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Abstract
We consider the following setting: suppose that we are given a manifold M in R

d

with positive reach. Moreover assume that we have an embedded simplical complex
A without boundary, whose vertex set lies on the manifold, is sufficiently dense and
such that all simplices in A have sufficient quality. We prove that if, locally, interiors
of the projection of the simplices onto the tangent space do not intersect, then A is a
triangulation of the manifold, that is, they are homeomorphic.

Keywords Triangulation criteria · Pseudo-manifolds · Submanifolds of Euclidean
space · Whitney

1 Introduction

Triangulations have played a central role in Computational Geometry since its foun-
dation, Delaunay triangulations being the ones that have been studied most frequently
[1,2,11,20]. One of the main applications of Delaunay triangulations was to find tri-
angulations of surfaces or, more generally, manifolds embedded in Euclidean space.
Sometimes a distinction is made between meshing, where one assumes that the man-
ifold is known, and reconstruction or learning, where one cannot query the manifold
as needed but can only use a given sample.

Although the Computational Geometry community has mainly focused on Delau-
nay triangulations (until recently), the classicalmathematics literature did not constrain
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itself to it [7,21]. This paper, together with its companion [3], places itself in this
broader scope.

In the Delaunay setting, the closed ball property [14] is often used to prove that a
simplicial complex1 is homeomorphic to themanifold in question, see for example [1].
Edelsbrunner and Shah [14] defined the restricted Delaunay complex of a submanifold
M of Euclidean space as the nerve of the Voronoi diagram on M when the ambient
Euclidean metric is used. They showed that if M is compact, then the restricted Delau-
nay complex is homeomorphic to M when the Voronoi diagram satisfies the closed
ball property: Voronoi faces are closed topological balls of the appropriate dimension.
The closed ball property is purely topological and finding sampling conditions that
ensure that the closed ball property holds is not easy [8,11].

In this paper we will assume that M is a C2 submanifold of Rd , whose (positive)
reach is denoted by rchM . The reach ofM , defined by [15], is the infimumof distances
between points inM and points in itsmedial axis, the points in ambient space forwhich
there does not exist a unique closest point in M . The tangent space of M at a point p
is denoted by TpM .

A first attempt to depart from the use of the closed ball property and to define
conditions similar in spirit to those reported in this paper can be found in [4]. In [3]
we explored triangulation conditions in a very general setting, which does not require
the manifold to be embedded, and for general maps. The conditions were chosen such
that they are more directly applicable compared to the closed ball property.

The triangulation criteria of [3] encompass tangential Delaunay complexes [4],
and the intrinsic triangulations explored in [12]. The search for a universal framework
incorporating [4,12] was themainmotivation for [3]. The new conditions we introduce
in this paper are of the same vein as those results. There are however also noticeable
differences:

– The setting of [3] is more abstract. In this paper we restrict ourselves to subman-
ifolds of Euclidean space. This affords a more precise analysis and thus better
constants.

– The conditions in [3] were formulated in terms of vertex sanity. Vertex sanity says
that if a vertex is mapped by a ‘nice’ coordinate map into the star of some (other)
vertex, then the vertex is in fact a vertex of this star. This is quite different from
the conditions that we formulate here.

– In [3] the simplicial complexAwas assumed to be a piecewise linear (PL)manifold
[18,19]. This condition is much stronger than the one we examine here.

The conditions in this paper are very natural and seem to be generally applicable and
complementary to the results of [3]. In particular, they apply to a recent triangulation
algorithm due to one of the authors of the present paper [10].

In this algorithm, the triangulation is found as the support of a simplicial cycle over
Z/2Z. As such, it is pure and any (m−1)-simplex has an even number of (and therefore
at least 2) m-dimensional cofaces.2 It is therefore what is called below a simplicial
complex without boundary. It is proven in [10] that, under precise sampling conditions,

1 An (abstract) simplicial complex is a collection K of finite non-empty sets, called simplices, such that if
σ is an element of K , so is every non-empty subset of σ ; see for example [18, p. 15].
2 If τ is a face of σ , we call σ a coface of τ , see for example [13, p. 52].
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the support of this minimal cycle meets both the topological and the local geometrical
conditions required by Theorem 1.6 below. These conditions can be informally stated
as follows:

Simplicial complexes without boundary We make a topological assumption on A,
namely that A is m-dimensional and each (m − 1)-simplex in A has at least two
m-dimensional cofaces. We call a complex satisfying these conditions a simplicial
complex without boundary (Definition 3.6). We stress that this is a rather weak topo-
logical assumption compared to the condition of being a combinatorial m-manifold,
which requires the link3 of any k-simplex to be homeomorphic to the (m−k−1)-sphere
S
m−k−1.

Local geometric conditions We assume that the simplex diameters are small with
respect to rchM and that the ratio between the smallest height and the diameter of
each simplex is lower bounded by some constant (see Theorem 1.6 (a) for a precise
statement). Moreover, for any p ∈ P , two m-simplices lying in a small neighborhood
of p have disjoint interior projection on the plane tangent to M at p (Theorem 1.6 (b)).

Intuitively, once the interiors of the (local) projection of m-simplices on a local
tangent plane of M are disjoint, the conditions for homeomorphism seem not far. In
fact we will see that A is ambient isotopic to M .

Even thoughwe have specific applications inmind, we formulate the statements in a
setting that is as general as possible, albeit in the embedded setting. This is in the hope
that it will be used in a wide range of applications in Manifold Meshing and Learning.
We restrict ourselves to connected manifolds since the extension to non-connected
manifolds consists merely of applying the result to each connected component.

