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Abstract. This work is about graphs arising from Reuleaux poly-
hedra. Such graphs must necessarily be planar, 3-connected and
strongly self-dual. We study the question of when these conditions
are sufficient.

If G is any such a graph with isomorphism τ : G → G∗ (where
G∗ is the unique dual graph), a metric mapping is a map η :
V (G)→ R3 such that the diameter of η(G) is 1 and for every pair
of vertices (u, v) such that u ∈ τ(v) we have dist(η(u), η(v)) = 1.
If η is injective, it is called a metric embedding. Note that a metric
embedding gives rise to a Reuleaux Polyhedra.

Our contributions are twofold: Firstly, we prove that any pla-
nar, 3-connected, strongly self-dual graph has a metric mapping by
proving that the chromatic number of the diameter graph (whose
vertices are V (G) and whose edges are pairs (u, v) such that u ∈
τ(v)) is at most 4, which means there exists a metric mapping to
the tetrahedron. Furthermore, we use the Lovász neighborhood-
complex theorem in algebraic topology to prove that the chromatic
number of the diameter graph is exactly 4.

Secondly, we develop algorithms that allow us to obtain every
such graph with up to 14 vertices. Furthermore, we numerically
construct metric embeddings for every such graph. From the the-
orem and this computational evidence we conjecture that every
such graph is realizable as a Reuleaux polyhedron in R3.

In previous work the first and last authors described a method to
construct a constant-width body from a Reuleaux polyhedron. So
in essence, we also construct hundreds of new examples of constant-
width bodies.

This is related to a problem of Vázsonyi, and also to a problem
of Blaschke-Lebesgue.

1. Introduction

A Reuleaux polygon K ⊂ R2 is the intersection of finitely many
circles of radius r in such a way that the vertices of K (i.e. the non-
smooth points on the boundary of K) are precisely the centers of the
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Figure 1. A Reuleaux polyhedron and a Reuleaux polyhedron.

circles defining K. It is a simple exercise to see that for any Reuleaux
polygon, n must be odd and, conversely, that for every odd n ≥ 3 there
exist Reuleaux polygons with n vertices.

A ball polyhedron Ω is the intersection of finitely many (at least
three) 3-dimensional balls of radius 1 in R3. Ball polyhedra are nat-
ural objects used for studying several important problems in discrete
geometry, (see [KMP10, BLNP07]). The geometry of the boundary of
a ball polyhedron is of particular interest. Indeed, one can represent
the boundary of a ball polyhedron ∂Ω as the union of vertices, edges
and faces defined in a natural way, giving rise to a graph GΩ embed-
ded in ∂Ω (see Section 2). The faces are the closure of the connected
components of ∂Ω \GΩ, where each face is a closed subset of a sphere
of radius 1. Furthermore, each edge of GΩ is an arc of a circle with
radius smaller than 1. This structure is not necessarily a lattice, un-
less the intersection of any two faces is either empty, a vertex or an
edge. If this is the case, Ω is called a standard ball polyhedron, and its
corresponding graph GΩ is a simple 3-connected planar graph.

Let Ω be a standard ball polyhedron defined by a set X. In other
words,

Ω =
⋂
x∈X

B(x, 1)

is the intersection of a collection of 3-dimensional balls of diameter 1
centered around the points of a finite set X ⊂ R3. There is a certain
type of standard ball polyhedra which is of particular interest. We say
that Ω is a Reuleaux polyhedron if Ω has the property that the corner
points of ∂Ω, and hence the vertices of the graph GΩ, are exactly the
points of X (see Figure 1).

Reuleaux polyhedra are of importance in convex and discrete geom-
etry for many reasons, but in particular for the following two.
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We wish to characterize the finite sets X ⊂ R3 for which the diameter
is attained a maximal number of times as a segment of length 1 with
both endpoints in X. Vázsonyi conjectured that a finite set X of
size m and diameter 1 has at most 2m − 2 diameters. We say that
X ⊂ R3 is an extremal set if X has diameter 1 and has exactly 2m− 2
diameters. Furthermore, X ⊂ R3 is a Vázsonyi set if in addition every
point of X is in at least 3 diameters. It is not difficult to see that every
extremal set can easily be obtained from a Vázsonyi set. Grünbaum,
Heppes, and Straszewicz proved independently, using ball polyhedra,
that a Vázsonyi set is precisely a Reuleaux set. In other words, given a
Vázsonyi set X, the intersection of balls of radius 1 centered at X is a
Reuleaux polyhedron and, furthermore, the set of corner points on the
boundary of a Reuleaux polyhedron is an extremal Vázsonyi set (see
[CG83], [MMO19]).

