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Abstract
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1 Introduction

In the present article we are concerned with a special class of algebraic-geometric codes [14]
that are defined on toric varieties. Building on a work of S. Hansen [5], J. Hansen initiated
the study of toric codes on polygons in [4]. This development quickly led to numerous new
results on the algebraic-geometric codes that are constructed on higher dimensional toric
varieties. The articles [9, 10, 11, 12] amplified the importance of combinatorial approach in
determining the parameters of the toric codes. Our goal in this article is to show that, the
set of order polytopes form an interesting ground for the applications of such work.

Let P be a poset whose elements are listed as ε1, . . . , εm. Let N denote the free Z-module
on P , N :=

⊕m

i=1 Zεi. Let M denote the dual of N , that is M := HomZ(N,Z). The dual
of the element εi (i ∈ {1, . . . , m}) in M will be denoted by ei. Let 2P denote the set of
all subsets of P . We define the function ρ : 2P → N ⊗Z Q by W 7→

∑

εi∈W
εi. The order

polytope of P , denoted by OP , is the convex hull of the finite set

{ρ(W ) : W is an upper order ideal of P}.

The face lattice of the polytope OP was first described by Geissinger [3], whose results
were amplified by Stanley in [13]. A concrete description of the edges of OP can be found

1

http://arxiv.org/abs/2102.03651v2


in [8]. Following [6], we now introduce a class of toric varieties that are closely related to the
order polytopes. The set of all order ideals of P , denoted by J(P ), is a distributive lattice
with respect to inclusion. In particular, we have the joins (denoted by ∨) and the meets
(denoted by ∧) of the elements of J(P ). Let Y := {yα : α ∈ J(P )} be a set of algebraically
independent variables indexed by the order ideals. Then the Hibi toric scheme associated
with P is the projective scheme Proj k[Y ]/I, where I is the homogeneous ideal

I = (yαyβ − yα∧βyα∨β : yα, yβ ∈ Y ).

It turns out that the fan of XP is the normal fan of the order polytope OP .
The purpose of our article is to investigate the parameters of the toric code of the defining

polytope OP of XP . The parameters that we speak of are called the “length,” the “dimen-
sion,” and the “minimum distance.” Although our method applies to all finite posets, in
this article we focus on the minimum distance computation for the order polytopes of the
rooted trees only. Let P = {ε1, . . . , εm} be a rooted tree, where ε1 is the root. We view P
as a connected, graded poset with the unique minimal element as the root. Our first main
result (recorded as Theorem 4.4) states that minimum distance of the toric code COP

over a
finite field Fq, where q > 3, is given by

d(COP
) = (q − 1)a(q − 2)b,

for some a and b such that a + b = m. In fact, we know precisely what a and b are.
Let P be a polytope. The length of the associated toric code CP over Fq is given by

(q − 1)dimP, where dimP is the dimension of the affine hull of P. Hence, in our case, the
length is given by (q−1)dimOP = (q−1)m, where m is the cardinality of the poset P . On the
other hand, the dimension of a toric code of P is given by the number of lattice points in P.
Therefore, in our case, it is given by the number of (upper) order ideals of P . For a rooted
tree with m vertices, this number (dimension) varies in the range m+ 1, . . . , 2m−1 + 1; it is
equal to the number of order preserving maps σ : P → {0, 1}. The unique rooted tree with
m vertices that has m+ 1 order ideals is the chain with m vertices. The unique rooted tree
with m vertices that has 2m−1 + 1 order ideals is the “m-th shrub” defined in Section 4.

Let Q be a graded poset with 2m elements (m ∈ Z+). If Q has m minimum elements,
then we will call Q an (m,m)-bipartite poset. The second infinite family of toric codes that
we consider comes from the order polytopes of (m,m)-bipartite posets. Our second main
result (recorded as Theorem 5.4) states that the minimum distance of the toric code CQ over
a finite field Fq where q > 3 is given by

d(COP
) = (q − 1)m(q − 2)m.

