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Abstract

The famous Szemerédi-Trotter theorem states that any arrangement of n points
and n lines in the plane determines O(n4/3) incidences, and this bound is tight. In this
paper, we prove the following Turán-type result for point-line incidence. Let La and
Lb be two sets of t lines in the plane and let P = {`a ∩ `b : `a ∈ La, `b ∈ Lb} be the set
of intersection points between La and Lb. We say that (P,La∪Lb) forms a natural t× t
grid if |P | = t2, and conv(P ) does not contain the intersection point of some two lines
in La and does not contain the intersection point of some two lines in Lb. For fixed
t > 1, we show that any arrangement of n points and n lines in the plane that does not
contain a natural t × t grid determines O(n

4
3
−ε) incidences, where ε = ε(t) > 0. We

also provide a construction of n points and n lines in the plane that does not contain
a natural 2× 2 grid and determines at least Ω(n1+ 1

14 ) incidences.

1 Introduction

Given a finite set P of points in the plane and a finite set L of lines in the plane, let
I(P,L) = {(p, `) ∈ P × L : p ∈ `} be the set of incidences between P and L. The incidence
graph of (P,L) is the bipartite graph G = (P ∪ L, I), with vertex parts P and L, and
E(G) = I(P,L). If |P | = m and |L| = n, then the celebrated theorem of Szemerédi and
Trotter [16] states that

|I(P,L)| ≤ O(m2/3n2/3 +m+ n). (1.1)

Moreover, this bound is tight which can be seen by taking the
√
m×
√
m integer lattice and

bundles of parallel ”rich” lines (see [13]). It is widely believed that the extremal configura-
tions maximizing the number of incidences between m points and n lines in the plane exhibit
some kind of lattice structure. The main goal of this paper is to show that such extremal
configurations must contain large natural grids.

Let P and P0 (respectively, L and L0) be two sets of points (respectively, lines) in the
plane. We say that the pairs (P,L) and (P0,L0) are isomorphic if their incidence graphs are
isomorphic. Solymosi made the following conjecture (see page 291 in [2]).
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Figure 1: An example with |La| = |Lb| = 3 and |P | = 9 in Theorem 1.3.

Conjecture 1.1. For any set of points P0 and for any set of lines L0 in the plane, the
maximum number of incidences between n points and n lines in the plane containing no
subconfiguration isomorphic to (P0,L0) is o(n

4
3 ).

In [15], Solymosi proved this conjecture in the special case that P0 is a fixed set of points
in the plane, no three of which are on a line, and L0 consists of all of their connecting lines.
However, it is not known if such configurations satisfy the following stronger conjecture.

Conjecture 1.2. For any set of points P0 and for any set of lines L0 in the plane, there is a
constant ε = ε(P0,L0), such that the maximum number of incidences between n points and
n lines in the plane containing no subconfiguration isomorphic to (P0,L0) is O(n4/3−ε).

Our first theorem is the following.

Theorem 1.3. For fixed t > 1, let La and Lb be two sets of t lines in the plane, and let
P0 = {`a ∩ `b : `a ∈ La, `b ∈ Lb} such that |P0| = t2. Then there is a constant c = c(t)
such that any arrangement of m points and n lines in the plane that does not contain a

subconfiguration isomorphic to (P0,La∪Lb) determines at most c(m
2t−2
3t−2n

2t−1
3t−2 +m1+ 1

6t−3 +n)
incidences.

See the Figure 1. As an immediate corollary, we prove Conjecture 1.2 in the following
special case.

Corollary 1.4. For fixed t > 1, let La and Lb be two sets of t lines in the plane, and let
P0 = {`a ∩ `b : `a ∈ La, `b ∈ Lb}. If |P0| = t2, then any arrangement of n points and n lines
in the plane that does not contain a subconfiguration isomorphic to (P0,La ∪Lb) determines

at most O(n
4
3
− 1

9t−6 ) incidences.

In the other direction, we prove the following.

Theorem 1.5. Let La and Lb be two sets of 2 lines in the plane, and let P0 = {`a ∩ `b : `1 ∈
La, `b ∈ Lb} such that |P0| = 4. For n > 1, there exists an arrangement of n points and n
lines in the plane that does not contain a subconfiguration isomorphic to (P0,La ∪ Lb), and

determines at least Ω(n1+ 1
14 ) incidences.
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Figure 2: An example of a natural 3× 3 grid.