1.1 Notation

Notation 1.1 (Simplex quality) The thickness of an m-simplex σ , denoted t(σ ), is
given by a/mL , where a = a(σ ) is the smallest altitude of σ and L = L(σ ) is the
length of the longest edge. The altitude of a vertex in a simplex is the distance from
the vertex to the affine hull of the opposite face. Observe that t(σ ) ≤ 1/m and we have
conjectured in [9] that the largest thickness that can be achieved is in fact O(m−3/2).
We set t(σ ) = 1 if σ has dimension 0.

Remark 1.2 A sliver is a simplex whose thickness is small compared to its longest
edge length. In Theorem 1.6 we will exclude slivers by assuming a lower bound on
t(σ )/L .

Notation 1.3 (Simplicial complexes) We consider a simplicial complex A whose
vertex set A0 is identified with a finite set P ⊂ R

N . The carrier of A (i.e., the
underlying topological space), is denoted |A|, and we have a natural piecewise linear
3 Let σ be a simplex of a complex K . The star of σ in K , denoted by star σ , is the union of the interiors of
all simplices of K having σ as a face. The closure of star σ is denoted star σ ; it is the union of all simplices
of K having σ as a face and is called the closed star of σ in K . The link of σ in K , denoted by link σ , is a
union of all simplices of K lying in star σ that are disjoint from σ . Here we followed [18, p. 371], see also
[19, p. 23].
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map ι : |A| → R
N , but we do not assume a priori that ι is an embedding, i.e., we cannot

assume that |A| ⊂ R
N . Nonetheless, we identify the simplices in A with their image

under ι, and when there is no ambiguity, σ ∈ A may refer to a geometric simplex
ι(σ ) ⊂ R

N as well as the abstract simplex σ ∈ A. Similarly, we write x ∈ |A| as a
shorthand for x ∈ ι(|A|).
Notation 1.4 (Projection maps) We denote by prTpM the projection on the tangent
plane TpM , by prM the closest point projection onto the manifold, and by prM ||A| the
composition prM ◦ ι.

Notation 1.5 (Balls) B(x, ρ) and B◦(x, ρ) respectively denote the closed and open
ball with center x and radius ρ.

1.2 Main Result

Theorem 1.6 (Triangulation of submanifolds) Let M ⊂ R
N be a connected C2 m-

dimensional submanifold of RN with reach rch M > 0, and P ⊂ M a finite set of
points. Suppose thatA is an m-dimensional simplicial complex without boundary, as
in Definition 3.6, whose vertex set A0 is identified with P . Let L, t > 0 be such that
for any m-simplex σ ∈ A one has t ≤ t(σ ) and L(σ ) ≤ L. Suppose that the following
conditions are satisfied.

(a) All simplices are small with respect to the reach, and with respect to their quality:

L

rchM
≤ min

(
1

8
, t sin

π

8

)
. (1)

(b) The projection of m-simplices on local tangent planes have disjoint interiors: for
every p ∈ P and σ 1, σ 2 ∈ A with |σ 1|, |σ 2| ⊂ B(p, 2.8L),

σ 1 �= σ 2 ⇒ prTpM (|σ 1|)◦ ∩ prTpM (|σ 2|)◦ = ∅,

where the superscript ◦ denotes the interior operator.

Then, the following conclusions hold:

(i) The inclusion ι : |A| → R
N is an embedding, and we can identify ι(|A|) with |A|.

(ii) The closest-point projection map prM ||A| : |A| → M is a homeomorphism, so M
is compact, and there is an ambient isotopy bringing |A| to M.

Remark 1.7 Thanks to condition (a) there are no slivers.

Remark 1.8 As noticed in Notation 1.1, t decreases withm and the bound on L/ rch M
in condition (a) decreases at least as fast as O(1/m) or perhaps O(m−3/2) as the
dimension m of the manifold increases.

Remark 1.9 Condition (a) of the theorem could be improved with minor, only quan-
titative, changes in the proof. In the bound (1) there is in fact a trade-off between the
constant bound (i.e., 1/8) and the bound depending on t (i.e., t sin(π/8)). The latter
one could be replaced by any value strictly below t sin(π/4) by a sufficiently large
reduction in the constant bound, which is certainly better for large m, since, as seen
in the previous remark, t may decrease as fast as O(m−3/2).
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2 Definitions and Submanifold Geometry

In this section, we make the following assumptions.

Hypothesis 2.1 (Geometric assumptions) M ⊂ R
N is a connected C2 m-dimensional

submanifold of RN with positive reach, rch M > 0, and P ⊂ M is a finite set of
points. A is an m-dimensional simplicial complex whose vertex set A0 is identified
with P . Let L and t be positive real numbers such that for any m-simplex σ ∈ A,

t ≤ t(σ ) and L(σ ) ≤ L.

Wenow recall the following five results. Lemma2.2 is proven in [5, Cor. 2]. Lemma2.3
is a variant of a result ofWhitney [21, Sect. IV.15] proven in [2, Lem.8.11]. Lemma 2.4
is proven in [5, Cor. 3], Lemma 2.5 is proven in [15, Thm. 4.8(7)], and Lemma 2.6 is
proven in [2, Lem. 7.9].

Lemma 2.2 (Tangent balls) For any p ∈ M, any open ball B◦(c, r) that is tangent to
M at p and whose radius r satisfies r ≤ rchM does not intersect M.

Lemma 2.3 (Simplex-tangent space angle bounds) Under Hypothesis 2.1, if σ ∈ A
and p is a vertex of σ , then

sin∠(σ , TpM) ≤ L

t rch M
.

