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VANISHING OF ALL EQUIVARIANT OBSTRUCTIONS AND THE

MAPPING DEGREE

SERGEY AVVAKUMOV♠ AND SERGEY KUDRYA♣

Abstract. Suppose that n is not a prime power and not twice a prime power. We prove that
for any Hausdorff compactum X with a free action of the symmetric group Sn there exists an
Sn-equivariant map X → R

n whose image avoids the diagonal {(x, x . . . , x) ∈ R
n|x ∈ R}.

Previously, the special cases of this statement for certain X were usually proved using the
equivartiant obstruction theory. Such calculations are difficult and may become infeasible past
the first (primary) obstruction. We take a different approach which allows us to prove the
vanishing of all obstructions simultaneously. The essential step in the proof is classifying the
possible degrees of Sn-equivariant maps from the boundary ∂∆n−1 of (n− 1)-simplex to itself.

Existence of equivariant maps between spaces is important for many questions arising from
discrete mathematics and geometry, such as Kneser’s conjecture, the Square Peg conjecture,
the Splitting Necklace problem, and the Topological Tverberg conjecture, etc. We demonstrate
the utility of our result applying it to one such question, a specific instance of envy-free division
problem.

1. Main result

The well-known framework of configuration spaces, test maps, and equivariant obstructions
has been an extremely fruitful method for dealing with questions arising from discrete math-
ematics and geometry, and has been used with great success to solve a variety of problems,
including Kneser’s conjecture [9], the Square Peg conjecture for smooth curves [14], the Splitting
Necklace problem [2], and the Topological Tverberg conjecture [5, 12, 15], etc.

Let us briefly describe the framework: One starts with defining a suitable configuration space
of potential solutions to the problem. Then an appropriate test map from the configuration
space to the test space is defined. Informally, the test map measures how far the given potential
solution is from the target, a subspace of the test space. A point in the configuration space is a
valid solution to the problem if and only if its image under the test map intersects (“hits”) the
target. Typically, a certain symmetry group defined by the problem acts both on configuration
and test spaces, and the test map is equivariant with respect to this action. So, one can
now restate the problem in topological terms: Is it true that any equivariant map from the
configuration space to the test space hits the target? If the answer is “yes”, then the original
problem always has a solution.

The “straightforward” way to answer this topological question is to compute a series of
equivariant topological obstructions, the larger the difference between the dimensions of the
configuration and test spaces are, the longer the series. In practice, computing even the second
obstruction may be very challenging if not impossible.

Often, the symmetry group of the problem is the symmetric groupSn; and the corresponding
test space is Rn (or (Rn)⊕d) with the diagonal Dn := {(x, x . . . , x) ∈ R

n|x ∈ R} (or (Dn)
⊕d) as

the target. For example, this is the case in the Splitting Necklace problem and the Topological
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Tverberg conjecture mentioned above, and fair or envy-free division problems [1, 3, 6, 7, 8, 11,
13].

For this popular combination of the symmetry group and the test space, our main result
allows to bypass the difficult calculations of the equivariant obstruction entirely:

Theorem 1.1. Suppose that n is not a prime power and not twice a prime power. Then for any
Hausdorff compactum X with a free action of Sn there exists an equivariant map X → R

n\Dn.

The space X in the statement is a substitute for the configuration space. The restrictions on
X are not significant, in practice a configuration space can usually be equivariantly contracted
to a compact polyhedron.

Theorem 1.1 fails when n is a prime power, see Theorem 1.5 below. As far as know it is an
open question whether Theorem 1.1 also fails when n is twice a prime power, but we conjecture
that it does.

The following similar theorem was recently proved in [4] and applied to get new and stronger
counterexamples to the Topological Tverberg conjecture. To state the theorem we will first
need the notation:

Dd,n := {(x, x . . . , x) ∈ R
d×n|x ∈ R

d}.

Theorem 1.2. Suppose that n is not a prime power. Then for any Hausdorff compactum X

with a free action of Sn there exists an equivariant map X → R
2×n \D2,n.

Note that Rn \Dn = R
1×n \D1,n and that there is a natural equivariant inclusion

(1.1) R
d×n \Dd,n ⊂ R

d′×n \Dd′,n when d < d′.

So, Theorem 1.2 follows from Theorem 1.1 when n is not twice a prime power. On the other
hand, when n is twice a prime power Theorem 1.2 holds, while Theorem 1.1 remains an open
question, see Question 1.6.

From the point of view of the Topological Tverberg conjecture, our Theorem 1.1 does not
add anything new compared to Theorem 1.2. The reason is that to build counterexamples to
the conjecture in R

d one needs an equivariant map to R
d×n \ Dd,n. In light of the inclusion

(1.1), Theorem 1.2 already provides the required equivariant maps for all d ≥ 2.
Theorem 1.1 follows as the combination of two other statements, which are also useful by

themselves:

Lemma 1.3. Let G be a finite group and S be a sphere with an action of G. If there exists an
equivariant map f : S → S of zero degree then any Hausdorff compactum X with a free action
of G has an equivariant map X → S.

