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On grids in point-line arrangements in the plane

Mozhgan Mirzaei* Andrew Suk'

Abstract

The famous Szemerédi-Trotter theorem states that any arrangement of n points
and 7 lines in the plane determines O(n*/?) incidences, and this bound is tight. In this
paper, we prove the following Turadn-type result for point-line incidence. Let £, and
Ly, be two sets of ¢ lines in the plane and let P = {{, Ny : €, € L4, 0, € Ly} be the set
of intersection points between £, and L. We say that (P, L,UL;) forms a natural t x t
grid if |P| = t2, and conv(P) does not contain the intersection point of some two lines
in £, and does not contain the intersection point of some two lines in £;. For fixed
t > 1, we show that any arrangement of n poi4nts and n lines in the plane that does not
contain a natural ¢ x ¢ grid determines O(n3~°) incidences, where ¢ = ¢(t) > 0. We
also provide a construction of n points and n lines in the plane that does not contain
a natural 2 x 2 grid and determines at least Q(n“‘ﬁ) incidences.

1 Introduction

Given a finite set P of points in the plane and a finite set £ of lines in the plane, let
I(P,L) ={(p,£) € P x L:p e l} be the set of incidences between P and L. The incidence
graph of (P, L) is the bipartite graph G = (P U L, ), with vertex parts P and £, and
E(G) =I(P,L). If |P| = m and |L| = n, then the celebrated theorem of Szemerédi and
Trotter [16] states that

[I(P,£)| < O(m*3n*3 +m +n). (1.1)

Moreover, this bound is tight which can be seen by taking the y/m x y/m integer lattice and
bundles of parallel "rich” lines (see [I3]). It is widely believed that the extremal configura-
tions maximizing the number of incidences between m points and n lines in the plane exhibit
some kind of lattice structure. The main goal of this paper is to show that such extremal
configurations must contain large natural grids.

Let P and Py (respectively, £ and Lj) be two sets of points (respectively, lines) in the
plane. We say that the pairs (P, £) and (Fy, Ly) are isomorphic if their incidence graphs are
isomorphic. Solymosi made the following conjecture (see page 291 in [2]).
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Figure 1: An example with |£,| = |£s| =3 and |P| =9 in Theorem

Conjecture 1.1. For any set of points P and for any set of lines £y in the plane, the
maximum number of incidences between n points and n lines in the plane containing no
4

subconfiguration isomorphic to (P, L) is o(n3).

In [15], Solymosi proved this conjecture in the special case that Fy is a fixed set of points
in the plane, no three of which are on a line, and L consists of all of their connecting lines.
However, it is not known if such configurations satisfy the following stronger conjecture.

Conjecture 1.2. For any set of points P and for any set of lines £, in the plane, there is a
constant € = e(Fy, L), such that the maximum number of incidences between n points and
n lines in the plane containing no subconfiguration isomorphic to (Py, £o) is O(n*/37¢).

Our first theorem is the following.

Theorem 1.3. For fixed t > 1, let L, and Ly be two sets of t lines in the plane, and let
Po={laNly: by € Lo ly € Ly} such that |Py| = t2. Then there is a constant ¢ = c(t)
such that any arrangement of m points and n lines in the plane that does not contain a
subconfiguration isomorphic to (Py, L, U L) determines at most c(mgi:gngté +mites +n)

incidences.

See the Figure [I. As an immediate corollary, we prove Conjecture [I.2]in the following
special case.

Corollary 1.4. For fizred t > 1, let L, and Ly be two sets of t lines in the plane, and let
Po={lyNly: Ly € Ly, ly € Ly}. If |Py| = t2, then any arrangement of n points and n lines
in the plane that does not contain a subconfiguration isomorphic to (Py, L, U Ly,) determines
at most O(n%_ﬁ) incidences.

In the other direction, we prove the following.

Theorem 1.5. Let L, and Ly, be two sets of 2 lines in the plane, and let Py = {{, N, : {1 €
Lo,y € Ly} such that |Py| = 4. For n > 1, there exists an arrangement of n points and n
lines in the plane that does not contain a subconfiguration isomorphic to (Py, L, U Ly), and
determines at least Q(n*11) incidences.