Lemma 2.4 (Variation of tangent space) Under Hypothesis 2.1, if p, q ∈ M, then

sin
∠(TpM, TqM)

2
≤ ‖p − q‖

2 rchM
.

Lemma 2.5 (Distance to tangent space) Under Hypothesis 2.1, if p, q ∈ M, then

d(q, TpM) ≤ ‖p − q‖2
2 rchM

.

Lemma 2.6 (Hausdorff distance between M and |A|) Under Hypothesis 2.1, if x is in
|A|, then

‖prM (x) − x‖ <
2L2

rchM
.

Apart from the results we just recalled we will also use

Lemma 2.7 (Hausdorff distance between a simplex and its vertices) For any compact
set C ⊂ R

d with diameter L (the largest distance between any two points in C) the
following statement about the convex hull of C, hullC, holds: for every x ∈ hullC
there exists p ∈ C such that

‖x − p‖ ≤ L

√
d

2(d + 1)
<

L√
2
.
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Fig. 1 The notation for Lemma 2.7

In particular, for any simplex σ with diameter L, if x ∈ σ then there is a vertex p of
σ such that

‖x − p‖ ≤ L

√
d

2(d + 1)
<

L√
2
.

Proof Jung’s Theorem [17] says that in the d-dimensional Euclidean space, the radius
r of the smallest ball enclosing a convex polyhedron is at most L

√
d/(2(d + 1)). The

compact set C can be approximated arbitrarily well by a finite set C̃ in Hausdorff
distance and Jung’s Theorem applies to the convex polyhedron hull C̃ .

Since themap that sends a compact set to its convex hull:C 
→ hullC is 1-Lipschitz
for the Hausdorff distance, one can extend Jung’s Theorem by continuity to get the
same bound for the smallest ball enclosing hullC . Note that L

√
d/(2(d + 1)) ≤

L/
√
2. Let B(c, r) be the smallest ball enclosing C . The center c of that ball belongs

to hullC since, otherwise, we would decrease the distance of c to any point in C by
projecting c to its closest point in hullC . We have that any p ∈ C is at distance at most
r from c. Moreover, if x ∈ hullC \ {c}, then there is p ∈ C extremal in the direction−→cx , see Fig. 1 for an illustration. Let us write y for the orthogonal projection of p on
the line cx , then the segment cy contains x and the distance to p cannot increase when
going from c to y. Therefore d(x, p) ≤ d(c, p) ≤ r . ��

3 Pseudo-Manifolds, Whitney’s Lemma, and Simplicial Complexes
Without Boundary

Definition 3.1 (Pure simplicial complex) An m-dimensional simplicial complex is
pure if any simplex has at least one coface of dimension m.
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Definition 3.2 (Pseudo-manifold) An m-dimensional simplicial complex is called a
pseudo-manifold if it is pure and if any (m−1)-simplex has exactly twom-dimensional
cofaces.

Definition 3.3 (Pseudo-manifold with boundary) An m-dimensional simplicial com-
plex is a pseudo-manifold with boundary if it is pure and if any (m − 1)-simplex has
at most two m-dimensional cofaces. The boundary ∂B of an m-dimensional pseudo-
manifold simplicial complexBwith boundary, is the (m−1)-simplicial complexmade
of the closure of all (m − 1)-simplices with exactly one m-dimensional coface, that is
the simplices and their faces.

Remark 3.4 Usual definitions of pseudo-manifolds require moreover the complex to
be strongly connected, which means that its dual graph, i.e., the graph with one vertex
for each m-simplex and one edge for each pair of m-simplices sharing an (m − 1)-
simplex, is connected. In our context, this property is not required in the assumptions
of the theorem. It is a consequence of the theorem as we prove a homeomorphism to
a manifold.

Our main result (Theorem 1.6) does not require any global orientability for the man-
ifold M or the simplicial complex without boundary A. It applies to non-orientable
manifolds as well. However, in the proof of the theorem, we will need to orient locally
a pseudo-submanifold of A with boundary. We first recall that an m-chain is the for-
mal sum of m-simplices weighted by (integer) coefficients, see [18, p. 27] for a more
precise definition or [16, p. 105].

Definition 3.5 (Oriented pseudo-manifold) Anm-dimensional pseudo-manifold with
boundary B is said to be oriented if each m-simplex is given an orientation such that,
if Γ is the m-chain over Z (or R) with coefficient 1 on each m-simplex of B then the
support of ∂Γ is precisely ∂B.

The concept of a pseudo-manifold can be further weakened to a simplicial complex
without boundary:

Definition 3.6 (Simplicial complex without boundary) An m-dimensional simplicial
complex is called a simplicial complex without boundary if it is pure and if any (m−1)-
simplex has at least two m-dimensional cofaces.

Remark 3.7 We stress that any pseudo-manifold (without boundary) is a simplicial
complex without boundary but the converse is not true in general.

Theorem 1.6 actually holds for simplicial complexes without boundary (see Defini-
tion 3.6).

Definition 3.8 (Simplexwise positive map) Let B be an orientedm-dimensional pseu-
do-manifold with boundary. A piecewise linear map F : B → R

m is said to be
simplexwise positive if the image F(σ ) = [F(v0), . . . , F(vm)] of each oriented m-
simplex σ = [v0, . . . , vm] ∈ B is a non-degenerate m-simplex embedded in R

m and
is positively oriented.
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Having introduced these definitions, we are ready to state an adapted version of a
topological result of Whitney [21, App. II, Sect. 15] which will be the main tool for
the proof of Theorem 1.6.