The second reason for our interest in these objects is that there is a
procedure which can be used to transform a Reuleaux polyhedron into a
body of constant width 1. This procedure is described in [MMO19] and
follows the spirit in which Meissner transformed the Reuleaux tetra-
hedron into a body of constant width. The bodies of constant width
obtained from Reuleaux polyhedra are called Meissner polyhedra. The
boundary of a Meissner polyhedron is made out of spherical caps of
radius 1 and surfaces of revolution over arcs of circles with radius 1.
In particular, this implies that a Meissner body is a body of constant
width 1 with the property that the smooth components of its boundary
have their smaller principal curvature constant.

Also worth mentioning here is the Blaschke-Lebesgue problem, which
consists of minimizing the volume in the class of convex bodies of con-
stant width 1. Anciaux and Guilfoly [AG11] proved that the mini-
mizer of the Blaschke-Lebesgue problem has this curvature property
and therefore Meissner bodies are optimal candidates to be solutions
of this problem.

Let G = (V,E) be a planar 3-connected self-dual graph. Suppose
that the self-duality isomorphism τ : G → G∗ is strongly involutive.
That is, it satisfies the following two properties:

(1) For every vertex u, u /∈ τ(u).
(2) For every pair of vertices u, v, we have that u ∈ τ(v) ⇐⇒ v ∈

τ(u).

There are many examples of strongly involutive self-dual graphs. For
example, wheels with an odd number of sides. For another example,
see Figure 3.
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Figure 2. Metric embeddings of two strongly involutive
self-dual graphs.

A metric mapping of a strongly involutive self-dual graph G is a map
η : V → R3 such that the diameter of η(V ) is 1, and for every v ∈ V
and u ∈ τ(v) we have dist(η(u), η(v)) = 1. If, in addition, η : V → R3

is injective, then it is called a metric embedding.
One can construct examples of metric embeddings for wheels with

an odd number of sides, the graphs of Figure 2 and some other families
of strongly involutive self-dual graphs (see [MR17]). In particular, the
spherically self-dual polyhedra constructed by Lovász in [Lov83], which
is related to the Erdős-Graham problem, are also examples of metric
embeddings.

Given a metric embedding η, let Ω be the ball polyhedron defined
by the set η(V ). Then Ω is a Reuleaux polyhedron.

Moreover, the face structure of the boundary complex of ∂Ω induced
by the graph GΩ is isomorphic to the face structure of the embedding
of G as a map in S2. Conversely, given a Reuleaux polyhedron Ω =⋂

x∈X B(x, 1), the graph GΩ is a strongly involutive self-dual planar
graph and X is the image of a metric embedding of GΩ. See [MR17]
and Chapter 6 of [MMO19].

Consequently, in order to construct and classify Reuleaux polyhedra
it is natural to ask if every strongly involutive self-dual graph admits
a metric embedding.

Our belief is that the answer is affirmative, as stated in Conjecture 2.
Since we have not been able to prove this conjecture, we give a weaker
version in the following theorem, which we prove in Section 5.

Theorem 1. Given a strongly involutive self-dual graph G, there exists
a (not necessarily injective) metric mapping of G.

Finally, in Section 6, we describe a computer program that finds all
strongly involutive self-dual graphs with up to 14 vertices. The number
of strongly involutive self-dual graphs with a given number of vertices
is detailed in Table 1.
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# of vertices 4 5 6 7 8 9 10 11 12 13 14
# of graphs 1 0 1 1 2 4 11 24 72 212 674

Table 1. Number of strongly involutive self-dual graphs.

Once we have these graphs, we succeed in numerically constructing
Reuleaux polyhedra in R3 from these graphs. We thus provide compu-
tational evidence supporting the following conjecture.

Conjecture 2. For every planar 3-connected strongly involutive self-
dual graph G there is a Reuleaux polyhedron Ω such that GΩ is isomor-
phic to G.