Figure 2: An example of a natural 3 x 3 grid.

Given two sets L, and L, of ¢ lines in the plane, and the point set Py = {{, Ny : {, €
Lo, 0y € Ly}, we say that (Py, L, U Ly) forms a natural t x t grid if | Py| = 2, and the convex
hull of Fy, conv(Fy), does not contain the intersection point of any two lines in £, and does
not contain the intersection point of any two lines in £,. See Figure [2|

Theorem 1.6. For fized t > 1, there is a constant € = £(t), such that any arrangement of n

points and n lines in the plane that does not contain a natural t X t grid determines at most
4

O(n37°) incidences.

Let us remark that ¢ = Q(1/¢?) in Theorem [L.6 and can be easily generalized to the
off-balanced setting of m points and n lines.

We systemically omit floor and ceiling signs whenever they are not crucial for the sake
of clarity of our presentation. All logarithms are assumed to be base 2. For N > 0, we let

IN] = {1,...,N}.

2 Proof of Theorem 1.3

In this section we will prove Theorem [[.3] We first list several results that we will use. The
first lemma is a classic result in graph theory.

Lemma 2.1 (Kévari-Sés-Turdn [10]). Let G = (V, E) be a graph that does not contain a
complete bipartite graph K,, (1 <r < s) as a subgraph. Then |E| < ¢,|V |2+, where ¢, > 0
15 constant which only depends on s.

The next lemma we will use is a partitioning tool in discrete geometry known as simplicial
partitions. We will use the dual version which requires the following definition. Let £ be
a set of lines in the plane. We say that a point p crosses L if it is incident to at least one
member of £, but not incident to all members in L.

Lemma 2.2 (Matousek [12]). Let L be a set of n lines in the plane and let r be a parameter
such that 1 < r < n. Then there is a partition on L = L, U ---U L, into r parts, where
o <L) < 27”, such that any point p € R? crosses at most O(\/T) parts L;.



Proof of Theorem[1.3. Set t > 2. Let P be a set of m points in the plane and let £ be a set
of n lines in the plane such that (P, £) does not contain a subconfiguration isomorphic to
(Po, Lo U Ly).

If n > m?/100, then implies that |I(P,L£)] = O(n) and we are done. Likewise, if
n < m#-1, then implies that |I(P, £)| = O(m”ﬁ) and we are done. Therefore, let us
assume M1 < n < m?/100. In what follows, we will show that |I(P, L)| = O(mgz:gngj).
For sake of contradiction, suppose that I(P, L) > cm%n%, where ¢ is a large constant
depending on t that will be determined later.

Set r = (1On%/m3%21. Let us remark that 1 < r < n/10 since we are assuming
M1 < < m?/100. We apply Lemma with parameter r to £, and obtain the partition
L =LyU---UL, with the properties described above. Note that |£;| > 1. Let G be the
incidence graph of (P, £). For p € P, consider the set of lines in £;. If p is incident to exactly
one line in £;, then delete the corresponding edge in the incidence graph G. After performing
this operation between each point p € P and each part £;, by Lemma [2.2] we have deleted
at most ¢;m+/r edges in G, where ¢; is an absolute constant. By setting ¢ sufficiently large,
we have

2t—2 2t—1 2t—2 2t—1

cimy/r = V10cym3—2n3=2 < (c/2)m3—=2ns2.

