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Abstract
We prove that some exact geometric pattern matching problems reduce in linear time to k-SUM
when the pattern has a fixed size k. This holds in the real RAM model for searching for a similar
copy of a set of k ≥ 3 points within a set of n points in the plane, and for searching for an affine
image of a set of k ≥ d + 2 points within a set of n points in d-space.

As corollaries, we obtain improved real RAM algorithms and decision trees for the two problems.
In particular, they can be solved by algebraic decision trees of near-linear height.
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1 Introduction

The k-SUM problem is a fixed-parameter version of the NP-complete SUBSET SUM problem.
It consists of deciding, given a set of n numbers, whether any subset of size k sum to zero.
The problem for k = 3, known as 3-SUM, is now a well-established bottleneck problem
in fine-grained complexity theory (see for instance [1, 28] and references therein). While
there are many reductions showing 3-SUM- or k-SUM-hardness of computational problems
in geometry, only few reductions to 3-SUM and k-SUM are known. We give examples of
computational geometry problems that reduce to 3-SUM or k-SUM.

Our results are motivated by the nontrivial improved upper bounds on the complexity
of 3-SUM and k-SUM proven in the recent years. While it has long been conjectured
that no subquadratic algorithm for 3-SUM existed, it is now known to be solvable in time
O((n2/ logn)(log logn)2) in the real RAM model, and in time O((n2/ log2 n)(log logn)O(1))
if we allow bitwise operations on fixed-length words [25, 20, 22, 14]. The existence of
an O(n2−δ) algorithm for some δ > 0 remains an open problem. Using folklore meet-in-
the-middle algorithms, k-SUM can be solved in time O(ndk/2e) if k is odd, and in time
O(nk/2 logn) if k is even. Recently, Kane, Lovett, and Moran [26] showed that it can be
solved in time O(n log2 n) in the linear decision tree model, improving on previous polynomial
bounds [13, 19].
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Table 1 Known upper bounds on the time complexity of exact geometric pattern matching in
various settings (taken from [11] and [23], Chapter 54). We indicate the dependency on the pattern
size k.

Transformations Dimension Complexity
congruence 2 O(kn4/3 log n) [11]
congruence 3 O(kn5/3 log n2O(α(n)2)) [5]
translation d O(kn log n) (easy)
homothety d O(kn1+1/d log n) [18, 11]
similarity d O(knd log n) [11]
affine d O(knd+1 log n) [11]

Geometric pattern matching

We consider two problems involving searching for a given set P of k points, called the pattern,
within a larger set S of points, up to some geometric transformation. Here we focus on exact
algorithms, in which the pattern must match the subset of points exactly. We consider the
following two problems.

I Problem 1 (SIMILARITY MATCHING). For a fixed integer k ≥ 3, given a set P of k points
in the plane and a set S of n points in the plane, determine whether S contains the image of
P under a similarity transformation.

I Problem 2 (AFFINE MATCHING). For fixed integers d ≥ 2 and k ≥ d+ 2, given a set P
of k points in Rd containing d+ 1 affinely independent points, and a set S of n points in Rd,
determine whether S contains the image of P under an affine transformation.

A large body of the computational geometry and pattern recognition literature is dedicated
to the problems of finding approximate matches up to some geometric transformation, where
the quality of the approximation is typically measured by the Hausdorff distance [15, 24, 21, 6].
For exact pattern matching problems under different families of transformations, known
upper bounds on time complexity have been compiled in a survey by Peter Braß [11]. We
reproduce them in Table 1.

The complexity of these algorithms are directly related to bounds on the maximum
number of occurrences of a pattern or a distance in a set of n points. In fact, such bounds
directly yield a lower bound on the computational problem of listing all occurrences of the
pattern. A prototypal example is Erdős’ unit distance problem; see Braß and Pach [12] for
more examples. It is known, in particular, that there can be Θ(n2) similar copies of a pattern
in an n-point set [18, 3, 4]. Structural results on the extremal point sets are also known [2].
For affine transformations in Rd, there exist pairs P, S such that S contains Θ(nd+1) copies
of P : for instance the d-dimensional lattice {1, 2, . . . , n1/d}d contains Θ(nd+1) affine images
of a cube.

