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Abstract

A d-dimensional framework is a pair (G, p), where G = (V, E) is a graph and p is
amap from V to RY. The length of an edge uv € E in (G, p) is the distance between
p(u) and p(v). The framework is said to be globally rigid in R? if every other d-
dimensional framework (G, q), in which the corresponding edge lengths are the same,
is congruent to (G, p). In a recent paper Gortler, Theran, and Thurston proved that if
every generic framework (G, p) in R? is globally rigid for some graph G onn > d +2
vertices (where d > 2), then already the set of (unlabeled) edge lengths of a generic
framework (G, p), together with n, determine the framework up to congruence. In
this paper we investigate the corresponding unlabeled reconstruction problem in the
case when the above generic global rigidity property does not hold for the graph. We
provide families of graphs G for which the set of (unlabeled) edge lengths of any
generic framework (G, p) in d-space, along with the number of vertices, uniquely
determine the graph, up to isomorphism. We call these graphs weakly reconstructible.
We also introduce the concept of strong reconstructibility; in this case the labeling
of the edges is also determined by the set of edge lengths of any generic framework.
For d = 1,2 we give a partial characterization of weak reconstructibility as well as
a complete characterization of strong reconstructibility of graphs. In particular, in the
low-dimensional cases we describe the family of weakly reconstructible graphs that
are rigid but not redundantly rigid.
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Fig.1 Two length-equivalent realizations of K4 which are not congruent. We can obtain these realizations
in R2 by putting £1 = /10, o = 4, £3 =2, £4 = /2

1 Introduction

Consider a graph G = (V, E) and amap p: V — R?. The pair (G, p) is called a d-
dimensional framework. We may also say that (G, p) is a realization of G in R?. The
length of an edge uv € E in (G, p) is defined to be the Euclidean distance between
p(u) and p(v). Given a framework (G, p), a fundamental question in distance geom-
etry is whether there exist other realizations (G, ¢) of G in R? in which corresponding
edge lengths are the same — not counting congruent realizations, which are the ones
obtained by applying an isometry (say, a translation) of R? to (G, p). If there are
no other realizations, or equivalently, if the edge lengths of G uniquely determine all
pairwise distances, then (G, p) is said to be globally rigid in R. It is known that if
p is generic, which means that the set of d|V| coordinates of (G, p) is algebraically
independent over the rationals, then the global rigidity of (G, p) depends only on G.
Thus we may call a graph G globally rigid in R? if every (or equivalently, if some)
d-dimensional generic realization (G, p) of G is globally rigid.

In arecent paper Gortler, Thurston, and Theran [10] investigated the unlabeled ver-
sion of the question above. In this case we are given a set of edge lengths, coming from
some d-dimensional realization of a graph on n vertices, and want to decide whether
this information uniquely determines the underlying graph G and the realization p,
up to isomorphism and congruence, respectively. We note that several applications of
the labeled as well as the unlabeled versions are mentioned in the literature, see e.g.
[3,14,20].

However, the unlabeled question turns out to be highly non-trivial even for complete
graphs, that is, even if we are given the list of all pairwise distances. This special case
was first studied by Boutin and Kemper in [4]. They gave the (non-generic) two-
dimensional example shown in Fig. 1, which demonstrates that in some cases even the
complete list of distances may be insufficient to uniquely determine the realization of
the underlying complete graph K,,. However, they proved that this is an exception: if
n > d+2 and the distances come from a generic realization in Rd, then the realization
is unique.

The main theorem of [10] extends this result on complete graphs to all globally rigid
graphs. In what follows it will be convenient to use the following notions. We say that
two frameworks (G, p) and (H, q) are length-equivalent (under the bijection ) if
there is a bijection ¥ between the edge sets of G and H such that for every edge e
of G, the length of e in (G, p) is equal to the length of ¥ (e) in (H, g). If G and H
have the same number of vertices then we say that they have the same order.
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Fig.2 Length-equivalent realizations of C4 where the mapping between the corresponding edges does not
arise from a graph isomorphism. This shows that Cy is not strongly reconstructible in c!

Theorem 1.1 [10, Thm. 3.4] Let G = (V, E) be globally rigid in R? on at least
d + 2 vertices, where d > 2, and let (G, p) be a d-dimensional generic realization
of G. Suppose that (H, q) is another d-dimensional framework such that G and H
have the same order and (G, p) is length-equivalent to (H, q) under some bijection .
Then there is a graph isomorphism ¢ : V(G) — V(H) which induces , that is, for
which ¥ (uv) = o)) for all uv € E. In particular, G and H are isomorphic
and the frameworks (G, p) and (H, q) are congruent after relabeling, i.e., (G, p) is
congruent to (G, q o ).

Note that if G is not globally rigid then we cannot expect a conclusion as strong as
that of Theorem 1.1, which can be seen as a strengthening of global rigidity. In this
sense the result is the best possible. Still, there is room for further investigation, as it
was already pointed out in [10]: the set of edge lengths may be sufficient to uniquely
reconstruct the graph G, even if the realization itself is not uniquely determined.

It turns out that if we consider frameworks as embeddings into the complex space
(Cd, we arrive at a notion that is more tractable than if we restricted ourselves to
real frameworks. To this end, we define the complex squared length of a vector
v = (v,...,v9) € C4 as Zflzl viz. Note that we do not take absolute values,
and consequently this does not define a norm (or rather, the square of a norm)
on C?. Nonetheless, using this notion of length we may extend our definition of
length-equivalence to complex frameworks. This allows us to define a version of
reconstructibility from unlabeled edge lengths among complex frameworks. In fact,
there are at least two distinct notions that arise naturally. The definition of the first one
is as follows.

Definition 1.2 Let (G, p) be a generic realization of the graph G in C¢. We say
that (G, p) is weakly reconstructible if whenever (H, q) is a d-dimensional generic
complex framework such that G and H have the same order and (G, p) is length-
equivalent to (H, q), then H is isomorphic to G.

Consider the two one-dimensional realizations of the cycle of length four in Fig. 2.
These realizations are length-equivalent under a (unique) bijection . However, 1 is
not induced by a graph isomorphism. This leads us to the second definition.

Definition 1.3 Let (G, p) be a generic realization of the graph G in C?. We say
that (G, p) is strongly reconstructible if for every d-dimensional generic complex
framework (H, g) that is length-equivalent to (G, p) under some bijection i and has
the same order, there is an isomorphism ¢: G — H for which ¥ (uv) = ¢u)p(v)
forall uv € E.
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Note that, since we assume (G, p) to be generic, its edge lengths are pairwise different,
and hence the bijection 1 is unique in the above definition.

As we shall see in Sect. 3, weak and strong reconstructibility is a generic property
of a graph in the sense that if there is a generic framework (G, p) in C¢ that is weakly
(resp. strongly) reconstructible, then every generic realization of G in C¢ is weakly
(resp. strongly) reconstructible. This motivates the following definition.

Definition 1.4 A graph G is said to be (generically) weakly reconstructible (respec-
tively (generically) strongly reconstructible) in C? if every d-dimensional generic
realization (G, p) of G is weakly (respectively strongly) reconstructible.

Later on, we shall define the real versions of these reconstructibility notions anal-
ogously, and our main interest is, in fact, in real frameworks, particularly as those are
the ones that are most relevant to possible applications. However, as we shall see, these
real versions are in some sense less well-behaved than their complex counterparts. This
is partly due to the fact that, by extending our attention to complex frameworks, the
problem becomes more amenable to the tools and results of algebraic geometry, many
of which only hold over an algebraically closed field such as the field of complex num-
bers. We stress that reconstructibility in C? is a stronger notion than reconstructibility
in R?. We also note that in considering complex frameworks we are following the
approach taken in [10]. In fact, the main ingredient in the proof of Theorem 1.1 is
(phrased according to our terminology) the following theorem from [10].

Theorem 1.5 Let G be a graph on n > d + 2 vertices, where d > 2. Suppose that G
is globally rigid in RY. Then G is strongly reconstructible in C?.

Figures 2 and 3 show that the conditions on n and d in Theorem 1.5 are both necessary.

Main Results

In the next two sections we shall define and introduce the main notions and tools
needed to investigate these new reconstructibility properties. In particular, we shall
define rigid graphs, the rigidity matroid, and the so-called measurement variety. We
shall also prove several key lemmas in these sections.

In Sect. 4 we exhibit some families of weakly reconstructible graphs in C¢, includ-
ing those not globally rigid, or even rigid. Our main contributions are in Sect. 5, where
we consider the cases of d = 1 and d = 2 in more detail. We show that the graph iso-
morphism problem can be polynomially reduced to the problem of deciding whether
a given graph is weakly reconstructible in one dimension (Theorem 5.9). We also
introduce bridge-invariant graphs, which have the property that, roughly speaking, by
replacing a non-redundant (with respect to rigidity) edge by some other non-redundant
edge we always obtain the same graph. We describe the family of bridge-invariant
graphs in two dimensions (Theorem 5.14). This result allows us to find all weakly
reconstructible non-redundant rigid graphs in C? (Theorem 5.17). We also consider
strongly reconstructible graphs in one and two dimensions and provide a complete
characterization of them (Theorems 5.20 and 5.22). The latter result shows that Theo-
rem 1.5 essentially captures the complete list of strongly reconstructible graphs in CZ.
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Fig. 3 Two length-equivalent realizations of K4 in R3, shown from above. The bounding triangle is kept
fixed, while the edges incident to the fourth vertex (which is above the plane of the other three) are “rotated”.
The edge lengths in this example may be chosen to be generic. This example shows that Ky is not strongly
reconstructible in C3, since the bijection pairing edges of the same length is not induced by a graph
automorphism

17D K

Fig.4 a Equivalent non-rigid frameworks. b Equivalent rigid, but not globally rigid frameworks

In Sect. 6 we examine some aspects of weak and strong reconstructibility in R,
Finally, in Sect. 7 we discuss some open questions regarding graph reconstructibility.

2 Preliminaries

In this section we provide the definitions and results from rigidity theory and algebraic
geometry that we shall use.

2.1 Graph Rigidity
Real Frameworks

Let G = (V, E) be a graph! on n vertices and d > 1 some fixed integer. A d-
dimensional realization of G is a pair (G, p) where p = (p1,..., pp) 1s a point
in R" or equivalently, a map p: V — R¥. We call such a point a configuration and
we say that the pair (G, p) is a framework. Two d-dimensional frameworks (G, p)
and (G, q) are equivalent if || p(u) — p(v)|| = |lg(u) — q(v)| for every edge uv € E,
and congruent if the same holds for every pair of vertices u, v € V. Here || - || denotes
the Euclidean norm.

! In this paper every graph is assumed to be simple, i.e., without parallel edges and loops.
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A framework is (locally) rigid if every continuous motion of the vertices which
preserves the edge lengths takes it to a congruent framework, and globally rigid if
every equivalent framework is congruent to it. See Fig. 4 for examples. We say that a
configuration p € R™ is generic if its nd coordinates are algebraically independent
over Q. It is known that in any fixed dimension d, both local and global rigidity
are generic properties of the underlying graph, in the sense that either every generic
d-dimensional framework is locally/globally rigid or none of them are (see [1,5,9]).
Thus, we say that a graph is rigid (respectively globally rigid) in d dimensions if
every (or equivalently, if some) generic d-dimensional realization of the graph is rigid
(resp. globally rigid). It follows from the definitions that globally rigid graphs are
rigid. The following much stronger necessary conditions of global rigidity are due to
Hendrickson [12]. We say that a graph is redundantly rigid in a given dimension if
it remains rigid after deleting any edge. A graph is k-connected for some k > 2 if it
has at least k + 1 vertices and it remains connected after deleting any set of less than
k vertices.

Theorem 2.1 Let G be a graph on n > d + 2 vertices for some d > 1. Suppose that
G is globally rigid in R%. Then G is (d + 1)-connected and redundantly rigid in R¢.

In our context it is useful to explore and understand the properties of the function
mapping the realizations of a graph to the (multi-)set of their Euclidean squared edge
lengths. This function is sometimes called the rigidity map, or edge function of a graph.
To study the analytic and algebraic properties of this function, it is useful to regard
the multi-set of edge lengths as an ordered tuple, i.e., a vector. One minor technical
problem is that this order, and thus many of the concepts relying on it, is not unique. To
sidestep this issue, we will always implicitly assume that there is some fixed ordering
of the edges of the graph in question. In what follows the exact ordering will not be
of much importance.

Let G be a graph on n vertices and m edges. We denote the aforementioned d-
dimensional rigidity map by m4 g : R"? — R, thatis, for a d-dimensional realization
(G, p) of G, the i-th coordinate of my g (p) is || p(u) — p(v)||?, where uv is the i-th
edge of the graph. Given a d-dimensional framework (G, p), we say that my4 g(p)
is the edge measurement sequence of p. Thus two frameworks (G, p), (H, g) are
length-equivalent if and only if there exists a bijection i between the edge sets of
G and H for which m4 g(p) = mg u(gq), where the ordering of the edges of H is
determined by the ordering of the edges of G and .

The Rigidity Matroid

The rigidity matroid of a graph G is a matroid defined on the edge set of G which
reflects the rigidity properties of all generic realizations of G.