Therefore, there are at least (¢/ 2)m%n% edges remaining in G. By the pigeonhole prin-

ciple, there is a part £; such that the number of edges between P and L; in G is at least

2t—2 2t—1 4t—2

cm3t—2mn3t—2 cm3t—2
= 2t—1

2r 20n 32

Hence, every point p € P has either 0 or at least 2 neighbors in £; in G. We claim that
(P, L;) contains a subconfiguration isomorphic to (P, £, U Lp). To see this, let us construct
a graph H = (L;, E) as follows. Set V(H) = L;. Let Q@ = {q1,.-.,qw} C P be the set of
points in P that have at least two neighbors in £; in the graph G. For ¢; € @), consider the
set of lines {{y,...,¢s} from L, incident to ¢;, such that {¢;,..., ¢} appears in clockwise
order. Then we define F; C (g’) to be a matching on {1, ..., ¢}, where

{(l1,03), (U3,0y),...,(Ls_1,0s)}  if s is even.
E; =
{(61,62),(63,64),...,(65,2,63,1)} if s is odd.

Set E(H) = Ey U E, U ---U E,,. Note that £ and Ej, are disjoint, since no two points are
contained in two lines. Since |E;| > 1, we have




Since

V(H)| = L) < 2,
Bn3t—2
this implies
C 1
E(H)| > H))* =,
|E( )|_60,25(V( )

By setting ¢ = ¢(t) to be sufficiently large, Lemma implies that H contains a copy of K ;.
Let £}, £, C L; correspond to the vertices of this K;; in H, and let P’ = {{1Nly € P:{; €
L, 0y € L4} We claim that (P, £} U L}) is isomorphic to (Py, £, U Ly). Tt suffices to show
that |P’| = t2. For the sake of contradiction, suppose p € ¢; N {3 N {3, where {1, ¢y € L] and
¢3 € L}. This would imply (41, 03), ((2,¢3) € E; for some j which contradicts the fact that
E; C (g) is a matching. Same argument follows if ¢; € £ and ¢, (3 € L). This completes

the proof of Theorem O

3 Natural Grids

Given a set of n points P and a set of n lines £ in the plane, if [I(P, £)| > cn%_ﬁ, where ¢
is a sufficiently large constant depending on k, then Corollary implies that there are two
sets of k lines such that each pair of them from different sets intersects at a unique point in
P. Therefore, Theorem follows by combining Theorem [1.3| with the following lemma.

Lemma 3.1. There is a natural number ¢ such that the following holds. Let B be a set
of ct? blue lines in the plane, and let R be a set of ct? red lines in the plane such that for
P={liNly: 1l € B,ly € R} we have |P| = *t*. Then (P,BUR) contains a natural t x t
grid.



Figure 4: An example for the line /¢;.

To prove Lemma(3.1] we will need the following lemma which is an immediate consequence
of Dilworth’s Theorem.

Lemma 3.2. Forn > 0, let L be a set of n? lines in the plane, such that no two members
intersect the same point on the y-axis. Then there is a subset L' C L of size n such that the
intersection point of any two members in L' lies to the left of the y-azis, or the intersection
point of any two members in L' lies to the right of the y-axis.

Proof. Let us order the elements in £ = {{1,...,{,2} from bottom to top according to their
y-intercept. By Dilworth’s Theorem [5], £ contains a subsequence of n lines whose slopes
are either increasing or decreasing. In the first case, all intersection points are to the left of
the y-axis, and in the latter case, all intersection points are to the right of the y-axis. O

Proof of Lemma([3.1 Let (P,BUR) be as described above, and let ¢, be the y-axis. Without
loss of generality, we can assume that all lines in BUR are not vertical, and the intersection
point of any two lines in BU R lies to the right of ¢,. Moreover, we can assume that no two
lines intersect at the same point on /.

We start by finding a point y; € £, such that at least |5|/2 blue lines in B intersect ¢, on
one side of the point y; (along ¢,) and at least |R|/2 red lines in R intersect £, on the other
side. This can be done by sweeping the point y; along ¢, from bottom to top until ct?/2
lines of the first color, say red, intersect £, below y;. We then have at least ¢t?/2 blue lines
intersecting £, above y;. Discard all red lines in 'R that intersect ¢, above y;, and discard all
blue lines in B that intersect ¢, below y;. Hence, |B| > ct?/2.