The dimension of such a code varies in the range 2m+1 − 1, . . . , 3m.
Before closing this introduction, we want to mention a fact we inferred from our calcu-

lations. In general, a preferable linear error correcting code is the one that has a ratio of
dimension/length fixed while the ratio minimum distance/length is as large as possible. It is
natural to wonder if it is possible to increase these ratios for a toric code by switching to the
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polar polytope. In this article we pay a close attention to the polar of the order polytope of
a graded poset. It turns out that, by a result of Hibi and Higashitani [7], the polar polytope
of a suitable dilation of OP , called the poset polytope of P , is reflexive and terminal. (We will
explain these notions in the sequel.) These properties essentially imply that the number of
lattice points of a poset polytope is much smaller compared to the number of lattice points
of the order polytope. Hence, as far as the parameters of linear codes are concerned, the
order polytopes are better than the poset polytopes.

The structure of our paper is as follows. In the next section we introduce our basic
notation regarding posets, polytopes, and toric codes. In the same section we briefly review
some results of Soprunov and Soprunova also. The purpose of Section 3 is to compare the
structures of the order polytopes and poset polytopes. We prove our first main result about
the toric codes defined by the rooted tree posets in Section 4. We prove our second main
result about the toric codes defined by the (m,m)-bipartite graphs in Section 5. In addition,
in this section, we observe that (Lemma 5.1) the free sum of two order polytopes, OP ⊕OQ,
is equivalent to the order polytope OP⊕Q, where P ⊕Q stands for the ordinal sum of P and
Q. Here, the equivalence is defined by the change of coordinates.

2 Preliminaries

In this article, by a poset we will always mean a finite poset. A lower order ideal in P is a
subposet I such that for every y ∈ I, if x ≤ y in P , then x ∈ I. An upper order ideal in P
is defined similarly where we replace the condition x ≤ y with y ≤ x.

The set of all lower order ideals of P is denoted by J(P ). This is a distributive lattice
with respect to inclusion. The set of all upper order ideals also form of a distributive lattice,
which is isomorphic to J(P opp), where P opp denotes the opposite poset to P . An order
reversing bijection between two posets will be called an anti-isomorphism. If P and Q are
two isomorphic (resp. anti-isomorphic) posets, then we will write P ∼= Q (resp. P ∼=a Q).

Let x and y be two elements from P . If x ≤ y, and x ≤ z ≤ y implies that z = x or
z = y, then y is said to cover x. Customarily, the cover relation is denoted by x⋖ y.

A chain is a poset C := {x1, . . . , xn} whose elements are linearly ordered, x1 � x2 �

· · · � xn. A maximal chain in a poset P is a chain C ⊆ P such that C is not a subposet of
any other chain in P . If C = {x1, . . . , xk} is a chain, then the length of C is defined as k−1.

An antichain is a poset whose elements are all incomparable. The greatest possible size
of an antichain in P is called the width of P . Dilworth’s theorem [2] states that the width is
equal to the minimal number of chains that cover the set.

A poset P is called a graded (or ranked) poset if every maximal chain in P has the same
length. In this case, a function ℓ : P → Z which has the property that ℓ(y) = ℓ(x) + 1 for
every cover relation x⋖ y in P is called a rank function for P . Without loss of generality we
assume that ℓ(x) = 0 whenever x is a minimal element. Then ℓ is uniquely determined by
P , so, we call it the rank function of P .

The Hasse diagram of a poset P is the directed graph whose vertex set is the set of
elements of P such that for x, y ∈ P there is a directed edge from x to y if x is covered by y
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in P . A poset P is said to be connected if its Hasse diagram is connected. Clearly, if a finite
poset possesses a top element (denoted by 1̂) or a bottom element (denoted by 0̂), then it is
connected. A lattice is a poset L such that every pair of elements has a least upper bound
and a greatest lower bound.

The polar (or dual) of a polytope P ⊂ Qm is the polytope P◦ defined by

P◦ := {y ∈ (Qm)∗ : 〈x, y〉 ≤ 1 for all x ∈ P}.

Here, 〈, 〉 is the canonical evaluation pairing between Qm and (Qm)∗.
Let x0 be a point in Qm, and let H be a hyperplane in Qm such that x0 /∈ H . Let P be

a polytope in H . The pyramid over P with apex at x0 is the convex hull conv(P, x0). We
will denote a pyramid over P by pyr(P).

