x(1) ∈ convδ∈∆+{xδ} such that 〈a(s),x(1)〉 = bs
for all s 6 p. Moreover, we have 〈a(p+1),xδ〉 > bp+1 for all δ ∈ ∆+ and therefore 〈a(p+1),x(1)〉 >
bp+1. Analogously, there exists a point x(2) ∈ convδ∈∆−{xδ} such that 〈a(s),x(2)〉 = bs for all

s 6 p and 〈a(p+1),x(2)〉 6 bp+1. Therefore, there is a point y ∈ conv{x(1),x(2)} ⊂ convδ{xδ}
such that 〈a(p+1),y〉 = bp+1. Furthermore, since 〈a(s),x(1)〉 = 〈a(s),x(2)〉 = bs for all s 6 p, we

have 〈a(s),y〉 = bs for all s 6 p. �

Lemma 5.15. We have the inclusion val(Sout ∩Kn
>0) ⊂ S ∩ Rn.

Proof. Take a point x ∈ Sout∩Kn
>0 and denote x := val(x). For every i ∈ [m] we haveQii(x) > 0

and hence Q+
ii (x) > Q−ii (x). Furthermore, for every i < j such that val(Q+

ij(x)) 6= val(Q−ij(x)),

we have val(Qij(x)) = Q+
ij(x) ⊕ Q−ij(x) and hence Q+

ii (x) � Q+
jj(x) > (Q+

ij(x) ⊕ Q−ij(x))�2. On

the other hand, for every i < j such that val(Q+
ij(x)) = val(Q−ij(x)) we have Q+

ii (x) = Q−jj(x).
In particular, x ∈ S ∩ Rn. �

In Lemma 5.10 we introduced the symbol T to denote the set of all real points that fulfill the
strict version of nontrivial inequalities defining a tropical Metzler spectrahedron S. Likewise,
we denote by TΣ,♦ the set of all points x ∈ Rn which fulfill the strict versions of (nontrivial)
inequalities defining SΣ,♦.

Lemma 5.16. We have ⋃
Σ

⋂
♦

cl
(
TΣ,♦

)
⊂ val(S in ∩Kn

>0) .

Proof. Fix any Σ and take x ∈
⋂
♦ cl
(
TΣ,♦

)
. By Lemma 5.10, for every ♦ ∈ {6,>}Σ{

there

exists a lift x♦ ∈ Kn
>0 ∩ val−1(x) such that we have the inequalities

∀i,Qii(x
♦) > 0 ,

∀(i, j) ∈ Σ,Qii(x
♦)Qjj(x

♦) > (m− 1)2(Qij(x
♦))2 ,

∀(i, j) ∈ Σ{,Qij(x
♦) ♦(i,j) 0 .
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Observe that the set

{y ∈ Kn
>0 : ∀i,Qii(y) > 0 ∧ ∀(i, j) ∈ Σ,Qii(y)Qjj(y) > (m− 1)2(Qij(y))2}

is convex. Indeed, it is a spectrahedron defined by some block diagonal matrices with blocks of
size at most 2. Therefore, by Lemma 5.14, there exists a point z ∈ conv♦{x♦} such that

∀i,Qii(z) > 0 ,

∀(i, j) ∈ Σ,Qii(z)Qjj(z) > (m− 1)2(Qij(z))2 ,

∀(i, j) ∈ Σ{,Qij(z) = 0 .

In particular, we have Qii(z)Qjj(z) > (m−1)2(Qij(z))2 for all (i, j) such that i 6= j. Therefore

z ∈ S in. Moreover, since x♦ ∈ Kn
>0 ∩ val−1(x) for all ♦, we have z ∈ Kn

>0 ∩ val−1(x). �

Theorem 5.17. Let S = {x ∈ Kn
>0 : Q(x) < 0} be a spectrahedron described by matrices

Q(1), . . . ,Q(n) such that sval(Q(k)) = Q(k). Suppose that Assumption 5.11 is fulfilled and that

every stratum of the set SΣ,♦(Q(1), . . . , Q(n)) is regular for every choice of (Σ,♦). Then

val(S) = S(Q(1), . . . , Q(n)) .