See a proof of Lemma 1.3 and some historical remarks in [3].
To get Theorem 1.1, we would like to apply the lemma with Sn and ∂∆n−1 as G and S,

respectively. Then notice that ∂∆n−1 is Sn-equivariantly homotopically equivalent to R
n \Dn.

It remains to prove that there exists a Sn-equivariant map ∂∆n−1 → ∂∆n−1 of zero degree
which is required for the application of the lemma. Instead of proving only that, we give an
(incomplete) classification of all possible degrees of Sn-equivariant maps ∂∆n−1 → ∂∆n−1:

Theorem 1.4. For n > 1 consider the boundary ∂∆n−1 of a standard simplex with the natural
action of the symmetric group Sn permuting the vertices. Let d be the degree of a Sn-equivariant
map ∂∆n−1 → ∂∆n−1. Then:

(a) if n = pk for some prime p 6= 2 then d can attain any value d ≡ 1 (mod p) and only
such values,

(b) if n = 2pk for some prime p then d can only attain values d ≡ ±1 (mod p),
(c) if n is odd and n 6= pk for all primes p then d can attain any value,
(d) if n is even and n 6= 2pk for all primes p then d can attain 0.
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Only parts (c) and (d) of Theorem 1.4 are required to prove Theorem 1.1. The “only” part
of Theorem 1.4(a) was probably known before, and Theorem 1.4(c) was first proved in [3]. For
the reader’s convenience we prove Theorem 1.4 in full which takes up most of the paper.

The (almost) converse of Theorem 1.1 holds for n a prime power:

Theorem 1.5. Suppose that n is a prime power. Let X be an (n − 2)-connected topological
space with an action of Sn. Then there is no Sn-equivariant map X → R

n \Dn.

Theorem 1.5 along with its proof was communicated to us by Roman Karasev. The theorem
follows from [16, Propositions 2.1, 2.5, 3.2] but was probably known much earlier. For the
reader’s convenience we sketch the main steps of the proof communicated by Karasev at the
end of the paper.

A natural question is if an analogue of Theorem 1.5 holds for n twice a prime power:

Question 1.6. Suppose that n = 2pk for some prime p 6= 2.
Is there d such that for every d-connected Hausdorff compactum X with a free action of Sn

there is no equivariant map X → R
n \Dn? If so, what is the minimal such d?

Remark 1.7. For X satisfying the conditions of Lemma 1.3 there is even a Sn-equivariant map
X ∗ (Rn \Dn) → R

n \ Dn (follows from the proof of the lemma in [3]). Note that the action
on X ∗ (Rn \Dn) is not free. It is interesting to know when there exists a Sn-equivariant map
Y → R

n \Dn for a general Y with a non-free action of Sn.

Acknowledgments. We thank Roman Karasev and an anonymous referee for useful remarks
and corrections to the text.

2. Application to envy-free division

We consider the following envy-free division problem similar to the convex fair partition
problem in [1, 6, 8]. Let K ⊂ R

d be a convex body. Consider n players which want to divide
K among themselves into convex pieces of equal volume and equal subjective value: for each
division of K into convex pieces of equal volume each player has one or several pieces they like
most. The preferences of the players are “continuous”, i.e., the set of divisions of K into convex
pieces of equal volume where ith player likes the jth piece is closed. A division of K into n
pieces solves the problem if we can match players with pieces they like.

Theorem 2.1. Suppose that the number of players n is not a prime power and not twice a
prime power.

Then for any d and convex K ⊂ R
d there is an instance of the envy-free division problem

with no solution. Moreover, in this instance all players have the same preferences.

Proof. Consider the space X of all divisions of K into n labeled convex pieces of equal volume.
The symmetric group Sn acts on X by permuting the labels. Denote by F (n, d) the space of
ordered n-tuples of pairwise distinct points in R

d. The group Sn acts on F (n, d) by permuting
the points. There is a Sn-equivariant map X → F (n, d) which maps each piece to its center of
mass.

The space F (n, d) retractsSn-equivariantly to a compact polyhedron, see [6]. So, by Theorem
1.1, there is a Sn-equivariant map F (n, d) → R

n\Dn. Composing it with the map X → F (n, d)
we get that there is a Sn-equivariant f : X → R

n \Dn. (Note, that here Theorem 1.2)
Now assume that all players have the same preferences. In particular, that each player likes

those pieces in a given division x ∈ X which maximize the corresponding coordinate of f(x).
Player’s preference does not change if we renumber the pieces in x because f is Sn-equivariant.
A division x ∈ X solves this envy-free division problem if and only if f(x) ∈ Dn, which is
impossible. �

Note that the use of Theorem 1.1 in the proof cannot be substituted by Theorem 1.2. The
reason is that Theorem 1.2 states only the existence of a map to R

2×n \D2,n while we need a
map to R

1×n \D1,n = R
n \Dn.
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Combining the approach from [7] with the results of [8] or [6], we can prove that

Theorem 2.2. If d ≥ 2 and n is a power of a prime, then the envy-free division problem always
has a solution.

Proof. As in the proof of Theorem 2.1, denote by F (n, d) the space of n-tuples of pairwise
distinct points in R

d. To each element of x ∈ F (n, d) corresponds a unique division of K into
convex pieces of equal volume. This division is the intersection of K with a generalized Voronoi
diagram with centers being the points in the n-tuple x, see [8] or [6]. So, we can identify F (n, d)
with some subset of divisions of K into convex pieces of equal volume.