Our results

We suppose we can perform exact computations over the reals. Therefore, all the algorithms
that we consider are either uniform algorithms in the real RAM model, or nonuniform
algorithms in the algebraic decision tree model.

Our main result is the following.

I Theorem 1. SIMILARITY MATCHING and AFFINE MATCHING reduce in randomized
linear time to k-SUM.
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We refer the reader to the exact definitions of the k-SUM problem and the notion of
randomized linear-time reduction given later. Theorem 1 has a number of consequences. Let
us consider the special case of the SIMILARITY MATCHING problem in which k = 3.

I Problem 3 (TRIANGLE). Given a triangle ∆ and a set S of n points in the plane, determine
whether S contains three points whose convex hull is similar to ∆.

Combining the reduction provided by Theorem 1 with the real RAM algorithm for 3-SUM
from Chan [14], we obtain the following.

I Corollary 2. There exists an O((n2/ logn)(log logn)2) randomized real RAM algorithm for
TRIANGLE. In particular, there exists a subquadratic algorithm to detect equilateral triangles
in a point set.

This contrasts with our current knowledge on the related 3-SUM-hard problem of find-
ing three collinear points, also known as GENERAL POSITION TESTING. Despite recent
attempts [10, 14], it is still an open problem to find a subquadratic algorithm for GENERAL
POSITION TESTING.

Our next corollary is obtained directly from known algorithms for k-SUM. It improves on
the best known O(nd+1 logn) algorithm whenever k < 2(d+ 1).

I Corollary 3. There exists an O(ndk/2e) (for k odd), or an O(nk/2 logn) (for k even)
randomized real RAM algorithm for AFFINE MATCHING.

Finally, we consider the nonuniform decision tree complexity, also known as query
complexity, of the two problems. By applying a recent result of Kane, Lovett, and Moran [26],
we can bound the number of algebraic tests that are required to detect copies of P in an
input set S.

I Corollary 4. There exist randomized algebraic decision trees of height O(n log2 n) for
SIMILARITY MATCHING and AFFINE MATCHING.

In fact, if the pattern P is a fixed parameter, that is, when P is not part of the input,
but known at the algorithm design time, then the decision tree in the statement above only
involves linear tests.

I Corollary 5. There exist randomized linear decision trees of height O(n log2 n) for the
fixed-parameter versions of SIMILARITY MATCHING and AFFINE MATCHING, in which P
is a fixed parameter of the problems.

In a recent paper, Aronov, Ezra, and Sharir [8] study the following problem: Given three
sets A,B,C of n points in the plane, decide whether there exists (a, b, c) ∈ A×B × C that
simultaneously satisfies two real polynomial equations. They provide a subquadratic upper
bound on the algebraic decision tree complexity of this problem. In a preliminary version of
their paper [9] (version 2, Corollary 4.4), they considered the TRIANGLE problem as a special
case of this problem. This version also contains a proof that TRIANGLE is 3-SUM-hard. As
our result shows, it turns out that this special case is in fact much easier than the general
problem, as the two polynomial equations can be made linear. Hence TRIANGLE is actually
linear-time equivalent to 3-SUM, and its decision tree complexity is near-linear. We refer to
[8, 9] for a thorough discussion of the relation between these and other related problems.

ISAAC 2020
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Plan

In the next section, we define a number of variants of the k-SUM problem and prove they
are all equivalent in the computation model we consider. In Section 3, we prove our main
result for SIMILARITY MATCHING. Section 4 considers the AFFINE MATCHING problem.
The last section is dedicated to the proof of Corollaries 4 and 5.

2 Linear degeneracy testing

We first give a definition of the k-SUM problem. Here, k ≥ 3 is a fixed integer, and X is a
ring.

I Problem 4 (k-SUM(X)). Given k sets A1, . . . , Ak of n elements of X, determine whether
there exists a k-tuple (a1, . . . , ak) ∈ "ki=1Ai such that

∑k
i=1 ai = 0.

Our next problem is often referred to as linear degeneracy testing [7, 17]. We consider
the cases where X = R or C with the usual addition and multiplication operations, or where
X = Rd or Cd for some integer d ≥ 2, with the vector addition and Hadamard (entrywise)
product defined by (uv)i = uivi. In the latter cases, the all-zero vector is denoted by 0, and
the all-one vector by 1.