Proof. We focus on the proof of the identity val(S ∩ Kn
>0) = S(Q(1), . . . , Q(n)) ∩ Rn, as the

generalization to all strata can be obtained analogously to the proof of Theorem 5.13. Let
(Σ,♦) be fixed and observe that SΣ,♦ is a tropical Metzler spectrahedron. More precisely, it is
described by the following tropical block diagonal matrices

(19)

[
Q̃(k) −∞
−∞ R(k)

]
,

where Q̃(k) ∈ Tm×m± is the symmetric matrix defined by

Q̃
(k)
ij :=


Q

(k)
ii if i = j ,

	|Q(k)
ij | if (i, j) ∈ Σ ,

−∞ if (i, j) ∈ Σ{ .

and R(k) ∈ TΣ
{×Σ{

± is the (tropical) diagonal matrix consisting of the coefficients Q
(k)
ij if ♦(i,j)

is equal to > and 	Q(k)
ij otherwise, where (i, j) ranges over the set Σ{.

It can be verified that, as soon as the matrices Q(k) satisfy Assumption 5.11, this assumption

is also satisfied by all block matrices
[
Q̃(k) −∞
−∞ R(k)

]
. In consequence, as shown in the proof of

Theorem 5.12, the sets cl(TΣ,♦) and SΣ,♦ ∩ Rn coincide. Then, the theorem follows from (18)
and Lemmas 5.15 and 5.16. �

We now show that, under the regularity conditions discussed above, tropical spectrahedra
arise as tropicalizations of minors of size 1 and 2 of the linear matrix inequalities that define
them. To do so, let S = {x ∈ Kn

>0 : Q(x) < 0} be a spectrahedron described by matrices

Q(1), . . . ,Q(n) as above. For every i, j ∈ [m] such that i 6= j, let

Pij := Qii(x)Qjj(x)−Q2
ij(x)

denote the corresponding 2× 2 minor of the matrix pencil Q(x). Furthermore, for every i 6= j
let Pij := trop(Pij) and, for every i ∈ [m], let Pii := trop(Qii). In this way, Pij are the
tropicalizations of the 1× 1 and 2× 2 minors of Q(x). Finally, let

S form := {x ∈ Tn : ∀i, P+
ii (x) > P−ii (x) ∧ ∀i 6= j, P+

ij (x) > P−ij (x)}

denote the set obtained by this formal tropicalization.
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Theorem 5.18. Suppose that the assumptions of Theorem 5.17 are satisfied. Then, the tropical
spectrahedron val(S) is determined only by the formal tropicalization of 1× 1 and 2× 2 minors,
in other words

val(S) = S form .

We shall deduce this theorem from the following general “sandwich” lemma, which does not
require any genericity assumption.

Lemma 5.19. We have val(S) ⊂ val(Sout) ⊂ S form ⊂ S(Q(1), . . . , Q(n)).

Let us first explain why Theorem 5.18 follows in a straightforward way from Lemma 5.19.

Derivation of Theorem 5.18 from Lemma 5.19. By Lemma 5.19 we have val(S) ⊂ S form ⊂
S(Q(1), . . . , Q(n)). Furthermore, Theorem 5.17 implies that val(S) = S(Q(1), . . . , Q(n)). Hence,
we have the equality val(S) = S form. �

The proof of Lemma 5.19 requires more technical efforts.