Set s = |ct?/4]. For the remaining lines in B, let B = {b, ..., by}, where the elements
of B are ordered in the order they cross £, from bottom to top. We partition B = B; U B,
into two parts, where By = {by,...,bs} and By = {bsi1,...,bss}. By applying an affine



transformation, we can assume all lines in R have positive slope and all lines in B; U B, have
negative slope. See Figure [3|

Let us define a 3-partite 3-uniform hypergraph H = (RUB; U Bs, E), whose vertex parts
are R, By, B, and (r,b;,b;) € R x By x By is an edge in H if and only if the intersection
point p = b; Nb; lies above the line 7. Note, if b; and b; are parallel, then (r,b;,b;) ¢ E. Then
a result of Fox et al. on semi-algebraic hypergraphs implies the following (see also [3] and
[9]).
Lemma 3.3 (Fox et al. [§], Theorem 8.1). There exists a positive constant o such that
the following holds. In the hypergraph above, there are subsets R' C R,B} C By, B, C B,
where |R'| > «|R|,|By| > «|Bi|,|By| > «|Bs|, such that either R' x By x B, C E, or
(R' x By x By)N E = 0.

We apply Lemma to H and obtain subsets R’, B}, B, with the properties described

above. Without loss of generality, we can assume that R’ x B} x B C E, since a symmetric
argument would follow otherwise. Let ¢; be a line in the plane such that the following holds.

1. The slope of ¢; is negative.
2. All intersection points between R’ and B’y lie above ¢;.

3. All intersection points between R’ and B’ lie below ¢;.

See Figure []

Observation 3.4. Line ¢; defined above exists.

Proof. Let U be the upper envelope of the arrangement | J, 5, £, that is, U is the closure of
all points that lie on exactly one line of R’ and strictly above exactly the |R’| — 1 lines in
R

Let P; be the set of intersection points between the lines in B} with U. Likewise, we define
P, to be the set of intersection points between the lines in B with U. Since U is xz-monotone
and convex the set P, lies to the left of the set P,. Then the line ¢; that intersects U between
P, and P, and intersects ¢, between B and B3, satisfies the conditions above. O

Now we apply Lemma to R’ with respect to the line ¢;, to obtain y/ac/2 -t members
in R’ such that every pair of them intersects on one side of ¢;. Discard all other members in
R'. Without loss of generality, we can assume that all intersection points between any two
members in R’ lie below /1, since a symmetric argument would follow otherwise. We now
discard the set ).

Notice that the order in which the lines in R’ cross b € B} will be the same for any line
b € By. Therefore, we order the elements in R = {ry,...,r,,} with respect to this ordering,
from left to right, where m = [\/ac/2 - t]. We define ¢, to be the line obtained by slightly
perturbing the line ., /2 such that:

1. The slope of /5 is positive.

2. All intersection points between B; and {ri,..., 7|/} lie above f5.



Figure 5: An example for the line /5.

3. All intersection points between B; and {r|/2+1,--.,7m} lie below /5.

See the Figure [f

Finally, we apply Lemma 3.2 to B} with respect to the line £5, to obtain at least \/ac-t/2
members in B} with the property that any two of them intersect on one side of /5. Without
loss of generality, we can assume that any two such lines intersect below /5 since a symmetric
argument would follow. Set B* C Bj to be these set of lines. Then B* U {ry,...,rm/2} and
their intersection points form a natural grid. By setting ¢ = ¢(t) to be sufficiently large, we
obtain a natural ¢ x ¢ grid. O]

4 Lower Bound Construction

In this section, we will prove Theorem [I.5] First, let us recall the definitions of Sidon and
k-fold Sidon sets.

Let A be a finite set of positive integers. Then A is a Sidon set if the sum of all pairs
are distinct, that is, the equation z + y = u + v has no solutions with z,y,u,v € A, except
for trivial solutions given by u = x,y = v and = = v,y = u. We define s(N) to be the size of
the largest Sidon set A C {1,..., N}. Erdés and Turan proved the following.

Lemma 4.1 (See [7] and [I4]). For N > 1, we have s(N) = O(v/N).

