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Abstract
The Vapnik–Chervonenkis dimension provides a notion of complexity for systems
of sets. If the VC dimension is small, then knowing this can drastically simplify
fundamental computational tasks such as classification, range counting, and density
estimation through the use of sampling bounds. We analyze set systems where the
ground set X is a set of polygonal curves inRd and the setsR are metric balls defined
by curve similarity metrics, such as the Fréchet distance and the Hausdorff distance,
as well as their discrete counterparts. We derive upper and lower bounds on the VC
dimension that imply useful sampling bounds in the setting that the number of curves
is large, but the complexity of the individual curves is small. Our upper and lower
bounds are either near-quadratic or near-linear in the complexity of the curves that
define the ranges and they are logarithmic in the complexity of the curves that define
the ground set.
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1 Introduction

A range space (X ,R) (also called set system) is defined by a ground set X and a set
of rangesR, where each r ∈ R is a subset of X . A data structure for range searching
answers queries for the subset of the input data that lies inside the query range. In
range counting, we are interested only in the size of this subset. In our setting, a range
is a metric ball defined by a curve and a radius. The ball contains all curves that lie
within this radius from the center under a specific distance function (e.g., Fréchet or
Hausdorff distance).

A crucial descriptor of any range space is its VC dimension [41,43,46] and related
shattering dimension, which we define formally below. These notions quantify how
complex a range space is, and have played fundamental roles in machine learning [7,
45], data structures [17], and geometry [14,30]. For instance, specific bounds on these
complexity parameters are critical for tasks as diverse as neural networks [7,36], art-
gallery problems [26,37,44], and kernel density estimation [35].

The last five years have seen a surge of interest in data structures for trajectory
processing under the Fréchet distance, manifested in a series of publications [2,8–
11,15,21,22,24,29,47]. This was partially motivated by the increasing availability and
quality of trajectory data from mobile phones, GPS sensors, RFID technology, and
video analysis [28,38,48]. Initial results in this line of research, such as the approxi-
mate range counting data structure by de Berg et al. [10], use classical data structuring
techniques. Afshani and Driemel extended their results and in addition showed lower
bounds on the space-query-time trade-off in this setting [2]. In particular, they showed
a lower bound which is exponential in the complexity of the curves for exact range
searching. In 2017, ACM SIGSPATIAL, the premier conference for geographic infor-
mation science, devoted their software challenge (GIS CUP) to the problem of range
searching under the Fréchet distance [47]. Spurring further developments, the most
recent results explore the use of heuristics [13] and randomization [16].

The Fréchet distance, named after Maurice Fréchet [25], is a popular distance
measure for curves. Intuitively, it can be defined using the metaphor of a person
walking a dog, where the person follows one curve and the dog follows the other
curve, and throughout their traversal they are connected by a leash of fixed length.
Both can vary their speed but they are not allowed to move backwards. The Fréchet
distance corresponds to the length of the shortest dog leash that permits a traversal in
this fashion. The Fréchet distance is very similar to theHausdorff distance for sets [32],
which is defined as the minimal maximum distance of a pair of points, one from each
set, under all possible mappings between the two sets. The difference between the
two distance measures is that the Fréchet distance requires the mapping to adhere
to the ordering of the points along the curve. Both distance measures allow flexible
associations between parts of the input elements which sets them apart from classical
L p distances and makes them so suitable for trajectory data under varying speeds.
One standard tool for computing the Fréchet distance of two curves is the free-space
diagram which was introduced by Alt and Godau [6]. In the free-space diagram, we
consider the polygonal curves as continuous curves [0, 1] → R

d . The free-space for
a given distance threshold ρ is a subset of the parametric space [0, 1] × [0, 1] that
consists of all point pairs on the two curves at distance at most ρ. The vertices of the
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curves partition [0, 1]×[0, 1] into rectangular cells, such that each cell corresponds to
the parametric space of two edges, one from each curve. One can decide if the distance
between two polygonal curves is at most ρ by checking whether there is a path which
is monotone in both coordinates that starts at (0, 0), ends at (1, 1), and stays inside
the free-space.

Our contribution in this paper is a comprehensive analysis of the Vapnik–
Chervonenkis dimension of the corresponding range spaces. The resulting VC
dimension bounds, while being interesting in their own right, have a plethora of appli-
cations through the implied sampling bounds. We detail a range of implications of our
bounds in Sect. 10.

2 Definitions

In this section, we formally define the distances between curves as well as VC dimen-
sion and range spaces, so we can state our main results. This basic set up will be
enough to prove our results for the discrete variants of the distance measures we con-
sider. The basic proofs in the discrete setting also serve as a template for the proofs
in the main part of the paper. Starting in Sect. 6 we provide more advanced geometric
definitions and properties about the VC dimension which we then use in our proofs
on the continuous variants of the distance measures we consider.

2.1 DistanceMeasures

The Fréchet distance was first defined by Maurice Fréchet in his doctoral thesis of
1906 [25]. The Hausdorff distance was first defined by Felix Hausdorff in his book
“Grundzüge der Mengenlehre” of 1914 [32]. Here, we follow the definitions given by
Alt and Godau [6] for the continuous variants of the Fréchet distance, we follow Eiter
and Mannila [23] for the discrete variant, and we use the original definitions for the
Hausdorff distance. We denote by ‖ · ‖ the Euclidean norm ‖ · ‖2.
Definition 2.1 (directed Hausdorff distance) Let X , Y be two subsets of some metric
space (M, d). The directed Hausdorff distance from X to Y is

d−→
H

(X , Y ) = sup
u∈X

inf
v∈Y

d(u, v).

Definition 2.2 (Hausdorff distance) Let X , Y be two subsets of some metric space
(M, d). The Hausdorff distance between X and Y is

dH(X , Y ) = max {d−→
H

(X , Y ), d−→
H

(Y , X)}.

Definition 2.3 Given polygonal curves V and U with vertices v1, . . . , vm1 and
u1, . . . , um2 respectively, a traversal T = (i1, j1), . . . , (it , jt ) is a sequence of pairs
of indices referring to a pairing of vertices from the two curves such that:

1. i1, j1 = 1, it = m1, jt = m2;
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2. ∀ (ik, jk) ∈ T : ik+1 − ik ∈ {0, 1} and jk+1 − jk ∈ {0, 1};
3. ∀ (ik, jk) ∈ T : (ik+1 − ik) + ( jk+1 − jk) ≥ 1.

Definition 2.4 (discrete Fréchet distance) Given polygonal curves V and U with ver-
tices v1, . . . , vm1 and u1, . . . , um2 respectively, we define the discrete Fréchet distance
between V and U as the following function:

ddF(V , U ) = min
T ∈T

max
(ik , jk )∈T

‖vik − u jk ‖,

where T denotes the set of all possible traversals for V and U .

Any polygonal curve V with vertices v1, . . . , vm1 and edges v1v2, . . . , vm1−1vm1

has a uniform parametrization that allows us to view it as a parametrized curve
v : [0, 1] → R

2. In the remainder, we use the term curve to refer to polygonal curves
if not mentioned otherwise.

Definition 2.5 (Fréchet distance) Given two curves u, v : [0, 1] → R
2, their Fréchet

distance is defined as follows:

dF(u, v) = min
f : [0,1]→[0,1]
g : [0,1]→[0,1]

max
α∈[0,1] ‖v( f (α)) − u(g(α))‖,

where f and g range over all continuous, non-decreasing functions with f (0) =
g(0) = 0 and f (1) = g(1) = 1.

Definition 2.6 (weak Fréchet distance) Givenparametrized curvesu, v : [0, 1] → R
2,

their weak Fréchet distance is defined as follows:

dwF(u, v) = min
f : [0,1]→[0,1]
g : [0,1]→[0,1]

max
α∈[0,1] ‖v( f (α)) − u(g(α))‖,

where f and g range over all continuous functions with f (0) = g(0) = 0 and
f (1) = g(1) = 1.

2.2 Range Spaces

Each range space can be defined as a pair of sets (X ,R), where X is the ground set
and R ⊆ 2X is the range set. Let (X ,R) be a range space. For Y ⊆ X , we denote

R|Y = {R ∩ Y | R ∈ R}.

IfR|Y contains all subsets of Y , then Y is shattered byR.

Definition 2.7 (VC dimension) The Vapnik–Chervonenkis dimension [41,43,46] (VC
dimension) of (X ,R) is the maximum cardinality of a shattered subset of X .
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Definition 2.8 (shattering dimension) The shattering dimension of (X ,R) is the
smallest δ such that, for all m,

max
B⊂X|B|=m

|R|B | = O(mδ).