The vertex set of a polytope P will be denoted by V (P). Let Q and P be two polytopes
in Qm and Qn, respectively. The direct product (or simply the product) of Q and P, denoted
by Q×P, is defined as the convex hull,

Q×P := conv((a, b) : a ∈ V (Q), b ∈ V (P)).

We now assume that the origin of Qm (resp. of Qn) is contained in Q (resp. in P). The free
sum of Q and P, denoted by Q⊕P, is defined as follows:

Q⊕P := conv(Q× {0Qn}, {0Qm} ×P).

2.1 Toric codes.

The purpose of this subsection is to introduce toric codes by circumventing much of the origi-
nal definition of the algebraic-geometric codes. For a detailed introduction to this important
subject, we recommend the textbook [14].

Let N be a free abelian group of rank m, and let M denote its dual group. Let P be a
full dimensional lattice polytope in M ⊗Z Q. The lattice points in P ∩M define monomials
that are regarded as polynomial functions on the m-dimensional torus TN := Hom(N,F∗

q).
Let H0(TN (Fq),P) denote the Fq-vector space that is spanned by these monomials. The
toric code of P is then the image of the evaluation map

ev : H0(TN(Fq),P) −→ (F∗
q)

m

f 7−→ (f(x))x∈TN (Fq).

More generally, the algebraic-geometric code associated with an ample line bundle on a
normal variety X that is defined over Fq is the image of the germ-evaluation map on a set
of Fq-rational points S ⊆ X(Fq). The toric codes from lattice polytopes are defined by
evaluating on the Fq-rational points of the open orbit of a normal toric variety.

Hereafter, we denote by CP the toric code associated with a lattice polytope P. The
length of CP is defined as

length := (q − 1)m,
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where m is the dimension of the toric variety. The dimension of CP is defined as the vector
space dimension of the space of sections

dimension := dimH0(TN (Fq),P).

This number is given by the number of lattice points P∩M . Finally, the computation of the
minimum distance for the toric codes associated with an order polytope is the main focus
of the present article. It is calculated as follows. For a section f ∈ H0(TN(Fq),P), let Z(f)
denote the number of points in (F∗

q)
m where f vanishes. Then the minimum distance of CP,

denoted by d(CP), is given by

d(CP) = (q − 1)m − max
f∈H0(TN (Fq),P)\{0}

Z(f).

We will make use of the following results which are due to Soprunov and Soprunova.

Lemma 2.1. (Theorem 2.1 [12]) Let P and Q be two lattice polytopes contained in the boxes
[0, q − 2]m ⊆ Qm and [0, q − 2]n ⊆ Qn, respectively. Then the minimum distance of the code
of the product P×Q is given by d(CP×Q) = d(CP)d(CQ).

Let Kn
q denote the n-dimensional cube [0, q − 2]n. Let Q be an n-dimensional lattice

polytope contained in Kn
q . Then the unit pyramid over Q is defined by conv{en+1, (x, 0) :

x ∈ Q}, where en+1 is the unit vector (0, . . . , 0, 1) ∈ Rn+1.

Lemma 2.2. (Theorem 2.3 [12]) Let Q be a lattice polytope of dimQ ≥ 1. If P denotes the
unit pyramid over Q, then we have d(CP) = (q − 1)d(CQ).

3 Order Polytopes, Poset polytopes

Let P = {ε1, . . . , εm} be a finite poset, and let N denote the free Z-module generated by
P . Let P̂ denote P ∪ {0̂, 1̂}, where 0̂ (resp. 1̂) is such that 0̂ � εi (resp. εi � 1̂) for every
i ∈ {1, . . . , m}. Let M denote the dual of N , that is M := HomZ(N,Z), and let {e1, . . . , em}
be the basis of M that is dual to P . Let us temporarily denote 0̂ (resp. 1̂) by ε0 (resp. εm+1).
Then for each covering relation εi ⋖ εj in P̂ , we introduce a vector ρ(εi, εj) in M ⊗Z Q as
follows:

ρ(εi, εj) :=











ei if εj = 1̂;

ei − ej if εi, εj ∈ P ;

−ej if εi = 0̂.