Let (G, p) be a realization of a graph G = (V, E) in R?. The rigidity matrix of
the framework (G, p) is the matrix R(G, p) of size |E| x d|V |, where, for each edge
v;v; € E,in therow corresponding to v; v}, the entries in the d columns corresponding
to vertices i and j contain the d coordinates of p(v;) — p(v;) and p(v;) — p(v;),
respectively, and the remaining entries are zeros. In other words, it is 1/2 times the
Jacobian of the aforementioned rigidity map. See [28] for more details. The rigidity
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matrix of (G, p) defines the rigidity matroid of (G, p) on the ground set E by linear
independence of rows of the rigidity matrix. Any two generic frameworks (G, p) and
(G, q) have the same rigidity matroid. We call this the d-dimensional rigidity matroid
Zq4(G) = (E, rg) of the graph G. We denote the rank of Z,;(G) by ry(G). A graph
G = (V, E) is independent if r4(G) = |E| and it is a circuit if it is not independent
but every proper subgraph G’ of G is independent. An edge e of G is a d-bridge if
ra(G — e) = ry(G) — 1 holds. When the dimension d is clear from the context, we
shall simply write that e is a bridge.”
Gluck [8] characterized rigid graphs in terms of their rank.

Theorem 2.2 Let G = (V, E) be a graph with |V| > d + 1. Then G is rigid in R? if
and only ifrg(G) =d|V| — (d'zH).

Given two matroids (S1, .#1) and (S», .#,), their direct sum is the matroid (S; U
8>, F), where & ={AC S1US: ANS; € 7 fori = 1, 2}. We say that a matroid
is connected if it cannot be obtained as the direct sum of two matroids. Every matroid
arises, in a unique way, as the direct sum of some connected matroids. In the case of
graphic matroids, this corresponds to the decomposition of the edge set of the graph
into the edge sets of its 2-connected components. For a more thorough introduction
to the basic notions of matroid theory, see e.g. the book by Oxley [23]. For a detailed
exposition of rigidity theory, see [16,18,28].

Complex Frameworks

Analogously to the real case, we can define a d-dimensional complex framework to be
a pair (G, p) where G = (V, E) is a graph and p: V — C? is a complex mapping.
The complex squared length of an edge e = uv is

d
Mmuv(p) =Y _(pwk — p))?,

k=1

where k indexes over the d dimension-coordinates. This coincides with the usual
(Euclidean) squared length for real frameworks. We say, as in the real case, that
two frameworks (G, p) and (G, q) are equivalent if my,,(p) = m,y(q) for each
edge uv, and they are congruent if the same holds for each pair of vertices u, v € V.
A configuration p € C"? is, again, generic, if the coordinates of p are algebraically
independent over Q. A point p € R is generic as a real configuration precisely if it
is generic as a complex one.

Using these notions one can define the analogues of rigidity and global rigidity in
the complex setting. It turns out that these notions, as graph properties, coincide with
their real counterpart.

2 n graph theory an edge e in a connected graph G, for which G — e is disconnected, is sometimes called
a bridge. To avoid confusion, we shall always call such an edge a cut-edge and mention bridges only in the
matroidal sense.
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Theorem 2.3 [10,11] Complex rigidity and global rigidity are generic properties
and a graph G is rigid (respectively globally rigid) in C¢ if and only if it is rigid (resp.
globally rigid) in R,

We can define the rigidity matrix R(G, p) for complex frameworks in the same
way as in the real case. This, again, allows us to define the rigidity matroid of the
framework. It is not difficult to show that the rigidity matroid of a generic framework
inC4is isomorphic to the d-dimensional rigidity matroid %Z,;(G). Throughout the rest
of the paper we shall only consider complex frameworks, unless stated otherwise, and
refer to them as frameworks.

2.2 Basic Results from Algebraic Geometry

As mentioned in the introduction, passing to the field of complex numbers allows us to
use methods of algebraic geometry to analyze the set of possible edge measurements.
The utility of this approach will become apparent in the next section, where we shall
define the measurement variety of a graph, a complex variety which carries information
about the reconstructibility properties of the graph and its realizations. In the rest of
this section we introduce the relevant concepts and results from algebraic geometry.

The Zariski Topology

Let 7 be an ideal of C[xy, ..., x,], that is, a set of polynomials closed under addition
and under multiplication by arbitrary polynomials, and denote by V (/) the set of
points x € C" such that f(x) = O for all f € I. We say that V C C" is a variety
if V.= V() for some ideal I of C[xy, ..., x,]. By Hilbert’s basis theorem every
ideal in C[xy, ..., x,] is finitely generated, and it follows that a variety can always be
written as the set of simultaneously vanishing points of a finite number of polynomials.
Conversely, for any set of points X C C”, let /(X) denote the set of polynomials in
n variables vanishing on X; this forms an ideal of C[xy, ..., x,]. A variety is said to
be irreducible if it is not a proper union of two subvarieties.> For example, C" itself
is irreducible. Any variety can be written uniquely as the union of a finite number of
irreducible varieties, called the irreducible components of the variety.

The family of varieties is closed under taking finite unions and arbitrary intersec-
tions. The empty set and C” itself are easily seen to be varieties, thus varieties form
the closed sets of a topology on C”". This is called the Zariski topology, and is a proper
sub-topology of the usual Euclidean topology on C”. The closure of an arbitrary set
X C C" with respect to this topology is given by X = V (I(X)). The product of the
Zariski topologies on C" and C™ is strictly coarser than the Zariski topology on C" 1",
For example, the Zariski-closed sets of C are the whole set and its finite subsets. It
follows that the closed sets of the product topology on C? consist of a finite union
of horizontal and vertical lines and points, along with C? itself, while the Zariski
topology contains, for example, the parabola V (y — x?). However, the closure of the
product of two sets does coincide in the product topology and the Zariski topology.

3 Note that some authors use the terms affine algebraic set and variety instead of variety and irreducible
variety, respectively.
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Lemmal_2.4 Let U C C",V C C™ be arbitrary subsets. Then UxV =UxV,
where X denotes the closure of X in the respective Zariski topology.

Proof U x V. 2 U x V follows from the fact that the left hand side is the closure
in the product topology, which is coarser than the Zariski topology. For the other
direction, we have to show that for any u € U,v € V, and fellUxYV)C
Clxt, -y X0, Y1y ---» Ym] we have f(u,v) = 0. Notice that for any v9 € V the
polynomial f(x, vg) € Clxy, ..., x,]isin I(U). It follows that f(u, vg) = 0. Since
this holds for any vy € V, the polynomial f(u,y) € C[yy,..., yn]isin I(V). This
implies that f(u, v) = 0, as desired. O

Constructible Sets

We call a subset of C" constructible if it can be obtained from varieties by taking
intersections and complements finitely many times. A constructible set S is irreducible
if it has an irreducible Zariski closure. We say that a variety is defined over Q if it can be
defined by polynomials with rational coefficients. Similarly, a constructible set is said
to be defined over Q if it can be constructed from varieties defined over Q. It is known
that in this case the closure is defined over Q as well. The image of a constructible
set under a polynomial map is also constructible; this is Chevalley’s theorem. If the
original set was defined over Q and the polynomial map has rational coefficients, then
the image is defined over Q as well. Moreover, the image of an irreducible variety
under a polynomial map is irreducible.

Lemma 2.5 [10, Lem. A.5] Suppose that S is a non-empty irreducible constructible
set. Then S contains a non-empty Zariski open subset U of S. If S is defined over Q,
then U can be chosen to be defined over Q as well.

Generic Points

Let S be a constructible set, defined over Q. A point x € S is generic if it does not
satisfy any polynomial equation with rational coefficients except those in 7(S). We
will denote the generic points of S by Gen S.

Lemma 2.6 Ler S be an irreducible constructible set defined over Q. Then Gen S is
Zariski dense in S.

Proof This is a consequence of [10, Lem. A.6]. O

Lemma 2.7 Let V be an irreducible variety defined over Q and f: V — C" a
polynomial map with rational coefficients. Then f(Gen V) = Gen f (V).

Proof This is a combination of the statements of Lemmas A.7 and A.8 from [10]. O

Lemma 2.8 Let S be an irreducible constructible set defined over Q. Then Gen S =
Gen S and, in particular, each generic point of S is in S.
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Proof 1t is clear that Gen S = Gen S N S, so we only need to show that GenS C S.
By Lemma 2.5, § contains a non-empty open subset U C S that is defined over Q. In
other words, U = {x € S : fi(x) #0or f2(x) #0or ... or fx(x) # 0} for some

polynomials fi, ..., fx with rational coefficients. Since U is non-empty, fi ¢ I (S)
for some 1 < i < k. It follows that generic points of S do not satisfy f;, and thus they
lieinU C S. O

For a thorough introduction to the basic notions of algebraic geometry, see [25].
An exposition of constructible sets, including a proof of Chevalley’s theorem, can be
found in [2]. The reader may also consult the appendices of [10] and [7].

3 The Measurement Variety

In this section, we define the measurement variety of a graph and examine some of
its structural properties. The proof of Theorem 1.1 was obtained in [10] by exploring
some properties of this variety. We shall also use it in the study of weak and strong
reconstructibility.

Let G be a graph with n vertices and m edges. As before, we assume that there is
some fixed ordering of the edges of G. Recall the rigidity map my g : R" — R™
is defined by mapping a realization in RY, viewed as a point in R"?, to its edge
measurement sequence. This map extends to a map from C"? to C” by mapping a
realization in C¢ to its complex edge measurement sequence. Formally, for a frame-
work (G, p) in C¢, let the i-th coordinate of mq.g(p) (Which corresponds to some
edge uv of G) be my,, (p), the squared complex edge length of uv in (G, p). It follows
from Lemma 2.5 (and the two paragraphs preceding the lemma) that the image of C™?
under this polynomial map is an irreducible constructible set, defined over Q. This
leads us to the following definition.

Definition 3.1 The d-dimensional measurement variety of a graph G (on n vertices),
denoted by M ¢, is the Zariski closure of md,G((C"d).

In the next subsection we study the connection between the measurement variety
and the graph reconstructibility notions defined in the introduction. The most important
consequence of this connection is that both weak and strong reconstructibility in C¢
are generic, for all d, i.e., the existence of a single reconstructible generic framework
guarantees the reconstructibility of every generic framework (in a given dimension). In
the rest of the section we shall consider further structural properties of the measurement
variety, as well as its connection to the rigidity matroid.

3.1 Connection with Weak and Strong Reconstructibility

In what follows we shall frequently consider graphs with the same measurement
variety. In this case by writing My c = M4z we mean that there is a bijection ¥
between the edge sets of G and H such that when using the corresponding orderings
of the edges, the measurement varieties of the graphs coincide. Whenever we want to
explicitly refer to this bijection, we say that My ¢ = My, g under the edge bijection .
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Moreover, if we write both My ¢ = My g and my g(p) = mg m(g) in the same
context, we shall mean that these equalities are satisfied under the same edge bijection.

The next lemma asserts, in essence, that whether a point of the measurement variety
can occur as the edge measurement sequence of a generic framework only depends
on the measurement variety, and not the underlying graph. In fact, these points are
precisely the generic points of the measurement variety.

Lemma 3.2 Suppose that G and H are graphs on n and n’ vertices respectively, such
that My, = Mg, . Then for each generic complex d-dimensional realization (G, p)
there exists a generic realization (H, q) that is length-equivalent to (G, p).

Proof By Lemmas 2.7 and 2.8 we have

mg.6(Gen C") = Genmg (C"?) = Gen My

= Gen My g = Gen md‘H((C"/d) = mgy, g (Gen (C"/d),

which immediately implies the statement. O

By using this observation we can prove that weak reconstructibility is a generic prop-
erty. We say that My ¢ uniquely determines the graph G if whenever My 6 = My u
for some graph H with the same order as G, we have that H is isomorphic to G.

Theorem 3.3 Let G be a graph and d > 1 be fixed. The following are equivalent:

() G is (generically) weakly reconstructible in C¢.
(ii) There exists some generic d-dimensional framework (G, p) that is weakly recon-
structible.
(ili) My G uniquely determines G.

Proof (i)=>(ii) is trivial. For (ii) = (iii), suppose that My ¢ = M,y for some graph
H with the same order as G. By Lemma 3.2, there exists some generic realization
(H, q) for which mq g(p) = maq u(q), thatis, (H, q) is length-equivalent to (G, p).
By the weak reconstructibility of (G, p), it follows that H is isomorphic to G.
Finally, to see (iii) = (i), take a generic d-dimensional framework (G, p) and let
(H, gq) be a length-equivalent generic framework, where H has the same order as G.
Let mg.g(p) = mq u(g) = x denote the edge measurements of these frameworks.
By Lemma 2.7, x, as the image of a generic configuration, is generic in My g, so the
only polynomials with rational coefficients that it satisfies are those that are satisfied
by every element of M, . But since x € My g, x satisfies the (rational) polynomials
defining My . It follows that My ¢ € My, p. The same argument shows that My g €
M, ¢ holdsas well, so My ¢ = My, . By ourassumption this implies that G and H are
isomorphic. Since p was arbitrarily chosen, this shows that G is weakly reconstructible
in d dimensions. O

We note that Lemma 3.2 and Theorem 3.3 are contained (either implicitly or explic-
itly) in [10].

Strong reconstructibility admits a similar characterization in terms of the measure-
ment variety. Given a graph G, any permutation ¥ of its edge set acts on C” by

@ Springer



Discrete & Computational Geometry (2021) 66:344-385 355

permuting the coordinate axes. We say that My ¢ is invariant under v if this action
leaves it in place. The permutation v is induced by a graph automorphism if there is
an automorphism ¢ of G such that for every edge uv € E(G), ¥ (uv) = ¢(u)p(v). It
is clear that M, ¢ is invariant under permutations that are induced by graph automor-
phisms: indeed, even md,G((C”d) is invariant, so its Zariski closure must be as well.
The next theorem characterizes strong reconstructibility in terms of the converse state-
ment. In particular, it shows that, like weak reconstructibility, strong reconstructibility
is a generic notion as well.

Theorem 3.4 Let G be a graph and d > 1 be fixed. The following are equivalent:

() G is (generically) strongly reconstructible in C.
(i1) There exists some generic d-dimensional framework (G, p) which is strongly
reconstructible.
(iii) Mg, G uniquely determines G and whenever My ¢ is invariant under a permutation
Y of the edges of G, V is induced by a graph automorphism.
(iv) Whenever My ¢ = My u under an edge bijection \ for some graph H with the
same order as G, V is induced by a graph isomorphism.