Let us now consider a more general equation. Let wq,...,us be integers such that u; +
us + uz + ug = 0, and consider the equation

UIL] + U + U3T3 + ULy = 0. (41)

We are interested in solutions to (4.1) with 1, xe, x3, 24 € Z. Suppose (21, xa, X3, T4) =
(a1, a9, a3, aq) is an integer solution to (4.1]). Let d < 4 be the number of distinct integers in
the set {a,as,as,as}. Then we have a partition on the indices

{1,2,3,4y =Ty U---UTy,



where i and j lie in the same part 7, if and only if z; = ;. We call (a1, ag, as, aq) a trivial

solution to (4.1)) if
> u=0, v=1,....d.

Otherwise, we will call (a1, as, as, as) a nontrivial solution to (4.1J).
In [11], Lazebnik and Verstraéte introduced k-fold Sidon sets which are defined as follows.
Let k£ be a positive integer. A set A C N is a k-fold Sidon set if each equation of the form

UL, + U + U3T3 + ULy = 0, (42)

where |u;| < k and uy + -+ - 4+ uy = 0, has no nontrivial solutions with 1, xe, x3, 24 € A. Let
r(k, N) be the size of the largest k-fold Sidon set A C {1,..., N}.

Lemma 4.2. There is an infinite sequence 1 = a; < as < --- of integers such that
am < 28K'm3,
and the system of equations has no nontrivial solutions in the set A = {ay,as,...}. In

particular, for integers N > k* > 1, we have r(k, N) > ck=*/3N'/3  where c is a positive
constant.

The proof of Lemma is a slight modification of the proof of Theorem 2.1 in [14]. For
the sake of completeness, we include the proof here.

Proof. We put a; = 1 and define a,, recursively. Given ay,...,a,_1, let a,, be the smallest
positive integer satisfying

am%—<2ui>l Z U; T, (4.3)

i€S 1<i<4,i¢ S

for every choice u; such that |u;| < k, for every set S C {1,...,4} of subscripts such that
<Zi€5 uz) # 0, and for every choice of x; € {aq,...,an_1}, where i ¢ S. For a fixed S with

|S| = j, this excludes (m — 1)*77 numbers. Since |u;| < k, the total number of excluded
integers is at most

(2k +1)* Z (j‘) (m—1)*7 = 2k + 1)*(m* — (m — 1)* = 1) < 2%k*m?.

Jj=1

Consequently, we can extend our set by an integer a,, < 28k*m?. This will automatically
be different from from ay,...,an,_1, since putting z; = a; for all ¢ ¢ S in we get
an, 7 aj. It will also satisfy a,, > a,,—1 by minimal choice of a,,—.

We show that the system of equations has no nontrivial solutions in the set {a, . .., am}-
We use induction on m. The statement is obviously true for m = 1. We establish it for m
assuming for m — 1. Suppose that there is a nontrivial solution (z1,x2,z3,x4) to for
some 7y, U, us, uy with the properties described above. Let S denote the set of those sub-
scripts for which ; = a,,. If )7, o u; # 0, then this contradicts . If Y .cqui = 0, then by
replacing each occurrence of a,, by a;, we get another nontrivial solution, which contradicts
the induction hypothesis. O



For more problems and results on Sidon sets and k-fold Sidon sets, we refer the interested
reader to [111 [14, [4].
We are now ready to prove Theorem [L.5]

Proof of Theorem[1.5 We start by applying Lemma to obtain a Sidon set M C [n'/7],
such that |[M| = ©(n'/!*). We then apply Lemma 4.2 with k£ = n'/7 and N = in'/!, to
obtain a k-fold Sidon set A C [N] such that

|A] > en'/M,

where c is defined in Lemma . Without loss of generality, let us assume |A| = cn!'/14.

Let P={(i,j) € Z* :i € A,1 < j <n'1} and let £ be the family of lines in the plane
of the form y = max + b, where m € M and b is an integer such that 1 < b < n'3/11/2,
Hence, we have

|P| = |A]-n"1* = ©(n),
n13/14

2] = M| = = 6)

Notice that each line in £ has exactly |A| = en'/M points from P since 1 < b < n!'3/14/2,
Therefore,

[1(P,L)| = |L[|A] = ©(n'"/M).