In Lemma 3.9, the simplexwise positive map is piecewise linear instead of being
merely assumed piecewise smooth as in Whitney’s original statement. Indeed, this
makes the proof simpler and suffices in our context. Also our version states that the
map is not only one-to-one but in fact a homeomorphism: this is an easy consequence
of Whitney’s original proof as well. The proof given in [21, App. II, Sect. 15] is not
very easy to follow, because some small steps are skipped. This is one of the reasons
that we have included a detailed proof of the following lemma in the appendix. The
other reason is that we alteredWhitney’s original statement somewhat to fit the current
context.

Lemma 3.9 (after Whitney) Assume that the following conditions are satisfied:

(C1) C is an oriented finite m-pseudo-manifold with boundary and F : |C| → R
m is

a simplexwise positive map.
(C2) R ⊂ R

m is a connected open set such that R ∩ F(|∂C|) = ∅.
(C3) There exists a point y ∈ R \ F(|Cm−1|) such that F−1(y) is a single point,

where Cm−1 denotes the (m − 1)-skeleton of C.
Then the restriction of F to F−1(R) is a homeomorphism between F−1(R) and R.

4 Proof of Theorem 1.6

The proof of Theorem 1.6 makes use of this classical observation:

Theorem 4.1 (Triangulation of manifolds) Let H be a continuous map from a non-
empty m-dimensional finite simplicial complex A to a connected m-manifold without
boundary M. If H is injective and the underlying space |A| ofA is a manifold without
boundary, then H is a homeomorphism.

Proof By the invariance of domain theorem [6], we have that H is open and therefore
an homeomorphism on its image. Since A is finite, it is compact and H(|A|) is the
image of an open and compact set by an open and continuous map, and is therefore
open and compact. Since M is connected its only open and closed non-empty subset
is M itself, therefore H(|A|) = M . ��

4.1 Overview of the Proof

We establish Theorem 1.6 by means of three primary observations. First, in Sect. 4.2
we show that the conditions of the theorem imply that A is a manifold (Lemma 4.3).
This observation, together with the results obtained in demonstration of it, make it
a relatively easy exercise in Sect. 4.3 to demonstrate that prM ||A| is injective, and
therefore, by Theorem 4.1, it is a homeomorphism (Proposition 4.11). Finally, in
Sect. 4.4 we show that |A| and M are ambient isotopic.
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Constants and Definitions

From Lemma 2.6, we have

‖prM (x) − x‖ ≤ 2L2

rchM
,

which, together with condition (a) of the theorem, gives

‖prM (x) − x‖ ≤ η := L

4
. (2)

Here and throughout this section we will assume that p ∈ P , and we will prove
that A is a manifold in some neighborhood of p. For ρ > 0, we define Ap,ρ as the
subcomplex of A consisting of all m-simplices entirely included in B(p, ρ) together
with all their faces:

Ap,ρ = {σ ∈ A | dim(σ ) = m, ι(σ ) ⊂ B(p, ρ)}.

The proof relies on the properties of the continuous piecewise linear function

Fp : |Ap,2.8L | → TpM

defined as the restriction of prTpM to ι(|Ap,2.8L |). We will focus in particular on the

restriction of Fp to Wp = F−1
p (Rp), where

Rp = TpM ∩ B◦
(
p,

L√
2

+ 2η

)
= TpM ∩ B◦

(
p, L

(
1√
2

+ 1

2

))
.

Remark 4.2 The size of the setRp is primarily motivated by convenience in establish-
ing the injectivity of prM ||A| (see (13)). The set Ap,2.8L is chosen to be large enough
to ensure that condition (C2) ofWhitney’s lemma is satisfied for this choice (see (11)).

4.2 The Proof thatA is a Manifold

Lemma 4.3 (Manifold complex) If the conditions of Theorem 1.6 are met, then A is
an m-manifold complex with {(Wp, Fp)}p∈P an atlas for |A|.

Overview of the Proof

Wefirst prove that themap Fp and the setRp meet the conditions ofWhitney’s lemma,
with C = Ap,2.8L . Using a separate step for each of the three conditions (C1)–(C3),
they are shown to be satisfied which gives a homeomorphism between Wp and Rp,
and thus proves that A is a manifold.
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Step 1: (C1) is Satisfied

Claim 4.4 The m-simplices of Ap,2.8L can be oriented in such a way that:

– Ap,2.8L is an oriented pseudo-manifold with boundary,
– Fp is simplexwise positive.

Proof of Claim 4.4 In order to prove this claim, we need the angle between a simplex
σ ∈ Ap,2.8L and the tangent space TpM to be strictly less than π/2. If σ ∈ Ap,2.8L ,
consider a vertex q of σ .

We have from Lemma 2.3 that sin∠(σ , TqM) ≤ L/(t rchM). From condition (a)
of Theorem 1.6, one has L/(t rch M) ≤ sin(π/8) and therefore

∠(σ , TqM) ≤ π

8
. (3)

Also, from Lemma 2.4, since ‖p− q‖ ≤ 2.8L and using condition (a) of the theorem
we have

sin
∠(TpM, TqM)

2
≤ ‖p − q‖

2 rchM
≤ 2.8 × 1/8

2
= 0.175 < sin

π

8
.

It follows that

∠(TpM, TqM) <
π

4
,

which, together with (3) gives

∠(σ , TpM) <
3π

8
. (4)

Because this angle is less than π/2, the restriction of prTpM to each m-simplex in
Ap,2.8L is injective.

For a given orientation of TpM , each m-simplex σ ∈ Ap,2.8L is oriented in such a
way that Fp(σ ) has positive orientation in TpM .