It is well known that for a range space (X ,R) with VC dimension ν and shattering
dimension δ that ν ≤ O(δ log δ) and δ = O(ν). So bounding the shattering dimension
and bounding the VC dimension are asymptotically equivalent within a log factor. For
a proof of this and other basic facts on range spaces we refer the reader to the textbook
of Har-Peled [30].

Definition 2.9 (dual range space) Given a range space (X ,R), for any p ∈ X we
define

Rp = {R | R ∈ R, p ∈ R}.

The dual range space of (X ,R) is the range space (R, {Rp | p ∈ X}).
It is a well-known fact that if a range space has VC dimension ν, then the dual range
space has VC dimension ≤ 2ν+1 (see e.g. [30]).

There are many techniques for bounding the VC dimension of geometric range
spaces. For instance, when the ground set isRd and the ranges are defined by inclusion
in halfspaces, then the range space and its dual range space are isomorphic and both
have VC dimension and shattering dimension d. When the ranges are defined by
inclusion in balls, then the VC dimension and shattering dimension is d + 1, and the
dual range spaces have bounds of d [30]. It is also, for instance, known [12] that
the composition ranges formed as the k-fold union or intersection of ranges from a
range space with bounded VC dimension ν induces a range space with VC dimension
O(νk log k), and it was recently shown by Csikós et al. that this is tight even for some
simple range spaces such as those defined by halfspaces [18,19]. More such results
are deferred to Sect. 6.

2.3 Range Spaces Induced by Distance Measures

Let (M, d) be a pseudometric space. We define the ball of radius r and center p, under
the distance measure d, as the following set:

bd(p, r) = {x ∈ M | d(x, p) ≤ r},

where p ∈ M . The doubling dimension of a metric space (M, d), denoted as
ddim(M, d), is the smallest integer t such that any ball can be covered by at most
2t balls of half the radius.
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In this paper, we study theVCdimension of variants of range spaces (X ,R) induced
by pseudometric spaces1 (M, d) by setting X = M and

R = {bd(p, r) | r ∈ R, r > 0, p ∈ M}.

It is a reasonable question to ask whether the doubling dimension of a metric space
influences the VC dimension of the induced range space. In general, a bounded dou-
bling dimension does not imply a bounded VC dimension of the induced range space
and vice versa. Recently, Huang et al. [34] showed that if we allow a small (1 + ε)-
distortion of the distance function d, the shattering dimension can be upper bounded
by O(ε−O(ddim(M,d))). It is conceivable that the doubling dimension of the metric
space of the discrete Fréchet distance and Hausdorff distance is bounded, as long as
the underlying metric has bounded doubling dimension. However, for the continuous
Fréchet distance, the doubling dimension is known to be unbounded [20]. Moreover,
we will see that much better bounds can be obtained by a careful study of the specific
distance measure.

Specifically, we study an unbalanced version of the above range space, in the
sense that we distinguish between the complexity of objects of the ground set and
the complexity of objects defining the ranges. In our case, the ground set consists of
polygonal curves of complexity m, and the ranges are defined by polygonal curves of
complexity k. To this end, we define, for any integers d and m, Xd

m := (Rd)m and we
treat the elements of this set as ordered sets of points in R

d of size m. Formally, we
study range spaces with ground set Xd

m and a range set of the form

Rd,k = {bd(p, r) ∩ X
d
m | r ∈ R, r > 0, p ∈ X

d
k }

under different variants of the Fréchet and Hausdorff distances. We emphasize that
the range space consists of ranges of all radii.

3 Our Results

Table 1 shows an overview of our bounds. For metric balls defined on point sets (resp.
point sequences) inRd we show that the VC dimension is at most near-linear in dk, the
complexity of the ball centers that define the ranges, and at most logarithmic in dm,
the complexity of point sets of the ground set. Our lower bounds show that these
bounds are almost tight in all parameters k, d, and m. For the Hausdorff distance,
where the ground set X consists of continuous polygonal curves in R

d , we show an
upper bound that is quadratic in k, quadratic in d, and logarithmic in m. The same
bound holds for the Fréchet distance, where the ground set consists of sets of line
segments in R

d . We obtain slightly better bounds in k for the weak Fréchet distance.
Our lower bounds extend to the continuous case, but are only tight in the dependence
on m – the complexity of the ground set.

1 While we may use the term metric or pseudometric to define the range, our methods do not assume any
metric properties of the inducing distance measure.
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Table 1 Our bounds on the VC dimension of range spaces of the form (Xd
m ,Rd,k ), for d being the distance

measures in the table

Disc. Hausdorff O(dk log dkm) (Theorems 5.1, 5.2) Ω(max(dk log k, log dm))

Fréchet (d ≥ 4, Theorem 9.7)

Cont. Hausdorff O(d2k2 log dkm) (Theorem 7.7) Ω(max(k, logm))

weak Fréchet O(d2k log dkm) (Theorem 8.3) (d ≥ 2, Theorem 9.4)

Fréchet O(d2k2 log dkm) (Theorem 8.5)

In the first column we distinguish between Xd
m consisting of discrete point sequences vs. Xd

m consisting of
continuous polygonal curves. The lower bounds hold for all distance measures in this table

While the VC dimension bounds for the discrete Hausdorff and Fréchet metric balls
may seem like an easy implication of composition theorems for the VC dimension [12,
18], we still find three things about these results remarkable:

1. First consider the valid alignment paths in the free-space diagram: those are all
sequences of cells which are monotonic in both coordinates, their first cell contains
(0, 0), and their last cell contains (1, 1). For Fréchet variants, there are Θ(2k2m)

valid alignment paths in the free-space diagram. And one may expect that these
may materialize in the size of the composition theorem. Yet by a simple analysis
of the shattering dimension, we show that they do not.

2. Second, the VC dimension only has logarithmic dependence on the size m of
the curves in the ground set, rather than a polynomial dependence one would
hope to obtain by simple application of composition theorems. This difference has
important implications in analyzing real data sets where we can query with simple
curves (small k), but may not have a small bound on the size of the curves in the
data set (large m).

3. Third, for the continuous variants, the range spaces can indeed be decomposed into
problems with ground sets defined on line segments. However, we do not know of
a general d-dimensional bound on the VC dimension of range space with a ground
set of segments, and ranges defined by segments within a radius r of another
segment. We are able to circumvent this challenge with a technique to bound the
VC dimension using a simple model of computation, and careful predicate design.

4 Our Approach

Our methods use the fact that both the Fréchet distance and the Hausdorff distance are
determined by one of a discrete set of events, where each event involves a constant
number of simple geometric objects. For example, it is well known that the Hausdorff
distance between two discrete sets of points is equal to the distance between two points
from the two sets. The corresponding event happens as we consider a value δ > 0
increasing from 0 and we record which points of one set are contained in which balls
of radius δ centered at points from the other set. The same phenomenon is true for
the discrete Fréchet distance between two point sequences. In particular, the so-called
free-space matrix (the discrete version of the free-space diagram) which can be used
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to decide whether the discrete Fréchet distance is smaller than a given value δ encodes
exactly the information about which pairs of points have distance at most δ. The basic
phenomenon remains true for the continuous versions of the two distance measures if
we extend the set of simple geometric objects to include line segments and if we also
consider triple intersections. Each type of event can be translated into a range space
of which we can analyze the VC dimension. Together, the product of the range spaces
encodes the information, which curves lie inside which metric balls, in the form of
a set system. This representation allows us to prove bounds on the VC dimension of
metric balls under these distance measures.

5 Basic Idea: Discrete Fréchet and Hausdorff

In this section we prove our upper bounds in the discrete setting. LetXd
m = (Rd)m ; we

treat the elements of this set as ordered sets of points inRd of size m. The range spaces
that we consider in this section are defined over the ground set Xd

m and the range set
of balls under either the Hausdorff or the discrete Fréchet distance. The proofs in the
subsequent sections all follow the basic idea of the proof in the discrete setting.

Theorem 5.1 Let (Xd
m,RH,k) be the range space with RH,k being the set of all balls

under the Hausdorff distance centered at point sets in X
d
k . The VC dimension is

O(dk log dkm). The shattering dimension is O(dk logm).