Proof (i) = (ii) is again trivial. (ii) = (iii): Since strong reconstructibility implies weak
reconstructibility, M, ¢ uniquely determines G by the previous theorem. Let ¢ be a
permutation of the edges of G under which My ¢ is invariant. It follows that there
is a d-dimensional framework (G, ¢) such that my g (p) = mg,c(q) under the edge
bijection v, and indeed, by Lemma 2.7 we can choose ¢ to be generic. But then the
strong reconstructibility of (G, p) implies that v is induced by a graph automorphism.

(iii) = (iv): Suppose that My G = My . By our assumptions, it follows that there
is some isomorphism ¢: V(G) — V(H), inducing an edge bijection ¢. Clearly,
Mg g = Mg g under qb_l. It follows that M, ¢ is invariant under the permutation
¢! oy of the edges of G, thus it is induced by some automorphism ¢’ of G. Then v
is induced by the graph isomorphism ¢ o ¢, as desired.

(iv)=(i): Let (G, p) be a generic d-dimensional framework and let (H, ¢g) be a
length-equivalent generic framework, where H has the same order as G. Let y denote
the edge bijection between the two graphs. As in the proof of the previous theorem,
from the length-equivalence of these generic frameworks (on the same number of
vertices) it follows that My ¢ = My g under v, and thus, by our assumption, ¥ is
induced by a graph isomorphism. O

The preceding theorems show that the reconstructibility properties of a graph can be
determined by considering its measurement variety. This motivates the further study of
this object, both in terms of its algebraic structure and its connection with the combi-
natorial structure of the underlying graph. In the following subsections we investigate
further graph properties which are reflected in the structure of the measurement variety.

In Sect. 6 we shall define and examine the analogues of weak and strong recon-
structibility in the real setting. We shall see that, in general, the real version of weak
reconstructibility is not a generic property, and thus the corresponding version of
Theorem 3.3 does not hold in this case.
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3.2 Basic Structure of the Measurement Variety

One of the fundamental properties of an irreducible variety V is its dimension. This
number, denoted by dim V, is the largest integer k for which there exists a chain

V=WVi2Vic12...2VW#9

of irreducible subvarieties. In the case of the measurement variety, it turns out that this
dimension is exactly the rank of the rigidity matroid of G.

Lemma 3.5 Let G be a graph on n vertices. Then

dim My ¢ = rq4(G).
In particular, whenn > d 4+ 1 we have dim My ¢ < nd — (dérl) and equality holds if
and only if G is rigid in d dimensions.

Proof The equality in the first part is implicit in the proof of [10, Lem. 3.3]. The second
part follows from Theorem 2.2. O

A consequence is the following theorem, which was already noted in [10].

Theorem 3.6 Let (G, p) be a generic d-dimensional realization of the rigid graph G
on n vertices and suppose that for some framework (H, q), with H having the same
number of edges as G and n' < n vertices, we have mg g(p) = mg (q). Then
n=n', His rigid as well and My g = My .

Proof If n < d then G is a complete graph and the statement is easy to see. So we may
suppose that n > d + 1. As in the proof of Theorem 3.3, the existence of a generic
point in My ¢ that is also in My g implies My 6 € My, . From Lemma 3.5 and the
rigidity of G we have that dim M, ¢ is maximal among graphs on at most n vertices,
and in particular dim My p < dim My . Since any strict subvariety of an irreducible
variety has dimension smaller than that of the variety, we must have My g = My 1.
The rigidity of H and the fact that n” = n must hold are immediate from Lemma 3.5.

|

The significance of this theorem is that for a rigid generic framework (G, p), in the
definitions of weak and strong reconstructibility we can omit the condition that (H, ¢)
is generic and still arrive at the same notion. This is not true for non-rigid graphs in
general: we shall illustrate this in Sect. 4. Another consequence of Lemma 3.5 is the
following characterization of independent graphs.

Theorem 3.7 Let G be a graph with m edges. Then G is independent in d dimensions
if and only if My ¢ = C™.

Proof By Lemma 3.5 we have

dim My g = rg(G) <m = dim C™.
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If G is independent, then equality holds, thus M, ¢ = C™, since every strict sub-
variety of C™ has dimension less than m. Conversely, if G is not independent, then
dim M4 ¢ < dim C™, and so the two varieties cannot be equal. O

Our next aim is to show that the measurement variety of a graph determines its
rigidity matroid. We will need the following observation regarding the measurement
variety of subgraphs. Consider a graph G = (V, E). For a subset of edges E’ C E,
let 7 : C" — CIE'l denote the projection onto the axes corresponding to the edges
of E’. We will omit the subscript when it is clear from the context. It is a basic fact of
topology that for any continuous function f: X — Y between two topological spaces

and for any subset A C X, we have f(Z) = f(A) (see e.g. [22, Chap. 2, Thm. 18.1]).
Applying this to g : C" — CIE'l and my g (C") € C™ we get the following.

Lemma3.8 Let G = (V, E) be a graph with edges ey, ..., e, and G' = (V', E') a
subgraph of G. Then g/ (Mg.G) = My G-

We can deduce from Theorem 3.7 and Lemma 3.8 that M, ¢ fully determines the
d-dimensional rigidity matroid of G: for any subgraph G’ = (V, E’) we can decide
whether E’ is independent or not by considering M ¢, which can be determined from
M, g by taking the closure of its projection onto some coordinate axes. This argu-
ment is made precise by the following theorem. We note that this is a straightforward
generalization of [10, Lem. 5.5], which is the analogous statement in one dimension.

Theorem 3.9 Let G and H be graphs with the same number of edges and suppose
that Mg.c = Mg, g under some edge bijection . Then this edge bijection defines an
isomorphism between the d-dimensional rigidity matroids of G and H.

Proof Let C be a set of edges of G, and let C' = v/(C) be the set of corresponding
edges in H. By Theorem 3.7 and Lemma 3.8 we have

C isindependent < mc(Myc) = Clfl & wc (Mg, ) = clcl
& (' is independent,

which means, by definition, that ¢ defines an isomorphism between the respective
rigidity matroids. O

In general, finding an explicit description of the defining polynomials of M, g
seems non-trivial. We close this subsection by showing a special case where it is
feasible.* We shall consider one-dimensional complex realizations of cycles. The
cycle on n vertices is denoted by C,. The rigidity map m |, c, has a simple enough
structure which allows us to describe the measurement variety in a compact form. We
shall use the following observation. Let n > 2 be an integer. Define

fuis o) =[x £ £ x) € Qlxr, .. xl.

4 Another example can be found in [7], where the measurement varieties of complete graphs are shown to
be isomorphic to certain varieties of complex symmetric matrices.
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Then f, is a symmetric polynomial. Moreover, if we write f,, as a sum of monomials,
then we can see that every variable in every term has even degree. It follows that there
exists a symmetric polynomial g,, with rational coefficients such that

s xn) = gn(x?, . x2). 1)

In particular, g(a%, e, a,%) = 0 wheneveray + --- +a, = 0.
Theorem 3.10 m ¢, (C"?) = My ¢, = V(gn).

Proof Denote the vertices of C,, by V. = {vy,...,v,} and let E = {eq,...,e,}
be a consecutive labeling of the edges, that is, ¢; = vjvj4y fori = 1,...,n — 1
and e, = vyvy. If (Cp, p) is a one-dimensional realization of C, for some p =
(pt1, ..., pn) € C", then

gnomic,(p) = fa(p2—Pp1,..., Pn — Pu=1, P1 — Ppu) =0,

somj,c, (C™) C V(gn).Conversely,ifby, ..., b, € Caresuchthat g, (b, ..., b,) =
0, then taking arbitrary square roots @; = +/b; we have f,(ai,...,a,) = 0. By
the factorization of f, this means that, by negating some of g;’s, we can suppose
ai + --- + a, = 0. Any such unsquared length measurement can be obtained by
placing the vertices of C,, one by one, that is, letting p; = Oand p; = a;+---+a;—1
fori =2,...,n. O

Note that g, is a symmetric polynomial, and consequently V(g,) = Mj ¢, is
invariant under any permutation of the edge set of C,,. When n > 4, not all of these
permutations arise from a graph automorphism; thus, using Theorem 3.4, we see
again that C,, is not strongly reconstructible in C'. On the other hand, it is weakly
reconstructible in C!, as we shall see later on.

Theorem 3.10 shows that M ¢, can be defined as the set of zeros of a single
polynomial. This is not a coincidence: it is known that any irreducible variety V € C™
with dim V = m — 1 can be defined by a single polynomial. Such a set is sometimes
called a hypersurface. It follows from Lemma 3.5 that the measurement variety of
a graph G whose edge set is a circuit in the d-dimensional rigidity matroid is a
hypersurface, since we have

dmM,; ¢ =ry(G) =m — 1.
It would be interesting to explicitly describe the measurement varieties (and their

defining polynomials) of circuits in d > 2 dimensions. See [24] and references therein
for more discussion about these so-called circuit polynomials.

3.3 Direct Sum Decompositions
Next we look for conditions under which the measurement variety of a graph arises

as the product of the measurement varieties of some of its subgraphs G;, 1 <i </,
where the edge sets of the G;’s form a non-trivial partition of the edge set of G. In this

@ Springer



Discrete & Computational Geometry (2021) 66:344-385 359

case it will be convenient to say that My ¢ is the direct sum of these smaller varieties
and denote this by My g = @§=1 My G, S It is clear that My ¢ is the direct sum of
the measurement varieties of the connected components of G.

A 2-block of a graph G is a maximal 2-connected subgraph of G. Note that a single
edge e is a 2-block if and only if e is a cut-edge of G.

Lemma3.11 Let G = (V, E) be a graph and let G, . .., G| be its 2-blocks. Then for
anyd > 1 we have My g = @f’:l My,

Proof Consider a cut-vertex v of G and let V' be the vertex set of a connected com-
ponent of G — v. Denote by G the subgraph of G induced by V' + v and let G, be
the subgraph induced by V — V’. Observe that for a graph H the set m4_ g (C") is not
changed if we restrict the realization space by fixing the position of some vertex of H.
By applying this observation to G, G, G, and v, we can deduce that, possibly after
relabeling the edges, we have md,G((C”d) = mg.G, (C"y @ Md.G, (C"y, and hence
My = My G, ® My G, The lemma follows by induction. O

Note that the (edge sets of the) 2-blocks of a graph also give rise to a direct sum
decomposition of %Z,;(G) and, as mentioned before, in the d = 1 case this is precisely
the decomposition of %) (G) into connected components. In light of this, it seems
plausible that there is a connection between the direct sum decomposition of the
measurement variety and that of the rigidity matroid. The next statement shows that
such a connection indeed exists: the edge sets corresponding to direct summands of
the measurement variety also correspond to direct summands of the rigidity matroid.

Theorem 3.12 Let G = (V, E) be a graph, and suppose that My g = My 6, ® M4,
for some subgraphs G; = (V, E;) fori = 1,2. Then 24(G) = Z4(G1) ® Z4(G>).

Proof Let C = C; U C; be a subset of edges with C; € E;, i = 1,2. Then, by
Theorem 3.7, C is independent precisely if M, c = CI€!. But

My c =nc(My,c) =ncMy,6, ® My,G,) = nmc,(My,G,) ® mc,(Ma,G,)
=TC, (Md,Gl) @ nCz(Md,Gz) = Md,Cl ® Md,sz

which implies that C is independent if and only if C; and C, are independent. Since
this is true for any edge set C, Z4(G) = Z4(G1) & Z4(G,) follows. O

Lemma 3.11 implies that in one dimension the converse of Theorem 3.12 also holds,
showing that in this case the direct sum structures of the measurement variety and the
rigidity matroid coincide. It is unclear whether this remains true in higher dimensions.
The next theorem shows that the converse statement holds, for all d > 2, in the special
case when one of the direct summands consists of a single edge e, that is, when e is a
bridge of %, (G).

SOf M, is the product of two sets X, X’ then both X and X’ must be the measurement varieties of some
subgraphs of G. Indeed, by Lemma 2.4, X and X’ must be (irreducible) varieties, and by Lemma 3.8, we
have that M; o = m(My ) = X, where G’ is the subgraph of G spanned by the edges corresponding
to X.
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It is well known that if a graph G is not rigid in C¢, then for any generic realization
(G, p) in C? there is an infinite number of pairwise non-congruent frameworks that
are equivalent to (G, p), while if G is rigid, then there are only finitely many such
frameworks. In particular, if G is rigid and e = wuv is a bridge of %Z,;(G), then for
every generic realization (G — e, p) in C¢ there is an infinite number of frameworks
equivalent to (G — e, p) in which the “length” of e is different.

Theorem 3.13 Ler G be a graph on n vertices with edges ey, ..., ey, and let G' =
G — ep. Then ey, is a bridge of Z4(G) if and only if Mg, = My ¢ ® C.

Proof. Sufficiency is implied by Theorem 3.12, so we only need to show neces-
sity. Suppose that e, is a bridge of Z;(G) and let § = md,G((C”d). Note that
Mg c € Mg @ C always holds, so it suffices to prove containment in the other
direction. Let X = (x1,...,X,) € Gen S be a generic edge measurement sequence
of G. By Lemma 2.7 this corresponds to the squared edge lengths of some complex
generic realization of G. Since ¢, is a bridge, there is an infinite set ¥ € C such that
(X1, ..., xm—1) xY € S. Using Lemma 2.4 and the observation that Y = C, we have

Xty oo Xm—) X C=(x1, ..., xm_1) X Y €8 = My .