Consider two distinct simplices σ 1, σ 2 ∈ Ap,2.8L sharing a common (m − 1)-face
μ = σ 1 ∩ σ 2. Since Fp is non-degenerate on σ 1, it is non-degenerate on μ and
Fp(μ) spans a hyperplane Π in TpM . Consider a point o′ = Fp(o) in the relative
interior of Fp(μ) (see Fig. 2). If V1 is a neighborhood of o in σ 1, then Fp(V1) covers
a neighborhood of o′ in one of the half-spaces bounded by Π . The same holds for a
neighborhood V2 of o in σ 2 and then condition (b) of the theorem enforces these two
half-spaces to be distinct.

Following the same argument, we see that μ cannot have as a coface a third m-
simplex σ 3 as there is no room for three pairwise disjoint open half-spaces in R

m

to share a same bounding hyperplane Π . Thus Ap,2.8L is a pseudo-manifold with
boundary.

Now consider Fp(σ 1) and Fp(σ 2) as simplicial chains with coefficients in Z and
choose any orientation of Fp(μ). It follows from the previous observation that the signs
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σ1 σ2

μ

Π

o

o′

TpM

Fig. 2 The notation for the proof of Claim 4.4

of the coefficients of Fp(μ) in the respective expressions of ∂Fp(σ 1) and ∂Fp(σ 2) are
opposite. It follows that the coefficient of μ in ∂(σ 1 + σ 2) is zero. Thus Ap,2.8L and
Fp meet the respective conditions in Definitions 3.5 and 3.8, and the claim is proven.

��
Claim 4.4 yields

Corollary 4.5 A is a pseudo-manifold, not just a simplicial complex without boundary.

Step 2: (C2) is Satisfied

In order to be able to apply Whitney’s lemma, we need a second claim. Recall the
notation Rp = TpM ∩ B◦(p, L/

√
2 + 2η)) and that Fp is the restriction of prTpM to

ι(|Ap,2.8L |).
Claim 4.6 Rp ∩ Fp(|∂Ap,2.8L |) = ∅.
Proof of Claim 4.6 Let x ∈ |∂Ap,2.8L |. Since A is a pseudo-manifold without bound-
ary, x must belong to a simplex in Ap,2.8L and also to a simplex in A \ Ap,2.8L . The
latter condition together with the definition of Ap,2.8L implies that

x ∈ B(p, 2.8L) \ B(p, 1.8L). (5)

Equations (2) and (5) give

prM (x) ∈ B(p, 2.8L + η) \ B(p, 1.8L − η) = B(p, 3.05L) \ B(p, 1.55L).

We are now going to decompose prM (x) − p into vectors u ∈ TpM and v ∈ NpM ,
where NpM denotes the normal space at p. One can write (see Fig. 3):

prM (x) − p = u + v.
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Fig. 3 The notation for the proof of Claim 4.6

We now bound ‖u‖ and distinguish whether v = 0 or not. If v = 0, i.e., if prM (x) ∈
TpM , then, since prM (x) /∈ B(p, 1.55L), one has ‖u‖ ≥ 1.55L . Let us assume now
that v �= 0.

The open ball B◦ centered at c = p + (rch M/‖v‖)v with radius rch M is tangent
to M at p. Since prM (x) ∈ B(p, 3.05L) \ B(p, 1.55L) and since, from Lemma 2.2,
B◦ has no intersection with M , one gets the following pair of inequalities:

(1.55L)2 < ‖u‖2 + ‖v‖2 ≤ (3.05L)2, (6)

(rch M − ‖v‖)2 + ‖u‖2 ≥ (rchM)2. (7)

We first use (7) and the fact that rch M ≥ 8L (by condition (a) of Theorem 1.6) to get

16L‖v‖ − ‖v‖2 ≤ ‖u‖2.

Combining with (6), we obtain

max {16L‖v‖ − ‖v‖2, (1.55L)2 − ‖v‖2} ≤ ‖u‖2. (8)

Note that thanks to (6), ‖v‖ < 3.05L . The minimum of (8) is attained when both terms
are equal which happens when ‖v‖ = (1.552/16)L = 0.15015625L . This gives us in
particular

‖u‖ > 1.54L.

Hence we have in both cases, v = 0 and v �= 0,

‖u‖ = ‖prTpM (prM (x)) − p‖ > 1.54L. (9)
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Moreover, since ‖x − prM (x)‖ < η, (2) reads

‖prTpM (x) − prTpM (prM (x))‖ < η = 0.25L, (10)

since projection reduces length. By the triangle inequality, (9) and (10) give us

‖prTpM (x) − p‖ > 1.54L − 0.25L = 1.29L. (11)

Therefore, since Rp is defined as Rp = TpM ∩ B◦(p, (1/
√
2 + 0.5)L), we have

proven that x ∈ ∂Ap,2.8L implies prTpM (x) /∈ Rp. It follows that

Rp ∩ Fp(|∂Ap,2.8L |) = ∅,

which ends the proof of the claim. ��

Step 3: (C3) is Satisfied

Wenow denote by Cm−1 = Am−1
p,2.8L the (m−1)-skeleton ofAp,2.8L , i.e., the simplicial

complex made of simplices ofAp,2.8L of dimension at mostm−1. Since Fp(|Cm−1|)
is a finite union of (m − 1)-dimensional simplices, it cannot cover the projection
of an m-simplex. Therefore condition (b) of Theorem 1.6 shows that there is a y ∈
Rp \ Fp(|Cm−1|) such that F−1

p (y) is a single point. All conditions (C1)–(C3) being
satisfied, Whitney’s lemma applies, proving the following proposition:

Proposition 4.7 For any p ∈ P , the restriction of Fp to F−1
p (Rp) is a homeomorphism

from F−1
p (Rp) to Rp.