Given two sets La and Lb of t lines in the plane, and the point set P0 = {`a ∩ `b : `a ∈
La, `b ∈ Lb}, we say that (P0,La ∪Lb) forms a natural t× t grid if |P0| = t2, and the convex
hull of P0, conv(P0), does not contain the intersection point of any two lines in La and does
not contain the intersection point of any two lines in Lb. See Figure 2.

Theorem 1.6. For fixed t > 1, there is a constant ε = ε(t), such that any arrangement of n
points and n lines in the plane that does not contain a natural t× t grid determines at most
O(n

4
3
−ε) incidences.

Let us remark that ε = Ω(1/t2) in Theorem 1.6, and can be easily generalized to the
off-balanced setting of m points and n lines.

We systemically omit floor and ceiling signs whenever they are not crucial for the sake
of clarity of our presentation. All logarithms are assumed to be base 2. For N > 0, we let
[N ] = {1, . . . , N}.

2 Proof of Theorem 1.3

In this section we will prove Theorem 1.3. We first list several results that we will use. The
first lemma is a classic result in graph theory.

Lemma 2.1 (Kövari-Sós-Turán [10]). Let G = (V,E) be a graph that does not contain a

complete bipartite graph Kr,s (1 ≤ r ≤ s) as a subgraph. Then |E| ≤ cs|V |2−
1
r , where cs > 0

is constant which only depends on s.

The next lemma we will use is a partitioning tool in discrete geometry known as simplicial
partitions. We will use the dual version which requires the following definition. Let L be
a set of lines in the plane. We say that a point p crosses L if it is incident to at least one
member of L, but not incident to all members in L.

Lemma 2.2 (Matousek [12]). Let L be a set of n lines in the plane and let r be a parameter
such that 1 < r < n. Then there is a partition on L = L1 ∪ · · · ∪ Lr into r parts, where
n
2r
≤ |Li| ≤ 2n

r
, such that any point p ∈ R2 crosses at most O(

√
r) parts Li.
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Proof of Theorem 1.3. Set t ≥ 2. Let P be a set of m points in the plane and let L be a set
of n lines in the plane such that (P,L) does not contain a subconfiguration isomorphic to
(P0,La ∪ Lb).

If n ≥ m2/100, then (1.1) implies that |I(P,L)| = O(n) and we are done. Likewise, if

n ≤ m
t

2t−1 , then (1.1) implies that |I(P,L)| = O(m1+ 1
6t−3 ) and we are done. Therefore, let us

assume m
t

2t−1 < n < m2/100. In what follows, we will show that |I(P,L)| = O(m
2t−2
3t−2n

2t−1
3t−2 ).

For sake of contradiction, suppose that I(P,L) ≥ cm
2t−2
3t−2n

2t−1
3t−2 , where c is a large constant

depending on t that will be determined later.

Set r = d10n
4t−2
3t−2/m

2t
3t−2 e. Let us remark that 1 < r < n/10 since we are assuming

m
t

2t−1 < n < m2/100. We apply Lemma 2.2 with parameter r to L, and obtain the partition
L = L1 ∪ · · · ∪ Lr with the properties described above. Note that |Li| > 1. Let G be the
incidence graph of (P,L). For p ∈ P, consider the set of lines in Li. If p is incident to exactly
one line in Li, then delete the corresponding edge in the incidence graph G. After performing
this operation between each point p ∈ P and each part Li, by Lemma 2.2, we have deleted
at most c1m

√
r edges in G, where c1 is an absolute constant. By setting c sufficiently large,

we have

c1m
√
r =
√

10c1m
2t−2
3t−2n

2t−1
3t−2 < (c/2)m

2t−2
3t−2n

2t−1
3t−2 .

Therefore, there are at least (c/2)m
2t−2
3t−2n

2t−1
3t−2 edges remaining in G. By the pigeonhole prin-

ciple, there is a part Li such that the number of edges between P and Li in G is at least

cm
2t−2
3t−2n

2t−1
3t−2

2r
=

cm
4t−2
3t−2

20n
2t−1
3t−2

.

Hence, every point p ∈ P has either 0 or at least 2 neighbors in Li in G. We claim that
(P,Li) contains a subconfiguration isomorphic to (P0,La ∪Lb). To see this, let us construct
a graph H = (Li, E) as follows. Set V (H) = Li. Let Q = {q1, . . . , qw} ⊂ P be the set of
points in P that have at least two neighbors in Li in the graph G. For qj ∈ Q, consider the
set of lines {`1, . . . , `s} from Li incident to qj, such that {`1, . . . , `s} appears in clockwise
order. Then we define Ej ⊂

(Li
2

)
to be a matching on {`1, . . . , `s}, where

Ej =


{(`1, `2), (`3, `4), . . . , (`s−1, `s)} if s is even.