I Problem 5 (k-LDT(X)). For a linear function f : Xk → X given by f(a1, . . . , ak) =
β0 +

∑k
i=1 βiai with βi ∈ X for 0 ≤ i ≤ k, given k sets A1, . . . , Ak of n elements of X,

determine whether there exists a k-tuple (a1, . . . , ak) ∈ "ki=1Ai such that f(a1, . . . , ak) = 0.

We make two observations. First, these are fixed-parameter problems: the integer k is
part of the definition of the problem, not of the input. The same can be assumed for the
function f . Such parameters will be referred to as fixed in what follows. Another observation
is that using the Hadamard product in the definition of the function f allows us to combine
conditions on the sought k-tuples: In the ring X, searching for k-tuples that simultaneously
satisfy d linear equations can be cast as k-LDT(Xd).

It is clear that k-SUM is the special case of k-LDT in which β0 = 0 and βi = 1 for
1 ≤ i ≤ k. On the other hand, k-LDT is not harder than k-SUM.

I Lemma 6. For any integer d > 0, k-LDT(X) reduces in linear time to k-SUM(X).

Proof. Consider the sets Ai from the k-LDT instance, and let A′i := {βia | a ∈ Ai} for all
1 ≤ i < k, and A′k := {βka+ β0 | a ∈ Ak}. Then the instance of k-SUM composed of the sets
A′i has a solution if and only if the instance of k-LDT has a solution. J

In what follows, we say that a problem A reduces to problem B in randomized g(n) time
if there exists an algorithm in the real RAM model with access to random real numbers in
[0, 1] that maps any instance of size n of A to an equivalent instance of B in time O(g(n))
with probability 1.

Over the reals, the vector and scalar versions of k-SUM are also essentially equivalent, up
to such a randomized reduction.

I Lemma 7. For any fixed integer d > 0, k-SUM(Rd) reduces in randomized linear time to
k-SUM(R) .

Proof. Given an instance {A1, . . . , Ak} of k-SUM(Rd), pick a uniform random unit vector
v ∈ Rd (see for instance Chapter V in Devroye’s classical textbook [16] for the generation of
random vectors on the unit hypersphere) and consider the sets A′i := {a · v | a ∈ Ai} ⊂ R,
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where a·v is the usual dot product. They form an instance of k-SUM(R) such that any solution
to the original instance of k-SUM(Rd) is also a solution. In the other direction, suppose
there is a k-tuple (a′1, . . . , a′k) ∈ "ki=1A

′
i such that

∑k
i=1 a

′
i = 0, where a′i = ai · v. Hence

we have
∑k
i=1 ai · v = 0, which is either because v ⊥

∑k
i=1 ai and

∑k
i=1 ai 6= 0, or because∑k

i=1 ai = 0. Since v ⊥
∑k
i=1 ai and

∑k
i=1 ai 6= 0 occurs with probability 0, the k-tuple

(a1, . . . , ak) is a solution of the instance {A1, . . . , Ak} of k-SUM(Rd) with probability 1. J

We also make the following simple observation:

I Observation 8. k-SUM(Cd) is equivalent to k-SUM(R2d).

3 Searching for a similar copy

Recall that in the TRIANGLE problem, we want to determine whether an input set S of n
points in the plane contains three points whose convex hull is similar to a given triangle
∆. The short proof of the following result uses the interpretation of points in the plane as
complex numbers, an idea that was exploited in a combinatorial context before [18, 27].

I Lemma 9. ANGLE reduces in linear time to 3-SUM(C).

Proof. Let u = reiθ be such that the three numbers 0, 1, u are the vertices of a triangle similar
to ∆ in the complex plane. Recall that multiplying by reiθ has a geometric interpretation in
the complex plane as scaling by a factor r and rotating by an angle θ. Hence three other
complex numbers a, b, c ∈ C form a triangle similar to ∆ in the complex plane with the same
orientation if and only if c− a = u(b− a), or equivalently if (u− 1)a− ub+ c = 0. Hence
TRIANGLE reduces to 3-LDT(C) with β = (0, u − 1,−u, 1). From Lemma 6, it reduces in
linear time to 3-SUM(C). J

Combining with Observation 8 and Lemma 7, we obtain:

I Theorem 10. TRIANGLE reduces in randomized linear time to 3-SUM(R).