Step 4: Proof of Lemma 4.3

We start with an easy lemma.

Lemma 4.8 For any p ∈ P one has

A ∩ B(p, L) ⊂ F−1
p (Rp) ⊂ A ∩ B(p, 2.8L).

Proof Recall that Fp is the restriction of prTpM to |Ap,2.8L |. By definition ofAp,2.8L ,
and since the diameter of any simplex is upper bounded by L , one has

|A| ∩ B(p, 1.8L) ⊂ Ap,2.8L ⊂ |A| ∩ B(p, 2.8L). (12)

The second inclusion in the statement of the lemma follows from the second inclusion
in (12) and the definition of Fp. If x ∈ |A| ∩ B(p, L) then x ∈ Ap,2.8L . Since
prTpM (B(p, L)) ⊂ B(p, L),

prTpM (A ∩ B(p, L)) ⊂ TpM ∩ B(p, L) ⊂ Rp.

This shows that A ∩ B(p, L) ⊂ F−1
p (Rp). ��
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Claim 4.9 For any p ∈ P = A0, the restriction of Fp to Wp = F−1
p (Rp) yields a

homeomorphism onto Rp. Thus |A| is a manifold, and {(Wp, Fp)}p∈P is an atlas
for |A|.
Proof From Whitney’s lemma, Fp defines a homeomorphism from Wp to Rp. It fol-
lows that Wp = F−1

p (Rp) is an open m-manifold that contains the star of p, since
F−1
p (Rp) ⊃ A∩ B(p, L) (Lemma 4.8). Therefore, because any y ∈ A belongs to the

star of some vertex p, we have that |A| is a manifold and {(Wp, Fp)}p∈P is an atlas.
��

This completes the proof of Lemma 4.3.

Remark 4.10 In order to establish thatA is a manifold, we need only consider setsUp

that are large enough to ensure that {(Up, Fp)}p∈P is an atlas. The sets Wp are larger
thanwe need; byLemma2.7, it would be sufficient to takeUp = B(p, L/

√
2)∩ι(|A|).

Notice that, since prTpM does not increase distances, Fp(Up) is contained in the set

TpM ∩ B(p, L/
√
2). We used larger sets for convenience in demonstrating below that

prM ||A| is injective (Proposition 4.11).
Also, the existence of the manifold M is not essential in the demonstration thatA is

manifold; it suffices to have a collection of hyperplanes {Tp}p∈P such that Tp makes a
sufficiently small angle with all m-simplices that lie sufficiently close to the vertex p.

4.3 The Proof that prM||A| is a Homeomorphism

Proposition 4.11 (prM ||A| is a homeomorphism) Let M ⊂ R
N be a connected C2

m-dimensional submanifold of RN with reach rch M > 0, and P ⊂ M a finite set of
points. Suppose thatA is an m-dimensional manifold simplicial complex whose vertex
set, A0, is identified with P . Let L, t > 0 be such that for any m-simplex σ ∈ A one
has t ≤ t(σ ) and L(σ ) ≤ L. If

(a) all simplices are small with respect to the reach, and with respect to their quality:

L

rchM
≤ min

(
1

8
, t sin

π

8

)
;

(b) {(Wp, Fp)}p∈P is an atlas for |A|;
then

(i) The closest-point projection map prM ||A| is a homeomorphism |A| → M.
(ii) The inclusion ι : |A| → R

N is an embedding.

Proof Let x, y ∈ A. For convenience, we will write x ′ = prM (x), x ′′ = prTpM (x) and
similarly for y, y′, and y′′ (see Fig. 4). Assume that ‖x − y‖ ≥ 2η. From Lemma 2.6,
we have ‖x ′ − x‖ < η and ‖y′ − y‖ < η. The triangle inequality then shows that
‖x ′ − y′‖ > 0 and therefore x ′ �= y′.
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x y

x′

x′′
y′′

y′

p
TpM

M

A

Fig. 4 For the definition of x ′, x ′′, y′, y′′

Assume now that x, y ∈ A with x �= y and ‖x − y‖ < 2η, and let us prove that
x ′ �= y′. From Lemma 2.7, we know that there is p ∈ P such that ‖x − p‖ < L/

√
2

and therefore one has

x, y ∈ B

(
p,

L√
2

+ 2η

)
. (13)

It follows that x ′′, y′′ ∈ TpM∩B(p, L/
√
2+2η) and, with the notations ofWhitney’s

lemma applied in a neighborhood of p, this translates to Fp(x), Fp(y) ∈ Rp and
x, y ∈ F−1

p (Rp).
Since Fp is a homeomorphism from F−1

p (Rp) toRp (Claim 4.9), it has a continuous
inverse F−1

p : Rp → F−1
p (Rp) and the set F−1

p (Rp), considered as a subset of RN ,
can then be seen as the graph of a continuous map φ:

φ : Rp → NpM, z 
→ F−1
p (z) − z,

where NpM denotes the normal space at p. Let σ be a simplex inAwith a non-empty
intersection with F−1

p (Rp). Since F−1
p (Rp) ⊂ Ap,2.8L (Lemma 4.8), we have that

σ ∈ Ap,2.8L . By (4),

∠(σ , TpM) <
3π

8
.