Proof of Lemma 5.19. The inclusion val(S) ⊂ val(Sout) is trivial. The inclusion val(Sout) ⊂
S form follows from Lemma 2.2, as in the proof of Corollary 4.8. It remains to show that S form
is included in S(Q(1), . . . , Q(n)). To do so, let us choose an arbitrary point x̄ ∈ S form. We first
observe that Pii = Qii for all i by the definition of the formal tropicalization. In particular,
Q+
ii (x̄) > Q−ii (x̄) for all i ∈ [m].
We must show that

Q+
ii (x̄)�Q+

jj(x̄) > (Q+
ij(x̄)⊕Q−ij(x̄))�2 or Q+

ij(x̄) = Q−ij(x̄) for all i 6= j .

It suffices to consider i 6= j such that Q+
ij(x̄) 6= Q−ij(x̄) and to show that Q+

ii (x̄) � Q+
jj(x̄) >

(Q+
ij(x̄)⊕Q−ij(x̄))�2. Since Q+

ij(x̄) 6= Q−ij(x̄), at least one of the polynomials Q+
ij , Q

−
ij is nonzero.

By the definition of Q+
ij and Q−ij we have Q+

ij(x) ⊕ Q−ij(x) = maxk∈[n]{val(Q
(k)
ij ) + xk}. Let

k′ ∈ [n] be an index such that

(20) Q+
ij(x̄)⊕Q−ij(x̄) = val(Q

(k′)
ij ) + x̄k′ .

Let us point out that val(Q
(k′)
ij ) 6= −∞ and x̄k′ 6= −∞. Indeed, Q+

ij(x̄) 6= Q−ij(x̄) implies that

Q+
ij(x̄)⊕Q−ij(x̄) 6= −∞, so neither val(Q

(k′)
ij ) nor x̄k′ can be equal to −∞. To prove the claim,

it remains to show that

2 val(Q
(k′)
ij ) + 2x̄k′ 6 Q

+
ii (x̄)�Q+

jj(x̄) .(21)

Consider two cases. First, suppose that 2 val(Q
(k′)
ij ) 6 val(Q

(k′)
ii Q

(k′)
jj ). In this case, using the

inequalities Q+
ii (x̄) > Q−ii (x̄) and Q+

jj(x̄) > Q−jj(x̄), we obtain

2 val(Q
(k′)
ij ) + 2x̄k′ 6 val(Q

(k′)
ii Q

(k′)
jj ) + 2x̄k′

6
(
Q+
ii (x̄)⊕Q−ii (x̄)

)
�
(
Q+
jj(x̄)⊕Q−jj(x̄)

)
= Q+

ii (x̄)�Q+
jj(x̄) ,

and so, (21) is established in this case. Second, suppose that 2 val(Q
(k′)
ij ) > val(Q

(k′)
ii Q

(k′)
jj ). This

case requires a longer argument.

To start, note that 2 val(Q
(k′)
ij ) > val(Q

(k′)
ii Q

(k′)
jj ) implies that (Q

(k′)
ij )2 > Q

(k′)
ii Q

(k′)
jj and that

val
(
Q

(k′)
ii Q

(k′)
jj − (Q

(k′)
ij )2

)
= 2 val(Q

(k′)
ij ). Furthermore, the minor Pij is given as

(22)

Pij(x) =
∑
k∈[n]

(
Q

(k)
ii Q

(k)
jj − (Q

(k)
ij )2

)
x2
k

+
∑
k<l

(Q
(k)
ii Q

(l)
jj +Q

(l)
ii Q

(k)
jj − 2Q

(k)
ij Q

(l)
ij )xkxl .
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In particular, the polynomial Pij(x) has at least one monomial with (strictly) negative coef-

ficient, namely (Q
(k′)
ii Q

(k′)
jj − (Q

(k′)
ij )2)x2

k′ . Remembering that P−ij = trop(P−ij ) is the tropical
polynomial whose monomials are obtained by tropicalizing the monomials of Pij with neg-
ative coefficients (as in Section 2.2), we see that P−ij is a nonzero tropical polynomial and

that it contains a monomial of the form val(Q
(k′)
ij )�2 � x�2k′ . Furthermore, recall that we have

P+
ij (x̄) > P−ij (x̄) and that we already showed that x̄k′ 6= −∞. Hence, we also have P−ij (x̄) 6= −∞,

which implies that P+
ij (x̄) 6= −∞. Therefore, the polynomial Pij has at least one monomial

with (strictly) positive coefficient. In other words, there exist indices k, l ∈ [n] (possibly equal)
such that

Q
(k)
ii Q

(l)
jj +Q

(l)
ii Q

(k)
jj − 2Q

(k)
ij Q

(l)
ij > 0 .