In fact, what we have shown is that 7 (Gen S) @ C € M, ¢, where 7 is the projection
of C™ onto the first m — 1 coordinates. Thus, we only need to show that the closure
of 7 (Gen §) is My ¢’ This follows from Lemmas 2.6 and 3.8:

7(GenS) =n(GenS) =n(My,g) = My g - O

4 Examples of Reconstructible Graphs

Some graphs are weakly reconstructible because they possess some extremal property.
Trivial examples are complete graphs as well as graphs obtained by deleting an edge
from a complete graph, which are obviously weakly reconstructible due to the fact
that they are the only graphs, up to isomorphism, on the given number of vertices and
edges.

In this section we identify two families of graphs which are weakly reconstructible
because of similar, though more subtle reasons. While the structure of these graphs is
highly special (both families are simple extensions of complete graphs), they provide
an interesting example of using the tools and results obtained in the previous sections
to prove reconstructibility, without explicitly referring to the underlying algebraic
machinery. They also show that redundant rigidity, and indeed rigidity, is not a neces-
sary condition of weak reconstructibility.

At the end of this section we shall apply some of the results of Sect. 3 to see how
properties of the rigidity matroid of a graph can sometimes be used to verify weak or
strong reconstructibility.
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4.1 Maximally Non-Rigid and Non-Globally Rigid Graphs

We call a graph G on n vertices and m edges maximally non-globally rigid (resp.
maximally non-rigid) in some fixed dimension d if it is not globally rigid (resp. not
rigid) but every graph on n vertices and with more than m edges is globally rigid (resp.
rigid).

Theorem 4.1 Let G be a graph onn vertices andd > 2 a fixed dimension. Suppose that
G is the unique maximally non-globally rigid graph on n vertices (up to isomorphism).
Then G is weakly reconstructible in C.

Proof By Theorem 3.3 it suffices to show that M, ¢ uniquely determines G. Suppose
that for some graph H with the same number of vertices as G we have My ¢ = My H.
Note that H cannot be globally rigid, for otherwise Theorems 1.5 and 3.4 (or, in the
case when n < d + 1, the fact that H must be a complete graph) would imply that G
is isomorphic to H, contradicting the condition that G is not globally rigid. It follows
that H is a non-globally rigid graph on n vertices and with the same number of edges
as G, so by the assumption that such a graph is unique we conclude that G and H
must be isomorphic. i

A similar result holds for non-rigid graphs.

Theorem 4.2 Let G be a graph on n vertices and d > 1 a fixed dimension. Suppose
that G is the unique maximally non-rigid graph on n vertices (up to isomorphism).
Then G is weakly reconstructible in C.

Proof The proof is analogous to that of Theorem 4.1. Suppose that My ¢ = My g for
some graph H on n vertices. Then by Theorem 3.9 the rigidity matroids of G and H
are isomorphic, so in particular H cannot be rigid either. By the condition on G, this
implies that G and H are isomorphic, as desired. O

Next we show that for every n > 2 and d > 1 there exists a unique maximally
non-globally rigid graph in d dimensions. For 2 < n < d + 1 this follows from the
fact that in these cases the only (globally) rigid graph on n vertices is K, and hence
K, — e is the unique maximally non-globally rigid graph.

It remains to consider the case when n > d + 2. In the next proof we shall use
the coning operation. Given a graph G and a new vertex v, the cone graph G * v is
obtained by adding v to the vertex set of G and connecting it to every vertex of G. The
following theorem establishes a connection between rigidity properties of a graph and
its cone graph.

Theorem 4.3 [6,27] Letd > 1 be arbitrary. Then G is rigid (respectively globally
rigid) in d dimensions if and only if the cone graph G x v is rigid (resp. globally rigid)
ind 4+ 1 dimensions.

Theorem 4.4 Let H be the extension of K, _1 by a vertex of degree d, where d > 1 and
n >d+2. Then H is the unique maximally non-globally rigid graph in d dimensions
on n vertices.
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(a) (b)

Fig. 5 The only maximally non-rigid (a) and maximally non-globally rigid (b) graph in the plane on six
vertices

Proof H is not (d + 1)-connected, so by Theorem 2.1 it is not globally rigid. Thus we
need to show that any graph G with n vertices that is not isomorphic to A and has at
least (5) — (n — 1 — d) edges, is globally rigid.

We prove this by induction on n (for all d). If n = d + 2, then G must be the
complete graph K442, and thus it is globally rigid. Let n = d 4+ 3. Ford = 1 itis
easy to check that the assertion holds. Otherwise, by the condition on the number of
non-edges, G must have a vertex v such that every other vertex is connected to v. By
induction G — v is globally rigid in d — 1 dimensions, thus G, as the cone graph of
G — v, is globally rigid in d dimensions. Now suppose n > d + 3. Since G is not
isomorphic to H and it has at most n — 1 —d non-edges, every vertex must have degree
at least d + 1. Moreover, there cannot be two adjacent vertices of degree d + 1, since
this would mean that G has atleast 2 - (n — 2 — d) > n — 1 — d non-edges, which is
a contradiction. Let v be a vertex of G with least degree. Now v must have degree at
most n — 2, for otherwise G would be complete. By the preceding observation, every
vertex in G — v has degree at least d + 1. Thus G — v has at most n — 2 — d non-edges,
and hence, by the induction hypothesis, G — v is globally rigid. Since v has at least
d + 1 neighbors, G contains as a subgraph the extension of G — v by a vertex of degree
d + 1, an operation which is known to preserve global rigidity. It follows that G is
globally rigid, as desired. O

The situation is very similar in the case of maximally non-rigid graphs. Here, with
one exception, there is only one such graph for any n and d. For n < d + 1 the
unique maximally non-rigid graph is K,, — e as we noted earlier. The next case, when
n = d+2,1is more subtle. Whend > 2 and n = d + 2 there exist two non-isomorphic
graphs that can be obtained by deleting two edges from K;4>. Neither of these graphs
have enough edges to be rigid and hence they are both maximally non-rigid. This case
happens to be the only exception, as shown by the next result.

Theorem 4.5 Let H be the extension of K,— by a single vertex of degree d — 1 for
somed > 1 andn > d + 3. Then H is the unique maximally non-rigid graph in d
dimensions on n vertices.

Proof 1t is easy to see that H is not rigid. Let G be a graph on n vertices and at least
(’;) — (n — d) edges that is not isomorphic to H. We show that G must be rigid. If
G is complete, then this is clear. Since G and H are not isomorphic, every vertex of
G must have degree at least d, and it is easy to check that there can be at most three
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vertices of degree exactly d. Moreover, if there are three such vertices, thenn = d + 3
and G is isomorphic to K ;3 with a triangle removed, which is known to be rigid.
So suppose that there are at most two vertices of degree d in G. Two such vertices
cannot be adjacent, since this would imply that G has atleast2- (n — 1 —d) > n—d
non-edges, a contradiction. It follows that, by adding an edge to G that connects two
non-adjacent vertices with lowest degree, we obtain a graph with at mostn — 1 —d
non-edges, in which every vertex has degree at least d + 1; but by Theorem 4.4, such
a graph is globally rigid, and hence by Theorem 2.1, G must be rigid. This completes
the proof. O

We note that, with some exceptions in the d = 1 case, none of the weakly recon-
structible graphs presented in this section are strongly reconstructible. We sketch the
proof of this in the following. First, note that in both the maximally non-rigid and
the maximally non-globally rigid graphs given by Theorems 4.4 and 4.5, every edge
incident to the extension vertex is a d-bridge. Let G be such a graph. If there are at
least two bridges, then Theorem 3.13 implies that permuting these edges non-trivially
and leaving the rest of the edges in place gives a permutation ¥ of the edges of G
under which M, ¢ is invariant. On the other hand, it is not difficult to show that
Y is not induced by a graph automorphism, so by Theorem 3.4, G is not strongly
reconstructible in C¢. A similar argument works if there is only one bridge. This is
an example of a more general phenomenon: in Sect. 5.5, we shall use essentially the
same argument to prove that strongly reconstructible graphs (on at least four vertices
and without isolated vertices) are redundantly rigid in two dimensions.

4.2 Graph Reconstruction and the Rigidity Matroid

The following theorem is a simple but useful consequence of Theorems 3.3 and 3.9.

Theorem 4.6 Let G be a graph that is uniquely (up to isomorphism) determined by its
d-dimensional rigidity matroid among graphs on the same number of vertices. Then
G is weakly reconstructible in C¢.

Proof By Theorem 3.3 it suffices to show that My ¢ uniquely determines G. Suppose
that My = My g for some graph H with the same order. By Theorem 3.9 this
implies that the rigidity matroids of G and H are isomorphic. By our assumption it
follows that G and H are isomorphic as well, as required. O

Theorem 4.6 implies that every cycle C,,, which is the unique circuit of %1 on n edges,
is weakly reconstructible in C!.

To close this section, we show that highly vertex-connected graphs are strongly
reconstructible in C! and C2. We shall use the facts that connected graphs are rigid in
R! (folklore) and 6-connected graphs are rigid in R? (a result of Lovasz and Yemini
[21]). The following results show that, at least ford = 1, 2, the rigidity matroid Z;(G)
of a sufficiently highly connected graph G uniquely determines the underlying graph.
The one-dimensional result, due to Whitney, was an important tool in [10].

Theorem 4.7 [29] Let G be a 3-connected graph and let H be a graph with no
isolated vertices. Suppose that there is a bijection \r between the edge sets of G
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and H, which is an isomorphism between %\(G) and %1(H). Then there is a graph
isomorphism between G and H which induces .

The two-dimensional analogue is due to Jordan and Kaszanitzky [17]:

Theorem 4.8 Let G be a T-connected graph and let H be a graph with no isolated
vertices. Suppose that there is a bijection \r between the edge sets of G and H, which
is an isomorphism between %,(G) and %>(H). Then there is a graph isomorphism
between G and H which induces .

Theorem 4.9 Let G be a graph. Then:

() [10] If G is 3-connected, then G is strongly reconstructible in C'.
(ii) If G is T-connected, then G is strongly reconstructible in C2.

Proof In both cases G is rigid in the respective dimension, which we will denote by d.
Suppose that mq g(p) = mg u(q) under some edge bijection ¥ for some graph H
on the same number of vertices and edges as G, and some generic realizations (G, p)
and (H, g). By Theorem 3.6 we have that My ¢ = My g and that H is rigid, so in
particular it has no isolated vertices. Then by combining Theorems 3.9, 4.7, and 4.8,
we can deduce that v is induced by a graph isomorphism, as desired. O

In fact, the families of graphs of Theorem 4.9 are not only rigid but globally rigid
in the respective dimension. In the case of R! this follows from the fact that a graph
is globally rigid in R! if and only if it is 2-connected. In R? 6-connectivity implies
global rigidity by a theorem of Jackson and Jordan [13]. Thus Theorem 4.9 (ii) is a
special case of Theorem 1.5. Theorem 4.9 (i) was also proven in [10], and, in fact, it
played a key role there in the proof of Theorem 1.5.

5 Reconstructibility in Low Dimensions

In this section we examine the cases of d = 1 and d = 2 in more detail. In these
dimensions the structure of the rigidity matroid is well understood, which turns out to
be a useful tool in studying graph reconstructibility. We shall give a characterization
of weakly reconstructible graphs in C! that are not 2-connected. On the other hand, we
will show that the problem of deciding whether a 2-connected (but not 3-connected)
graph is weakly reconstructible in C! is polynomially equivalent to the graph iso-
morphism problem. In the two-dimensional case we describe the so-called bridge
invariant graphs and using this result characterize the non-redundant rigid weakly
reconstructible graphs in C2. Finally, we shall provide a complete characterization of
strongly reconstructible graphs in C!' and C2. We start with a result which holds in
both one and two dimensions.

5.1 Relaxing the Condition on the Order of H

We consider the following question: is it possible to drop or weaken the assumption
in our reconstructibility notions saying that the length-equivalent frameworks (G, p)
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and (H, g) must have the same order? In this context it is natural to keep the assump-
tion that (H, g) is generic, for otherwise we cannot expect positive results: any edge
measurement sequence can be realized by a forest of the appropriate size (but this
realization may not be generic).

In this setting, we show that if d < 2 and the rigidity matroid of G in d dimensions
is connected, then we can drop the condition on the order of H. It is known that
the rigidity matroid of globally rigid graphs (of size at least d + 2) is connected in
dimensions d = 1, 2. Thus this result allows us to strengthen Theorems 4.9 (i) and 1.1
from [10] in one and two dimensions, respectively.

We shall need the fact that if the one-dimensional (resp. two-dimensional) rigidity
matroid of a graph G (without isolated vertices) is connected, then G is rigid in R!
(resp. in R?). In R this follows from the fact that % (G) is isomorphic to the graphic
matroid of G. A proof for the two-dimensional case can be found in [13, Lem. 3.1].

Theorem 5.1 Suppose that 1 < d < 2 and let G be a graph for which %4(G) is
connected. Let (G, p) be a weakly reconstructible generic realization of G in C¢ and
suppose that (G, p) is length-equivalent to some generic d-dimensional framework
(H, q) under some edge bijection \r, where the order of H may be different from that
of G. Then G and H are isomorphic after deleting the isolated vertices from both
graphs. Furthermore, if (G, p) is strongly reconstructible, then \ is induced by a
graph isomorphism.

Proof We can suppose that neither G nor H has isolated vertices by deleting any such
vertex. Note that this deletion preserves the reconstructibility property of (G, p). By
using the argument from the proof of Theorem 3.3, we can use the equality mg ¢ (p) =
mgq g (g) to deduce that My G = My g, and consequently by Theorem 3.9 the d-
dimensional rigidity matroids of G and H are isomorphic. In particular Z;(H) is
connected as well. As we noted above, the fact that their rigidity matroids are connected
implies that both G and H are rigid, so

d d
d|V(G)| — <2> =dimMyc =dimMy g =d|V(H)| — <2>,

and thus |V (G)| = |V (H)|. The claim then follows from the corresponding recon-
structibility property of (G, p). O

The following reformulation of Theorem 5.1 will be useful later on.