Recall that TRIANGLE is also known to be 3-SUM-hard [9], hence it is actually linear-time
equivalent to 3-SUM. Our result generalizes naturally to larger patterns.

I Lemma 11. SIMILARITY MATCHING reduces in linear time to k-SUM(Ck−2).

Proof. Let u1, . . . , uk−2 ∈ C be such that the set Q = {0, 1, u1, . . . , uk−2} is similar to P in
the complex plane. Then k numbers a1, . . . , ak ∈ C form a similar copy of Q in the complex
plane, with a1 mapped to 0, a2 to 1, and so on, if and only if ai − a1 = ui−2(a2 − a1) for
all 3 ≤ i ≤ k. These are k − 2 linear equations on the k complex numbers a1, . . . , ak, hence
SIMILARITY MATCHING reduces in linear time to k-LDT(Ck−2). From Lemma 6, it reduces
in linear time to k-SUM(Ck−2). J

Again, combining with Observation 8 and Lemma 7, we obtain the first statement of
Theorem 1.

I Theorem 12. SIMILARITY MATCHING reduces in randomized linear time to k-SUM(R).

ISAAC 2020
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4 Searching for an affine image

We now prove the analogous result for the affine case. As a warm-up, we first consider the
following simpler special case of AFFINE MATCHING in which the pattern is a square. Four
points form the affine image of vertices of a square if and only if they are the vertices of a
(possibly degenerate) parallelogram. Hence the problem can be cast as follows.

I Problem 6 (PARALLELOGRAM). Given a set S of n points in the plane, determine whether
S contains four points whose convex hull is a parallelogram.

I Theorem 13. PARALLELOGRAM reduces in randomized linear time to 4-SUM(R).

Proof. Four points a1, a2, a3, a4 ∈ S in this order form a parallelogram with a1a2 par-
allel to a4a3 and a2a3 parallel to a1a4 if and only if a2 − a1 = a3 − a4, or equival-
ently if a1 − a2 + a3 − a4 = 0. Hence PARALLELOGRAM reduces to 4-LDT(R2) with
β = ((0, 0), (1, 1), (−1,−1), (1, 1), (−1,−1)). From Lemmas 6 and 7, it also reduces in
randomized linear time to 4-SUM(R). J

The general case follows from the following observation. Consider a matrix Q ∈ Rn×n, and
let Qk denote the matrix obtained from Q by replacing its kth column by the column vector
xT , where x1, x2, . . . , xn are variables. Then detQk is a linear combination of x1, x2, . . . , xn,
with coefficients defined by Q.

I Lemma 14. AFFINE MATCHING reduces in linear time to k-SUM(R`) with ` = d(k− (d+
1)).

Proof. We use the notation [k] := {1, 2, . . . , k}. Let pi = (pi,1, . . . , pi,d) be a row vector
representing the ith point of P . From the problem definition, P must contain d+ 1 affinely
independent points. Since we suppose k and d fixed, these points can be determined in
constant time. We therefore assume without loss of generality that they are the first d+ 1
points p1, . . . , pd+1. Let A = {a1, . . . , ak} ∈

(
S
k

)
be a candidate match. In order for the

set A to be the image of P under an affine transformation, there must be a solution to
the system of k linear equations of the form piF + t = ai for all i ∈ [k], with d2 + d real
unknowns F ∈ Rd×d and t ∈ Rd. The system can be decomposed into d systems, one for
each coordinate j ∈ [d]. Each consists of k equations with d + 1 unknowns, of the form
piFj + tj = aij for i ∈ [k], where Fj is the jth column of F . We consider one such system,
for a fixed j ∈ [d], and restrict it to the first d+ 1 equations only:

Q ·
(
Fj
tj

)
=

 a1,j
...

ad+1,j

 , where Q =

 p1 1
...

...
pd+1 1

 .