Using the approach of [7] (also described in [3]), we can “convert” player’s preferences to
a Sn-equivariant function f : F (n, d) → R

n such that x ∈ F (n, d) solves the problem if
f(x) ∈ Dn. And for d ≥ 2 and n a prime power any Sn-equivariant map f : F (n, d) → R

n hits
the diagonal Dn, see [8, Theorem 1.10] or [6, Theorem 1.2], which guarantees the existence of
the solution. �

We do not know if our envy-free division problem has a solution for n twice a prime power.

3. Proof of Theorem 1.4

Denote by Σn the boundary ∂∆n−1. We agree that Σ1 = ∅ and dimΣ1 = −1.

Lemma 3.1. Let G ⊆ Sn be a subgroup. There exists a G-equivariant map Σn → Σn of degree
d if and only if there exist points x1, . . . , xk ∈ Σn, subgroups G1, . . . , Gk ⊆ G, and integers
d1, . . . , dk, such that

d = 1−
k

∑

i=1

di
|G|

|Gi|
,

and for each i = 1, . . . , k

(1) the subgroup Gi ⊆ G is the stabilizer of xi ∈ Σn,
(2) the G-orbits of all xi are pairwise disjoint,
(3) there is a Gi-equivariant map Σn → Σn of degree di which is an identity in a neighbor-

hood of xi.

To prove the “only if” part of Lemma 3.1 we need the following technical lemma. Informally,
this lemma says that given a generic equivariant map on a subcomplex we can extend it, under
some dimensional conditions, to the whole complex generically and equivariantly. See also the
absolute version of the lemma (the case Q = ∅) in [3, Lemma 3.4] 1.

Lemma 3.2. Assume that G is a finite group acting on a simplicial complex P and acting
linearly on a vector space V . Let Q ⊂ P be a G-equivariant subcomplex. Assume that for every
subgroup H ⊆ G the inequality dimPH ≤ dimV H holds for the subspaces of H-fixed points in
P and V , respectively.

Let y ∈ V be a point and let f : Q → V be a G-equivariant continuous map linear on
every simplex of Q and such that f−1(y) is finite. Then there exists a G-equivariant PL map
F : P → V such that F−1(y) is finite and F |Q = f .

Proof. Consider the barycentric subdivision of P . The vertices of the barycentric subdivision
are marked by the dimension of the faces they originate from and those marks are preserved
by G. Hence the action of G has the following property:

(*) For any g ∈ G and any face σ of the barycentric subdivision we have gσ = σ if and only
if g is the identity map on σ.

1Lemma 3.4 in the published version of [3] has an incorrect proof and is probably false. The mistake is
corrected in the arXiv versions 7 and later.
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We now assume that the triangulation of P has this property.
Let P ′ be the barycentric subdivision of P (that would be the second subdivision if the

original triangulation didn’t satisfy (*)). We shall define F on the vertices of P ′ and extend F
to the simplices of P ′ by linearity.

For every vertex of P ′ which lies in Q define F to be equal to f .
For a vertex of P ′ its dimension is the dimension of the corresponding simplex of P . We

proceed to define F on the G-orbits of the remaining vertices in order of non-decreasing dimen-
sion proving that after every step (F |σ′)−1(y) is finite for every simplex σ′ of P ′ on which F is
already defined.

It remains to describe the individual step. Let x be one of the lowest dimensional vertices
of P ′ on which F is not defined yet. Let σ ⊂ P be the simplex of P of which x is the center.
Map F is already defined on ∂σ and by our construction we have that (F |∂σ)

−1(y) is finite. Let
H ⊆ G be the stabilizer of x. The value F (x) must be chosen in V H and F (x) ∈ V H is the
only constraint needed to extend F to the orbit Gx equivariantly.

By (*) we have that every point of σ is fixed by H , hence σ ⊂ PH. By the assumption of
the lemma, dim σ ≤ dimV H .

For every simplex τ ⊂ ∂σ ⊂ P ′

(i) if dimF (τ) = dimV H − 1, and hence dimF (τ) = dim τ , choose F (x) outside of the
affine hull of F (τ);

(ii) if dimF (τ) < dimV H − 1 choose F (x) outside of the affine hull of F (τ) ∪ y.

In both (i) and (ii) the “forbidden” affine hulls have dimension at most dim V H−1 and hence
there is a choice of F (x) ∈ V H which satisfies these rules for all τ ⊂ ∂σ.

In case (i) we have that the vertices of τ ∗x are mapped to affinely independent points and so
F (τ ∗ x) covers y at most once. In case (ii) we have that |(F |τ∗x)

−1(y)| = |(F |τ)
−1(y)|, i.e., the

F -image of (τ ∗ x) \ τ does not intersect y. To summarize, we get that (F |σ)
−1(y) is finite. �

Denote by Wn the affine span of ∆n−1. We consider Wn as a linear space with 0 at the center
of ∆n−1. Sometimes we identify Σn ⊂ Wn with the unit sphere in Wn by a Sn-equivariant
homeomorphism.