Corollary 5.2 Suppose that 1 < d < 2 and let G be a graph for which %4(G) is
connected. Suppose that G is weakly (resp. strongly) reconstructible in C¢. Then any
graph G' that is obtained by adding some isolated vertices to G is weakly (resp.
strongly) reconstructible in C4.

Another consequence of Theorem 5.1 is the following result about the recon-
structibility of globally rigid subgraphs in low dimensions.

Corollary 5.3 Suppose that 1 < d < 2 and let (G, p) and (H, q) be generic frame-
works in C4 that are length-equivalent under the edge bijection . Let Gy = (Vo, Ep)
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be a globally rigid subgraph of G = (V, E) and let Hy denote the subgraph of H
induced by ¥ (Eyp). Then /|, is induced by an isomorphism ¢: Go — Hy and the
frameworks (G, ply,) and (Ho, qlvHy) © (p) are congruent.

Proof By Theorem 1.5, G is strongly reconstructible, and, as noted previously,
Z4(Go) is connected. Thus, Theorem 5.1 applies to (Go, ply,) and (Ho, q|V(HO)),
giving us that | g, is induced by an isomorphism ¢: Go — Hp. Now the length-
equivalence of (G, p) and (H, q) implies that (Go, p|y,) and (Ho, qlvHy) © q)) are
equivalent, but since Gy is globally rigid, this means that they are congruent as well.

|

5.2 Weak Reconstructibility in C'

Next, we turn our attention to the d = 1 case. As mentioned before, the one-di-
mensional rigidity matroid of a graph coincides with its graphic matroid. We say that
two graphs are cycle isomorphic if their graphic matroids are isomorphic.

We shall use a characterization of cycle isomorphism due to Whitney [29]. In order
to describe his result, we need to introduce the following operations on graphs. The
1-sum of two graphs (or two distinct connected components of a graph) G and G’
along the vertices x € V(G) and x’ € V(G’) is the graph obtained by identifying
(or “gluing”) these vertices. Vertex cutting is the reverse operation, i.e., separating
the graph into two (sub)graphs along a cut-vertex. We say that a pair of subgraphs
(G1, Gp) of G is a 2-separation of G if G| and G, have exactly two vertices x, y in
common, and the edge sets of G| and G, form a bipartition of the edge set of G. A
2-switch operation along such a 2-separation produces a graph obtained by identifying
x and y in G with y and x, respectively, in G».

We say that the graphs G and H are 2-isomorphic if one can be reached from
the other by applying a series of the 1-sum, vertex cut, and 2-switch operations. It
is easy to see that 2-isomorphic graphs have isomorphic graphic matroids, since the
aforementioned operations preserve (the edge sets of) cycles. Whitney showed that
the converse is true as well.

Theorem 5.4 [29] Let G and H be graphs. Then G and H are cycle isomorphic if
and only if they are 2-isomorphic.

This characterization of cycle isomorphism implies the converse of Theorem 3.9
in one dimension.

Theorem 5.5 Let G and H be graphs with the same order. Then My ¢ = M1,y if and
only if G and H are cycle isomorphic.

Proof Necessity follows from Theorem 3.9. For the other direction it suffices to show,
according to Theorem 5.4, that the vertex cutting, 1-sum, and 2-switch operations
preserve the one-dimensional measurement variety. This follows from the fact that
they preserve the edge measurements of real frameworks, since those form a Zariski-
dense set in the measurement variety®. O

6 1t is well known that R? is Zariski-dense in C?. Since the image of a dense set under a continuous,
surjective mapping is dense, this implies thatm,4 G (R"?) is Zariski-dense in myg.G (Cdy, and consequently
in My g as well.
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In fact, the previous argument shows that the three aforementioned operations pre-
serve the measurement variety in any dimension d > 1. Theorem 5.5 together with
Theorem 3.3 imply that a graph G is weakly reconstructible in one dimension if
and only if #Z;(G) determines G up to isomorphism (among graphs with the same
order). This immediately yields the following characterization of weak reconstructibil-
ity in C'. As a shorthand, we refer to the operation consisting of cutting along a
cut-vertex and then taking the 1-sum of the resulting two components along some pair
of vertices as the reattachment operation.

Corollary 5.6 A connected graph G is weakly reconstructible in C' if and only if it is
invariant under the reattachment and 2-switch operations, that is, if these operations
always result in graphs isomorphic to G.

With this result in hand it seems feasible to characterize weakly reconstructible
graphs in C!. As we have seen in Theorem 4.9, 3-connected graphs are strongly recon-
structible in C!. On the other hand, the next theorem describes weakly reconstructible
graphs that are not 2-connected. We shall need the following simple observation.
Recall that a graph G is called vertex-transitive if for every pair u, v of vertices there
is an automorphism of G which maps u to v.

Lemma 5.7 Let C and D be connected graphs. Then the graphs obtained as the 1-sum
of C and D are pairwise isomorphic if and only if C and D are both vertex-transitive.

We shall use the fact that if G is a connected vertex-transitive graph then G is
k-regular for some integer k, and the vertex-connectivity of G is strictly greater than
2k/3 (see [26]).

Theorem 5.8 Let G be a graph that is not 2-connected and has at least two edges.
Then G is weakly reconstructible in C' if and only if one of the following holds:

(1) G is isomorphic to a 2-connected, weakly reconstructible graph H plus some
isolated vertices.
(i) G is isomorphic to the 1-sum of two connected vertex-transitive graphs.

Proof We first show necessity. Suppose first that G is not connected. Then G has at
most one connected component that is not a single vertex, for otherwise we could
take the 1-sum of two connected components of size at least two and add a new iso-
lated vertex to obtain a graph G’ that is cycle isomorphic, but not isomorphic to G.
Since G has at least two edges, it follows that it has a single connected component H
with at least two edges. Now if H is not 2-connected, then cutting it at a cut-vertex
and removing one of the isolated vertices of G results in a graph that contradicts the
weak reconstructibility of G. Similarly, if H is not weakly reconstructible then we can
replace it with a cycle isomorphic but not isomorphic graph H’, which, again, con-
tradicts our assumption on G. Now suppose that G is connected but not 2-connected.
Note that G must have exactly two 2-blocks, since otherwise we could obtain a graph
from it with a different block-cut-vertex tree’ using the reattachment operation. Then
Lemma 5.7 applies to the two 2-blocks.

7 In the so-called block-cut-vertex tree of a graph the vertices correspond to the 2-blocks and the cut-vertices
of the graph. If a 2-block contains a cut-vertex then there is an edge between the corresponding vertices. It
is known that this graph is indeed a tree.
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Next, we show sufficiency. In the first case this follows from Corollary 5.2. In the
second case denote the 2-blocks of G by C and D. Note that since C and D are
vertex-transitive, each of them is either a single edge or is 2-connected. Thus G has
exactly one cut-vertex. Then by Lemma 5.7, G is invariant under the reattachment
operation. In fact, a connected vertex-transitive graph is either an edge or a cycle, or
it is 3-connected. It is easy to verify that in each of these cases a 2-switch of G results
in an isomorphic graph. O

Thus the only case left open in the characterization of weakly reconstructible graphs
in C! is when the graph is 2-connected but not 3-connected. Note that these graphs
are globally rigid in one dimension, and thus this is, in a sense, the case left open by
Theorems 1.1 and 4.9. It turns out that this case is much harder than the others.

We shall denote the problem of deciding whether a given input graph is weakly
reconstructible in C! by WR-1. GI stands for the graph isomorphism problem, i.e.,
deciding whether two given graphs H and H' are isomorphic. Similarly, GI-3 denotes
the graph isomorphism problem restricted to the family of 3-connected graphs. We
shall use the fact that GI is polynomially reducible GI-3, an easy consequence of the
result that it is reducible to the isomorphism problem within the family of so-called
k-trees. See [19] for definitions and the proof of this statement.

Theorem 5.9 GI-3 (and thus GI is polynomially reducible to WR-1.

Proof Given two 3-connected graphs H and H’, and two triples of vertices x, x1, xp €
V(H) and x’, x; , xé € V(H'), we shall construct a graph G (of size polynomial in
the sizes of H and H') with the following property:

G is weakly reconstructible in C' iff there is an isomorphism between ()

H and H' such that the image of x is x” and the image of {x1, xp} is {x], x3}.

This allows us to test the isomorphism of H and H’ using polynomially many
queries to an oracle of WR-1 by simply iterating over all possible choices of x, x1, x2
and x’, x{, xj.

The construction goes as follows. First, connect x; and x; by an edge for each
i = 1,2. Let K be a complete graph of size |V (H)| + |V(H’)| + 1 with distinct
vertices y and y’. Remove an edge of K that is incident to y, but not to y’. Finally let
G be the graph obtained by identifying x with y and x” with y’. See Fig. 6.

Claim 5.10 G has property (x) defined above.

For a proof of this claim, see Appendix A.

5.3 Bridge Invariant Graphs

We call arigid graph G non-redundant rigid if G has at least one bridge, thatis, G — e
is not rigid for some edge e. Although there exist weakly reconstructible rigid graphs
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Fig.6 The graph G constructed in the proof of Theorem 5.9

which are non-redundant (see Sect. 4.1), the following argument from [10, Rem. 7.4]
suggests that such graphs are rare.

First we define an operation that we may perform on a rigid graph G. Suppose that
G has at least d + 2 vertices and let e be a bridge in %,;(G). Then there is another
edge ¢’ that we can add to the flexible (i.e., non-rigid) graph G — e to obtain a graph
H = G —e+¢ which is again rigid.® In this case we say that H is obtained from G by
a bridge replacement operation. A graph G is called bridge invariant if every sequence
of bridge replacement operations starting from G leads to a graph isomorphic to G.
Notice that if H is obtained from G by a bridge replacement operation then we have
My =MiG—e ®C = My u by Theorem 3.13. Thus every non-redundant weakly
reconstructible graph must be bridge invariant.

In this subsection we give a complete characterization of bridge invariant graphs in
two dimensions. Based on this structural result we shall be able to obtain the complete
list of non-redundant rigid weakly reconstructible graphs in C>. We shall use the
following two simple combinatorial lemmas. Their proofs are given in Appendix B. A
degree-2-extension of a graph G is a graph obtained from G by adding a new vertex v
and two edges incident with v.

Lemma5.11 Let G be a graph on n vertices with at least one edge. Then exactly one
of the following holds:

(i) there exist two non-isomorphic degree-2-extensions of G,
(ii) G is isomorphic to K.

The next lemma is an analogue of Lemma 5.7.

8 Otherwise the end-vertices x, y of every non-edge xy of G — e, except for e, are linked. This means that
the closure G — e of G — e (which is G — e plus all edges xy for which x, y are linked) is K, — e. But
K, — eisrigid for n > d + 2, contradicting the fact that G — e is flexible and r (G — ) = r(G — e).
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Lemma 5.12 Let G be a graph with two connected components C, D. Then the graphs
obtained from G by adding a new edge from C to D are pairwise isomorphic if and
only if C and D are both vertex-transitive.

Bridge Invariant Graphs in the Plane

We need to recall some facts concerning generic rigidity properties of graphs in two
dimensions. We say that a pair of vertices {u, v} in a framework (G, p) is linked in
(G, p)ifrg(G +uv) = rg(G) + 1. From the definition it is clear that this is a generic
property. A compact characterization of all linked pairs in %>(G) can be deduced
as follows. It is known that {u, v} is linked in a generic two-dimensional framework
(G, p) if and only if G has a rigid subgraph H with {u, v} € V(H). We define a
rigid component of G to be a maximal rigid subgraph of G. It is well known (see e.g.
[13, Cor. 2.14]), that any two rigid components of G intersect in at most one vertex.
Furthermore, for every triple of pairwise intersecting rigid components there exists
a vertex that belongs to each of them. It is also known that the rigidity matroid of a
graph is the direct sum of the rigidity matroids of its rigid components (see e.g. [16]).

Recall that an edge e of arigid graph G is a bridge if and only if G — e is not rigid,
that is, 74(G — e¢) = r4(G) — 1. By summarizing the above arguments we obtain the
following observation about the bridge replacement operation.

Lemma 5.13 Suppose that the edge e is a bridge in the rigid graph G. Let G' = G —e.
Then G' + f is rigid for some edge f = uv if and only if there is no rigid component
C of G' with {u, v} C V(C).

We can now prove the main result of this subsection. Recall that the cone graph of
a graph G is obtained from G by adding a new vertex v and new edges from v to every
vertex of G.

Theorem 5.14 Let G be a non-redundant rigid graph in R* (equivalently, in C?) on
n > 3vertices. Then G is bridge invariant if and only if it satisfies one of the following
properties:

(1) G is isomorphic to a degree-2-extension of K,_1,
(i) G is the cone graph of a connected graph obtained from two disjoint vertex-
transitive graphs on at least three vertices by adding an edge e.