2. Ball polyhedra and Reuleaux polyhedra

Let us define and point out some properties of ball polyhedra. To read
more about these, we recommend [BLNP07], [BN06] and especially
[KMP10].

For x ∈ R3 and r > 0 we denote by B(x, r) and S(x, r) the ball and
sphere with center x and radius r, respectively. A ball polyhedra Ω is
simply the intersection of finitely many balls of radius 1, so we may
write K =

⋂
x∈X B(x, 1) for some finite set X ⊂ R3.

Let us assume that Ω has non-empty interior and that X is a minimal
set that describes Ω, i.e. it has no redundant points. Then a point x
in the boundary ∂Ω of Ω can be of three different types:

• We say that x belongs to a face if it is a smooth point of ∂Ω or,
equivalently, if S(x, 1) ∩X has exactly 1 point.
• We say that x belongs to an edge if S(x, 1) ∩X has at least 2

points and is contained in some great circle of S(x, 1).
• We say that x is a vertex if S(x, 1)∩X is not contained in any

great circle of S(x, 1).

In this way we define the faces, edges and vertices of Ω as with
a cell-complex. The vertices and the edges are together the singular
points of ∂Ω, where the vertices are precisely the corners or singular
vertex points of ∂Ω. Together, the vertices and edges define a graph
GΩ embedded in ∂Ω.

All other points in ∂Ω \GΩ are smooth points of ∂Ω. The faces are
hence the closure of the connected components of ∂Ω \GΩ, where each
face is a closed subset of a sphere of radius r and, furthermore, each
edge of GΩ is an arc of a circle of radius smaller than r.

Note that this structure does not necessarily form a lattice, unless the
intersection of any two faces is either empty, a vertex or an edge. If this
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is the case, Ω is called a standard ball polyhedron and its corresponding
graph of singularities GΩ is a simple 3-connected planar graph.

A Reuleaux polyhedron is a standard ball polyhedron in which the set
of vertices coincides with the set of centers (see [MR17]). For example,
see Figure 1.

3. Involutive self-dual graphs

Given a planar graph G, any regular embedding of the topological re-
alization of G into the sphere S2 partitions the sphere into regions called
the faces F of the embedding. Call this embedding M = (V,E, F ) a
map. We do not make a significant distinction between the geometric
and combinatorial objects.

Given a map M , form the dual map M∗ as usual, by placing a vertex
f ∗ in the center of each face f , and for each edge e of M draw a dual
edge e∗ connecting the vertices f ∗1 and f ∗2 by crossing e transversely, if
the two faces that contain e are f1 and f2.

Note that if G is 3-connected there is a unique embedding in the
sphere (up to isomorphism), so the dual is fully determined by the
graph alone.

A map M is self-dual if there is a map isomorphism

τ : M →M∗.

Therefore, τ associates to each vertex of M a vertex of M∗, which
corresponds to a face of M . Since τ is fully determined by τ |V : V →
V (M∗) = F (M), we may sometimes abuse notation and also refer to
the restriction as τ . Moreover, if v is a vertex, we think of τ(v) as the
set of vertices corresponding to a face of M .

Also note that a self-dual map with n vertices must have 2n − 2
edges, which follows from Euler’s formula. For more about self-dual
graphs see [SS96].

We define the map of squares M� (and the corresponding graph of
squares G�) as the “union” of M and M∗: In order to have a map, we
must place a vertex (of degree 4) at the intersection edges of M and
M∗. More formally: vertices of M� are either vertices of M , vertices of
M∗, or points at the intersection of an edge of M with its dual edge in
M∗. Edges of M� are half edges of M or M∗, split by their intersection.

It a known result that interestingly the embedding can be chosen in
such a way that every automorphism of the graph of M comes from
an isometry of S2. Furthermore, the embeddings of M and M∗ can
be chosen in such a way that any automorphism of G� comes from an
isometry of S2.
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Figure 3. A strongly involutive self-dual graph (left)
and its diameter graph (right). The numbers on the faces
represent the isomorphism τ .

If M is self-dual with isomorphism τ , note that τ can be thought of
as an automorphism of M� and therefore can be viewed as an isometry
of S2.