Proof of the “only if” part of Lemma 3.1. Consider any G-equivariant map Σn → Σn and com-
pose it with the inclusion Σn ⊂Wn to obtain a G-equivariant map

f1 : Σn →Wn.

Let f0 : Σn → Wn be the standard Sn-equivariant inclusion. By Lemma 3.2, we can connect
f0 and f1 by a G-equivariant homotopy

h : Σn × [0, 1] →Wn,

such that h−1(0) is finite. (Let us check that Lemma 3.2 can be applied. In the notation of the
lemma we have V = Wn, P = Σn × [0, 1], Q = Σn × {0, 1}, y = 0, f = f0 ⊔ f1, F = h. The
space Σn × [0, 1] can be identified with the closure of 2∆n−1 \∆n−1 ⊂Wn, where 2∆n−1 is the
unit simplex scaled by the factor of 2. Under this identification we have (Σn × [0, 1])H ⊂ WH

n

for every subgroup H ⊆ G, and hence dim(Σn × [0, 1])H ≤ dimWH
n . Also, (f0 ⊔ f1)

−1(0) = ∅
and so is finite. So, the hypothesis of the lemma is satisfied.)

Note that the difference in the degrees of f0 and f1 as maps of Σn to itself equals the degree
of h over the center 0 ∈ ∆n−1. This follows from the fact that the degree of a map between
closed connected oriented manifolds with boundary h :M → N satisfying h(∂M) ⊂ ∂N is well
defined and equals the degree of the restriction h|∂M : ∂M → ∂N if ∂N is connected. Here
M = ∂∆n−1 × [0, 1] and N = ∆n−1.

A local degree of h at a point of h−1(0) is the degree of the restriction of h to a small
neighborhood of the point containing no other points of h−1(0). Note, that local degree can
take integer values different from ±1 if 0 is not a regular value of the restriction. Because
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h−1(0) is finite, the degree of h can be counted geometrically as the sum of local degrees at the
points of h−1(0).

Let (xi, t1) ∈ h−1(0) be a point and let (xi, t2), . . . , (xi, tℓ) ∈ h−1(0) be all the other points of
h−1(0) whose first coordinate is xi. For any j and σ ∈ G ⊆ Sn the degree at the point (σxi, tj)
is the same as at (xi, tj), because σ acts on the orientation of both the domain and the range

by the permutation sign. So, the total degree corresponding to xi is −di
|G|
|Gi|

, where −di is the

sum over j of the degrees at (xi, tj) and
|G|
|Gi|

is the size of the orbit of xi. It remains to prove

that di satisfies (3).
Let U ⊂ Σn be a neighborhood of xi such that GiU = U . We take U sufficiently small so

that U × [0, 1] contains no points of h−1(0) except for (xi, t1), . . . , (xi, tℓ). Clearly, di equals the
degree of the map

φ : ∂(U × [0, 1])
h
−→ Wn \ 0

pr
−→ Σn,

where pr : Wn \ 0 → Σn is the standard radial projection. The map φ is Gi-equivariant as a
composition of two Gi-equivariant maps. The restriction of φ to U × {0} is the identity.

There exists a Gi-equivariant homeomorphism ψ : ∂(U× [0, 1]) → Σn which is the identity on
U ×{0}. For example, one can construct ψ as follows. Let ψ′ : ∂(U × [0, 1]) →Wn be the map
which is the identity on U × {0}, maps every y×{1} ∈ U ×{1} to y− 2xi (here we consider y
and xi as vectors in Wn), and is linear in t ∈ [0, 1] on ∂U × [0, 1]. Let ψ be the composition of
ψ′ with the projection pr :Wn \ 0 → Σn.

So, φ ◦ψ−1 : Σn → Σn is a Gi-equivariant map of degree di and the identity on U ∋ xi, hence
di satisfies (3). �

Proof of the “if” part of Lemma 3.1. For each i = 1, . . . , k, let gi : Σn → Σn be aGi-equivariant
map of degree di which is the identity in a small neighborhood Ui of xi.

There is a smaller neighborhood xi ∈ Vi ⊂ Ui such that GiVi = Vi and there is Gi-equivariant
homeomorphism φi : Vi → Σn \ Vi which is the identity on ∂Vi. One can construct Vi and
φi as follows. Until the end of the paragraph identify Σn with the unit sphere S ⊂ Wn by a
Sn-equivariant homeomorphism. Choose Vi ⊂ Ui to be a small spherical neighborhood of xi.
Clearly, GiVi = Vi (here we extend the action of Sn ⊃ G to Wn in the natural way). Denote
by C the point outside S and lying on the line connecting 0 with xi and such that any line
connecting C to any point in ∂V is tangent to S. Define φi : V → S \ V to be the radial
projection with center C.

Because the G-orbits of all xi are pairwise disjoint and because we can choose Vi to be
arbitrary small, we may assume that

• the G-orbits of all Vi are also pairwise disjoint,
• Vi ∩Gxi = {xi}.

Define a map f : Σn → Σn as follows:

• f equals to gi ◦ σ ◦ φi ◦ σ
−1 on σVi for all σ ∈ G and 1 ≤ i ≤ k,

• f is the identity map elsewhere.