(3.1)

The poset polytope of P , denoted by HP , is the convex hull of points ρ(εi, εj), where εi ⋖ εj
is a cover in P̂ . A systematic study of these polytopes is initiated by Hibi and Higashitani
in [7]. In this article, we construct linear error correcting codes by using (the polars of the)
poset polytopes.
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Next, we will discuss poset polytopes and their relationship to the order polytopes. Since
it is already introduced (in the Introduction), we will not repeat the definition of a poset
polytope here. In [7], Hibi and Higashitani showed that these polytopes have some remark-
able properties. We will summarize the relevant results from [7] in the form of a single lemma
to ease our referencing.

Lemma 3.2. For every poset P , the following statements hold:

1. HP is a Fano polytope, that is, 0 is the unique integral interior point.

2. HP is terminal, that is, each integral point on the boundary of HP is a vertex.

3. HP is Gorenstein, that is, its dual polytope is integral.

4. If P is a graded poset of length l − 2, then the polar polytope of HP is the dilated and
translated order polytope lOP − v, where v is the unique lattice point in lOP .

The first item is proved in [7, Lemma 1.3], the second item is proved in [7, Lemma 1.4].
The third item is proved in [7, Lemma 1.5]. The last item is recorded in [7, Remark 1.6]; its
proof follows from the definitions.

Remark 3.3. A Gorenstein and Fano polytope is known as the reflexive polytope. In par-
ticular, the dual of a reflexive polytope is reflexive. The normal fan of a reflexive polytope
gives a “Gorenstein Fano toric variety” [1, Theorem 8.3.4]. (Such toric varieties are always
normal.) In particular, a reflexive polytope is very ample in the sense of [1, Definition 2.2.17].

Notation 3.4. If P is a graded poset of length l − 2, then the polytope lOP − v, where v
is the unique lattice point in lOP , will be denoted by OP (l).

Example 3.5. Let P (resp. P̂ ) be the poset whose Hasse diagram is on the left (resp. on
the right) in Figure 3.1.

P

ε1

ε2 ε3

P̂

0̂

ε1

ε2 ε3

1̂

Figure 3.1
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By fixing {ε1, ε2, ε3} as a basis for N ⊗Z Q, we will identify the elements of N ⊗Z Q by
their coordinate vectors. Then, the vertex set of OP consists of the following vectors in Q3:

ρ(∅) = (0, 0, 0),

ρ({ε2}) = ε2 = (0, 1, 0),

ρ({ε3}) = ε3 = (0, 0, 1),

ρ({ε2, ε3}) = ε2 + ε3 = (0, 1, 1),

ρ({ε1, ε2, ε3}) = ε1 + ε2 + ε3 = (1, 1, 1).

In Figure 3.2, we depicted the order polytope of P . Finally, let us consider the dual polytope

•

•

•

• •

ε1

ε2

ε3

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1) (1, 1, 1)

Figure 3.2: The order polytope of P .

for OP (3). It is easy to check that the vertices of the dual polytope HP are given by
−e1, e1 − e2, e1 − e3, e2, e3. We notice that the convex hull of e1 − e2, e1 − e3, e2, e3 is a
rectangular plate, which we denote by A. Then HP is a pyramid over A with apex at −e1.

We close this subsection by two simple observations.

Lemma 3.6. Let P be a poset with connected components P1, . . . , Pr. Then we have

HP = HP1
⊕ · · · ⊕HPr

.

Proof. Let x be a vertex in HP . Then there is a covering relation εi ⋖ εj in P̂ such that

x ∈ {ei, ei − ej ,−ej}.
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Since every covering relation in P̂ is a covering relation in one of the posets P̂i (i ∈ {1, . . . , r}),
we see that the vertex set of HP is a disjoint union,

V (HP ) = V (HP1
) ⊔ · · · ⊔ V (HPr

).

Note that, the subpolytopes HPi
for i ∈ {1, . . . , r} are contained in skew subspaces in Qm.