We say that a self-dual map M is strongly involutive if isomorphism
τ : M →M∗ satisfies the following two properties:

(1) v /∈ τ(v) for every v ∈ V ,
(2) u ∈ τ(v) ⇐⇒ v ∈ τ(u).

The second property implies that τ 2 = Id when viewed as an automor-
phism of M�.

Interestingly, 1) and 2) together imply that the embeddings of M
and M∗ can be chosen in such a way that the automorphism of τ is the
antipode of S2.

4. Metric embeddings

In what follows, M is a strongly involutive self-dual map with iso-
morphism τ with underlying graph G.

Define the diameter graph D(M) as a graph whose vertices are the
vertices of M , but whose edges are pairs of vertices {u, v} such that
v ∈ τ(u). See Figure 3.

A metric mapping of M is a function η : V → R3 such that the edges
of D(M) have length 1 and the diameter of η(V ) is 1. In other words,
the distance from a vertex to every vertex of its opposite face is exactly
1. Note that we do not require η to be injective in this definition. If
the mapping is injective, we call it a metric embedding.

Given η a metric embedding of a strongly involutive self-dual graph
M , let

Ω =
⋂
v∈V

B(η(v), 1).
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Note that the points of η(V ) exactly coincide with the singular points
of ∂Ω. Moreover, the face structure of the boundary complex of ∂Ω
is isomorphic to the face structure of M (see [KMP10], [MR17] and
[MMO19, Chapter 6]).

5. The remove-contract operation and the chromatic
number of D(M)

It is natural then to ask if every strongly involutive self-dual graph
admits a metric embedding. Our belief is that the answer is affirmative,
as stated in Conjecture 2. Since we have not been able to prove this
conjecture, we give a weaker version in Theorem 1. In fact, we prove
the following theorem, and Theorem 1 follows immediately.

Theorem 3. The diameter graph D(M) has chromatic number exactly
4. Therefore, there exist a metric mapping η : V (M) → X where
X ⊂ R3 are the vertices of a regular tetrahedron of side 1. That is,
for every vertex v ∈ V (G) and every vertex u ∈ τ(v) we have that
dist(η(u), η(v)) = 1.

This theorem in turn implies Theorem 1, that a metric mapping of
M always exists.

Additionally, together with some theorems about rigid graphs, this
result provides strong evidence that a metric embedding does indeed
always exist: It follows from the work done in [AR78] that, since D(M)
has 2n − 2 < 3n − 6 edges, the tetrahedral metric mapping of D(M)
mentioned in the theorem is not rigid, and in fact has several degrees
of freedom. However, this does not guarantee that there is actually a
metric embedding of M .

In order to prove Theorem 3, let us first define the remove-contract
operation as follows:

Suppose M is a strongly involutive self-dual map with underlying
graph G and suppose ab is an edge of M . Then by definition there are
two faces τ(a) and τ(b) and an edge xy in the intersection of τ(a) and
τ(b) such that xy∗ = τ(ab). Note that the two edges ab and xy are
disjoint.

Consider the following self-dual map: contract edge ab and at the
same time delete the edge xy, thereby creating a bigger face with the
union of τ(a) and τ(b). Then erase any vertex of degree two and
contract any face with two edges. See Figure 4 for an illustration.

More formally, the remove-contract operation in M with edge ab
gives rise to a map M� = M�

ab, where the underlying graph G� is
obtained from graph G simply by deleting edge xy and contracting the
edge ab. Then define τ �(v) = τ(v) for every v /∈ {a, b} and let τ �(a = b)
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Figure 4. The remove-contract operation. Remove
edge 4-8 and contract edge 1-2. Vertex 4 has degree
2 (and face 4 has two edges), so remove them as shown.

be the face obtained by the union of τ(a) and τ(v) when edge xy is
deleted.

Clearly M� is a self-dual map satisfying property 2). Furthermore
if edge ab is not an edge of D(M), then it is easy to verify that M� is
again a strongly involutive self-dual map. The only property that might
be violated is the 3-connectedness, but any such violation is easily
remedied by simply removing vertices of degree 2 and contracting faces
with exactly two edges. Clearly, τ � is still strongly involutive self-dual
when restricted to the new map.

The idea now is to repeatedly apply the operation to M by selecting
edges of M that are not edges of D(M).

In light of this, we propose the following lemma.