It is easy to check that f is continuous, well defined (independent of σ), and G-equivariant.

Clearly, degf = 1−
∑k

i=1 deggi
|G|
|Gi|

= 1−
∑k

i=1 di
|G|
|Gi|

. �

We are now ready to prove the “only” parts of Theorem 1.4.

Proof of the “only” part of Theorem 1.4(a) and Theorem 1.4(b). Suppose that n = pk for some
prime p. Consider any point of Σn and split its barycentric coordinates into blocks of equal
coordinates. Suppose the sizes of the blocks are α1, . . . , αℓ. Then the orbit of the point under
Sn has size

n!

α1! · · · · · αℓ!
=

(

n

α1, . . . , αℓ

)

.
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The multinomial coefficient above is a product of binomial coefficients
(

n

α1, . . . , αℓ

)

=

(

n

α1

)

·

(

n− α1

α2

)

·, . . . , ·

(

n− α1 − · · · − αℓ−1

αℓ

)

.

Hence, it is divisible by p, as α1 < n and thus the first factor is divisible by p by Lucas’s
theorem, [10]. So, the size of every orbit is divisible by p. Hence, by the “only if” part of
Lemma 3.1, the degree of any Sn-equivariant map Σn → Σn is 1 modulo p. This finishes the
proof of the “only” part of Theorem 1.4(a).

Suppose now that n = 2pk for some prime p 6= 2. Then there is only one Sn orbit whose
size is not divisible by p. More precisely, it is the orbit of the center x of the subsimplex of
Σn on the first pk vertices. Indeed, considering the product of binomial coefficients above and
applying Lucas’s theorem we see that the first factor is not divisible by p only if α1 = pk (note,
that α1 = 2pk is impossible). Then the second factor is not divisible by p only if α2 = α1 = pk.

The stabilizer of x is Spk × Spk =: G. The orbit of x has size |Sn|
|G|

=
(

2pk

pk

)

which by Lucas’s

theorem equals 2 modulo p.
So, by the “only if” part of Lemma 3.1, the degree of any Sn-equivariant map Σn → Σn is

equal modulo p either to 1 (if none of the Gi in the statement of the lemma are equal to G)

or to 1 − deg(f) |Sn|
|G|

≡ 1 − 2 · deg(f) (mod p), where f : Σn → Σn is some G-equivariant map

which is the identity in a neighborhood of x. It remains to prove that deg(f) is either 0 or 1
modulo p.

Let x′ be the center of the subsimplex of Σn on the last pk vertices. Points x and x′ are
opposite to each other and are the only points of Σn fixed by G. The size of the G-orbit of any
other point y ∈ Σn is divisible by p. Indeed, split the first pk barycentric coordinates of y into
blocks of equal coordinates. Suppose the sizes of the blocks are α1, . . . , αℓ. As before, the size

of the G-orbit of y is divisible by
(

pk

α1

)

. By Lucas’s theorem, the only way
(

pk

α1

)

is not divisible

by p is if α1 = pk, meaning that the first pk coordinates of y are the same. Likewise, the last
pk coordinates of y are also the same. So, y = x or y = x′.

Let U be a small G-equivariant neighborhood of x on which f is the identity. Let us define
a G-equivariant homotopy h : Σn × [0, 1] →Wn in the following way:

• h|Σn×{0} = f ,
• h(Σn × {1}) = f(x′),
• h(x′ × [0, 1]) = f(x′),
• h|U×[0,1] is linear in t ∈ [0, 1], i.e., h(y, t) = (1− t)h(y, 0) + th(y, 1) for all y ∈ U .

By Lemma 3.2, we can G-equivariantly extend h to the rest of Σn × [0, 1] so that h−1(0) is
finite and the degree can be counted geometrically as the sum of local degrees at the points of
h−1(0) (see the definition of the local degree and a detailed explanation of why Lemma 3.2 is
applicable in the proof of the “only if” part of Lemma 3.1 above).

The degree of the constant map h|Σn×{1}, considered as a map to Σn, is zero. So, the degree
of f is equal to the degree of h over 0 ∈ Wn.

We know that f(x) = x and from the G-equivariancy of f : Σn → Σn, we have that f(x
′) = x

or f(x′) = x′. Because h is the identity on U × 0 and linear in t ∈ [0, 1] on U × [0, 1], we have
that (h|U×[0,1])

−1(0) is either empty, if f(x′) = f(x) = x; or contains the single point of the
form (x, 1

2
), if f(x′) = x′. In the second case the local degree of h at (x, 1

2
) is 1.

Because h(x′, t) = f(x′) 6= 0 we get that (x′, t) is not in h−1(0) for every t ∈ [0, 1].
For any other y ∈ Σn, y 6= x, x′ the size of the G-orbit of (y, t), t ∈ [0, 1] is divisible by p. So,

the degree of h over 0 ∈ Wn, and hence the degree of f , is either 1 or 0 modulo p, depending
on whether (x, 1

2
) is in h−1(0) or not. This finishes the proof of Theorem 1.4(b). �

To prove the rest of Theorem 1.4 we investigate which degrees can be attained by maps
Σn → Σn satisfying the condition (3) of Lemma 3.1.
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Lemma 3.3. For 1 ≤ k < n let x ∈ Σn be any point whose stabilizer under the action of Sn is
the subgroup G := Sk ×Sn−k. Let f1, . . . , fℓ : Σk ∗ Σn−k → Σk ∗ Σn−k be G-equivariant maps
with degrees d1, . . . , dℓ, respectively.