By definition, P+
ij (x̄) is the maximum of the tropical monomials arising from the monomials with

positive coefficients in (22), evaluated at point x̄. Choosing a monomial attaining this maximum

yields a pair of indices (k, l) such that P+
ij (x̄) = val(Q

(k)
ii Q

(l)
jj +Q

(l)
ii Q

(k)
jj − 2Q

(k)
ij Q

(l)
ij ) + x̄k + x̄l.

Since P+
ij (x̄) > P−ij (x̄), we also have

P+
ij (x̄)⊕ P−ij (x̄) = val(Q

(k)
ii Q

(l)
jj +Q

(l)
ii Q

(k)
jj − 2Q

(k)
ij Q

(l)
ij ) + x̄k + x̄l .

Hence, we get

(23)
2 val(Q

(k′)
ij ) + 2x̄k′ = val

(
Q

(k′)
ii Q

(k′)
jj − (Q

(k′)
ij )2

)
+ 2x̄k′

6 P+
ij (x̄)⊕ P−ij (x̄) 6 max{val(Q(k)

ii Q
(l)
jj +Q

(l)
ii Q

(k)
jj ), val(Q

(k)
ij Q

(l)
ij )}+ x̄k + x̄l .

We will show that

max{val(Q(k)
ii Q

(l)
jj +Q

(l)
ii Q

(k)
jj ), val(Q

(k)
ij Q

(l)
ij )} = val(Q

(k)
ii Q

(l)
jj +Q

(l)
ii Q

(k)
jj ) .

To do so, suppose that val(Q
(k)
ij Q

(l)
ij ) > val(Q

(k)
ii Q

(l)
jj +Q

(l)
ii Q

(k)
jj ). Then, we have Q

(k)
ij Q

(l)
ij < 0,

because Q
(k)
ii Q

(l)
jj +Q

(l)
ii Q

(k)
jj − 2Q

(k)
ij Q

(l)
ij > 0. In particular, since Q+

ij(x̄) 6= Q−ij(x̄), we obtain

2 val(Q
(k′)
ij ) + 2x̄k′ 6 val(Q

(k)
ij Q

(l)
ij ) + x̄k + x̄l

6 Q+
ij(x̄)�Q−ij(x̄) < (Q+

ij(x̄)⊕Q−ij(x̄))�2 ,

which gives a contradiction with (20). Hence, val(Q
(k)
ii Q

(l)
jj +Q

(l)
ii Q

(k)
jj ) > val(Q

(k)
ij Q

(l)
ij ) and (23)

gives

(24)

2 val(Q
(k′)
ij ) + 2x̄k′ 6 val(Q

(k)
ii Q

(l)
jj +Q

(l)
ii Q

(k)
jj ) + x̄k + x̄l

6 max{val(Q(k)
ii Q

(l)
jj ) + x̄k + x̄l, val(Q

(l)
ii Q

(k)
jj ) + x̄k + x̄l}

6 (Q+
ii (x̄)⊕Q−ii (x̄))� (Q+

jj(x̄)⊕Q−jj(x̄))

= Q+
ii (x̄)�Q+

jj(x̄) ,

which shows (21). This concludes the proof of Lemma 5.19, and so, of Theorem 5.18. �

Example 5.20. Take the matrices

Q(0) :=

[
a −∞
−∞ b

]
, Q(1) :=

[
−∞ c
c −∞

]
, Q(2) :=

[
−∞ 	d
	d −∞

]
.