Proof We first prove sufficiency. Suppose that (i) holds. Then either G is isomorphic
to K3 or K4 — e (in which cases every edge of G is a bridge), or G has exactly two
bridges (edges incident with the degree-2 vertex). In each of these cases it is easy to
see that G is bridge invariant. Next, suppose that (ii) holds. Let H, H> be disjoint
vertex-transitive graphs and let v be the extra vertex in their cone graph. Recall that
a vertex-transitive graph on at least three vertices must be 2-connected. Thus (by
Theorem 4.3) the cone graph of H; is globally rigid in R? for i = 1, 2. We can use
this fact to deduce that the only bridge in G is e. Furthermore, if G — e + f is rigid,
then f is not incident with v. Hence, every bridge replacement operation corresponds
to adding a new edge to the disjoint union of H; and H;, and by Lemma 5.12 these
result in isomorphic graphs. Thus G is bridge invariant, as desired.
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Now we prove necessity. Suppose that G is a bridge invariant graph on at least three
vertices. Since G is rigid, every vertex in G has degree at least two. First we consider
the case when G has a vertex v of degree exactly two. Then G is a degree-2-extension
of a smaller rigid graph H = G — v. Moreover, every degree-2-extension H' of H
is a rigid graph, in which the edges incident with the new degree-2 vertex are both
bridges. Thus every degree-2-extension of H can be obtained by applying a sequence
of bridge replacement operations starting with G. Therefore Lemma 5.11 implies that
(i) holds.

In the rest of the proof we shall assume that every vertex in G has degree at least
three. Our aim now is to show that (ii) holds. Fix a bridge e in G for which the order
of the largest rigid component C of G — e is as large as possible. The outline of the
rest of the proof is as follows. First, we show that every bridge of G — e is in C. Then
we use this fact to show that G — e must have exactly two rigid components. After
this, it is not difficult to show that the common vertex of the two rigid components of
G — e is connected to every other vertex, and then we shall be able to use Lemma 5.12
to finish the proof.

Lemma 5.15 Every bridge of G — e is in C.

Proof Suppose, for a contradiction, that there is a bridge & of G — e which is not an
edge of C. Note that 4 is a bridge in G, too.

We claim that there is an edge wy with w € V(C), y ¢ V(C) which is different
from &. Since G is rigid and has at least three vertices, G — e is connected. Thus C is
incident with at least one other rigid component of G — e. If it is incident with at least
two rigid components or it is incident with a rigid component containing at least three
vertices, then we can easily identify the required edge wy. It remains to consider the
case when there is a unique rigid component incident with C, which induces a single
edge h. However, in this case either there are no more rigid components in G — e at
all (which shows that G has a vertex of degree two, contradicting our assumption),
or G — {e, h} is disconnected. The latter case is also impossible, since a rigid graph
of minimum degree at least three is 3-edge-connected (a corollary of [13, Lem. 2.6]).
This completes the proof of the claim.

Let f be a new edge connecting a vertex x € V(C) \ {w} and y. Since no rigid
component of G — e contains the pair {x, y}, the graph G’ = G — e+ f isrigid. So G’
is obtained from G by a bridge replacement operation. Note that % is a bridge in G/,
too. Furthermore, V(C) U {y} induces a rigid graph in G’. It follows that the largest
rigid component of G’ — h is strictly larger than C, which shows that G and G’ are
not isomorphic. Hence G is not bridge invariant, a contradiction. O

Lemma 5.16 G — e has exactly two rigid components.

Proof Suppose to the contrary that G — e has at least three rigid components. Let K be
arigid component of G — e. Our first observation is that there exists a rigid component
L of G — e not incident with K. Indeed, for otherwise, as the rigid components
incident with K have no vertices in common in V(G) — V(K), we have (G —¢e) <
2|V =3 —(s—1) <2|V|—35, where s is the number of rigid components of G — e,
contradicting the fact that G is rigid.
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The graph G — e may or may not contain bridges. First we consider the case when
C contains a bridge 4. By the previous observation there exists a rigid component F
of G — e not incident with C. Let D be a rigid component incident with F. Since C
contains all bridges of G — e, D has at least three (in fact at least four) vertices. Thus
there exists some vertex x in D — V(C) — V(F). Now consider two different edges
that we can add to G — e to make it rigid: let f be an edge from an end-vertex of 4 to x
for which G — e 4 f is rigid (note that at least one of the end-vertices of 4 must have
this property), and let g be an edge from x to a vertex of ' — V(D). Each of these
edges makes G — e rigid and hence can be used in a bridge replacement operation
with edge e. Note that f (resp. g) isabridge in G — e + f (resp. G — e + g). The key
observation is that the numbers of connected components of the subgraph induced by
the bridges of G — e + f and that of G — e + g are different. Hence these graphs are
not isomorphic and G is not bridge invariant, a contradiction.

Next, consider the case when C contains no bridges, that is, when e is the only
bridge in G. We claim that there is a rigid component D of G — e which has a vertex d
that belongs to no other rigid component of G — e. Let Hy, H, ..., H; denote the
rigid components of G — e and let n; = |V (H;)|. Since G — e has no bridges, every
edge of G — e is in some circuit of %>(G). Thus, since every circuit is rigid and has
at least four vertices, we have that n; > 4 for 1 <i < g. If every vertex belongs to at
least two rigid components, then we have Zlq 1 ni = 2|V|. Let us choose a base B;
in each rigidity matroid Z» (H;). Using the above inequalities we have

q
(s
i=1

q q q
=) IBil=) @ni=3)=2) ni—3q 22|V|+4q —3g = 2|V|.
i=1 i=1

i=1

Since #Z>(G — e) has rank 2|V| — 4, this implies that U?:] B; contains a circuit,
contradicting the fact that the B;’s are bases for the Z>(H;)’s and %,(G — e¢) =

?_| %>(H;). This proves the claim.

By the first observation of the proof there is a rigid component F' of G — e not
incident with D. We need one more observation: there is a vertex z of F' that is not
incident with D. This follows from the fact that F' has at least four vertices, the edges
from D to F are pairwise disjoint, and three disjoint edges from D to F would make
V(D) U V(F) induce a rigid subgraph in G — e. Let wy be an edge leaving D and let
xw be an edge in D.

Now consider two different edges that we can add to G — e to make it rigid: let f
be an edge from x to y, and let g be an edge from d to z. Each of these edges makes
G — e rigid and hence can be used in a bridge replacement operation with edge e. Note
that f (resp. g) is a bridge in G — e + f (resp. G — e + g). The key observation is
that there is only one bridge in these graphs, but in one of them it belongs to a triangle
(on vertices x, w, y), while in the other it does not (by the choice of d and z). Hence
these graphs are not isomorphic and G is not bridge invariant, a contradiction. O

Thus G — e has exactly two rigid components, C and D. Let w be their common
vertex. Note that w is a cut-vertex in G — e, and that e is not incident with w in G. If
w is not connected to every other vertex, then we can obtain two graphs from G by
different bridge replacement operations, so that in one of them the edge connecting
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(b)

Fig.7 a The first case of Lemma 5.16. b The second case of Lemma 5.16

C — w and D — w belongs to a triangle, while it does not belong to a triangle in the
other. Thus the numbers of triangles in the two graphs are different and hence they are
not isomorphic. So we may assume that w is connected to every other vertex. There is
no other vertex with this property, for otherwise one of the two components is a single
edge and G has a vertex of degree two, a contradiction. So every graph obtained by a
bridge replacement operation from G is the cone of a connected graph obtained from
the connected graphs C — w, D — w by adding an edge. Now Lemma 5.12 implies
that (ii) holds. 0O

It is easy to obtain bridge invariant graphs in R and in higher dimensions by coning
the two-dimensional examples. However, not all bridge invariant graphs arise in this
way. For example, the rigid graph obtained from a double banana graph (that is, the
2-sum of two K5’s) by adding an edge is bridge invariant but it is not a cone: it has
no vertex that is connected to every other vertex. Further examples can be obtained
by taking two disjoint graphs G, G2 so that G; is obtained from a connected vertex-
transitive graph by two successive coning operations, i = 1, 2, taking the 2-sum of
G1 and G along the edges that connect the pairs of coning vertices, and then adding
arigidifying edge.

5.4 Weak Reconstructibility in C2

Using the previous characterization of bridge-invariant graphs in the plane we can
deduce the following theorem concerning non-redundant rigid graphs that are weakly
reconstructible in C2.

Theorem 5.17 Let G be a non-redundant rigid graph in R* (equivalently, in C?). Then
G is weakly reconstructible in C? ifand only if G can be obtained by taking the 1-sum

@ Springer



374 Discrete & Computational Geometry (2021) 66:344-385

of two complete graphs K, and K, and then adding an edge, where r,s > 2, and if
s =3 (resp. r = 3) thenr = 2 (resp. s = 2) holds.

Proof Suppose that G is weakly reconstructible. As we observed earlier, G must be
bridge invariant. Thus Theorem 5.14 implies that either G is isomorphic to a degree-2
extension of a complete graph (in which case it can be obtained by taking the 1-sum
of K,,—1 and K> and then adding an edge) or G is the cone graph of a connected graph
obtained from two disjoint vertex-transitive graphs K, L, on at least three vertices, by
adding an edge e.

Suppose, for a contradiction, that K is not complete. Consider G — e and denote
its cut-vertex by v (along which the cone of K and the cone of L is merged). Note
that v is connected to every other vertex. Let H’ be the graph obtained by taking the
1-sum of the cones of K and L along a vertex of K. Let H be a rigid graph obtained
by adding an appropriate edge to H’. Since K is regular and non-complete, H has no
vertex that is connected to every other vertex of H. Hence H is not isomorphic to G.
But M ¢ = M>, g by Lemma 3.11 and Theorem 3.13, a contradiction. Thus K, L are
complete graphs and hence G can be obtained by taking the 1-sum of two complete
graphs K, and K, r, s > 2, and then adding an edge e. If s = 3, say, then the edges
of K (plus e) are all bridges and then it is easy to construct a non-isomorphic graph
H with M> g6 = M> g, unless r = 2.

Conversely, suppose that G — ¢ = G’ can be obtained by taking the 1-sum of
two complete graphs K, and K as in the statement. If s = 2 or r = 2 then G is
weakly reconstructible by Theorems 4.1 and 4.4. So we may assume that r, s > 4. It
is sufficient to show that G’ is weakly reconstructible (from the list of edge lengths
obtained by removing the length of ¢), since any edge added to a graph isomorphic
to G’ yields a graph isomorphic to G. Suppose that H' is another graph on r + s — 1
vertices with My gr = M» g. Since K, and K, have connected rigidity matroids,
Corollary 5.2 implies that H' has both of them as edge-disjoint subgraphs. But the
only such graph on r + s — 1 vertices is the 1-sum of K, and K, so H' and G’ are
indeed isomorphic. Therefore G is weakly reconstructible, too. O

It is not unreasonable to expect that our methods may lead to a complete character-
ization of weakly reconstructible rigid graphs in C2. By our results above it remains
to consider the redundantly rigid graphs. Furthermore, since every 3-connected and
redundantly rigid graph is globally rigid in R? by a result of Jackson and Jordén
[13], and globally rigid graphs are strongly (and thus weakly) reconstructible by
Theorem 1.5, we can restrict our attention to redundantly rigid graphs with at least
one separating vertex pair. However, this case turns out to be similar to the weak
reconstructibility of 2-connected, but not 3-connected graphs in C'. In particular, the
following analogue of Theorem 5.9 holds in the 2-dimensional case. Let WR-2 denote
the decision problem of recognizing graphs that are weakly reconstructible in C2, and
let GI-6 denote the graph isomorphism problem restricted to the family of 6-connected
graphs.

Theorem 5.18 GI-6 is polynomially reducible to WR-2.

The proof is based on a similar construction to the one seen in Theorem 5.9; we
omit the details.

@ Springer



Discrete & Computational Geometry (2021) 66:344-385 375

5.5 Strong Reconstructibility in C' and C?

we consider strong reconstructibility in more detail. We show that (under some mild
assumptions) a graph that is strongly reconstructible in C¢ for some d > 1 must be
3-connected. Moreover, Z,;(G) has no bridges. These results allow us to show that in
C! and C?, Theorems 4.9 (i) and 1.5 essentially characterize strongly reconstructible
graphs (apart from a few exceptional cases).

Observe that any graph on at most three vertices is strongly reconstructible in C¢
for any d > 1. This follows from the simple facts that any such graph is determined
up to isomorphism by the number of its edges and vertices, and any permutation of
the edges of such a graph is induced by a graph automorphism. Thus, in the rest of
this subsection we shall only consider graphs on at least four vertices.

Theorem 5.19 Let G be a strongly reconstructible graph in C? on at least four vertices
and without isolated vertices. Then G is 3-connected.

Proof Suppose that G is not 3-connected. If G is disconnected, then taking the 1-sum of
two connected components and adding a new isolated vertex yields a non-isomorphic
graph with the same measurement variety, thus G is not strongly (or indeed weakly)
reconstructible.

Suppose now that G has a cut-vertex. As in the proof of Theorem 5.8, G must
have exactly two 2-blocks, for otherwise we could rearrange its block-cut-vertex tree
to obtain a non-isomorphic graph with the same measurement variety (here we use
Lemma 3.11). Denote these blocks by C and D, so that G is the 1-sum of these graphs
along the vertices v and v'. By size considerations, at least one of these 2-blocks, say C,
must have at least three vertices. It follows that there exist two distinct neighbors u
and w of v in C. Now consider the 1-sum of C and D along u and v’. This graph has
the same measurement variety as G. However, the natural edge bijection between the
two graphs (that is, the one mapping each 2-block identically to the corresponding
2-block) is not induced by a graph isomorphism, for such an isomorphism would have
to map the cut-vertex (call it v) of G to u, while also mapping the edge wv to itself, a
contradiction.

Finally, suppose that G has a 2-separation (G1, G,) with common vertices u and v.
As we saw in the proof of Theorem 5.5, the 2-switch operation along (G, G») yields a
graph G’ with My ¢ = M . Again, the natural edge bijection between these graphs
is not induced by a graph isomorphism: such an isomorphism would have to send
some edge wv of G to the edge wu of G', while also sending some edge w’v of G
to w’v of G’, which is impossible.’ O

Combining Theorems 5.19 and 4.9 (i) we obtain the following characterization of
strong reconstructibility in C'.