Then for any choice of the numbers εi ∈ {0, 1} there exists a G-equivariant map Σn → Σn

which is the identity in a neighborhood of x and whose degree is

1 + ε1(d1 − 1) + ε2(d2 − d1) + · · ·+ εℓ(dℓ − dℓ−1)− εℓ+1dℓ.

Corollary 3.4. Using the notation from the statement of Lemma 3.3, suppose there exists a
G-equivariant map Σk ∗ Σn−k → Σk ∗ Σn−k of degree −1. Then for any d there exists a G-
equivariant map Σn → Σn which is the identity in a neighborhood of x and whose degree is
d.

Proof. The identity map Σk ∗Σn−k → Σk ∗Σn−k has degree 1 and is G-equivariant. So, we can
use ±1 for di in the statement of Lemma 3.3.

Suppose we were able to achieve some degree using some values for d1, . . . , dℓ and ε1, . . . , εℓ.
It’s sufficient to prove that we can change this number by 1 and by −1 by incrementing ℓ and
making a correct choice of dℓ+1 and εℓ+2.

When we increase ℓ by 1 the degree changes by w := εℓ+1dℓ+1− εℓ+2dℓ+1 = (εℓ+1− εℓ+2)dℓ+1.
For any value of εℓ+1 ∈ {0, 1}, we can choose εℓ+2 so that |εℓ+1− εℓ+2| = 1. Then choosing dℓ+1

to be either 1 or −1, we can get w = 1 and w = −1. �

Corollary 3.5. Using the notation from the statement of Lemma 3.3, suppose there exists a
G-equivariant map Σk ∗Σn−k → Σk ∗Σn−k of degree d. Then there exists a G-equivariant map
Σn → Σn which is the identity in a neighborhood of x and whose degree is also d.

Proof. In the statement of Lemma 3.3, put ℓ = 1, d1 = d, ε1 = 1, ε2 = 0. The corollary
follows. �

Proof of Lemma 3.3. Using the radial projection we can G-equivariantly identify Σn with the
unit sphere S. Draw the diameter containing x. Draw ℓ+1 different hyperplanes orthogonal to
the diameter and intersecting its interior. The hyperplanes cut S into two spherical caps U1 and
U2 which are G-equivariantly homeomorphic to a cone over Σk ∗Σn−k, where U1 contains x and
U2 contains the point opposite to x; and ℓ cylinders Ci, each G-equivariantly homeomorphic
to Σk ∗ Σn−k × [0, 1]. We identify each Ci with Σk ∗ Σn−k × [0, 1] using this G-equivariant
homeomorphism. For each i, the end Σk ∗ Σn−k × {1} of Ci is the end which is further away
from x.

Now we construct a required map f : Σn → Σn defining it on the caps U1, U2, and on the
cylinders C1, . . . , Cℓ. By construction, f(∂U1), f(∂U2), and f(∂C1), . . . , f(∂Cℓ) will be disjoint
with x. So, the degree of f over x will be the sum of the degrees of f |U1

, f |U2
, and f |C1

, . . . , f |Cℓ

over x.
Define f |U1

to be the identity. Clearly, the degree of f |U1
over x is 1.

For each i, let f map the end Σk ∗Σn−k × {1} of the cylinder Ci to itself by the map fi. So,
f(∂Ci) ⊂ ∂Ci for all i.

Let us now define f on the interior of Ci. Suppose that εi = 1. The restrictions of f to
the two boundary components of Ci are G-equivariantly homotopic to each other as maps to
U1 ∪C1 ∪ · · · ∪Ci because the latter space is G-equivariantly contractible. So, we can extend f
to the interior of Ci using any such homotopy. The degree of f |Ci

over x is then the difference
di−di−1 between the degrees of its restrictions to the boundary components considered as maps
Σk ∗ Σn−k → Σk ∗ Σn−k.

Suppose now that εi = 0. Again, the restrictions of f to the two boundary components of Ci

are G-equivariantly homotopic to each other as maps to Ci ∪ · · · ∪ Cℓ ∪ U2. So, we can extend
f to the interior of Ci using any such homotopy. The degree of f |Ci

over x is then 0, since the
map misses x.

In total, the degree of f |Ci
over x is εi(di − di−1).
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The restriction f |∂U2
is already defined to be fℓ. Extend f to U2 by some G-equivariant

map going to either U2 or its complement S \ U2 according to the value εℓ+1 = 0 or εℓ+1 = 1,
respectively. The extension is possible since both U2 and S\U2 are G-equivariantly contractible.
If εℓ+1 = 0, the degree of f |U2

over x is 0 since the map misses x. Otherwise, the degree
equals −dℓ, i.e., minus the degree of the restriction to the boundary considered as a map
Σk ∗ Σn−k → Σk ∗ Σn−k. In total, the degree of f |U2

over x is −εℓ+1dℓ.
So, the total degree of f is as required. �

The last lemma we need is used only in the proof of part (d) of Theorem 1.4.