The set S(Q(0), Q(1), Q(2)) is given by

{x ∈ T3 : (a+ x0) + (b+ x0) > 2 max{c+ x1, d+ x2} or c+ x1 = d+ x2} .
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x1

x2

Figure 3. A nonregular tropical spectrahedron that fulfills the regularity con-
ditions of Theorem 5.17.

Moreover, S(Q(0), Q(1), Q(2)) fulfills the conditions of Theorem 5.17. Figure 3 depicts the inter-
section of this tropical spectrahedron with the hyperplane {x0 = 0} for a = b = c = d = 0. Note
that this tropical spectrahedron is not regular for any choice of a, b, c, d ∈ R. Furthermore, let

Q(0) :=

[
ta 0
0 tb

]
, Q(1) :=

[
0 tc

tc 0

]
, Q(2) :=

[
0 −td
−td 0

]
be a lift of the matrices Q(k). Then, the associated tropical spectrahedron S is given by

S = {x ∈ K3
>0 : ta+bx2

0 − t2cx2
1 − t2dx2

2 + 2tc+dx1x2 > 0} .

The formal tropicalization S form of this set is given by

{x ∈ T3 : ((a+ b)� x�20 )⊕ ((c+ d)� x1 � x2) > (2c� x�21 )⊕ (2d� x�22 )} .

It is easy to check that S form coincides with S(Q(0), Q(1), Q(2)), as implied by Theorem 5.18.

5.4. Genericity conditions. In this section we show that the requirements of Theorems 5.12
and 5.17 on the matrices Q(k) and the regularity of sets are fulfilled generically. In [ABGJ15] it
was shown that genericity conditions for tropical polyhedra can be described by the means of
tangent digraphs. We extend this characterization to tropical spectrahedra. For this purpose,

we work with hypergraphs instead of graphs. A (directed) hypergraph is a pair ~G := (V,E),
where V is a finite set of vertices and E is a finite set of (hyper)edges. Every edge e ∈ E is a
pair (Te, he), where he ∈ V is called the head of the edge, and Te is a multiset with elements
taken from V . We call Te the multiset of tails of e. By |Te| we denote the cardinality of Te
(counting multiplicities). Note that we do not exclude the situation in which a head is also a
tail, i.e., it is possible that he ∈ Te.

Let us now define the notion of a circulation in a hypergraph. If v ∈ V is a vertex, then by
In(v) ⊂ E we denote the set of incoming edges, i.e., the set of all edges e such that he = v. By
Out(v) we denote the multiset of outgoing edges, i.e., a multiset of edges e such that v ∈ Te.
We treat Out(v) as a multiset, with the convention that e ∈ E appears p times in Out(v) if v
appears p times in Te. A circulation in a hypergraph is a nonzero vector γ = (γe)e∈E such that
γe > 0 for all e ∈ E, and for all v ∈ V we have the equality∑

e∈In(v)

|Te|γe =
∑

e∈Out(v)

γe .

We always suppose that circulations are normalized, i.e., that
∑

e∈E γe = 1. Observe that if a

hypergraph ~G is fixed, then the set of all normalized circulations on ~G forms a polytope. We
say that a hypergraph does not admit a circulation if this polytope is empty.

In our framework, every edge has at most two tails (counting multiplicities). Hereafter, εk
denotes the kth vector of the standard basis in Rn. Given a sequence of tropical symmetric
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Metzler matrices Q(1), . . . , Q(n) ∈ Tm×m± , and a point x ∈ Rn, we construct a hypergraph

associated with x, denoted ~Gx, as follows:

• we put V := [n];
• for every i ∈ [m] verifying Q+

ii (x) = Q−ii (x) 6= −∞, and every pair εk ∈ Argmax(Q+
ii , x),

εl ∈ Argmax(Q−ii , x), ~Gx contains an edge (k, l);

• for every i < j such that Q+
ii (x) � Q+

jj(x) = (Qij(x))�2 6= −∞ and every triple

εk1 ∈ Argmax(Q+
ii , x), εk2 ∈ Argmax(Q+

jj , x), εl ∈ Argmax(Qij , x), ~Gx contains an edge

({k1, k2}, l).