Since the graph of φ restricted to Rp is made of a (finite) number of simplices whose
angles with TpM are less than 3π/8, φ is Lipschitz with constant tan(3π/8). It follows
that, with x and y as in (13),

‖φ(y′′) − φ(x ′′)‖ ≤ tan
3π

8
· ‖y′′ − x ′′‖,

and then

∠(TpM, y − x) <
3π

8
. (14)

On the other hand, since x ∈ B(p, L/
√
2 + 2η) and ‖x − x ′‖ < η we have

x ′ ∈ B

(
p,

L√
2

+ 3η

)
, (15)
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and, since η = 0.25L ,
x ′ ∈ B(p, 1.46L). (16)

Equation (15) together with Lemma 2.4 and L/ rch M ≤ 1/8 (condition (a) of Theo-
rem 1.6) gives

sin
∠(TpM, Tx ′M)

2
≤ 1.46L

2 rchM
≤ 0.09125 < sin

π

16
.

It follows that

∠(TpM, Tx ′M) <
π

8
.

Therefore, if we assume for a contradiction that x ′ = y′, we have that x − y is
orthogonal to Tx ′M , that is ∠(Tx ′ , y − x) = π/2, and one gets

∠(TpM, y − x) >
π

2
− π

8
= 3π

8
,

a contradiction with (14). This concludes the proof that prM ||A| is injective. We now
can apply Theorem 4.1 which completes the proof of the first claim of the proposition.

Since prM ||A| is defined as prM ◦ ι, the fact that it is a homeomorphism implies the
second claim of the proposition: ι is an embedding. Proposition 4.12 below applies
and we get the required ambient isotopy. ��

4.4 Ambient Isotopy

Proposition 4.12 Let M be an m-dimensional submanifold of Euclidean space R
N

with reach rchM > 0 and |A| a subset of RN such that:

(i) supx∈|A| inf y∈M d(x, y) < rch M;
(ii) the restriction of prM, the closest map projection on M to |A|, is an homeomor-

phism.

Then |A| and M are ambient isotopic.

One can observe that by definition of rchM , condition (i) ensures that the definition
of prM in (ii) is unambiguous.

Proof By the conditions of the lemma, there are real numbers a and b such that

sup
x∈|A|

d(x, prM (x)) < a < b < rchM .

We define a map Ψ : [0, 1] × R
N → R

N as follows. Denote by M⊕b the b-offset
of M , that is, the set of all points in the ambient space at most a distance b from the
set M .
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For x ∈ M⊕b we know that x 
→ prM (x) ∈ M and

x 
→ α(x) = prM |−1
|A|(prM (x)) ∈ |A|

are continuous. For x ∈ M⊕b , x and α(x) are in the ball B centered at prM (x) with
radius b in the normal space to M at prM (x). One has x ∈ |A| iff x = α(x), and if
x �= α(x) one defines β(x) to be the intersection point of the boundary of B with the
half-line starting at α(x) and going through x .

Define also the real valued function

x 
→ λ(x) = ‖x − α(x)‖
‖β(x) − α(x)‖ .

Observe that if x �= α(x) one has by the definition of λ that x = (1 − λ(x))α(x) +
λ(x)β(x). Also, since |λ(x)| ≤ ‖x − α(x)‖/(b − a), we can check that the map

x 
→
{

(1 − λ(x))prM (x) + λ(x)β(x) if x �= α(x),

prM (x) if x = α(x),

is continuous. We can now give an explicit expression for the ambient isotopy Ψ :

Ψ (t, x) =

⎧⎪⎨
⎪⎩
x if x /∈ M⊕b,

(1 − t)x + tprM (x) if x = α(x),

(1 − t)x + t((1 − λ(x))prM (x) + λ(x)β(x)) if x ∈ M⊕b \ {α(x)}.

The map Ψ is illustrated in Fig. 5. It is a simple exercise to check that Ψ is continuous
both in t and x . ��
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Appendix A: Proof of the (Adapted) Whitney Lemma

In this appendix we prove our variation of Whitney’s lemma (Lemma 3.9). The proof
consists of five claims.

Claim A.1 The restriction F |star σm−1 of F to the star star σm−1 of some (m−1)-simplex
σm−1 of C, with σm−1 /∈ ∂C, is injective and open.
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Fig. 5 An illustration of the map Ψ for t = 0 (red) and t = 1 (black) in the normal space of a single point

Proof For a simplex σ , let us denote its relative interior by int σ . By definition of
pseudo-manifolds, σm−1 /∈ ∂C implies that star σm−1 is the union of the relative
interior int σm

1 and int σm
2 of exactly two proper cofaces (σ 1 and σ 2) and the relative

interior int σm−1 of σm−1 itself.
For x ∈ int σm

i , i = 1, 2, the restriction of F to |σm
i | being a non-degenerate linear

map, F is locally open at x . Consider now the case where x ∈ int σm−1. F(x) belongs
to the boundary of F(|σm

1 |). Moreover, F(int σm−1) spans a hyperplane Π inRm that
separates the space into two closed half spaces H− and H+ with H− ∩ H+ = Π .

Then the fact that C is oriented and that F is simplexwise positive implies that
F(|σm−1|) appears with opposite orientations in the respective boundaries of F(|σm

1 |)
and F(|σm

2 |). We assume without loss of generality that F(|σm
1 |) ⊂ H−: it follows

that F(|σm
2 |) ⊂ H+. Taking ρ > 0 smaller than the distance between F(x) and the

image of the boundary of the closed star F(∂ star σm−1) we have that

B(x, ρ) ⊂ F(star σm−1),

and we have proven that F |star σm−1 is open.
From the definition of simplexwise positiveness, the restriction of F to any simplex

is injective. Because C is a pseudo-manifold star σm−1 ⊂ |σm
1 | ∪ |σm

2 |. Now suppose
there is a pair x, y ∈ star σm−1 with x �= y and F(x) = F(y). Let us assume
without loss of generality that x ∈ |σm

1 |. Then we must have y ∈ |σm
2 |. But since

F(|σm
1 |) ⊂ H−, F(|σm

2 |) ⊂ H+ it follows that F(x) = F(y) ∈ H− ∩ H+ = Π .
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Then x, y ∈ |σm−1|, but again, since F is one-to-one on each simplex, we get x = y.
��

Claim A.2 Suppose that x, y ∈ |C \ ∂C| are such that x �= y and F(x) = F(y). If
x ∈ int σ x and y ∈ int σ y , then star σ x ∩ star σ y = ∅ .