Lemma 3.6. Let n be a positive integer which is not a prime power and not twice a prime
power. Then there exist integers d1, d2, . . . , dn−1 such that

• 1−
n−1
∑

k=1

dk
(

n
k

)

= 0,

• dqα = 0 or dqα ≡ 1 (mod q) for any prime q and α > 0,
• d1 ≡ 1 (mod p) if n = pt + 1 for some prime p.

Proof. Consider all distinct representations of n as a sum of two powers of the same prime,
n = ps11 + pt11 = ps22 + pt22 = · · · = p

sℓ
ℓ + p

tℓ
ℓ , 0 ≤ si < ti for each i = 1, . . . , ℓ. Note that it is

possible that si = 0 for some i. Clearly, pi 6= pj for all 1 ≤ i < j ≤ ℓ.
Set

• dk = 0 if k = ptii for some i,
• dk = 1 + pibk if k = psii for some i,
• dk = 1 + qbk if k 6= psii and k 6= ptii for all i and k = qα, α > 0 for some prime q,
• dk = bk otherwise,

where integers bk will be chosen later. It is easy to see that the last two conditions on dk in the
statement of the lemma are satisfied by this assignment.

Define the number

N = 1−
∑

k=p
si

i

(

n

k

)

−
∑

k 6=p
si

i
, k 6=p

ti

i
, k=qα, α>0

(

n

k

)

.

Here the summation is over k = 1, . . . , n − 1 satisfying the second or the third case above.
Define numbers ck as follows:

• ck = 0 if k = ptii for some i,
• ck = pi

(

n
k

)

if k = psii for some i,

• ck = q
(

n
k

)

if k 6= psii and k 6= ptii for all i and k = qα, α > 0 for some prime q,

• ck =
(

n
k

)

otherwise.

Plugging in these definitions we get

1−
n−1
∑

k=1

dk

(

n

k

)

= N −
n−1
∑

k=1

bkck.

It remains to prove that we can choose bk so that the right-hand expression becomes 0. This
will follow if we prove that GCD(c1, . . . , cn−1) divides N . To do that we first prove that N is
divisible by p1p2 . . . pℓ and then prove that GCD(c1, . . . , cn−1) divides p1p2 . . . pℓ.

By Lucas’s theorem, for every pi and every 1 ≤ k ≤ n − 1 the binomial coefficient
(

n
k

)

is

divisible by pi, unless k = psii or k = ptii , in which case
(

n
k

)

is equal 1 modulo pi. In the definition

of N above, for each i there is a single summand
(

n
p
si

i

)

and no summands
(

n
p
ti

i

)

. Hence, N is

divisible by pi for every i.
Let us prove that GCD(c1, . . . , cn−1) divides p1p2 . . . pℓ. Fix i. If k = psi, then ck = pi

(

n
psi

)

is

not divisible by p2i because
(

n
psi

)

is not divisible by pi. Hence, GCD(c1, . . . , cn−1) is not divisible

by p2i for every i.
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It remains to prove that GCD(c1, . . . , cn−1) is not divisible by any prime q which is not equal
to any of pi. To do so we find ck which is not divisible by q.

Suppose that q > n. Then
(

n
k

)

is not divisible by q for all k and hence all the non-zero ck are
also not divisible by q.

Suppose now that q < n. Write the base q expansion of n and decrease the leftmost digit
by 1, denoting the obtained number by k. Since n > q, the expansion had more than one digit
and so n− k is divisible by q. On the other hand, n − ptii = psii is not divisible by q, meaning
that k 6= ptii for all i.

Also, k is not a positive power of q. Indeed, assume the contrary. Then, by the definition of
k, either n = 2k, which is impossible because n is not twice a prime power; or n is the sum of
k and a larger positive power of q, which is impossible because q is different from all pi.

So, k 6= ptii for all i and k is not a positive power of q. Hence, either ck =
(

n
k

)

(fourth case

in the definition of ck) or ck = q′
(

n
k

)

for some prime q′ 6= q (third case in the definition of ck).
Both numbers are not divisible by q by Lucas’s theorem because, by the definition of k, all the
digits in the base q expansion of k are not greater than the corresponding digits of n. We have
established that GCD(c1, . . . , cn−1) divides p1p2 . . . pℓ. �

We are now ready to prove the rest of Theorem 1.4.

Proof of Theorem 1.4(a,c,d). For every k = 1, . . . , n − 1 pick the center ck of some (k − 1)-
dimensional face of Σn. The orbit of ck contains

(

n
k

)

points and the stabilizer of ck in the
permutation group is the subgroup Gk := Sk ×Sn−k ⊂ Sn. Denote Sk := Σk ∗ Σn−k.