Lemma 5.21. Suppose that for every x ∈ Rn the hypergraph ~Gx does not admit a circulation.
Then the matrices Q(1), . . . , Q(n) fulfill Assumption 5.11 and S(Q(1), . . . , Q(n)) ∩ Rn is regular.

Proof. To prove the first part, suppose that we have Q
(k)
ii + Q

(k)
jj = 2|Q(k)

ij | for some i 6= j and

Q
(k)
ii , Q

(k)
jj ∈ T+. Take the point x := Nεk ∈ Rn. If N is large enough, then we have

Q+
ii (x)�Q+

jj(x) = Q
(k)
ii +Q

(k)
jj + 2N = 2|Q(k)

ij |+ 2N = (Qij(x))�2

and the hypergraph ~Gx contains the edge ({k, k}, k). This hypergraph admits a circulation (we
put γe := 1 for e = ({k, k}, k) and γe := 0 for other edges).

We now claim that the set S ∩ Rn is regular. Let T be defined as in Lemma 5.10. Let us
show that for every x ∈ S ∩ Rn there exists a vector η ∈ Rn such that x+ ρη belongs to T for
ρ > 0 small enough. This is sufficient to prove the claim because T is a subset of the interior
of S ∩ Rn. Fix a point x ∈ S ∩ Rn. If x belongs to T , then we can take η := 0. Otherwise, let
~Gx denote the hypergraph associated with x. The polytope of normalized circulations of this
hypergraph is empty. Therefore, by Farkas’ lemma, there exists a vector η ∈ Rn such that for
every edge e ∈ E we have ∑

v∈Te

ηv > |Te|ηhe .

Take the vector x(ρ) := x+ ρη. Let us look at two cases.
First, suppose that there is i ∈ [m] such that Q+

ii (x) = Q−ii (x) 6= −∞. Fix any k∗ such that

εk∗ ∈ Argmax(Q+
ii , x) and take any l such that εl ∈ Argmax(Q−ii , x). Then (k∗, l) is an edge in

~Gx. Therefore ηk∗ > ηl. Moreover, Q
(k∗)
ii +xk∗ = |Q(l)

ii |+xl and hence Q
(k∗)
ii +x

(ρ)
k∗ > |Q

(l)
ii |+x

(ρ)
l .

Furthermore, for every l′ /∈ Argmax(Q−ii , x) we have

Q
(k∗)
ii + xk∗ = |Q(l)

ii |+ xl > |Q
(l′)
ii |+ xl′ .

Therefore Q
(k∗)
ii + x

(ρ)
k∗ > |Q

(l′)
ii | + x

(ρ)
l′ for ρ small enough. Since l, l′ were arbitrary, for every

sufficiently small ρ we have

Q+
ii (x

(ρ)) > Q(k∗)
ii + x

(ρ)
k∗ > Q−ii (x

(ρ)) .

The second case is analogous. If there is i < j such that Q+
ii (x)�Q+

jj(x) = (Qij(x))�2 6= −∞,

then we fix (k∗1, k
∗
2) such that εk∗1 ∈ Argmax(Q+

ii , x), εk∗2 ∈ Argmax(Q+
jj , x). For every εl ∈

Argmax(Qij , x), ({k∗1, k∗2}, l) is an edge in ~G. Hence ηk∗1 + ηk∗2 > 2ηl. Therefore Q
(k∗1)
ii +Q

(k∗2)
jj +

x
(ρ)
k∗1

+ x
(ρ)
k∗2

> 2|Q(l)
ij | + 2x

(ρ)
l . As before, this implies that Q+

ii (x
(ρ)) � Q+

jj(x
(ρ)) > (Qij(x

(ρ)))�2

for ρ > 0 small enough. Since we supposed that x ∈ S ∩ Rn, we have x(ρ) ∈ T for ρ small
enough. �
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1

2

0

Figure 4. The hypergraph from Example 5.22, consisting of the edges (0, 1),
(0, 2), and ({1, 2}, 0).