Proof Indeed, otherwise there would be a simplex σ ∈ star σ x ∩ star σ y such that
x, y ∈ σ , but we have x �= y and F(x) = F(y) which contradicts the fact that the
restriction of F to σ is injective. ��
Claim A.3 x, y ∈ R \ F(|Cm−1|) implies # F−1(x) = # F−1(y), where # E denotes
the cardinality of a set E.

Proof Since F(|Cm−2|) is a finite union of simplices of codimension 2, it cannot
disconnect the open set R. In other words, R \ F(|Cm−2|) is path connected.

Consider x and y as in the claim. Since R \ F(|Cm−1|) ⊂ R \ F(|Cm−2|), there
exists a path γ : [0, 1] → R \ F(|Cm−2|) such that γ (0) = x and γ (1) = y. Assume
for a contradiction that for example # F−1(x) > # F−1(y) and consider t0 = sup{t |
# F−1(γ (t)) ≥ # F−1(x)}. Since γ (t0) ∈ R \ F(|Cm−2|), any point p ∈ F−1(γ (t0))
belongs to the relative interior of a simplex σ of dimension m or m − 1. In both cases,
thanks to ClaimA.1, the restriction of F to the star of σ is open and injective. It follows
that there are # F−1(γ (t0)) distinct such stars of simplices whose images cover γ (t0).
Two such stars star σ 1 and star σ 2 are disjoint by Claim A.2. But since the restriction
of F to each of these stars of simplices is open, there is an open neighborhood of γ (t0)
which is covered at least # F−1(γ (t0)) times, a contradiction with the definition of x ,
y, and t0. ��
Claim A.4 The restriction of F to C \ ∂C is open.

Proof Consider a k-simplex σ k , 0 ≤ k ≤ m, of C which is not in ∂C: σ k ∈ C \∂C. Take
p ∈ int σ k , where int σ k is the relative interior of σ k . We denote by L = star σ k the
simplicial complex closure of the star of σ k . Since L is a subcomplex of C, it inherits
from C its property to be an oriented pseudo-manifold on which F is simplexwise
positive. Also, since σ k /∈ ∂C we have σ k /∈ ∂L . The restriction of F to any m-
simplex is injective and since any x ∈ ∂L belongs to some m-simplex containing
also p, we have that F(p) /∈ F(∂L). Since F(∂L) is compact, there exists an open
neighborhood U � q = F(p) such that U ∩ F(∂L) = ∅. We can then apply Claim
A.3 to the complex L with U playing the role of R: the number of inverse images
in U \ F(Lm−1) is constant. But since the image of any m-simplex in L , being a
non-degenerate full-dimensional simplex containing q, intersects U , this number is
at least one. It follows that F(L) ⊃ U \ F(Lm−1). F(L) is compact, because L is
compact, and therefore F(L) ⊃ U \ F(Lm−1) ⊃ U . Since U ∩ F(∂L) = ∅ we have
proven that U ⊂ F(L \ ∂L).

Given a set A, a point p, and ε > 0, denote byHp,ε(A) = {p+ ε(a − p) | a ∈ A}
the image of A by the homothety with center p and ratio ε. Since F is piecewise linear,
for any ε > 0, one has

F(Hp,ε(|L \ ∂L|)) = HF(p),ε(F(|L \ ∂L|)) ⊃ HF(p),ε(U ).
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It follows that the image of an arbitrary small neighborhood of p covers an open
neighborhood of q = F(p). We have shown that F is open at p. But since any point
p ∈ C \∂C belongs to the relative interior of some simplex in C \∂C, this result applies
to any p ∈ C \ ∂C. We have thus shown that the restriction of F to C \ ∂C is open and
the claim is proven. Notice that, since star σ k is open, we get as a consequence of the
claim that the image by F of the star of any k-simplex σ k ∈ C \ ∂C , 0 ≤ k ≤ m, is
open. Hence

σ k ∈ C \ ∂C ⇒ F(star σ k) is open. (17)

��
Our last claim will end the proof of the lemma:

Claim A.5 If there is q ∈ R \ F(|Cm−1|) such that F−1(q) is a single point then the
restriction of F to F−1(R) is injective.

Proof For a contradiction, assume there are x, y ∈ |C \ ∂C| such that x �= y and
F(x) = F(y). There are two simplices σ x , σ y ∈ C \ ∂C such that x ∈ int σ x and
y ∈ int σ y .

It follows from (17) that there are two open setsUx andUy , respective open neigh-
borhoods of F(x) = F(y), covered respectively by F(star σ x ) and F(star σ y). Since,
from Claim A.2, star σ x ∩ star σ y = ∅ it follows that the points in U = Ux ∩ Uy are
covered twice. But since there is q ∈ R\F(|Cm−1|) such that F−1(q) is a single point,
we get fromClaimA.3 that any point inR\F(|Cm−1|) is covered once, a contradiction
since U ∩ (R \ F(|Cm−1|)) �= ∅. ��
So, to conclude, we have proven that under the conditions of the lemma, the restriction
of F to F−1(R) is injective (Claim A.5) and open (Claim A.4). Being a one-to-one
continuous and open map, the restriction of F to F−1(R) is an homeomorphism on
its image R.
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