Proof Let {S1, . . . , St } ⊆ X
d
m and S = ⋃

i Si ; we define S so that it ignores the order-
ing within each Si and is a single set of size tm. Any intersection of a Hausdorff ball
with {S1, . . . , St } is uniquely defined by a set {B1∩ S, . . . , Bk ∩ S}, where B1, . . . , Bk

are balls in R
d . To see that, notice that the discrete Hausdorff distance between two

sets of points is uniquely defined by the distances between points of the two sets.
Consider the range space (Rd ,B), whereB is the set of balls inRd . It is well known

that the VC dimension is d + 1. Hence,

max
S⊆Rd ,|S|=tm

|B|S| = O((tm)d+1).

This implies that

|{{B1 ∩ S, . . . , Bk ∩ S} | B1, . . . , Bk are balls in Rd}| ≤ O((tm)(d+1)k),

and hence,2

2t ≤ O((tm)(d+1)k) 
⇒ t = O(dk log dkm).

We can similarly bound the shattering dimension δ,

tδ ≤ O((tm)(d+1)k) 
⇒ δ = O(dk logm). ��
2 For x > 1 if x/ ln x ≤ u then x ≤ 2u ln u. Hence, if tm/ log tm ≤ dkm, then tm = O(dkm log dkm).
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Theorem 5.2 Let (Xd
m,RdF,k) be the range space with RdF,k being the set of all

balls under the discrete Fréchet distance centered at polygonal curves in X
d
k . The VC

dimension is O(dk log dkm). The shattering dimension is O(dk logm).

Proof Let {S1, . . . , St } ⊆ X
d
m and S = ⋃

i Si . Any intersection of a discrete Fréchet
ball with {S1, . . . , St } is uniquely defined by a sequence B1 ∩ S, . . . , Bk ∩ S, where
B1, . . . , Bk are balls in R

d . The number of such sequences can be bounded by
O((tm)(d+1)k) as in the proof of Theorem 5.1. Enforcing that a sequence contains
a valid alignment path only reduces the number of possible distinct sets formed by
t curves, and it can be determined using these intersections and the two orderings of
B1, . . . , Bk and of vertices within some S j ∈ X

d
m . ��

6 Preliminaries

In this section, we provide a more advanced set of geometric primitives and other
known technical results about the VC dimension. We also derive some simple corol-
laries. Additionally, we provide some basic results about the distances which will
couple with the geometric primitives in our proofs for continuous distance measures.

We again consider a ground set Xd
m = (Rd)m which we treat as a set of polygonal

curves with points inRd of size m. Given such a curve s ∈ X
d
m , let V (s) be its ordered

set of vertices and E(s) its ordered set of edges.

6.1 A Simple Model of Computation

We consider a model of computation that will be useful for modeling primitive geo-
metric sets, and in turn bounding the VC dimension of an associated range space.
These will be useful in that they allow the invocation of powerful and general tools to
describe range spaces defined by distances between curves. We allow the following
operations, which we call simple operations:

– the arithmetic operations +, −, ×, and / on real numbers,
– jumps conditioned on >, ≥, <, ≤, =, and �= comparisons of real numbers, and
– output 0 or 1.

We say a function requires t simple operations if it can be computed with a circuit of
depth t composed only of these simple operations. Note that with the above simple
operations, we can also perform logical operations. Furthermore, the lack of a square-
root operator creates some challenges when dealingwith non-linear geometric objects.
Therefore, we prove the following technical lemma showing that we can compare
certain expressions involving square roots without computing them explicitly, i.e.,
only simple operations are needed for the comparison.

Lemma 6.1 Consider values α, β, γ, δ ∈ R with β, δ ≥ 0. We can compute the truth
value of α + √

β ≤ γ + √
δ and α + √

β ≥ γ + √
δ using O(1) simple operations.

Proof It suffices to prove the case of α + √
β ≤ γ + √

δ, as α + √
β ≥ γ + √

δ is
analogous. We simply show that this comparison is equivalent to a comparison involv-
ing only a constant number of simple operations starting from the values α, β, γ, δ. If
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Rr (st )Cr (st )Dr (st )

Fig. 1 Illustration of basic shapes in R
2, from left to right: a ball Br (p), a stadium Dr (st), a cylinder

Cr (st), and a capped cylinder Rr (st)

α = γ , then
√

β ≤ √
δ is equivalent to β ≤ δ and we are done. Assuming α < γ , we

get

α + √
β ≤ γ + √

δ ⇐⇒ √
β ≤ (γ − α) + √

δ

⇐⇒ β ≤ (γ − α)2 + 2(γ − α)
√

δ + δ

⇐⇒ β − (γ − α)2 − δ ≤ 2(γ − α)
√

δ.

The second equivalence holds because both sides are at least 0. Now, note that the
right side of the last inequality is at least 0 and thus, if the left side is negative (which
we can check using O(1) simple operations), we are done. Thus, assume the left side
is at least 0. Then we can square both sides and obtain a comparison involving only
simple operations. Now, if γ < α, we can do an analogous calculation, where we
subtract γ instead of α in the first equivalence. As testing γ < α is a simple operation,
we can determine which case we are in. ��

6.2 Geometric Primitives

For any p ∈ R
d we denote by Br (p) the ball of radius r , centered at p. For any two

points s, t ∈ R
d , we denote by st the line segment from s to t . Whenever we store such

a line segment, for technicalities within the lemma below, we store the coordinates of
its endpoints s and t . For any two points s, t ∈ R

d , we define the stadium centered at
st , Dr (st) = {x ∈ R

d | ∃ p ∈ st : ‖p − x‖ ≤ r}. For any two points s, t ∈ R
d , we

define a cylinder

Cr (st) = {x ∈ R
d | ∃ p ∈ �(st) : ‖p − x‖ ≤ r},

where �(st) denotes the line supporting the edge st . Finally, for any two points s, t ∈
R

d , we define the capped cylinder centered at st : Rr (st) = {p + u | p ∈ st and u ∈
R

d s.t. ‖u‖ ≤ r and 〈t − s, u〉 = 0} (Fig. 1).
For each of these geometric sets, we can determine if a point x ∈ R

d is in the set
with a constant number of operations under a simple model of computation.
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Lemma 6.2 For a point x ∈ R
d , and any set of the form Br (p), Dr (st), Cr (st), or

Rr (st), we can determine if x is in that set (returns 1, otherwise 0) using O(d) simple
operations.

Proof For the ball Br (p) we can compute a distance ‖x − p‖2 in O(d) time, and
determine inclusion with a comparison to r2. For the cylinder Cr (st) we can compute
the closest point to x on this line as

πst (x) = t + (s − t)〈s − t, x − t〉
‖s − t‖2 .

Then we can determine inclusion by comparing ‖πst (x) − x‖2 to r2. For the capped
cylinder Rr (st) we also need to compare ‖πst (x) − t‖2 and ‖πst (x) − s‖2 to see if
either of these terms is greater than ‖s − t‖2. For the stadium Dr (st) we determine
inclusion if x is in any of Rr (st), Br (s), or Br (t). ��

6.3 Bounding theVC Dimension

For range spaces defined on continuous curves, our proofs use a powerful theorem
from Goldberg and Jerrum [27] as improved and restated by Anthony and Bartlett [7].
It allows one to easily bound the VC dimension of geometric range spaces under our
simple model of computation.

Theorem 6.3 ([7, Thm. 8.4]) Suppose h is a function from R
d ×R

n to {0, 1} and let

H = {x �→ h(α, x) | α ∈ R
d}

be the range set determined by h with preimage of 1. Suppose that h can be computed
by an algorithm that takes as input the pair (α, x) ∈ R

d × R
n and returns h(α, x)

after no more than t simple operations. Then, the VC dimension of H is ≤ 4d(t + 2).

An example implication can be seen for geometric sets via Lemma 6.2. Note that this
implies any VC dimension upper bound proven in this approach applies to both the
range space and its dual range space because the function h is unchanged and the
ranges can still be described by O(d) real coordinates.

Corollary 6.4 For range spaces defined on R
d with geometric sets Br (p), Dr (st),

Cr (st), or Rr (st) as ranges, the VC dimension is O(d2). The same O(d2) VC dimen-
sion bound holds for the corresponding dual range spaces, with ground sets as the
geometric sets, and ranges defined by stabbing using points in R

d .

Note that these bounds are not always tight. Specifically, because theVCdimension for
ranges definedgeometrically by balls Br (p) is O(d) [30].Moreover, theVCdimension
of range spaces definedby cylindersCr (st) is known tobe O(d) [4]. The ranges defined
by capped cylinders Rr (st) are the intersection of a cylinder and two halfspaces, each
with VC dimension O(d) and hence, by the composition theorem [12], this full range
space also has VC dimension O(d). Finally, the stadium Dr (st) is defined by the
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union of a capped cylinder Rr (st) and two balls Br (s) and Br (t); hence, again by the
composition theorem [12], its VC dimension is O(d).