Example 5.22. Take the matrices

Q(0) := tdiag
(

0, 0,

[
−1 0
0 −1

])
,

Q(1) := tdiag
(
	0,−∞, 0,−∞

)
,

Q(2) := tdiag
(
−∞,	0,−∞, 0

)
.

In this case, the set S(Q(0), Q(1), Q(2)) ∩ R3 = {(λ, λ, λ) : λ ∈ R} is reduced to a line. In
particular, it is not regular. The hypergraph associated with (0, 0, 0) is depicted in Figure 4.
This hypergraph admits a circulation (we put γe := 1/3 for all edges).

We now want to show that the condition of Lemma 5.21 is fulfilled generically.

Lemma 5.23. There exists a set X ⊂ Td with d = nm(m+ 1)/2 such that every stratum of X

is a finite union of hyperplanes and such that if the vector with entries |Q(k)
ij | (for i 6 j) does

not belong to X, then the hypergraph ~Gx does not admit a circulation for any x ∈ Rn.

Proof. Fix a nonempty subset D ⊂ [d], |D| = d′ and let Rd′ be the stratum of Td associated

with D. Suppose that Q(1), . . . , Q(n) are tropical Metzler matrices, that the support of the

vector |Q(k)
ij | is equal to D, and that x ∈ Rn is such that ~Gx admits a circulation. Fix any

such circulation γ. For every edge e = (k, l) of ~G we can fix ie ∈ [m] such that Q
(k)
ieie

+ xk =

|Q(l)
ieie
| + xl 6= −∞. Similarly, for every edge e = ({k1, k2}, l) of ~G we can fix ie < je such that

Q
(k1)
ieie

+Q
(k2)
jeje

+ xk1 + xk2 = 2|Q(l)
ieje
|+ 2xl 6= −∞. We take the sum of these equalities weighted

by γ. This gives the equality∑
k∈[n]

∑
e∈Out(k)

γeQ
(k)
ieie

+
∑
k∈[n]

∑
e∈Out(k)

γexk

=
∑
l∈[n]

∑
e∈In1(l)

γe|Q(l)
ieie
|+

∑
l∈[n]

∑
e∈In2(l)

2γe|Q(l)
ieje
|+

∑
l∈[n]

∑
e∈In(l)

|Te|γexl ,

where In1(l) denotes the set of incoming edges with tails of cardinality 1 and In2(l) denotes
the set of incoming edges with tails of cardinality 2. Since γ is a circulation, this expression
simplifies to ∑

k∈[n]

∑
e∈Out(k)

γeQ
(k)
ieie

=
∑
l∈[n]

∑
e∈In1(l)

γe|Q(l)
ieie
|+

∑
l∈[n]

∑
e∈In2(l)

2γe|Q(l)
ieje
| .

Consider the set H of all z ∈ Rd′ such that

(25)

∑
k∈[n]

∑
e∈Out(k)

γez
(k)
ieie

=
∑
l∈[n]

∑
e∈In1(l)

γez
(l)
ieie

+
∑
l∈[n]

∑
e∈In2(l)

2γez
(l)
ieje

.

This set is a hyperplane. Indeed, suppose that the equality above is trivial (i.e., that it reduces

to 0 = 0). Take any edge e such that γe 6= 0 and any vertex k ∈ Te. Then the coefficient z
(k)
ieie

appears on the left-hand side. Moreover, we have sign(Q
(k)
ieie

) = 1. On the other hand, for every
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coefficient z
(l)
jeje

that appears on the right-hand side we have sign(Q
(l)
jeje

) = −1. This gives a
contradiction.