Claim 4.3. There are no four distinct lines 1,0y, U3, €y € L and four distinct points py1, pa, 3, Pa €
P such that 61 ﬂﬁg = pl,gg N 63 = pg,gg ﬂ€4 = p3,€4 N 61 = P4.

Proof. For the sake of contradiction, suppose there are four lines ¢4, {5, {5, ¢, and four points
P1, P2, P3, P4 With the properties described above. Let ¢; = mux + b; and let p; = (x4, y;).
Therefore,

(LNl =p T1,Y1),

3Ny = ps3

lyN by =y

1=
by M l3 = py = (22, 12),

= (

= (T4, Ya)-

)

)

1’3,1/3),

)
Hence,

p1 € U, by = (Mg —ma)xy + by — by =0,

D2 € Uy, by == (Mg —m3)xs + by — by = 0,

ps € U3, by = (mg —my)xs + by — by =0,

ps € Uy, by = (Mg —mq)x4 + by — by = 0.

10



By summing up the four equations above, we get
(mq — ma)zy + (Mo — m3)xe + (M3 — my)xs + (My —my)zy = 0.

By setting u; = my — mg, us = mo — mg, Uz = M3z — My, Ug = My — My, We get

UIL] + U1T2 + U3T3 + ULy = 0, (44)

where u; + uy + us +ug = 0 and |u;| < n'/7. Since a1, ..., 14 € A, (21, 29, 3, 24) Must be a
trivial solution to (4.4]). The proof now falls into the following cases, and let us note that no
line in £ is vertical.

Case 1. Suppose x1 = x9 = x3 = x4. Then /; is vertical and we have a contradiction.

Case 2. Suppose x1 = T9 = x3 # x4 and u; + ug + u3 = 0 and uy = 0. Then ¢; and ¢4 have
the same slope which is a contradiction. The same argument follows if z; = x9 = x4 # x3,
T| = T3 = T4 F Ty, O Ty = T3 = Ty # T1.

Case 3. Suppose x1 = 9 # x3 = X4, U1 + us = 0, and uz + uy = 0. Since py, ps € 5 and
1 = T, this implies that /5 is vertical which is a contradiction. A similar argument follows
if 1 = x4 # 190 =12x3, uy +ug =0, and us + ug = 0.

Case 4. Suppose x1 = x3 # To = x4, u; +uz = 0, and us + u4 = 0. Then uy + ug = 0
implies that m; + mz = my + my. Since M is a Sidon set, we have either m; = my and
msz = my or m; = my and mo = ms3. The first case implies that ¢; and ¢y are parallel which
is a contradiction, and the second case implies that ¢, and ¢35 are parallel, which is again a
contradiction. O

This completes the proof of Theorem [I.5] O

5 Concluding Remarks

e An old result of Erdos states that every n-vertex graph that does not contain a cycle of
length 2k, has Oy (n'*'/*) edges. It is known that this bound is tight when k& = 2, 3, and
5, but it is a long standing open problem in extremal graph theory to decide whether
or not this upper bound can be improved for other values of k. Hence, Erdds’s upper
bound of O(n°/*) when k = 4 implies Theorem [1.3| when ¢ = 2 and m = n. It would
be interesting to see if one can improve the upper bound in Theorem when t = 2.
For more problems on cycles in graphs, see [18].

e The proof of Lemma is similar to the proof of the main result in [I]. The main
difference is that we use the result of Fox et al. [8] instead of the Ham-Sandwich The-
orem. We also note that a similar result was established by Dujmovi¢ and Langerman
(see Theorem 6 in [6]).

e Recently, Tomon and the second author [I7] improved the lower bound in Theorem
to n%/8+t°() "and more generally, gave a construction of n points and n lines in the
plane with no k x k grid and with at least n*/3=©(/%) incidences.
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