However, it is not clear that these improved bounds hold for the dual range spaces,
aside from the case of Br . Moreover, when the ground set X of the range space (X ,R)

is not Rd , then we need to be cautious in using the k-fold composition theorem [12],
which bounds the VC dimension of complex range spaces derived as the logical
intersection or union of simpler range spaces with bounded VC dimension. In the case
of a ground set X = R

d , logical and geometric intersections are the same, but for
other ground sets (like dual objects, or line segments Xd

2) this is not necessarily the
case. For instance, a line segment e ∈ X

d
2 may intersect a ball Br and also a halfspace

H while not intersecting the intersection Br ∩ H .

6.4 Representation by Predicates

In order to prove bounds on the VC dimension of range spaces defined on continuous
curves, we establish sets of geometric predicates which are sufficient to determine if
two curves have distance atmost r to each other. Analyzing the range spaces associated
with these predicates (over all possible radii r ) allows us to compose them further and
to establish VC dimension bounds for the range space induced by the corresponding
distance measure. For the Fréchet and weak Fréchet distance, the predicates mirror
those used in range searching data structures [1,2]. And for the Hausdorff distance
on continuous curves, the predicates are derived from the Voronoi diagram [5]. The
technical challenges for each case are similar, but require different analyses.

7 The Hausdorff Distance

We consider the range space (Xd
m,Rr

Hk
), where Rr

Hk
denotes the set of all balls, of

radius r , centered at curves in X
d
k , under the Hausdorff distance.

3 We also consider
the same problems under both directed versions of the Hausdorff distance, and their
induced range spaces

(
X

d
m,Rr−→

Hk

)
and

(
X

d
m,Rr−→

Hk

)
, where Rr−→

Hk
denotes the set of all

balls of radius r under the directed Hausdorff distance from curves in X
d
k , and Rr−→

Hk
denotes the set of all balls of radius r under the directed Hausdorff distance from
curves to Xd

k .

7.1 Hausdorff Distance Predicates

Consider two sets of line segments A and B such that any two segments that belong
to the same set have disjoint interiors. Consider the Voronoi diagram of the vertices
and open segments of B: each element of B (i.e., open segment or vertex) is assigned
to a Voronoi cell which is the set of points that are closer to this element than to
any other element (see Fig. 2). According to Alt et al. [5], the critical points for the

3 The proofs in this section arewritten for polygonal curves inXd
m , but they readily extend to (not necessarily

connected) sets of line segments in Rd of cardinality m′ = (m − 1)/2.
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B

A

Fig. 2 Two polygonal lines A and B. The critical points for directed Hausdorff distance d−→
H

(A, B) are
either at some vertex of A or at some intersection point of A with the boundary of a Voronoi cell of B

directed Hausdorff distance d−→
H

(A, B) occur either at some vertex of A or at some
intersection point of A with the boundary of a Voronoi cell of B. Thus, we need a
predicate for encoding the first type of event where the distance is assumed at a vertex
of A. Additionally, we need a predicate for testing if a line supporting an edge intersects
the intersection of two stadiums; see Fig. 3 for an illustration in R

2.
Consider any two polygonal curves s ∈ X

d
m and q ∈ X

d
k . In order to encode the

intersection of polygonal curves with metric balls under the Hausdorff metric, we will
first define a subset of Rd , a double-stadium, defined by two line segments {e1, e2}
and a radius r as

Dr ,2(e1, e2) = Dr (e1) ∩ Dr (e2).

We use the notation uv ∈ Dr ,2(e1, e2) to indicate that the line �(uv) which supports
uv intersects with the double-stadium, i.e., it fulfills

�(uv) ∩ Dr ,2(e1, e2) �= ∅.

We will make use of the following predicates:

P1 (Vertex-edge (horizontal)) Given an edge of s, s j s j+1, and a vertex qi of q, this
predicate returns true iff there exists a point p ∈ s j s j+1, such that ‖p − qi‖ ≤ r .

P2 (Vertex-edge (vertical)) Given an edge of q, qi qi+1, and a vertex s j of s, this
predicate returns true iff there exists a point p ∈ qi qi+1, such that ‖p − s j‖ ≤ r .

P3 (d-stadium-line (horizontal)) Given an edge of q, qi qi+1, and two edges of s,
{e1, e2} ⊂ E(s), this predicate is equal to qi qi+1 ∈ Dr ,2(e1, e2).

P4 (d-stadium-line (vertical)) Given one edge of s, s j s j+1, and two edges of q,
{e1, e2} ⊂ E(q), this predicate is equal to s j s j+1 ∈ Dr ,2(e1, e2).
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�

e2

e1

s

t

Fig. 3 Illustration of the predicate P3 in R
2: The predicate evaluates to true if and only if the triple

intersection of the line � supporting st with the two stadiums centered at edges e1 and e2 is non-empty.
Note that st may lie outside of the intersection

Lemma 7.1 For any two polygonal curves s, q, given the truth values of the predicates
P1, P3 one can determine whether d−→

H
(q, s) ≤ r . Similarly, given the truth values of

the predicates P2, P4 one can determine whether d−→
H

(s, q) ≤ r .

Proof Wefirst assume for the sake of simplicity that q is a line segment with endpoints
q1 and q2. We claim that d−→

H
(q, s) ≤ r if and only if there exists a sequence of

edges s j1s j1+1, s j2s j2+1, . . . , s jv s jv+1 for some integer value v, such that the predicates
P1(q1, s j1s j1+1), P1(q2, s jv s jv+1) both evaluate to true and the conjugate

v−1∧

i=1

P3
(
q1q2, s ji s ji +1, s ji+1s ji+1+1

)

evaluates to true. Assume such a sequence of edges exists. In this case, there exists a
sequence of points p1, . . . , pv on the line supporting q, with p1 = q1, pv = q2, and
such that for 1 ≤ i < v, pi , pi+1 ∈ Dr (s ji s ji+1). That is, two consecutive points of
the sequence are contained in the same stadium. Indeed, for i = 1 we have p1 = q1
and q1, p2 ∈ s j1s j1+1 since the corresponding P1 and P3 predicates evaluate to true:

P1(q1, s j1s j1+1), P3
(
q1q2, s j1s j1+1, s j2s j2+1

)
.

Likewise, for i = v −1, it is implied by the corresponding predicates P1(q2, s jv s jv+1)

and P3
(
q1q2, s jv−1s jv−1+1, s jv s jv+1

)
. For the remaining 1 < i < v − 1, it follows

from the conditions given by the specified P3 predicates. Now, since each stadium is
a convex set, it follows that each line segment connecting two consecutive points of
this sequence pi , pi+1 is contained in one of the stadiums. Note that the set of line
segments obtained this way forms a connected polygonal curve which fully covers the
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line segment q. It follows that

q ⊆
⋃

0≤i<v

pi pi+1 ⊆
⋃

0≤i<v

Dr (s ji s ji+1) ⊆
⋃

e∈E(s)

Dr (e).

Therefore, any point onq iswithin distance r of somepoint on s and thus d−→
H

(q, s) ≤ r .

Now, for the other direction of the proof, assume that d−→
H

(q, s) ≤ r . The definition
of the directed Hausdorff distance implies that

q ⊆
⋃

e∈E(s)

Dr (e),

since any point on the line segment q must be within distance r of some point on
the curve s. Consider the intersections of the line segment q with the boundaries of
stadiums

q ∩
⋃

e∈E(s)

∂ Dr (e).

Let w be the number of intersection points and let v = w + 2. We claim that this
implies that there exists a sequence of edges s j1s j1+1, s j2s j2+1, . . . , s jv s jv+1 with the
properties stated above. Let p1 = q1, pv = q2, and let pi for 1 < i < v be the
intersection points ordered in the direction of the line segment q. By construction, it
must be that each pi for 1 < i < v is contained in the intersection of two stadiums,
since it is the intersection with the boundary of a stadium and the entire edge is covered
by the union of stadiums. Moreover, two consecutive points pi , pi+1 are contained in
exactly the same subset of stadiums—otherwise there would be another intersection
point with the boundary of a stadium in between pi and pi+1. This implies a set of
true predicates of type P3 with the properties defined above. The predicates of type P1
follow trivially from the definition of the directed Hausdorff distance. This concludes
the proof of the other direction.