Nevertheless, they all share the origin of Qm. Therefore, we have

HP = conv(V (HP ))

= conv(V (HP1
) ⊔ · · · ⊔ V (HPr

))

= conv(V (HP1
)) ⊔ · · · ⊔ conv(V (HPr

)).

This finishes the proof of our assertion.

Our next observation is about the order polytopes.

Lemma 3.7. Let P be a poset with connected components P1, . . . , Pr. Then we have

OP = OP1
× · · · ×OPr

.

Proof. Let x be a vertex in OP ⊆ Qm, where m is the number of elements of P . Then there
is an upper order ideal I in P such that x = ρ(I). Since P is the disjoint union P1⊔ · · ·⊔Pr,
we see that I = I1⊔· · ·⊔ Ir, where Ii (i ∈ {1, . . . , r}) is an upper order ideal in Pi. It follows
that x is of the form

x = x1 + · · ·+ xr ∈ Qm1 ⊕ · · · ⊕Qmr , (3.8)

where xi = ρ(Ii), and Qmi is the vector subspace of Qm that is spanned by the basis vectors
corresponding to the elements of Pi (i ∈ {1, . . . , r}). The decomposition in (3.8) shows that
the vertex set of OP is the product of the vertex sets of the order polytopes OPi

,

V (OP ) = V (OP1
)× · · · × V (OPr

).

This finishes the proof.

The decompositions that we observed in Lemmas 3.7 and 3.6 can be obtained from each
other by induction and the well-known polarity correspondence between the free sums and
direct products of polytopes.

Remark 3.9. As we mentioned in the introduction, a desirable code is the one with a
high transmission rate, that is, dimension/length. The construction of HP uses the cover
relations in P whereas the construction of OP uses all upper order ideals in P . In general
the vertices of the latter polytope are much more numerous. Therefore, for a generic poset
P , the transmission rate of CHP

is very small compared to the transmission rate of COP
.
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4 Shrubs

We begin with a reduction result.

Proposition 4.1. Let P be a poset with r connected components P1, . . . , Pr. Let q be a
prime power such that q > 2. Then the minimum distance of the toric code COP

is given by

d(COP
) = d(COP1

) · . . . · d(COPr
).

Proof. We know from Lemma 3.7 that OP decomposes as a direct product,

OP = OP1
× · · · ×OPr

.

By applying induction with Lemma 2.1, we see that d(COP
) = d(COP1

) · . . . · d(COPr
).

Next, we focus on the connected posets.

Proposition 4.2. Let P = {ε1, . . . , εm} be a connected poset with a unique minimal element,
ε1. If P ′ is the poset obtained from P by removing ε1, then we have

d(COP
) = (q − 1)d(COP ′

).

Proof. Since ε1 is the smallest element in P , the upper order ideal generated by ε1 is the
whole poset P . In particular, all coordinates of the corresponding vertex x0 := ρ(P ) in Qm

is 1,
x0 = (1, . . . , 1) ∈ Qm.

For every other vertex x = (a1, . . . , am) of OP such that x 6= x0, we have a1 = 0. This means
that the line segment between vertices x0 and x is an edge of the polytope OP . (Note that
this observation follows from [8, Lemma 1.1 (a)] as well.) It follows that OP is a pyramid
over OP ′. Now, the rest of the proof follows from Lemma 2.2.

Let P be a poset. We call P a rooted tree poset if the following conditions hold:

1. the Hasse diagram of P is a rooted tree, where the smallest element of P is the root;

2. the leaves of P are the maximal elements of P .

If P is the rooted tree poset whose Hasse diagram is as in Figure 4.1, then we call it the
m-th shrub. The m-th shrub will be denoted by Sm. If the number m is understood from
the context, or if it is not relevant to the discussion, then we simply write “shrub” instead
of writing “the m-th shrub.” Let I be an upper order ideal in Sm. If I contains the element
ε1, then it is equal to Sm. If ε1 /∈ I, then I can be any subset of {ε2, . . . , εm}. Therefore,
J(Sopp

m ) is isomorphic to Bm−1 ⊕ 1̂, where Bm−1 is the boolean algebra of rank m− 1. The
proof of the following lemma is easy so we omit it.