Lemma 4. If every edge of M is also an edge of D(M), then M = K4.

In other words, there exists an edge of M that is adequate to perform
the remove-contract operation, unless M = K4.

Proof. Note that for every v ∈ V (M), the degree of v in M is exactly
the degree of v in the diameter graph D(M). Therefore, M and D(M)
have the same number of edges. Thus, if every edge of M is an edge of
D(M), then the edges of M and D(M) exactly coincide.

Assume then that the edges of M and D(M) coincide. Let ab be
an edge of M (and so also of D(M)) and let xy = τ(ab)∗ an edge
of M (and so also in D(M)). Consider faces τ(a) and τ(b). By the
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properties of τ , a /∈ τ(a) and b /∈ τ(b). But since ab ∈ D(M), b ∈ τ(a)
and a ∈ τ(b). This means a, b, x, y form a tetrahedron and are therefore
the only vertices in M . �

We are now ready to prove Theorem 3 that the chromatic number
of D(M) is 4.

Proof. To prove that 4 colors suffice, color each vertex according to the
vertex of the tetrahedron K4 to which they ended up identified after
repeatedly applying the remove-contract operation. Since no edge of
D(M) was selected for the operation, two vertices that were identified
could not have an edge of D(M) between them.

We shall prove next that the chromatic number of D(M) cannot be
less than 4. For that purpose we use a topological result of Lovász, who
gives the following lower bound on the chromatic number of a graph:
Let G = (V,E) be a finite graph. Define its neighborhood simplicial
complex N(G) as the simplicial complex with vertices V , and where a
subset A ⊂ V forms a simplex of N(G) if and only if the the vertices
of A have a common neighbor. In our case, if D(M) is the diameter
graph of a strongly involutive self-dual graph M , the simplicial complex
N(D(M)) is obtained by introducing a simplex for each face of M .
Consequently, N(D(M)) has the homotopy type of the sphere S2. In
[Lov78], it was proved that if for a graph G its neighborhood simplicial
complex N(G) is k − connected, then χ(G) ≥ k + 3. Since N(D(M))
has the homotopy type of the sphere S2, then it is 1-connected and
therefore χ(N(D(M)) ≥ 4 as we wished. A very similar argument was
given previously in [Lov83, proof of Theorem 2]. �

6. Finding strongly involutive self-dual graphs and their
metric embeddings

In this section we describe the computational algorithms used to con-
struct Reuleaux polyhedra from all strongly involutive self-dual graphs
with up to 14 vertices. This software was written mostly in C++ and
can be freely downloaded (and used) from

https://github.com/mraggi/ReuleauxPolyhedra.

Our pipeline includes 4 steps:

(1) Generate all 3-connected planar graphs with the appropriate
number of edges.

(2) Select only strongly involutive self-dual graphs.
(3) Embed the diameter graphs in R3.
(4) Create a Meissner or Reuleaux polyhedron from the embedding,

for visualization.

https://github.com/mraggi/ReuleauxPolyhedra
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6.1. Generating 3-connected planar graphs. The process starts
by using plantri [BM07], Brinkmann and McKay’s wonderful soft-
ware. We ask plantri to generate all 3-connected planar graphs with
n vertices (with n ≤ 14) and exactly 2n − 2 edges. This is by far the
slowest step in the pipeline and therefore the bottleneck. This means
that further optimizations in the following steps are not necessary.

6.2. Constructing involutive isomorphisms. Once we have a list
of all planar 3-connected graphs with the appropriate number of edges,
we wish to find an bijection τ from the set of vertices V (G) to the set of
faces F (G) that satisfies the properties of strongly involutive self-dual
graphs detailed in Section 3.

We accomplish this by posing the problem as a CSP (constraint
satisfaction problem) and using the arc-consistency algorithm [Mac77]
in order to reduce the search space, followed by standard search. This
works remarkably well in practice, and in fact takes virtually no time
to refine the list generated in the previous step and find all strongly
involutive self-dual graphs with up to 14 vertices. This is remarkable
considering there are 23,556 planar 3-connected graphs with 14 vertices
(and only 674 of them are strongly involutive self-dual).