In general, for any polygonal curve q ∈ X
d
k with vertices q1, . . . , qk , we have that

d−→
H

(q, s) ≤ r ⇐⇒
k−1∧

i=1

[
d−→
H

(qi qi+1, s) ≤ r
]
.

Thus, we can apply the arguments above to each edge of q individually. Similarly,
we can prove that given the truth values of the predicates P2, P4 one can determine
whether d−→

H
(s, q) ≤ r , by an argument symmetric to the above. ��

7.2 Hausdorff Distance VC Dimension Bound

Now, we want to show that we can compute a representation of the interval of inter-
section of a line and a capped cylinder using only O(d) simple operations. This
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representation then allows us to compare such intervals using Lemma 6.1. The appro-
priate ground set is over two points q j , qt ∈ R

d , where for notational simplicity we
reuse X

d
2 . Furthermore, for each segment st ∈ X

d
2 , recall that �(st) is the line that

supports it.

Lemma 7.2 Given a line �(st) with st ∈ X
d
2 and a capped cylinder Rr (uv) with

uv ∈ X
d
2 , the intersection �(st) ∩ Rr (uv) of those two objects is either

{
s + (t − s)x | x ∈ [

α + √
β, γ + √

δ
] ⊆ R

}
,

where α, β, γ, δ ∈ R can be computed using O(d) simple operations, or it is empty.

Proof We first compute the intersection of the infinite cylinder Cr (uv) with the line
�(st). Let f (x) = u − (v − u)x be the line �(uv) parametrized by x ∈ R and
g(y) = s + (t − s)y the line �(st) parametrized by y ∈ R. We describe all values
x, y parameterizing points in this intersection by quantifying the boundaries of this
set. All points in the intersection of �(st) with the boundary of the infinite cylinder
Cr (uv) are described by

‖g(y) − f (x)‖2 = r2 ⇐⇒ ‖s + (t − s)y − u − (v − u)x‖2 = r2

⇐⇒
d∑

i=1

(
si + (ti − si )y − ui − (vi − ui )x

)2= r2.

Let zi (y) = si + (ti − si )y − ui . We obtain

d∑

i=1

(
zi (y) − (vi − ui )x

)2 = r2

⇐⇒
d∑

i=1

(
(vi − ui )

2x2 − 2zi (y)(vi − ui )x + zi (y)2
) − r2 = 0.

For any fixed y, this is a quadratic equation in x and the discriminant is

h(y) =
(

d∑

i=1

2zi (y)(vi − ui )

)2

− 4
d∑

i=1

(vi − ui )
2 ·

(
d∑

i=1

zi (y)2 − r2
)

.

Note that the quadratic equation has one solution exactly for those points on �(st)
which have distance r from �(uv), because the ball around those points intersects �(uv)

exactly once. Those are also the points which define the boundary of �(st) ∩ Rr (uv).
Thus, we want to solve h(y) = 0. As zi (y) is linear in y, we obtain a quadratic
equation in y. Note that all coefficients of the quadratic equation can be computed in
O(d) simple operations. Both solutions of this equation are of the form α ± √

β. If
β < 0, then the intersection is empty. Otherwise, we obtain an intersection interval[
α − √

β, α + √
β
]
for the infinite cylinder.
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To obtain the intersectionwith the capped cylinder, we first compute the intersection
of �(st)with the top and bottom hyperplanes of the cylinder. The two planes are given
by all p ∈ R

d which satisfy (p −u)(v −u) = 0 and (p −v)(v −u) = 0, respectively.
By plugging the line equation into the hyperplane formulas, we get the intersection
points. For the first plane we thereby obtain

(g(y) − u)(v − u) = 0 ⇐⇒ (s + (t − s)y − u)(v − u) = 0

which resolves to

y = − (s − u)(v − u)

(t − s)(v − u)
.

The intersection with the second plane is analogous. Thus, we again obtain an interval
for y such that the values in this interval induce the intersection points between the
planes. Again O(d) simple operations are sufficient to compute the boundaries of this
interval.

To obtain the intersection with the capped cylinder (not just with its boundary
planes), we intersect the two intervals we obtained for the intersection with the infinite
cylinder as well as the boundary planes of the capped cylinder. As computing the
intersection of intervals is simply taking the minimum/maximum, we can use Lemma
6.1 to do this in O(1) simple operations. The values for α, β, γ, δ are then given
by the intersection interval boundaries which are chosen from the boundaries of the
intersection interval of the planes of the capped cylinder and the infinite cylinder. ��
Additionally, the following lemma holds, which states that we can express an inter-
section of a ball and a line with an interval of the form as in the previous lemma.

Lemma 7.3 Given a line �(st) with st ∈ X
d
2 and a ball Br (c) centered at c, the

intersection �(st) ∩ Br (c) of those two objects is either

{
s + (t − s)x | x ∈ [

α + √
β, γ + √

δ
] ⊆ R

}
,

where α, β, γ, δ ∈ R can be computed using O(d) simple operations, or it is empty.

Proof The intersection is given by the x fulfilling‖s+(t−s)x−c‖2 ≤ r2. Todetermine
the extremal values for x which satisfy this inequality is a quadratic equation in x .
Solving it, we obtain an intersection interval as required. ��
Having proven those technical lemmas, we are now ready to start our argument for
bounding the VC dimension. We argue that the truth values for predicate P1 over all
possible inputs are uniquely defined by the set

– Pr
1 (q, s) = {Dr (si si+1) ∩ V (q) | si si+1 ∈ E(s)}.

Similarly, the truth values for predicate P2 are uniquely defined by the set

– Pr
2 (q, s) = {Dr (qi qi+1) ∩ V (s) | qi qi+1 ∈ E(q)}.
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PBB PRR PRB

Fig. 4 Illustration in R2 of predicates used in the proof of Lemma 7.4 for the example given in Fig. 3

Then the predicates P3 and P4 induce sets (where effectively P4(q, s) = P3(s, q))

– Pr
3 (q, s) = {(e1, e2, e3) ∈ E(s) × E(s) × E(q) | e3 ∈ Dr ,2(e1, e2)},

– Pr
4 (q, s) = {(e1, e2, e3) ∈ E(q) × E(q) × E(s) | e3 ∈ Dr ,2(e1, e2)}.

We require a technical proof, bounding the VC dimension of the range space defined
on segments with ranges defined by double-stadiums. To this end, let

Dd
2 = {{st ∈ X

d
2 | st ∈ Dr ,2(e1, e2)} | e1, e2 ∈ X

d
2 , r > 0

}

be the families of subsets of line segments st ∈ X
d
2 whose supported lines �(st)

intersect a common double-stadium Dr ,2(e1, e2). We are now ready to state and prove
the following lemma.

Lemma 7.4 The VC dimension of the range space (Xd
2 ,Dd

2 ) and of the associated dual
range space is O(d2).

Proof The predicate which determines whether a line � intersects a double-stadium
Dr ,2(e1, e2) can be implemented by taking the logical-or over O(1) calls to the fol-
lowing predicates (see Fig. 4 for an illustration):

PB B : checks whether � intersects Dr ,2(e1, e2) in the intersection of two radius r balls,
PR R : checks whether � intersects Dr ,2(e1, e2) in the intersection of two radius r

capped cylinders,
PR B : checks whether � intersects Dr ,2(e1, e2) in the intersection of one ball and one

capped cylinder, both of radius r .

For all predicates we first compute the intersection interval of the capped cylinder
or ball using Lemmas 7.2 or 7.3. Applying Lemma 6.1, we can then compute the
intersection of these two intersection intervals by comparing their bounds, obtaining
an interval of the form

[
α+√

β, γ +√
δ
]
. Again using Lemma 6.1, we test ifα+√

β ≤
γ + √

δ, thereby checking if the intersection is non-empty. Thus, all three of the
above predicates can be computed in O(d) simple operations. Because each predicate
requires O(d) simple operations, and we need to perform a logical-or over O(1) of
these predicates, it implies range inclusion e ∈ Dr ,2 and can be determined with
O(d) simple operations. Hence by Theorem 6.3 the VC dimension is O(d2). Since
an element of the dual range space is also defined by O(d) real values, and the same
operations can be applied, the dual range space also has VC dimension O(d2). ��

Using the above lemmas, we now get the following theorems.
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Theorem 7.5 Let
−→RH,k be the set of all balls, under the directed Hausdorff distance

from polygonal curves in X
d
k . The VC dimension of (Xd

m,
−→RH,k) is O(d2k log dkm).