{(`1, `2), (`3, `4), . . . , (`s−2, `s−1)} if s is odd.

Set E(H) = E1 ∪ E2 ∪ · · · ∪ Ew. Note that Ej and Ek are disjoint, since no two points are
contained in two lines. Since |Ej| ≥ 1, we have

|E(H)| ≥ cm
4t−2
3t−2

60n
2t−1
3t−2

.
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Figure 3: Sets R,B1,B2 in the proof of Lemma 3.1.

Since

|V (H)| = |Li| ≤
m

2t
3t−2

5n
t

3t−2

,

this implies

|E(H)| ≥ c

60 · 25
(V (H))2− 1

t .

By setting c = c(t) to be sufficiently large, Lemma 2.1 implies that H contains a copy of Kt,t.
Let L′1,L′2 ⊂ Li correspond to the vertices of this Kt,t in H, and let P ′ = {`1 ∩ `2 ∈ P : `1 ∈
L′1, `2 ∈ L′2}. We claim that (P ′,L′1 ∪ L′2) is isomorphic to (P0,La ∪ Lb). It suffices to show
that |P ′| = t2. For the sake of contradiction, suppose p ∈ `1 ∩ `2 ∩ `3, where `1, `2 ∈ L′1 and
`3 ∈ L′2. This would imply (`1, `3), (`2, `3) ∈ Ej for some j which contradicts the fact that
Ej ⊂

(Li
2

)
is a matching. Same argument follows if `1 ∈ L′1 and `2, `3 ∈ L′2. This completes

the proof of Theorem 1.3.

3 Natural Grids

Given a set of n points P and a set of n lines L in the plane, if |I(P,L)| ≥ cn
4
3
− 1

9k−6 , where c
is a sufficiently large constant depending on k, then Corollary 1.4 implies that there are two
sets of k lines such that each pair of them from different sets intersects at a unique point in
P. Therefore, Theorem 1.6 follows by combining Theorem 1.3 with the following lemma.

Lemma 3.1. There is a natural number c such that the following holds. Let B be a set
of ct2 blue lines in the plane, and let R be a set of ct2 red lines in the plane such that for
P = {`1 ∩ `2 : `1 ∈ B, `2 ∈ R} we have |P | = c2t4. Then (P,B ∪R) contains a natural t× t
grid.
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Figure 4: An example for the line `1.

To prove Lemma 3.1, we will need the following lemma which is an immediate consequence
of Dilworth’s Theorem.

Lemma 3.2. For n > 0, let L be a set of n2 lines in the plane, such that no two members
intersect the same point on the y-axis. Then there is a subset L′ ⊂ L of size n such that the
intersection point of any two members in L′ lies to the left of the y-axis, or the intersection
point of any two members in L′ lies to the right of the y-axis.

Proof. Let us order the elements in L = {`1, . . . , `n2} from bottom to top according to their
y-intercept. By Dilworth’s Theorem [5], L contains a subsequence of n lines whose slopes
are either increasing or decreasing. In the first case, all intersection points are to the left of
the y-axis, and in the latter case, all intersection points are to the right of the y-axis.

Proof of Lemma 3.1. Let (P,B∪R) be as described above, and let `y be the y-axis. Without
loss of generality, we can assume that all lines in B∪R are not vertical, and the intersection
point of any two lines in B ∪R lies to the right of `y. Moreover, we can assume that no two
lines intersect at the same point on `y.

We start by finding a point y1 ∈ `y such that at least |B|/2 blue lines in B intersect `y on
one side of the point y1 (along `y) and at least |R|/2 red lines in R intersect `y on the other
side. This can be done by sweeping the point y1 along `y from bottom to top until ct2/2
lines of the first color, say red, intersect `y below y1. We then have at least ct2/2 blue lines
intersecting `y above y1. Discard all red lines in R that intersect `y above y1, and discard all
blue lines in B that intersect `y below y1. Hence, |B| ≥ ct2/2.

Set s = bct2/4c. For the remaining lines in B, let B = {b1, . . . , b2s}, where the elements
of B are ordered in the order they cross `y, from bottom to top. We partition B = B1 ∪ B2

into two parts, where B1 = {b1, . . . , bs} and B2 = {bs+1, . . . , b2s}. By applying an affine
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transformation, we can assume all lines in R have positive slope and all lines in B1∪B2 have
negative slope. See Figure 3.