Therefore, we can construct the stratum of X associated with D (denoted XD) as follows:
we take all possible hypergraphs that can arise in our construction (since n is fixed, we have
finitely many of them). Out of them, we choose those hypergraphs that admit a circulation. For
every such hypergraph we pick exactly one circulation γ. After that, for every possible choice
of functions e→ ie, e→ (ie, je)

1, we take a set H defined as in (25). If H is equal to Rd′ , then
we ignore it. Otherwise, H is a hyperplane. We take XD to be the union of all hyperplanes
obtained in this way. �

The proof of Lemma 5.23 can be easily adapted to give a genericity condition both for Metzler
and non-Metzler spectrahedra.

Theorem 5.24. Let Q(1), . . . , Q(n) ∈ Tm×m± be a sequence of symmetric tropical matrices.

There exists a set X ⊂ Td with d = nm(m + 1)/2 such that every stratum of X is a finite

union of hyperplanes and such that if the vector with entries |Q(k)
ij | (for i 6 j) does not belong

to X, then the matrices Q(1), . . . , Q(n) fulfill Assumption 5.11 and for all (Σ,♦), every stratum

of SΣ,♦(Q(1), . . . , Q(n)) is regular.

Proof. As previously, we fix a nonempty set D ⊂ [d], |D| = d′, and we will present a construction

of the stratum of X associated with D, denoted XD. Take symmetric matrices (Q(k)) ∈ Tm×m

such that the sequence (|Q(k)
ij |) ∈ Td has support equal to D. Take any nonempty subset

K ⊂ [n] and let S(K) denote the set S((Q(k))k∈K). Fix a pair (Σ,♦) and take the tropical

Metzler spectrahedron S(K)
Σ,♦ . Take any x ∈ RK and a graph ~Gx associated with S(K)

Σ,♦ (note that

this graph has vertices enumerated by numbers from K). Suppose that this graph admits a

circulation γ. As previously, for every edge e = ({k1, k2}, l) of ~G we can take (ie, je) ∈ Σ such

that Q
(k1)
ieie

+Q
(k2)
jeje

+xk1 +xk2 = 2|Q(l)
ieje
|+2xl. For every edge e = (k, l) we have two possibilities:

either there exists ie ∈ [m] such that Q
(k)
ieie

+ xk = |Q(l)
ieie
|+ xl or there exists (ie, je) ∈ Σ{ such

that |Q(k)
ieje
| + xk = |Q(l)

ieje
| + xl. As before, we take the sum of these equalities weighted by γ.

This gives the identity∑
k∈[n]

∑
e∈Out(k)

γe|Q(k)
ieje
| =

∑
l∈[n]

∑
e∈In1(l)

γe|Q(l)
ieje
|+

∑
l∈[n]

∑
e∈In2(l)

2γe|Q(l)
ieje
| .

As previously, the set of all z ∈ Rd′ that fulfills this equality is a hyperplane. Indeed, any

coefficient z
(k)
ieje

which appears on the left-hand side does not appear on the right-hand side

(note that here we use the fact that Σ ∩Σ{ = ∅). As before, we take all possible hypergraphs
(where “all possible” takes into account the fact that K can vary), one circulation for each
hypergraph, all possible functions e → (ie, je) (the number of such functions depends on D),
and all hyperplanes that can arise in this way. The union of these hyperplanes constitutes XD.
We deduce the result from Lemma 5.21. �

6. Concluding remarks

We characterized the images by the valuation of nonarchimedean spectrahedra which satisfy
a certain genericity condition. Our results imply that the images of nongeneric spectrahedra
are still closed semilinear sets. It is an open question to characterize the semilinear sets which
arise in this way. A special situation in which such a description is known in the nongeneric
case concerns tropical polyhedra. It relies on the Minkowski–Weyl theorem and does not carry
over to spectrahedra.

1Note that the dependence on D lies here, as the choice of D restricts the amount of possible functions e → ie,
e → (ie, je).
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