The shattering dimension of (Xd
m,

−→RH,k) is O(d2k logm).

Proof Let S ⊂ X
d
m be a set of t polygonal curves and let q ∈ X

d
k . By Lemma 7.1, the

set
{
s ∈ S | d−→

H
(q, s) ≤ r

}
is uniquely defined by the sets

⋃

s∈S

Pr
1 (q, s),

⋃

s∈S

Pr
3 (q, s).

The number of all possible sets
⋃

r≥0
⋃

s∈S Pr
1 (q, s) is bounded by (tm)O(d2k). This

follows by the upper bound of Corollary 6.4, on the VC dimension of the range space
having as ground set the set of stadiums and ranges corresponding to stabbing points,
and the fact that we need to consider k vertices for the query curve. Furthermore, by
Lemma 7.4, we are able to bound the number of all possible sets

⋃
r≥0

⋃
s∈S Pr

3 (q, s)

as (tm)O(d2k). The k term in the exponent arises because we consider all k edges of q
for predicate P3. Hence,

2t ≤ (tm)O(d2k) 
⇒ t = O(d2k log dkm).

We can similarly bound the shattering dimension δ,

tδ ≤ (tm)O(d2k) 
⇒ δ = O(d2k logm). ��

Theorem 7.6 Let
←−RH,k be the set of all balls, under the directed Hausdorff distance

to polygonal curves in X
d
k . The VC dimension of (Xd

m,
←−RH,k) is O(d2k2 log dkm).

The shattering dimension of (Xd
m,

←−RH,k) is O(d2k2 logm).

Proof Let S ⊂ X
d
m be a set of t polygonal curves and let q ∈ X

d
k . By Lemma 7.1, the

set
{
s ∈ S | d−→

H
(q, s) ≤ r

}
is uniquely defined by the sets

⋃

s∈S

Pr
2 (q, s),

⋃

s∈S

Pr
4 (q, s).

The number of all possible sets
⋃

r≥0
⋃

s∈S Pr
2 (q, s) is bounded by (tm)O(d2k). This

follows by the upper bound of Corollary 6.4, on theVCdimension of range spaceswith
points as the ground set and stadiums as ranges, and the fact that we need to consider
one stadium for each of the k − 1 query edges. Furthermore, by Lemma 7.4, we are
able to bound the number of all possible sets

⋃
r≥0

⋃
s∈S Pr

4 (q, s) as (tm)O(d2k2).
The k2 term in the exponent arises because we consider Θ(k2) pairs of edges of q for
predicate P4. Now,

2t ≤ (tm)O(d2k2) 
⇒ t = O(d2k2 log dkm).
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We can similarly bound the shattering dimension δ,

tδ ≤ (tm)O(d2k2) 
⇒ δ = O(d2k2 logm). ��

Theorem 7.7 Let RH,k be the set of all balls, under the symmetric Hausdorff distance
inXd

k . The VC dimension of (Xd
m ,RH,k) is O(d2k2 log dkm). The shattering dimension

of (Xd
m,RH,k) is O(d2k2 logm).

Proof Lemma 7.1 implies that the set {s ∈ S | dH(q, s) ≤ r} is uniquely defined by
the sets

⋃

s∈S

Pr
1 (q, s),

⋃

s∈S

Pr
2 (q, s),

⋃

s∈S

Pr
3 (q, s),

⋃

s∈S

Pr
4 (q, s).

Nowbounding the number of all possible such sets, aswe did in the proofs of Theorems
7.5 and 7.6, implies the statement. ��

8 The Fréchet Distance

We consider the range spaces (Xd
m,RFk ) and (Xd

m,RwFk ), where RFk (resp. RwFk )
denotes the set of all balls, centered at curves in X

d
k , under the Fréchet (resp. weak

Fréchet) distance.

8.1 Fréchet Distance Predicates

It is known that the Fréchet distance between two polygonal curves can be attained,
either at a distance between their endpoints, at a distance between a vertex and a line
supporting an edge, or at the common distance of two vertices with a line supporting an
edge. The third type of event is sometimes called monotonicity event, since it happens
when the weak Fréchet distance is smaller than the Fréchet distance. In this sense,
our representation of the ball of radius r under the Fréchet distance is based on the
following predicates, some of which we already used in the last section. Let s ∈ X

d
m

with vertices s1, . . . , sm and q ∈ X
d
k with vertices q1, . . . , qk .

P1 (Vertex-edge (horizontal)) As defined in Sect. 7.
P2 (Vertex-edge (vertical)) As defined in Sect. 7.
P5 (Endpoints (start)) This predicate returns true if and only if ‖s1 − q1‖ ≤ r .
P6 (Endpoints (end)) This predicate returns true if and only if ‖sm − qk‖ ≤ r .
P7 (Monotonicity (horizontal)) Given two vertices of s, s j and st with j < t , and an

edge of q, qi qi+1, this predicate returns true if there exist two points p1 and p2 on
the line supporting the directed edge, such that p1 appears before p2 on this line,
and such that ‖p1 − s j‖ ≤ r and ‖p2 − st‖ ≤ r .

P8 (Monotonicity (vertical)) Given two vertices of q, qi and qt with i < t , and a
directed edge of s, s j s j+1, this predicate returns true if there exist two points p1
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and p2 on the line supporting the directed edge, such that p1 appears before p2 on
this line, and such that ‖p1 − qi‖ ≤ r and ‖p2 − qt‖ ≤ r .

Predicate P8 is illustrated in Fig. 5. Predicate P7 is symmetric.

Lemma 8.1 ([1,Lem. 9]) Given the truth values of all predicates P1, P2, P5, P6, P7, P8
of two curves s and q for a fixed value of r , one can determine if dF(s, q) ≤ r .

Predicates P1, P2, P5, P6 are sufficient for representing metric balls under the weak
Fréchet distance. We include a proof for the sake of completeness.

Lemma 8.2 Given the truth values of all predicates P1, P2, P5, P6 of two curves s and
q for a fixed value of r , one can determine if dwF(s, q) ≤ r .

Proof Alt and Godau [6] describe an algorithm for computing the weak Fréchet dis-
tance which can be used here. In particular, one can construct an edge-weighted grid
graph on the cells (edge–edge pairs) of the parametric space of the two polygonal
curves, and subsequently compute a bottleneck-shortest path from the pair of first
edges to the pair of last edges along the two curves. We can use edge weights in {0, 1}
to encode if the corresponding vertex-edge pair has distance at most r , as given by the
predicates P1 and P2. If and only if there exists a bottleneck shortest path of cost 0
and the endpoint conditions are satisfied (as given by the predicates P5 and P6), the
weak Fréchet distance between q and s is at most r . ��

8.2 Fréchet Distance VC Dimension Bounds

Wefirst consider the range space (Xd
m,RwF,k), whereRwF,k is the set of all balls under

the weak Fréchet distance centered at curves in X
d
k . The main task is to translate the

predicates P1, P2, P5, P6 into simple range spaces, and then bound their associated
VC dimensions. Consider any two polygonal curves s ∈ X

d
m and q ∈ X

d
k . In order to

encode the intersection of polygonal curves with metric balls, we will make use of the
sets Pr

1 (q, s), Pr
2 (q, s), which are defined in Sect. 7, and the following sets:

– Pr
5 (q, s) = Br (q1) ∩ V (s),

– Pr
6 (q, s) = Br (qk) ∩ V (s),

Theorem 8.3 Let RwF,k be the set of balls under the weak Fréchet metric centered at
polygonal curves in X

d
k . The VC dimension of (Xd

m,RwF,k) is O(d2k log dkm). The
shattering dimension of (Xd

m,RwF,k) is O(d2k logm).

Proof If S is a set of t polygonal curves of complexity m, {s ∈ S | dwF(s, q) ≤ r} is
uniquely defined by the sets

⋃

s∈S

Pr
1 (q, s),

⋃

s∈S

Pr
2 (q, s),

⋃

s∈S

Pr
5 (q, s),

⋃

s∈S

Pr
6 (q, s).