Let us define a 3-partite 3-uniform hypergraph H = (R∪B1∪B2, E), whose vertex parts
are R,B1,B2, and (r, bi, bj) ∈ R × B1 × B2 is an edge in H if and only if the intersection
point p = bi∩ bj lies above the line r. Note, if bi and bj are parallel, then (r, bi, bj) /∈ E. Then
a result of Fox et al. on semi-algebraic hypergraphs implies the following (see also [3] and
[9]).

Lemma 3.3 (Fox et al. [8], Theorem 8.1). There exists a positive constant α such that
the following holds. In the hypergraph above, there are subsets R′ ⊆ R,B′1 ⊆ B1,B′2 ⊆ B2,
where |R′| ≥ α|R|, |B′1| ≥ α|B1|, |B′2| ≥ α|B2|, such that either R′ × B′1 × B′2 ⊆ E, or
(R′ × B′1 × B′2) ∩ E = ∅.

We apply Lemma 3.3 to H and obtain subsets R′,B′1,B′2 with the properties described
above. Without loss of generality, we can assume that R′×B′1×B′2 ⊂ E, since a symmetric
argument would follow otherwise. Let `1 be a line in the plane such that the following holds.

1. The slope of `1 is negative.

2. All intersection points between R′ and B′1 lie above `1.

3. All intersection points between R′ and B′2 lie below `1.

See Figure 4.

Observation 3.4. Line `1 defined above exists.

Proof. Let U be the upper envelope of the arrangement
⋃
`∈R′ `, that is, U is the closure of

all points that lie on exactly one line of R′ and strictly above exactly the |R′| − 1 lines in
R′.

Let P1 be the set of intersection points between the lines in B′1 with U. Likewise, we define
P2 to be the set of intersection points between the lines in B′2 with U. Since U is x-monotone
and convex the set P2 lies to the left of the set P1. Then the line `1 that intersects U between
P1 and P2 and intersects `y between B′1 and B′2 satisfies the conditions above.

Now we apply Lemma 3.2 to R′ with respect to the line `1, to obtain
√
αc/2 · t members

in R′ such that every pair of them intersects on one side of `1. Discard all other members in
R′. Without loss of generality, we can assume that all intersection points between any two
members in R′ lie below `1, since a symmetric argument would follow otherwise. We now
discard the set B′2.

Notice that the order in which the lines in R′ cross b ∈ B′1 will be the same for any line
b ∈ B′1. Therefore, we order the elements in R′ = {r1, . . . , rm} with respect to this ordering,
from left to right, where m = d

√
αc/2 · te. We define `2 to be the line obtained by slightly

perturbing the line rbm/2c such that:

1. The slope of `2 is positive.

2. All intersection points between B′1 and {r1, . . . , rbm/2c} lie above `2.
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Figure 5: An example for the line `2.

3. All intersection points between B′1 and {rbm/2c+1, . . . , rm} lie below `2.

See the Figure 5.
Finally, we apply Lemma 3.2 to B′1 with respect to the line `2, to obtain at least

√
αc · t/2

members in B′1 with the property that any two of them intersect on one side of `2. Without
loss of generality, we can assume that any two such lines intersect below `2 since a symmetric
argument would follow. Set B∗ ⊂ B′1 to be these set of lines. Then B∗ ∪ {r1, . . . , rbm/2c} and
their intersection points form a natural grid. By setting c = c(t) to be sufficiently large, we
obtain a natural t× t grid.

4 Lower Bound Construction

In this section, we will prove Theorem 1.5. First, let us recall the definitions of Sidon and
k-fold Sidon sets.

Let A be a finite set of positive integers. Then A is a Sidon set if the sum of all pairs
are distinct, that is, the equation x + y = u + v has no solutions with x, y, u, v ∈ A, except
for trivial solutions given by u = x, y = v and x = v, y = u. We define s(N) to be the size of
the largest Sidon set A ⊂ {1, . . . , N}. Erdős and Turán proved the following.

Lemma 4.1 (See [7] and [14]). For N > 1, we have s(N) = Θ(
√
N).