Parts (a) and (c). In (a) and (c) we have that n is odd. Since n is odd, then one of the
numbers k and n−k is even. The join of the antipodal map of the even dimensional factor and
the identity map of the odd dimensional factor gives a Gk-equivariant map Sk → Sk of degree
−1. By Corollary 3.4, for any integer dk there exists a Gk-equivariant map Σn → Σn which
is the identity in a neighborhood of ck and whose degree is dk. By Lemma 3.1, there exists a
Sn-equivariant map Σn → Σn of degree

d = 1−
n−1
∑

k=1

dk
|Sn|

|Sk ×Sn−k|
= 1−

n−1
∑

k=1

dk

(

n

k

)

.

If n is not a prime power, by Lucas’s theorem the GCD of the binomial coefficients in question
is 1. So, after an appropriate choice of dk, the resulting degree d can attain any integer value.
This proves part (c) of the theorem.

Likewise, if n is a power of a prime p, by Lucas’s theorem the binomial coefficients in question
are divisible by p. On the other hand,

(

n
n/p

)

is not divisible by p2 by Kummer’s theorem, and
(

n
1

)

is not divisible by any prime except for p. So, GCD of the coefficients equals exactly p and
after an appropriate choice of dk, the resulting degree d can attain any integer value which is 1
modulo p. This finishes the proof of part (a) of the theorem, the “only” part of (a) was proved
earlier.

Part (d). Let dk be some numbers whose existence is guaranteed by Lemma 3.6. By Lemma
3.1, it is sufficient to prove that for each k such that dk 6= 0 there is a Gk-equivariant map
fk : Σn → Σn of degree dk which is the identity in a neighborhood of ck. By Corollaries 3.4 and
3.5, this means that it is sufficient to find a Gk-equivariant map Sk → Sk of degree −1 or dk.

Finally, it is sufficient to find a Sk-equivariant map Σk → Σk or a Sn−k-equivariant map
Σn−k → Σn−k of degree −1 or dk. Indeed, using the the join operation with the identity map
Σn−k → Σn−k or Σk → Σk, respectively, we can get a required map Sk → Sk.

Consider now all the possibilities for k.
k is even: The antipodal map Σk → Σk is Sk-equivariant and of degree −1.
k > 1 is odd and not a prime power: Then there is a Sk-equivariant map Σk → Σk of any

degree, including −1, by part (c) of the theorem.
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k > 1 is odd and is a prime power with the base p: Then by the definition either dk = 0 and
there is nothing to prove; or dk ≡ 1 (mod p). In the latter case, by part (a) of the theorem,
there is a Sk-equivariant map Σk → Σk of degree dk.
k = 1 and n = pt + 1 for some prime p: Then dk ≡ 1 (mod p) by the definition. So, by part

(a) of the theorem, there is a Sn−k-equivariant map Σn−k → Σn−k of degree dk.
k = 1 and n 6= pt + 1 for any prime p: Then n − k is odd and not a prime power. So, by

part (c) of the theorem, there is a Sn−k-equivariant map Σn−k → Σn−k of any degree including
−1. �

4. Appendix: Proof of Theorem 1.5

Recall that Wn denotes the affine span of ∆n−1. The group Sn acts on ∆n−1 by permuting
the barycentric coordinates and the action naturally extends to Wn.

The space Wn is an (n − 1)-dimensional representation of the group Sn. Its Euler class in
the cohomology Hn−1(Sn;±Z) is nonzero, this is easily inferred from the direct calculation of
the restriction of this Euler class to the group (Zp)

k contained in Sn.
Here ±Z is the ring Z with the action of Sn by the permutation sign. One may avoid using

the coefficients non-trivially acted upon by the group by considering the cohomology modulo
p and, for p > 2, passing to the subgroup An ⊂ Sn of even permutations. In this case the
coefficients will be the finite field Zp and the Euler class in question remains nonzero. In view
of this, in what follows we put G = Sn for p = 2, n = pk, and G = An for p > 2, n = pk.

Let S(Wn) be the sphere of this representation. The spectral sequence starting with the page

E
x,y
2 = Hx(G;Hy(S(Wn);Zp))

has Ex,y
∞ the graded module associated to H∗

G(S(Wn);Zp). The only non-trivial differential of
this spectral sequence is generated by dn−1 that non-trivially sends the generator of En−1(0, n−
2) = Hn−2(S(Wn);Zp) to the Euler class of Wn in En−1(n− 1, 0) = Hn−1(G;Zp).

The similar spectral sequence for X starts with the page

E
x,y
2 = Hx(G;Hy(X ;Zp)),

and has Ex,y
∞ the graded module associated to H∗

G(X ;Zp). From the connectivity assumption
(the triviality of the reduced modulo p cohomology of X up to dimension n − 2 would also
suffice) it follows that all differentials dr up to r ≤ n − 2 of this spectral sequences cannot
map anything non-trivially to the bottom row. Hence the bottom row Ex,0

∞ remains intact in
dimensions x ≤ n− 1.

If an equivariant mapX → R
n\Dn existed, this would imply an equivariant mapX → S(Wn)

by the projection and normalization. Then the functoriality of the two spectral sequences gives
a contradiction with the established behavior of the differentials dn−1 : E

0,n−2
n−1 → E

n−1,0
n−1 of the

two spectral sequences (one is non-trivial while the other is zero, the functorial map between
the codomains of the differentials is the identity). �
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