The number of all possible sets
⋃

r≥0
⋃

s∈S Pr
1 (q, s) and the number of all possible

sets
⋃

r≥0
⋃

s∈S Pr
2 (q, s) are both bounded by (tm)O(d2k) by Corollary 6.4 using set

Dr (st), and by considering the dual range space, respectively.
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q1q2

�

q1q2

�

Fig. 5 Illustration of predicate P8 in R
2 with line � and the two disks centered at q1 and q2. In these

examples, the projection of q2 onto � appears before the projection of q1 onto � along the direction of �

and the intersection of � with the bisector lies outside of the lens formed by the two disks. On the left, the
predicate is satisfied by setting p1 = p2 = πst (q1). On the right, the predicate evaluates to false

Notice that the number of all possible sets
⋃

r≥0
⋃

s∈S Pr
5 (q, s) is bounded by

(tm)O(d). The same holds for the number of all possible sets
⋃

r≥0
⋃

s∈S Pr
6 (q, s).

Hence,

2t ≤ (tm)O(d2k) 
⇒ t = O(d2k log dkm).

We can similarly bound the shattering dimension δ,

tδ ≤ (tm)O(d2k) 
⇒ δ = O(d2k logm). ��
We now consider the range space (Xd

m,RF,k), whereRF,k denotes the set of all balls,
centered at curves inXd

k , under the Fréchet distance. The approach is the same as with
the weak Fréchet distance, except we also need to bound the VC dimension of range
spaces associated with predicates P7 and P8 to encode monotonicity. For that, we can
simply appeal to Theorem 6.3.

We need to define a set to represent predicates P7 and P8. To this end, we again use
X

d
2 to represent the set of all segments in R

d . Given radius r ≥ 0 and a line segment
st , we define Mr (st) to be the set containing all pairs of points (q1, q2) for which there
exist p1, p2 ∈ �, where st supports �, such that

– ‖p1 − q1‖ ≤ r and ‖p2 − q2‖ ≤ r ,
– p1 is less than p2 along the line, as 〈p1, t − s〉 ≤ 〈p2, t − s〉.

The predicate P7 is satisfied if and only if (s j , st ) ∈ Mr (qi qi+1) and predicate P8 is
satisfied if and only if (qi , qt ) ∈ Mr (s j s j+1). Finally, we defineM = {Mr (st) | st ∈
X

d
2 , r ≥ 0} to be the set of all relevant ranges.

Corollary 8.4 The VC dimension of the range space (Xd
2 ,M), and of the associated

dual range space, is O(d2).

Proof The corollary directly follows from Lemma 7.4 by collapsing the stadiums to
circles. ��
We define sets to correspond with predicates P7 and P8:
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– Pr
7 (q, s) = {{s j , st } ∈ V (s) × V (s) | (s j , st ) ∈ Mr (qi qi+1) and qi qi+1 ∈ E(q)}.

– Pr
8 (q, s) = {{qi , qt } ∈ V (q)× V (q) | (si , st ) ∈ Mr (s j s j+1) and s j s j+1 ∈ E(s)}.

Theorem 8.5 Let RF,k be the set of all balls, under the Fréchet distance, centered at
polygonal curves in X

d
k . The VC dimension of (Xd

m,RF,k) is O(d2k2 log dkm). The
shattering dimension of (Xd

m,RF,k) is O(d2k2 logm).

Proof Due to Lemma 8.1, if S ⊂ X
d
m is a set of t polygonal curves and q ∈ X

d
k , the

set {s ∈ S | dF(s, q) ≤ r} is uniquely defined by the sets

⋃

s∈S

Pr
1 (q, s),

⋃

s∈S

Pr
2 (q, s),

⋃

s∈S

Pr
5 (q, s),

⋃

s∈S

Pr
6 (q, s),

⋃

s∈S

Pr
7 (q, s),

⋃

s∈S

Pr
8 (q, s).

As in the proof of Theorem 8.3, the number of all possible sets

⋃

r≥0

⋃

s∈S

Pr
1 (q, s),

⋃

r≥0

⋃

s∈S

Pr
2 (q, s),

⋃

r≥0

⋃

s∈S

Pr
5 (q, s),

⋃

r≥0

⋃

s∈S

Pr
6 (q, s)

is bounded by (tm)O(d2k).

By Corollary 8.4 we are able to bound the number of all possible sets
⋃

r≥0
⋃

s∈S Pr
7 (q, s) as (tm)O(d2k). And because this bound is proven using The-

orem 6.3, then it applies to the dual range space, and we also bound the number of
possible sets in

⋃
r≥0

⋃
s∈S Pr

8 (q, s) as (tm)O(d2k2). The k2 term arises because we
consider Θ(k2) pairs qi , qt for predicate P8. So, ultimately,

2t ≤ (tm)O(d2k2) 
⇒ t = O(d2k2 log dkm).

Similarly, we can bound the shattering dimension δ,

tδ ≤ (tm)O(d2k2) 
⇒ δ = O(d2k2 logm). ��

9 Lower Bounds

Our lower bounds are constructed in the simplified setting that either k = 1 or m = 1,
i.e., either the ground set or the curves defining the metric ball consist of one vertex
only. In this case, all of our considered distance measures (except for one direction of
the directed Hausdorff distance) are equal:

Lemma 9.1 Let p ∈ R
d , q ∈ X

d
k , let r = maxs∈V (q) ‖s − p‖. Let ddH(p, q) be the

Hausdorff distance between V (p) and V (q). It holds that

r = ddH(q, p) = d−→
H

(q, p) = ddF(q, p) = dF(q, p) = dwF(q, p) = ddH(p, q).
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Proof In the discrete case we interpret q ∈ X
d
k as an ordered or unordered sequence of

points in R
d . In this case, the proof follows directly from definitions (Sect. 2). In the

continuous case we interpret q ∈ X
d
k as a continuous polygonal curve. In this case, the

proof follows directly from the definitions and from the convexity of the Euclidean
ball of radius r centered at the point p. If and only if all vertices of q are contained in
this ball, the distance is less or equal r .

Because of the above lemma, any lower bound that we prove for theHausdorff distance
in the discrete setting automatically extends to the other distance measures.

Lemma 9.2 Let RdH,k be the set of all balls, under the Hausdorff distance, centered
at point sets in X

2
k . The VC dimension of the range space (X2

m,RdH,k) is Ω(k).

Proof The intuition of our proof is as follows. We construct a set of k points in R
2

that can be shattered by the ranges in RdH,k . The basic idea is that the ranges behave
like convex polygons with k facets. In particular, the set of points contained inside the
range centered at a curve q, is equal to the intersection of a set of equal-size Euclidean
balls centered at the vertices of q.

Concretely, we place a set P of k ≥ 4 points evenly spaced on a unit circle centered
at the origin, see Fig. 6. Let R > 2 be a parameter of the construction. For representing
any subset of P we construct q using k vertices (in any order) placed on the origin-
centered circle of radius R − 1. In particular, we can force any p0 ∈ P to be excluded
from the metric ball under the Hausdorff distance of a fixed radius

R′ ∈
[√

R2 − 2(R − 1)

(

1 − cos
2π

k

)

, R

)

,

by placing a vertex on the line through the origin that contains p0 and by adding this
vertex to the vertex set of q. Using the k vertices in q we can specifically exclude any
subset of up to k points from P by such a construction, and by placing a vertex of q
at the origin we will not exclude any points. Hence any set P on the unit circle of size
k can be shattered. ��

Lemma 9.3 Let RdH,k be the set of all balls, under the Hausdorff distance, centered
at discrete point sets in X

2
k . The VC dimension of the range space (X2

m,RdH,k) is
Ω(logm). ��
Proof Lemma 9.2 and [30, Lem. 5.18], which bounds the VC dimension of the dual
range space as a function of the VC dimension of the primal space, imply the theorem.

��
Theorem 9.4 The VC dimension of the range spaces (X2

m,RdF,k), (X2
m,RdH,k),

(X2
m,RwF,k), (X2

m,RF,k), and (X2
m,RH,k) is Ω(max(k, logm)).