Let us now consider a more general equation. Let u1, . . . , u4 be integers such that u1 +
u2 + u3 + u4 = 0, and consider the equation

u1x1 + u2x2 + u3x3 + u4x4 = 0. (4.1)

We are interested in solutions to (4.1) with x1, x2, x3, x4 ∈ Z. Suppose (x1, x2, x3, x4) =
(a1, a2, a3, a4) is an integer solution to (4.1). Let d ≤ 4 be the number of distinct integers in
the set {a1, a2, a3, a4}. Then we have a partition on the indices

{1, 2, 3, 4} = T1 ∪ · · · ∪ Td,
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where i and j lie in the same part Tν if and only if xi = xj. We call (a1, a2, a3, a4) a trivial
solution to (4.1) if ∑

i∈Tν

ui = 0, ν = 1, . . . , d.

Otherwise, we will call (a1, a2, a3, a4) a nontrivial solution to (4.1).
In [11], Lazebnik and Verstraëte introduced k-fold Sidon sets which are defined as follows.

Let k be a positive integer. A set A ⊂ N is a k-fold Sidon set if each equation of the form

u1x1 + u2x2 + u3x3 + u4x4 = 0, (4.2)

where |ui| ≤ k and u1 + · · ·+ u4 = 0, has no nontrivial solutions with x1, x2, x3, x4 ∈ A. Let
r(k,N) be the size of the largest k-fold Sidon set A ⊂ {1, . . . , N}.

Lemma 4.2. There is an infinite sequence 1 = a1 < a2 < · · · of integers such that

am ≤ 28k4m3,

and the system of equations (4.2) has no nontrivial solutions in the set A = {a1, a2, . . .}. In
particular, for integers N > k4 ≥ 1, we have r(k,N) ≥ ck−4/3N1/3, where c is a positive
constant.

The proof of Lemma 4.2 is a slight modification of the proof of Theorem 2.1 in [14]. For
the sake of completeness, we include the proof here.

Proof. We put a1 = 1 and define am recursively. Given a1, . . . , am−1, let am be the smallest
positive integer satisfying

am 6= −
(∑
i∈S

ui

)−1 ∑
1≤i≤4,i/∈S

uixi, (4.3)

for every choice ui such that |ui| ≤ k, for every set S ⊂ {1, . . . , 4} of subscripts such that(∑
i∈S ui

)
6= 0, and for every choice of xi ∈ {a1, . . . , am−1}, where i /∈ S. For a fixed S with

|S| = j, this excludes (m − 1)4−j numbers. Since |ui| ≤ k, the total number of excluded
integers is at most

(2k + 1)4

3∑
j=1

(
4

j

)
(m− 1)4−j = (2k + 1)4(m4 − (m− 1)4 − 1) < 28k4m3.

Consequently, we can extend our set by an integer am ≤ 28k4m3. This will automatically
be different from from a1, . . . , am−1, since putting xi = aj for all i /∈ S in (4.3) we get
am 6= aj. It will also satisfy am > am−1 by minimal choice of am−1.

We show that the system of equations (4.2) has no nontrivial solutions in the set {a1, . . . , am}.
We use induction on m. The statement is obviously true for m = 1. We establish it for m
assuming for m − 1. Suppose that there is a nontrivial solution (x1, x2, x3, x4) to (4.2) for
some u1, u2, u3, u4 with the properties described above. Let S denote the set of those sub-
scripts for which xi = am. If

∑
i∈S ui 6= 0, then this contradicts (4.3). If

∑
i∈S ui = 0, then by

replacing each occurrence of am by a1, we get another nontrivial solution, which contradicts
the induction hypothesis.
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For more problems and results on Sidon sets and k-fold Sidon sets, we refer the interested
reader to [11, 14, 4].

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. We start by applying Lemma 4.1 to obtain a Sidon set M ⊂ [n1/7],
such that |M | = Θ(n1/14). We then apply Lemma 4.2 with k = n1/7 and N = 1

4
n11/14, to

obtain a k-fold Sidon set A ⊂ [N ] such that

|A| ≥ cn1/14,

where c is defined in Lemma 4.2. Without loss of generality, let us assume |A| = cn1/14.
Let P = {(i, j) ∈ Z2 : i ∈ A, 1 ≤ j ≤ n13/14}, and let L be the family of lines in the plane

of the form y = mx+ b, where m ∈M and b is an integer such that 1 ≤ b ≤ n13/14/2.
Hence, we have

|P | = |A| · n13/14 = Θ(n),

|L| = |M | · n
13/14

2
= Θ(n).