Lemma 4.3. Let m ≥ 2. Then the order polytope of the shrub Sm is a pyramid over the
unit cube of dimension m− 1.

9



ε1

ε2 ε3 · · · εm−1 εm

Figure 4.1: The m-th shrub, Sm.

•

•

•

• • • •

•

•

•

•

• • •

•

• • • •

•

•

Figure 4.2: The shrubbery of a tree.

Next, we introduce the notion of a shrubbery of a tree poset P . Clearly, every leaf in P
belongs to a unique shrub in P . For example, consider the tree poset in Figure 4.2. The tree
poset in that figure has 4 subshrubs, whose Hasse diagrams are drawn in solid black lines.
The shrubbery of P is the collection of subshrubs of P that contain the leaves of P .

Theorem 4.4. Let P = {ε1, . . . , εm} be a tree poset whose shrubbery consists of the shrubs,
Sm1

, . . . , Sms
. Then the minimum distance of the code COP

is given by

d(COP
) = (q − 1)m−

∑s
i=1

(mi−1)(q − 2)
∑s

i=1
(mi−1).

Proof. By Proposition 4.2, the minimum distance COP
is equal to (q − 1)d(COP ′

), where P ′

is the rooted forest obtained from P by removing ε1. Let P1, . . . , Pr denote the connected
components of P ′. Then each Pi (i ∈ {1, . . . , r}) is a rooted tree. By repeatedly applying
Proposition 4.1 and Proposition 4.2, we reach to the shrubberies of the Pi’s for all i ∈
{1, . . . , r}. The union of the shrubberies of the Pi’s (i ∈ {1, . . . , r}) is equal to the shrubbery
of P , that is, Sm1

, . . . , Sms
. For l ∈ {1, . . . , s}, the index ml is the number of vertices in the

shrub Sml
. Let j denote the difference m−

∑s

l=1ml, which is equal to the number of vertices
that are removed from P to reach to the shrubbery Sm1

, . . . , Sms
. In particular, we have the

following formula for the minimum distance,

d(COP
) = (q − 1)jd(COSm1

) · . . . · d(COSms
). (4.5)

We now observe that, for each l ∈ {1, . . . , s}, the order polytope OSml
is a pyramid over the

unit cube of dimension ml − 1. Therefore, by [12, Corollary 3.4], the minimum distance of
the corresponding code is given by (q− 1)(q− 2)ml−1. Thus, by substituting these into (4.5)
we obtain the asserted formula for the minimum distance COP

.
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5 A Lemma on Ordinal Sums

Let P and Q be two posets. The ordinal sum of P and Q, denoted by P ⊕ Q, is the poset
defined on the disjoint union P ⊔ Q as follows. Let a and b be two elements from P ⊔ Q.
Then

a ≤ b ⇐⇒











if both of a and b are the elements of P , and a ≤ b in P ;

if both of a and b are the elements of Q, and a ≤ b in Q;

if a ∈ P and b ∈ Q.

The order polytope of the ordinal sum of two posets can be described in terms of the
order polytope of the summands. This relationship is expressed by the action of the group
of affine transformations of a lattice. To explain, let Zk be a lattice, let u be an element of
Zk, and let M an element of GLk(Z). The map TM,u : Qk → Qk, defined by the formula
T (v) := M · v+u for v ∈ Zk, is called an affine transformation of Zk. Now, two polytopes P
and Q in Zk ⊗Z Q ∼= Qk are called lattice equivalent if there exists an affine transformation
TM,u : Qk → Qk such that TM,u(P) = Q. Since the affine transformations form a group, the
lattice equivalence is an equivalence relation on the collection of all polytopes in Qk. An
important fact regarding the lattice equivalence is that two toric codes that are obtained
from two lattice equivalent polytopes have the same parameters. For a detailed explanation
of this fact, we refer the reader to [10, Section 4].

Lemma 5.1. Let P and Q be two posets. Then the order polytope of the ordinal sum P ⊕Q
is lattice equivalent to the free sum of polytopes OP ⊕OQ.