Theorem 5.20 Let G be a graph on at least four vertices and without isolated vertices.
Then G is strongly reconstructible in C' if and only if it is 3-connected.

The following theorem gives another necessary condition for strong reconstructibil-
. . d
ity in C“.

9 Note that here we consider the 2-switch as leaving G in place and “flipping” G, and label the vertices
of G’ accordingly.
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Theorem 5.21 Let G be a strongly reconstructible graph in C¢ on at least d + 2
vertices and without isolated vertices. Then %4(G) has no bridges.

Proof Suppose for contradiction that %,;(G) has a bridge ¢ and let G’ = G — e.
As noted in Sect. 5.3, there is another edge f that can be added to G’ such that
G" = G — e + f isrigid. Note that by Theorem 5.19 we have that G is 3-connected,
so G’ is connected (indeed, 2-connected).

By Theorem 3.13 we have My ¢ = My o' @ C = My ¢ under the edge bijection
¥: E(G) — E(G”) that sends e to f and leaves the rest of the edges in place.
Since G is strongly reconstructible in C?, Theorem 4.9 now implies that v is induced
by a graph isomorphism ¢: V(G) — V(H). Now ¢ is an automorphism of G’
that leaves every edge in place. We claim that such an automorphism must be the
identity map. Indeed, for any vertex v with distinct neighbors u, w, we have that
{v} = {u, v} N{w, v} = {p@), e(W)} N {pw), p(v)} = {p(v)}, so ¢ leaves each
vertex of degree at least two in place. But in a connected graph on at least three
vertices every edge has an end-vertex with degree at least two. Thus ¢ leaves each
edge in place and leaves at least one end-vertex of each edge in place, so it must be the
identity map. But this is a contradiction, since we assumed that ¢ induces ¥, which
maps e to f. O

We again recall a theorem from [13] which says that every 3-connected and redun-
dantly rigid graph is globally rigid in R?, and its refined version, which says that every
3-connected graph G for which %,(G) has no bridges is globally rigid in R?, see
[15, Thm. 5.1]. This result, combined with Theorems 1.5, 5.19, and 5.21 gives the
following characterization of strongly reconstructible graphs in C2.

Corollary 5.22 Let G be a graph on at least four vertices and without isolated vertices.
Then G is strongly reconstructible in C2 if and only if it is globally rigid in R2.

Note that the removal of isolated vertices preserves strong reconstructibility. Thus
by combining the previous theorem with Corollary 5.2 we obtain a complete descrip-
tion of graphs that are strongly reconstructible in C?: they are either isomorphic to K3
or the path of length two, or they are isomorphic to some globally rigid graph, other
than K3, plus some (possibly zero) isolated vertices.

6 Real Reconstructibility

In this section we examine some aspects of weak and strong reconstructibility in R?,
that is, within the family of real frameworks. To avoid confusion, throughout this sec-
tion we shall refer to the weak (respectively strong) reconstructibility of a framework
(G, p) in C4 (as defined in Definitions 1.2 and 1.3) as weak reconstructibility in cd
(resp. strong reconstructibility in C?). In contrast, we say that a framework (G, p) in
R4 is weakly reconstructible in R? if for any generic length-equivalent real framework
(H, q), where H has the same order as G, we have that H is isomorphic to G. Strong
reconstructibility in R? is defined analogously by replacing C¢ in Definition 1.3 by R<.

In the following we prove that in one dimension, weak and strong reconstructibility
in R! coincide with their complex counterparts. This is not true for weak recon-
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structibility in higher dimensions: we shall give an example showing that for d > 2,
weak reconstructibility in R? is not a generic property. A simple but useful observa-
tion is that in one dimension, we can obtain length-equivalent real realizations from
complex ones by taking the real part of each coordinate.

Lemma 6.1 Let (G, p) and (H,q) be length-equivalent frameworks in C'. Then
(G,Re p) and (H, Re q) are length-equivalent real frameworks, where Re p is the
framework obtained by taking the real part of each coordinate of p.

Proof This follows from the fact that for a complex number z we have 2 - (Re 2)? =
Re z2 4 ||z2||. This implies that in one dimension, the length of the real part of an edge
is completely determined by its complex length. O

We remark that Lemma 6.1 does not tell us whether the real frameworks obtained
are generic or not, and indeed it is easy to construct examples of generic complex
frameworks such that taking their real part yields non-generic frameworks. To deal
with this issue, we shall need the following result, which can be seen as a real analogue
of Lemma 3.2.

Theorem 6.2 Let (G, p) be a generic realization in R¢ of the rigid graph G, and
suppose that the framework (H, q) in RY is length-equivalent to (G, p), where G and
H have the same order. Then (H, q) is congruent to some generic realization (H, q’)
of H.

The proof of the two-dimensional version of Theorem 6.2 can be found in [15,
Cor. 3.7]: the statement there is formulated for the case H = G but the proof also works
for the case when H and G are different. Although Theorem 6.2 is considerably more
general, the proof closely follows that of the special case, albeit with some additional
technical difficulties. For completeness we give a proof in Appendix C.

Finally, we will need the following lemma concerning disconnected weakly recon-
structible frameworks. The proof is a copy of the first part of the proof of Theorem 5.8.

Lemma 6.3 Let (G, p) be a generic framework in R' that is weakly reconstructible
in RY. Suppose that G is not connected. Then G is isomorphic to a 2-connected
graph G’ with some additional isolated vertices.

Now we are in a position to prove the main theorem of this section.

Theorem 6.4 Let (G, p) be a generic framework inR'. Then (G, p) is weakly (respec-
tively strongly) reconstructible in R if and only if (G, p) is weakly (resp. strongly)
reconstructible in C'.

Proof Sufficiency is implied by the definitions, so we shall only prove necessity.
First, suppose that G is connected. Let (H, g) be a generic one-dimensional complex
framework that is length-equivalent to (G, p), where G and H have the same order. By
Lemma 6.1 the real framework (H, Re ¢) is length-equivalent to (G, p), and since G
is connected, i.e., rigid in one dimension, we can use Theorem 6.2 to obtain a generic
real framework (H, ¢') that is length-equivalent to (G, p). Since (G, p) is weakly
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reconstructible in R!, this implies that G = H, as desired. Moreover, if (G, p) is
strongly reconstructible, then there is an isomorphism between G and H that induces
the edge bijection between (G, p) and (H, q).

Now suppose that G is not connected. By Lemma 6.3 we obtain a 2-connected graph
G’ by removing the isolated vertices of G. It is easy to see that if G is weakly (resp.
strongly) reconstructible in R, then so must be G'. Since G’ is connected, we can argue
as above in the first part of the proof to deduce that (G’, p|y(g’)), and consequently
G’ itself, is weakly reconstructible (resp. strongly reconstructible) in C'. Since G’ is
2-connected, Theorem 5.1 applies, so G is weakly (resp. strongly) reconstructible in
C! as well. O

From Theorem 6.4 it follows that weak and strong reconstructibility are both generic
properties in R!. In two (or more) dimensions this does not hold in general, and in
fact, there is a counterexample on d + 2 vertices. For the sake of simplicity we only
give full details for the d = 2 case.

Let G be the graph obtained by attaching a vertex of degree one to a triangle and
denote the added edge by uv. Suppose that (G, p) is a generic two-dimensional real
framework such that the edge uv is longer than the sum of all the other edge lengths.
It is not difficult to see that whenever m, g (p) = mq u(g) for some graph H on four
vertices and some two dimensional real realization ¢, we have G = H: the edge in H
corresponding to uv cannot be in any cycle by length considerations, so it must be a
cut-edge, and G is, up to isomorphism, the only graph on four vertices and with four
edges that is not 2-edge-connected.

On the other hand, consider a generic realization in the plane of the graph obtained
by deleting an edge from the complete graph K4. Let z denote one of the degree two
vertices with neighbors x and y. We can obtain another framework with the same edge
lengths by deleting the edge zy and then rotating the edge xz so that its distance from
the remaining vertex is the same as the original distance of z and y, and then replacing

(a)

Ly
e
(b)

Fig.8 a Two realizations of K4 — e with coinciding edge measurements. b Deleting the edge xy from both
frameworks yields two frameworks with non-isomorphic underlying graphs but coinciding edge measure-
ments
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the zy edge with an edge between z and the remaining vertex. See Fig. 8. Note that
this construction only works for suitable edge lengths, i.e., when xz and zy are not
too short compared to the edges incident to the fourth vertex. By Theorem 6.2 (using
the fact that K4 — e is rigid in two dimensions) we can assume that the framework
constructed in this manner is generic as well. Then by deleting the edge xy we obtain
generic realizations of G and C4 with coinciding edge lengths, which shows that these
frameworks are not weakly reconstructible. Thus G has WR as well as non-WR generic
realizations in RZ. It is not difficult to generalize this example to d > 3 dimensions
by replacing G with the graph obtained by adding a vertex of degree d — 1 to the
complete graph K;41.

We note that G in the above example is not rigid in two dimensions. Thus it is
conceivable that weak reconstructibility in R? is a generic property in the case of rigid
graphs. Furthermore, the genericity of strong reconstructibility in R? also remains
open. Note that no generic realization of the graph G in the previous example is
strongly reconstructible in R2.

7 Conclusion and Open Problems

In this paper we studied the problem of graph reconstruction from unlabeled edge
lengths, motivated by the recent work of Gortler, Thurston, and Theran [10]. The new
notions and results presented here motivate numerous open problems, some of which
have already been mentioned in the text. In the following we emphasize two of them.

e By Theorems 5.20 and Corollary 5.22, in C! and C? every strongly reconstructible
graph on at least d + 2 vertices and without isolated vertices is globally rigid.
It would be interesting to see whether this holds in higher dimensions as well.
A related question is whether strong reconstructibility in C? implies (d + 1)-
connectedness in the d > 3 case.

e The example given at the end of Sect. 6 implies that the weak reconstructibility of
a framework in R does not necessarily imply its weak reconstructibility in C¢:
indeed, it shows that some generic realization of the cycle of length four in R?
is weakly reconstructible in R?, while it is not weakly reconstructible in C2. It
is an open question whether this implication is true for the reconstructibility of
graphs, in the following sense. Suppose that for a graph G and some d > 2, every
generic realization of G in RY is weakly (respectively strongly) reconstructible
in R?. Does this imply that G is weakly (resp. strongly) reconstructible in C%, in
the sense of Definition 1.4? If the answer to this question is affirmative, we can
directly use the tools and results of our paper to study real reconstructibility.
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Appendix
A Gl is reducible to WR-1

We prove Claim 5.10, that is, we show that the graph G constructed in the proof of
Theorem 5.9 indeed has the claimed property. First, note that by the 3-connectedness
of H and H’, the graph G is 2-connected and the only separating pair in G is {x, x}.
It follows by Corollary 5.6 that G is weakly reconstructible in C! if and only if it
is invariant under the 2-switch along this separating pair. Let G denote the graph
obtained by this 2-switch. We shall picture this 2-switch as “flipping” K while leaving
H and H’ in place and name the vertices of G accordingly; in particular, in G the edge
we removed from K is adjacent to x’, and not x.

Suppose now that there is an isomorphism ¢: V(H) — V(H') that sends x to x’
and {x, x2} to {,)fi’ x5}. Then it is easy to verify that this extends to an isomorphism
between G and G by sending H' to H via ¢! and leaving the vertices of K in place.
Thus G is weakly reconstructible. ~

Conversely, suppose that there is an isomorphism ¢: V(G) — V(G). Such an iso-
morphism must send the unique separating pair of G to that of G, and consequently
(by size considerations) ¢|y k) is an automorphism of K. It follows by degree con-
siderations that ¢ (x) = x’ (this was the reason for removing an edge of K).

Similarly, ¢ restricted to V(G) — V(K) + {x, x'} is an automorphism of the graph
obtained by connecting H and H’ at x1x] and xpx}. Since both H and H’ are 3-
connected, {x;x{, xox}} is the only separating edge pair of this graph. Now ¢ (x) = x’
implies that ¢ sends V(H) to V(H’). Moreover, since this separating edge pair is
unique, ¢ leaves {x1, x2, xi, xé} in place. The claim follows immediately from these
observations.

B Isomorphic Extensions

Proofof Lemma 5.11 1t is clear that if G is a complete graph then the degree-2-
extensions of G are pairwise isomorphic. In what follows, suppose that G is not
complete. We shall verify that G has two non-isomorphic extensions. Let ¢(G) denote
the number of connected components of G. If ¢(G) > 2 then, since G has an edge,
G has a degree-2 extension with ¢(G) connected components as well as one with
¢(G) — 1 connected components. These extensions are non-isomorphic. Thus we may
assume that G is connected and n > 3.

First consider the case when G is not regular. Let (dy, da, ..., d,) be the degree
sequence of G, assuming, without loss of generality, that d; > dy > ... > d,. Since
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n > 3, we must have di > 2. Let H; (resp. H>) be the degree-2-extensions obtained
from G by adding a new vertex v and new edges vvy, vvy (resp. vv,—1, VU, ). We claim
that H; is not isomorphic to H». Indeed, if di > d> then the maximum degree of H
is different from that of H»; if di = d> then the number of maximum degree vertices
of H; is different from that of H>.