Since the first d+ 1 points of P are affinely independent, Q is invertible and the system
defines a unique solution for the coefficients Fj and tj of the affine transformation. From
Cramer’s rule, the value of the kth unknown is the ratio detQk/ detQ, where Qk is the
matrix obtained by replacing the kth column of Q by (a1,j , . . . , ad+1,j)T . From the above
observation and the fact that Q does not depend on S, the expressions detQk/ detQ are linear
combinations of the values a1,j , . . . , ad+1,j , with coefficients determined by P . Hence the
explicit solution for the coefficients Fj and tj are linear combinations of the a1,j , . . . , ad+1,j .

A necessary and sufficient condition for the set A to be a match is that the remaining
k − d− 1 points of A are also images of the corresponding points in P . Hence we require
that for all i > d+ 1 the ith equation piFj + tj = aij is also satisfied by this solution. The
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unknowns Fj and tj can be replaced by linear combinations of a1,j , . . . , ad+1,j . Hence we
obtain a set of k − (d+ 1) linear equations on the variables a1,j , . . . , ak,j , with coefficients
depending on P .

Since these k − (d+ 1) equations must hold for all coordinates j ∈ [d] simultaneously, we
obtain that AFFINE MATCHING reduces to k-LDT(R`) with ` = d(k−(d+1)). From Lemma 6
it also reduces to k-SUM(R`). Since d and k are fixed, the reduction takes linear time. J

Combining with the randomization step in Lemma 7, we get the second part of Theorem 1.

I Theorem 15. AFFINE MATCHING reduces in randomized linear time to k-SUM(R).

5 Algebraic decision tree complexity

An algebraic decision tree is a type of nonuniform algorithm for problems on inputs composed
of n real numbers. For each input size n, it consists of a binary tree whose internal nodes
are labeled with inequalities of the form “q(x) ≤ 0” on the input x ∈ Rn, where q is a
bounded-degree n-variate polynomial in x1, x2, . . . , xn. Inequalities are interpreted as queries
on the input, and the two subtrees correspond to the possible outcomes of the query on the
input. Leaves of the tree are labeled with the answer to the problem. The minimum height
h(n) of an algebraic decision tree solving instances of size n the problem is the decision
tree complexity, or query complexity of the problem. When the queries only involve linear
functions, such trees are called linear decision trees. In that case, a query is said to be
t-sparse when it involves at most t numbers of the input.

We have the following recent result on the linear decision tree complexity of the k-SUM
problem.

I Theorem 16 (Kane, Lovett, Moran [26]). The k-SUM problem on n elements can be solved
by a linear decision tree of height O(n log2 n) in which all the queries are 2k-sparse and have
only {−1, 0, 1} coefficients.

We now show that this result directly applies to the SIMILARITY MATCHING and AFFINE
MATCHING problems, thereby proving Corollary 4.

We first consider the SIMILARITY MATCHING problem, an instance y of which consists
of two coordinates per point of P and S, hence of 2(k + n) real numbers. Suppose we apply
the randomized reduction proposed in Theorem 12 to obtain an instance of k-SUM(R). Now
consider the linear decision tree from Theorem 16. Each linear query on the transformed
input maps to a query on the original input numbers y. Because the reduction only involves
multiplications and additions on these numbers, such queries are algebraic queries on the
original input y. Therefore, the linear decision tree for k-SUM maps to an algebraic decision
tree of the same height for SIMILARITY MATCHING. The same reasoning applies to AFFINE
MATCHING. In that case, it suffices to observe that multiplying both sides of every query by
the quantity detQ for the matrix Q used in the proof of Lemma 14 yields algebraic queries
again. Note that since k and d are constant and the linear queries in Theorem 16 are sparse,
the queries have bounded degree and bounded size. This proves Corollary 4.

Also note that if we suppose the pattern P is a fixed parameter of the problem, then
the two problems are solved by linear decision trees of height O(n log2 n). It can indeed
be checked that the algebraic queries do not involve multiplications between coordinates of
the points of S, hence are linear whenever P is fixed. This proves Corollary 5. It applies
in particular to the PARALLELOGRAM problem, or for finding an equilateral triangle in a
point set.

ISAAC 2020
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