Proof It follows by applying Lemmas 9.2 and 9.3 together with Lemma 9.1. ��
Lemma 9.5 Let RdH,k be the set of all balls, under the Hausdorff distance, centered
at point sets in X

d
k . For d ≥ 4, the VC dimension of the range space (Xd

m,RdH,k) is
Ω(dk log k).
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q
P

p0

Fig. 6 A curve q with metric ball of radius R′ containing a subset of P . The shaded area is the set of points
that are contained inside the metric ball

Proof As in the proof of Lemma 9.2, our construction is set in the simplified setting
where m = 1, i.e., the ground set corresponds to points inRd . We now show the theo-
rem by reducing it to a recent lower bound of Csikós et al. [18] which is Ω(dk log k)

for a related range space for d ≥ 4. This is defined on a ground set P ⊆ R
d with

ranges Rk defined so that each range R ∈ Rk is the intersection of k halfspaces.
Recall that the construction in the proof of Lemma 9.2 used the fact that for d = 2
the ranges behave like convex polygons. We can observe a similar behavior in higher
dimensions. In particular, Lemma 9.1 implies that any range inRdH,k corresponds to
the intersection of k balls in R

d (centered at vertices of q). Observe that for a suffi-
ciently large fixed radius R, for any point set P ⊆ R

d , and for any halfspace H , we
can find a ball of radius R which has the same inclusion properties as H . Finally, the
lower bound of Csikós et al. [18] shows that there exists a set P of κ = Ω(dk log k)

points which can be shattered by such ranges. ��

Lemma 9.6 Let RdH,k be the set of all balls, under the Hausdorff distance, centered
at point sets in X

d
k . For d ≥ 4, the VC dimension of the range space (Xd

m,RdH,k) is
Ω(log dm).

Proof Lemma 9.5 and [30, Lem. 5.18], which bounds the VC dimension of the dual
range space as a function of the VC dimension of the primal space, imply the theorem.

��
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Theorem 9.7 For d ≥ 4, the VC dimension of (Xd
m,RdF,k), (Xd

m,RdH,k), (Xd
m,RwF,k),

(Xd
m,RF,k), and (Xd

m,RH,k) is

Ω(max(dk log k, log dm)).

Proof It follows by applying Lemmas 9.5 and 9.6 together with Lemma 9.1. ��

10 Implications

In this section we demonstrate that bounds on the VC dimension for the range space
defined by metric balls on curves immediately imply various results about prediction
and statistical generalization over the space of curves. In the following consider a range
space (X ,R) with a ground set X of curves, whereR are the ranges corresponding to
metric balls for some distance measure we consider, and the VC dimension is bounded
by ν.

This section discusses accuracy bounds that depend directly on the size n = |X | and
the VC dimension ν. We will assume that X is a random sample of some much larger
set Xbig or an unknown continuous generating distributionμ. Under the randomness in
this assumed sampling procedure, there is a probability of failure δ that often shows up
in these bounds, but is minor since it shows up as log(1/δ). The following discussion
leverages the concepts of ε-nets and ε-samples. The former (ε-nets) are samples which
satisfy the property that if a range is heavy (contains an ε-fraction of the data) then the
sample contains at least one point in that range; a sample of size O((ν/ε) log(ν/εδ))

is sufficient [33]. The latter (ε-samples) are samples which satisfy that each range’s
density is approximated within an additive ε-error; a sample of size O((ν−(log δ)/ε2)

is sufficient [39].
These bounds often take two closely-linked forms. First, given a limited set X from

an unknown μ, then how accurate is a query or a prediction made using only X .
Second, given the ability to draw samples (at a cost) from an unknown distribution
μ, how many are required so that the prediction on the set of samples X has bounded
prediction error. Upper bounds on ν imply pessimistic bounds on the accuracy or the
required size for a sample.

Such large data sets of curves are now commonplace in many structured data appli-
cations. For instance, the millions of ride-sharing trips taken every day, or the GPS
traces Apple and Google and others collect on users’ phones, or the tracking of migrat-
ing animals. Because this data has a complex structure, and each associated curve may
be large (i.e., m is large), it is not clear how well analyses on families of such curves
can provably generalize to predict new data. The theme of the following results, as
implied by our above VC dimension results, is that if these families of curves are
only inspected with or queried with curves with a small number of segments (i.e., k
is small), then the VC dimension of the associated range space ν = O(k log km) or
O(k2 log km) is small, and that such analyses generalize well. We show this in several
concrete examples.

Approximate range counting on curves. Given a large set of curves X (of potentially
very large complexity m) and a query curve q (with smaller complexity k) we would
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like to approximate the number of curves nearby q. For instance, we restrict X to
historical queries at a certain time of day and query with the planned route q, and
would like to know the chance of finding a carpool. VC dimension ν of the metric
balls shows up directly in two analyses. First, if we assume that X has been chosen from
an unknown distribution, i.e., X ∼ μ where μ is a much larger unknown distribution
(but the real one), then we can estimate the accuracy of the fraction of all curves
in this range within additive error O(

√
(1/|X |)(ν + log(1/δ))). On the other hand,

if we assume that X is a fixed input set which is too large to conveniently query,
we can sample a subset S ⊂ X of size O((1/ε2)(ν + log(1/δ))) and know that the
estimate for the fraction of curves from S in that range is within additive ε error
of the fraction from X . Such sampling techniques have a long history in traditional
databases [40], and have more recently become important when providing online
estimates during a long query processing time as incrementally increasing size subsets
are considered [3]. Ours provides the first formal analysis of these results for queries
over curves. Moreover, the finite bound on VC dimension of these problems also
implies [17] that there is a linear size data structure which can answer exact range
queries in sublinear time.

Density estimation of curves. A related task in generalization to new curves is density
estimation. Consider a large set of curves X which represent a larger unknown distri-
bution μ that models a distribution of curves; we want to understand how unusual a
new curve q would be, given we have not yet seen exactly the same curve before. One
option is to use the distance to the (kth) nearest neighbor curve in X , or a bit more
robust option is to choose a radius r and count how many curves are within that radius
(e.g., the approximate range counting results above).

Alternatively, for X ⊂ M, consider now a kernel density estimate kdeX : M → R

defined by

kdeX (p) = 1

n

∑

p∈P

K (x, p)

with kernel K (x, p) = exp(− d(x, p)2) (where d is some distance of choice among
curves, e.g., dF). The kernel is defined so that each superlevel set K τ

x = {p ∈ M |
K (x, p) ≥ τ } corresponds to some range R ∈ R such that R ∩ X = K τ

x ∩ X . Then a
random sample S ⊂ X of size O ((1/ε2)(ν + log(1/δ))) satisfies ‖kdeX − kdes‖∞
≤ ε [35]. Thus, again the VC dimension ν of the metric balls directly influences these
estimates accuracy, and for query curves with small complexity k the bound is quite
reasonable.

Sample complexity for classification of curves. Now consider the problem of classify-
ing curves representing trajectories of people or animals. For instance, with individuals
who enable GPS on their cell phone they can label some work-to-home trajectories
(as χ(x) = +1) or as other trips (χ(x) = −1). Then on unlabeled trips we can poten-
tially predict which are work-to-home trajectories to build traffic and commute time
models without manually labeling all routes. Similar tasks may be useful for normal
(χ(x) = +1) versus nefarious (χ(x) = −1) activities when tracking people in an air-
port or a hostile zone. In each of these cases we may either have a very large number
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of labeled instances, and may want to sample them to some manageable size, or we
may only have a limited number of samples, and want to know the accuracy to trust
based on the sample size. All of these bounds are controlled by the VC dimension of
the family of classifiers used to make the prediction. For trajectories, a sensible family
of classifiers would be the ranges R defined by metric balls.

That is, consider some labeling function χ : X → {−1,+1}; now we say a range
R ⊂ R misclassifies an object x ∈ X if x ∈ R and χ(x) = −1 or x /∈ R and
χ(x) = +1. If there exists a range R ⊂ R such that all x ∈ X ∩ R have χ(x) = +1
and all x ′ ∈ X \ R have χ(x ′) = −1, we say such a range perfectly separates
(X , χ). Then a random sample Y ⊂ X of size O ((ν/ε) log(ν/εδ)) [33] ensures that,
with probability at least 1 − δ, any range R′ ⊂ R which perfectly separates (Y , χ)

misclassifies at most εn points in X .
Consider a random sample Y ⊂ X of size O((1/ε2)(ν + log(1/δ))). For any range

R ⊂ R, if the fraction of points in Y is |R ∩ Y |/|Y | = η, then with probability at
least 1 − δ, the fraction of points in X is |R ∩ X |/|X | ∈ [η − ε, η + ε]; that is, it
is off by at most an ε-fraction [31,39]. If there is a labeling χ : X → {−1,+1}, this
notably includes the range R ∈ R which misclassifies the least points (there may not
be a perfect separator). Hence a random sampling ensures at most an ε-fraction more
misclassified points are included in an estimate derived from this sample. Indeed, the
RBF kernel K (x, p) = exp(− d(x, p)2) defined above implies standard mechanism
like kernel SVMor kernel perceptron [42] can be used to build classifiers, and together
these bounds inducemisclassification [39] andmargin approximation bounds [35]. The
small VC dimension ν implies they will generalize well.
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