Next suppose that G is k-regular for some k > 2. If k = 2 then G is a cycle of
length at least four. In this case G has a degree-2-extension containing a triangle as
well as one with no triangles. So it remains to consider the case when k > 3. Let H;
(resp. H») be a degree-2-extension of G in which the new vertex is connected to two
adjacent (resp. non-adjacent) vertices of G. Now H; and H are not isomorphic, since
in Hj there is a triangle containing the unique vertex of degree two, while there is no
such triangle in H>. This completes the proof. O

Proof of Lemma 5.12 Suppose that C has at least one cut-edge. If there is a vertex v in
C that is not incident with a cut-edge, then let us fix a vertex w in D and connect C
and D by adding an edge from v to w and then by adding an edge from an end-vertex
of a cut-edge in C to w. In these two cases the numbers of components spanned by
the cut-edges in the resulting graphs are different and hence they are not isomorphic.
If every vertex of C is covered by a cut-edge then either C is an edge, in which
case the statement follows easily, or C has at least two cut-edges and hence the 2-
edge-connected components of C form a tree T on at least three vertices. Let T’ be
the 2-edge-connected component tree of D. Now we may connect C and D by a new
edge so that either it connects the end-vertices of two longest paths in 7 and T’ or not.
In these two cases the lengths of a longest path in the tree of the 2-edge-connected
components in the resulting graphs are different and hence they are not isomorphic.
The proof is complete by observing that if C and D are both 2-edge-connected then
the statement is clear. O

C Rigid Graphs and Quasi-Generic Configurations

For completeness, we prove Theorem 6.2. First we recall some elementary facts con-
cerning the transcendence degree of field extensions. We restrict our definitions to the
particular case of extensions of Q C C generated by a finite number of elements. A
collection of elements &1, . .., ax € Cis said to be algebraically independent over Q
if they do not satisfy any non-zero polynomial equation with rational coefficients. Let
Q € K C Cbe an extension of Q. It can be shown that cardinalities of any two max-
imal algebraically independent subsets of K coincide. The transcendence degree of
this extension, which we shall denote by tr.degg (K), is this well-defined cardinality.
If K = Qla, ..., ol then tr.degy(K) < k. Moreover, the transcendence degree
of K coincides with that of its algebraic closure K cC.

Following [15], we call a configuration p € R" quasi-generic if p is congru-
ent to some generic configuration p’ € R™. Let G = (V, E) be a graph with
V = {v1,...,v,}. We say that a configuration (G, p = (py1, ..., pn)) is in stan-
dard position ifforall 1 <i < d, thefirstd + 1 —i coordinates of p; are zero. We will
occasionally refer to the coordinates specified in this definition as the canonical coor-
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dinates of the configuration and correspondingly to the others as the non-canonical
coordinates. Every configuration can be moved into standard position by translations
and rotations.

‘We shall also need some facts about rotations in d dimensions for d > 2. A rotation
by 6 radians around a d — 2 dimensional subspace of R is a linear transformation
that has matrix

cosf —sinf
sinf cos@

My

in some orthonormal basis. For 1 <i < j < d, the rotation by 6 radians defined by
the i-th and j-th coordinate axes is the rotation which in the standard basis has the
matrix that is obtained by swapping the first and i-th, as well as the second and j-th
columns and rows of My.

The proof of Theorem 6.2 makes heavy use of a lemma, interesting in its own right,
stating in effect that a configuration in standard position is quasi-generic if and only
if its non-canonical coordinates are algebraically independent. In order to show this,
we have to examine the interplay between algebraic independence and congruences
of the Euclidean space. The case of translations is simple.

LemmaC.1 Let v, pi, ..., px € R? be a set of points such that their coordinates are
algebraically independent over Q. Then the coordinates of v, p1 + v, ..., px + v are
algebraically independent as well.

Proof This follows immediately from the fact that, if we denote by K and L the

field extensions of Q by the coordinates of v, py, ..., px and v, p; + v, ..., px + v,
respectively, then we have K = L, and so the transcendence degrees of these sets are
the same. O

Next, we examine how rotations affect algebraic independence.

LemmaC.2 Let py,..., px € R? be a set of points for some dimension d > 2 such
that their non-zero coordinates are algebraically independent over Q, and let 6 € R
be such that sin 6 is algebraically independent from these coordinates. Suppose that T
is a rotation by 0 degrees around a subspace of R¢ generated by d —2 coordinate axes
which fixes all but one of the zero coordinates of pi, ..., pk. Then applying T to this
set increases the number of non-zero coordinates by one, and the resulting non-zero
coordinates are algebraically independent.

Proof We can assume without loss of generality that T is determined by the last d — 2
coordinate axes, i.e., that the image of a point («q, ..., ay) under T is (o) cos6 —
o sinf, oy sin@ 4+ ap cos B, a3, ..., og). We can suppose that p; is the unique point
which has a zero coordinate that is not fixed by 7'; this implies that exactly one of the
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first two coordinates of pj is zero, while for py, ..., pi either both or neither of the
first two coordinates are zero. We suppose that p; = («, 0, ...) for some @ € R; the
case when p; = (0, «, ...) is analogous. Denote by ¢; the image of p; under T and
let K and L be the field extensions of Q by the coordinates of p1, ..., px and sin@,
and q1, . .., g, respectively. It is sufficient to show that K C L holds, where L € C
is the algebraic closure of L, since the former has transcendence degree equal to the
number of non-zero coordinates of py, ..., pr plus one. Since T fixes the lastd — 2
coordinates, we only have to show that the first two coordinates of p1, ..., py are
each algebraic over L. We have ¢1 = (q11 = «acosf,gi» = asinf, ...), implying
that o? = q121 + qlzz, so that « is algebraic over L. Then so is sinf = g2/« and
cosf = qq1/a. For 2 <i < k we have

Pi1 = qi1 €os(—0) — gjp sin(—6)  and
pi2 = qj18in(—6) + g2 cos(—0),

so pi1 and p;, are algebraic over L as well, which is what we needed to show. O

Lemma C.3 Let p € R™ be a d-dimensional configuration in standard position. Then
p is quasi-generic if and only if the non-canonical coordinates of p are algebraically
independent over Q.

Proof Suppose first that p is quasi-generic and let p’ be a generic realization congruent
to it. Let G be an arbitrary minimally rigid graph on n vertices. Let m denote the
number of edges of G; note that this is the same as the number of non-canonical
coordinates in p. Now by Theorem 3.7 we have M; ¢ = C™ and so, by Lemma 2.7,
mq.c(p) = mg c(p')isgenericin My g = C™,i.e., the edge lengths are algebraically
independent over Q. Every edge length of p is in the field extension of Q by the m
non-canonical coordinates of p. Consequently, this extension contains m algebraically
independent elements, thus its transcendence degree must be m. This means that the
non-canonical coordinates must be algebraically independent as well.

Conversely, suppose that the non-canonical coordinates of p are algebraically inde-
pendent over Q. , they are non-zero. For the sake of convenience we suppose that
n > d; this is solely to avoid notational difficulties, and does not affect the proof in
any significant way. By a series of (g) rotations we can reach from p a configuration
p' = (p}, P ..., p,), where pi =0and pj, ..., p, have algebraically independent
coordinates. Indeed, we can apply a rotation defined by the i-th and the j;-th axes for
ji=1,...,i—1landi = 2,...,d. Each of these rotations fixes all but one of the
zero coordinates at any point in the process, so, by Lemma C.2, if we rotate by the
appropriate amount each time, we indeed maintain the algebraic independence of the
non-zero coordinates. Finally, by Lemma C.1 we can apply a suitable translation to p’
to reach a generic configuration p” that is congruent to p. O

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2 By deleting some edges from G we can suppose that it is mini-
mally rigid. Let n and m denote the number of vertices and edges of G, respectively.
By Theorem 3.6 we have My ¢ = My p. On the other hand, the minimal rigidity

@ Springer



384 Discrete & Computational Geometry (2021) 66:344-385

of G implies that M; ¢ = C™ (see Theorem 3.7). It follows by this and Lemma 2.7
that since p € R"™ is generic, so is ma.6(q) = mq G(p). Let ¢’ be a realization in
standard position that is congruent to ¢g. Using the same argument as in the first part
of the proof of Lemma C.3, we obtain that the non-canonical coordinates of ¢’ are
algebraically independent. Then, by the same lemma, ¢’, and consequently ¢, must be
quasi-generic. O

References

—_

. Asimow, L., Roth, B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279-289 (1978)

2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation
in Mathematics, vol. 10. Springer, Berlin (2006)

3. Billinge, S.J.L., Duxbury, P.M., Gongalves, D.S., Lavor, C., Mucherino, A.: Assigned and unassigned
distance geometry: applications to biological molecules and nanostructures. 4OR 14(4), 337-376
(2016)

4. Boutin, M., Kemper, G.: On reconstructing n-point configurations from the distribution of distances

or areas. Adv. Appl. Math. 32(4), 709-735 (2004)

. Connelly, R.: Generic global rigidity. Discrete Comput. Geom. 33(4), 549-563 (2005)

6. Connelly, R., Whiteley, W.J.: Global rigidity: the effect of coning. Discrete Comput. Geom. 43(4),
717-735 (2010)

7. Gkioulekas, I., Gortler, S.J., Theran, L., Zickler, T.: Linear symmetries of the unsquared measurement
variety (2020). arXiv:2007.12649

8. Gluck, H.: Almost all simply connected closed surfaces are rigid. In: Geometric Topology (Park City
1974). Lecture Notes in Mathematics, vol. 438, pp. 225-239. Springer, Berlin (1975)

9. Gortler, S.J., Healy, A.D., Thurston, D.P.: Characterizing generic global rigidity. Am. J. Math. 132(4),
897-939 (2010)

10. Gortler, S.J., Theran, L., Thurston, D.P.: Generic unlabeled global rigidity. Forum Math. Sigma 7,
#¢e21 (2019)

11. Gortler, S.J., Thurston, D.P.: Generic global rigidity in complex and pseudo-Euclidean spaces. In:
Rigidity and Symmetry. Fields Institute Communications, vol. 70, pp. 131-154. Springer, New York
(2014)

12. Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65-84 (1992)

13. Jackson, B., Jordén, T.: Connected rigidity matroids and unique realizations of graphs. J. Comb. Theory
Ser. B 94(1), 1-29 (2005)

14. Jackson, B., Jorddn, T.: Graph theoretic techniques in the analysis of uniquely localizable sensor
networks. In: Localization Algorithms and Strategies for Wireless Sensor Networks, pp. 146-173. 1GI
Global, Hershey (2009)

15. Jackson, B., Jordédn, T., Szabadka, Z.: Globally linked pairs of vertices in equivalent realizations of
graphs. Discrete Comput. Geom. 35(3), 493-512 (2006)

16. Jorddn, T.: Combinatorial rigidity: graphs and matroids in the theory of rigid frameworks. In: Discrete
Geometric Analysis. MSJ Memoirs, vol. 34, pp. 33—112. Math. Soc. Japan, Tokyo (2016)

17. Jordén, T., Kaszanitzky, V.E.: Highly connected rigidity matroids have unique underlying graphs. Eur.
J. Comb. 34(2), 240247 (2013)

18. Jordan, T., Whiteley, W.: Global rigidity. In: Handbook of Discrete and Computational Geometry, 3rd
ed. Discrete Mathematics and Its Applications, pp. 1661-1694. CRC Press, Boca Raton (2017)

19. Klawe, M.M., Corneil, D.G., Proskurowski, A.: Isomorphism testing in hookup classes. SIAM 1J.
Algebr. Discrete Methods 3(2), 260-274 (1982)

20. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications.
SIAM Rev. 56(1), 3-69 (2014)

21. Lovész, L., Yemini, Y.: On generic rigidity in the plane. SIAM J. Algebr. Discrete Methods 3(1), 91-98
(1982)

22. Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River (2000)

23. Oxley, J.G.: Matroid Theory. Oxford Science Publications, Clarendon Press—Oxford University Press,

New York (1992)

W

@ Springer


http://arxiv.org/abs/2007.12649

Discrete & Computational Geometry (2021) 66:344-385 385

24.
25.
26.
27.
28.

29.

Rosen, Z., Sidman, J., Theran, L.: Algebraic matroids in action. Am. Math. Mon. 127(3), 199-216
(2020)

Shafarevich, I.R.: Basic Algebraic Geometry 1: Varieties in Projective Space. Springer, Heidelberg
(2013)

Watkins, M.E.: Connectivity of transitive graphs. J. Comb. Theory 8, 23-29 (1970)

Whiteley, W.: Cones, infinity and 1-story buildings. Struct. Topol. 1983(8), 53—70 (1983)

Whiteley, W.: Some matroids from discrete applied geometry. In: Matroid Theory (Seattle 1995). Con-
temporary Mathematics, vol. 197, pp. 171-311. American Mathematical Society, Providence (1996)
Whitney, H.: 2-Isomorphic graphs. Am. J. Math. 55(1), 245-254 (1933)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Graph Reconstruction from Unlabeled Edge Lengths
	Abstract
	1 Introduction
	Main Results

	2 Preliminaries
	2.1 Graph Rigidity
	Real Frameworks
	The Rigidity Matroid
	Complex Frameworks

	2.2 Basic Results from Algebraic Geometry
	The Zariski Topology
	Constructible Sets
	Generic Points


	3 The Measurement Variety
	3.1 Connection with Weak and Strong Reconstructibility
	3.2 Basic Structure of the Measurement Variety
	3.3 Direct Sum Decompositions

	4 Examples of Reconstructible Graphs
	4.1 Maximally Non-Rigid and Non-Globally Rigid Graphs
	4.2 Graph Reconstruction and the Rigidity Matroid

	5 Reconstructibility in Low Dimensions
	5.1 Relaxing the Condition on the Order of H
	5.2 Weak Reconstructibility in C1
	5.3 Bridge Invariant Graphs
	Bridge Invariant Graphs in the Plane

	5.4 Weak Reconstructibility in C2
	5.5 Strong Reconstructibility in C1 and C2

	6 Real Reconstructibility
	7 Conclusion and Open Problems
	Acknowledgements
	Appendix
	A GI is reducible to WR-1
	B Isomorphic Extensions
	C Rigid Graphs and Quasi-Generic Configurations
	References