Notice that each line in L has exactly |A| = cn1/14 points from P since 1 ≤ b ≤ n13/14/2.
Therefore,

|I(P,L)| = |L||A| = Θ(n1+1/14).

Claim 4.3. There are no four distinct lines `1, `2, `3, `4 ∈ L and four distinct points p1, p2, p3, p4 ∈
P such that `1 ∩ `2 = p1, `2 ∩ `3 = p2, `3 ∩ `4 = p3, `4 ∩ `1 = p4.

Proof. For the sake of contradiction, suppose there are four lines `1, `2, `3, `4 and four points
p1, p2, p3, p4 with the properties described above. Let `i = mix + bi and let pi = (xi, yi).
Therefore,

`1 ∩ `2 = p1 = (x1, y1),

`2 ∩ `3 = p2 = (x2, y2),

`3 ∩ `4 = p3 = (x3, y3),

`4 ∩ `1 = p4 = (x4, y4).

Hence,

p1 ∈ `1, `2 =⇒ (m1 −m2)x1 + b1 − b2 = 0,

p2 ∈ `2, `3 =⇒ (m2 −m3)x2 + b2 − b3 = 0,

p3 ∈ `3, `4 =⇒ (m3 −m4)x3 + b3 − b4 = 0,

p4 ∈ `4, `1 =⇒ (m4 −m1)x4 + b4 − b1 = 0.

10



By summing up the four equations above, we get

(m1 −m2)x1 + (m2 −m3)x2 + (m3 −m4)x3 + (m4 −m1)x4 = 0.

By setting u1 = m1 −m2, u2 = m2 −m3, u3 = m3 −m4, u4 = m4 −m1, we get

u1x1 + u1x2 + u3x3 + u4x4 = 0, (4.4)

where u1 + u2 + u3 + u4 = 0 and |ui| ≤ n1/7. Since x1, . . . , x4 ∈ A, (x1, x2, x3, x4) must be a
trivial solution to (4.4). The proof now falls into the following cases, and let us note that no
line in L is vertical.

Case 1. Suppose x1 = x2 = x3 = x4. Then `i is vertical and we have a contradiction.

Case 2. Suppose x1 = x2 = x3 6= x4 and u1 + u2 + u3 = 0 and u4 = 0. Then `1 and `4 have
the same slope which is a contradiction. The same argument follows if x1 = x2 = x4 6= x3,
x1 = x3 = x4 6= x2, or x2 = x3 = x4 6= x1.

Case 3. Suppose x1 = x2 6= x3 = x4, u1 + u2 = 0, and u3 + u4 = 0. Since p1, p2 ∈ `2 and
x1 = x2, this implies that `2 is vertical which is a contradiction. A similar argument follows
if x1 = x4 6= x2 = x3, u1 + u4 = 0, and u2 + u3 = 0.

Case 4. Suppose x1 = x3 6= x2 = x4, u1 + u3 = 0, and u2 + u4 = 0. Then u1 + u3 = 0
implies that m1 + m3 = m2 + m4. Since M is a Sidon set, we have either m1 = m2 and
m3 = m4 or m1 = m4 and m2 = m3. The first case implies that `1 and `2 are parallel which
is a contradiction, and the second case implies that `2 and `3 are parallel, which is again a
contradiction.

This completes the proof of Theorem 1.5.

5 Concluding Remarks

• An old result of Erdős states that every n-vertex graph that does not contain a cycle of
length 2k, has Ok(n

1+1/k) edges. It is known that this bound is tight when k = 2, 3, and
5, but it is a long standing open problem in extremal graph theory to decide whether
or not this upper bound can be improved for other values of k. Hence, Erdős’s upper
bound of O(n5/4) when k = 4 implies Theorem 1.3 when t = 2 and m = n. It would
be interesting to see if one can improve the upper bound in Theorem 1.3 when t = 2.
For more problems on cycles in graphs, see [18].

• The proof of Lemma 3.1 is similar to the proof of the main result in [1]. The main
difference is that we use the result of Fox et al. [8] instead of the Ham-Sandwich The-
orem. We also note that a similar result was established by Dujmović and Langerman
(see Theorem 6 in [6]).

• Recently, Tomon and the second author [17] improved the lower bound in Theorem
1.5 to n9/8+o(1), and more generally, gave a construction of n points and n lines in the
plane with no k × k grid and with at least n4/3−Θ(1/k) incidences.
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[11] Lazebnik, F., and Verstraëte, J. On hypergraphs of girth five. Electron. J.
Combin. 10 (2003), 1–25.
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