This is how the arc consistency algorithm works in this context: Let
G be a 3-connected planar graph. For each vertex v ∈ V (G), asso-
ciate a set-like data structure of candidate faces Fv, denoting “possible
mappings”. At first, Fv consists of all faces f with the same number
of edges as the vertex degree and for which v /∈ f (in order to satisfy
the definition of involutive self-dual graph), but we shall reduce the
search space by repeatedly discarding faces which could not possibly
be mapped to v. We worry about making τ a strong involution later,
and focus now on simply constructing an isomorphism to the dual.

Consider all edges uv ∈ E(G) (in CSP terms, these correspond to
arcs variable→ condition). Place them initially in a set-like data struc-
ture called EdgesToProcess. The arc-consistency part of the algorithm
ends when this data structure is empty. Once an edge is removed from
EdgesToProcess we say it is (temporarily) consistent.

Repeatedly consider edges uv from EdgesToProcess and make them
consistent as follows: For each face f ∈ Fu, see if there exists a face
g ∈ Fv such that fg ∈ E(G∗). This is in order for τ to stand a chance
of being an isomorphism. If there is no such g, then remove f from
Fu, as we are certain τ(u) 6= f . Of course, we must now add all edges
xu ∈ E(G) to EdgesToProcess, as they might have stopped being
consistent in the case f was needed to make xu consistent. If there is
such a g, simply proceed to the next edge.
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While we could further restrict the search space by performing a
similar process for the property that τ must be strongly involutive, we
found no further optimizations were useful for n ≤ 14.

Once the above process finishes, we search all possible candidate
τ by creating a tree of partial assignments and branching for each
vertex v with every member of Fv, and pruning the tree when a partial
assignment leads to inconsistencies, either because the an isomorphism
or the strongly involutive properties are violated.

Given an isomorphism τ we can easily construct the diameter graph,
which is helpful for the next steps.

6.3. Finding an embedding. Once we have a involutive self-dual
graph M and its diameter graph D(M), we embed it in R3 by choos-
ing an appropriate objective function, for which we find minima using
differential evolution [Sto96, SP97].

Our software is able to numerically construct a good embedding for
each involutive self-dual graph in a couple of seconds per graph. Bear
in mind we want mappings with three properties: distance 1 for edges
in D(M), non degeneracy, and diameter 1.

In other words, we wish for the length of every edge of the diameter
graph to be as close as possible to 1. Secondly, we also require that
all the other pairs of vertices are somewhat separated so as to not
construct degenerate or nearly degenerate examples. Finally, no pair
must be at distance grater than 1 so that the overall diameter does not
exceed 1.

Let η : V (M)→ R3 be a possible metric embedding of the diameter
graph D = D(M). For a pair of points a, b ∈ η(V ), define h and w as
follows:

h(a, b) =

{
1 if dist(a, b) < ε,

0 otherwise,
and w(a, b) =

{
1 if dist(a, b) > α,

0 otherwise,

where ε = 0.2 and α = 0.95.
With the previous considerations in mind, if â = η(a), the objective

function we attempted to minimize is

JM(η) =
∑

ab∈E(D)

(dist(â, b̂)2 − 1)2 +K
∑

ab/∈E(D)

h(â, b̂) + w(â, b̂)

where K = 10. The values of ε, α and K were chosen for practical
reasons and seem to work well. Setting a higher value for ε (e.g. 0.3),
did not yield an embedding for every graph in our software.

We stopped the algorithm when the value of JM was less than 10−14.
This means, in particular, that no pair of points are too close to each
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Figure 5. A Meissner body (from two different angles).

other and, moreover, that the length of edges of D is almost 1, with an
average error of about 0.0001.

This experimental evidence is what led us to venture Conjecture 2.

6.4. Visualization. Lastly, we include code that allows us to con-
struct a 3D model of either a Reuleaux polyhedron or a Meissner poly-
hedron from the embeddings found. It is a small script written in
OpenSCAD (https://www.openscad.org/). For the Reuleaux polyhe-
dron it simply constructs the intersection of the corresponding spheres.
To construct a Meissner polyhedron we follow the procedure described
in [MR17]. For convenience, we include premade STL files of one Meiss-
ner polyhedron corresponding to each involutive self-dual graph with
up to 11 vertices. Figure 5 has a rendering of the Meissner body asso-
ciated with the example in Figure 3. For others, see the github site.
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