Proof. Let n and m denote the cardinalities of P and Q respectively. Then OP ⊂ Qn and
OQ ⊂ Qm. Let I (resp. I ′) be an element of J(P opp) (resp. of J(Qopp)). By abuse of
notation, we will use the same notation I (resp. I ′) for the upper order ideal generated by
I (resp. I ′) in P ⊕ Q. In this notation, clearly, for every upper order ideal I of P we have
Q ≤ I in J((P ⊕ Q)opp). In terms of cartesian coordinates on Qn × Qm, this fact amounts
to the fact that ρP⊕Q(I) has 1’s on its last m coordinates. In other words, in Qn ×Qm, the
vector v0 := (0, . . . , 0, 1, . . . , 1) corresponds to both of 1) the empty upper order ideal of P ,
2) the maximal upper order ideal of Q. We now consider the affine translate OP⊕Q − v0 in
Qn ×Qm. Under this translation, the vertices that correspond to the upper order ideal in P
are mapped to the negatives of the lower order ideals in P . Therefore, we have the following
equality of polytopes:

OP⊕Q − v0 = (−OP opp)⊕OQ.

But the polytope −OP opp is lattice equivalent to OP , hence, we obtain the equivalence,

OP⊕Q − v0 ∼= OP ⊕OQ.

This finishes the proof of our assertion.

11



Recall that the minimum distance of the toric code that is obtained from the direct
product of two polytopes P (in Qm) and Q (in Qn) is given by the product of the minimum
distances of the codes that are associated with P and Q (Lemma 2.1). Let h be a polynomial
from H0(TN(Fq),P). The weight of h, denoted wt(h), is the maximum number of nonzero
coordinates in the image vector of the evaluation of h on the points of TN(Fq). Let f be a
polynomial from H0(TN(Fq),P) such that wt(f) = d(CP). Similarly, let g be a polynomial
from H0(TN ′(Fq),Q) such that wt(g) = d(CQ). In their proof of Lemma 2.1, Soprunov and
Soprunova [12, Theorem 2.1] show that the weight of the polynomial fg is equal to d(CP×Q).
Note that f and g separately belong also to the space of sections H0(TN×N ′(Fq),P ⊕ Q).
This in particular gives us an upper bound for d(CP⊕Q) as follows. Clearly, the total number
of points in TN×N ′(Fq) (∼= (F∗

q)
m+n) where f (resp. g) vanishes is given by Z(f)(q − 1)n

(resp. by Z(g)(q − 1)m). Thus, we have

d(CP⊕Q) ≤ max{(q − 1)m+n − Z(f)(q − 1)n, (q − 1)m+n − Z(g)(q − 1)m}.

Next, we apply this observation to an ordinal sum of posets.
Let m be a positive integer. Let us denote an antichain with m elements by Am. The

order polytope of Am is the m-dimensional unit cube. Note that an m-chain is given by
A1 ⊕ · · · ⊕A1 (m copies), which we denote by Cm.

Lemma 5.2. Let m be a positive integer. Then the minimum distance of the toric code
associated with OAm⊕Am

is given by (q − 1)m(q − 2)m.

Proof. We begin with a slightly more general setup. Let m ≤ n be two positive integers.
We consider the ordinal sum Am ⊕ An. In the light of Lemma 5.1, we may assume that
OAm⊕An

= OAm
⊕ OAn

. Let f be a polynomial in H0(TN(Fq),OAm
) such that wt(f) =

d(COAm
). Then we know that

Z(f) = (q − 1)m − d(COAm
) = (q − 1)m − (q − 2)m.

Similarly, let g be a polynomial in H0(TN ′(Fq),OAn
) such that wt(g) = d(COAn

). Then we
know that

Z(g) = (q − 1)n − d(COAn
) = (q − 1)n − (q − 2)n.

Therefore, the minimum distance of OAm⊕An
is bounded by

d(COAm⊕OAn
) ≤ max{(q − 1)m+n − ((q − 1)m − (q − 2)m)(q − 1)n,

(q − 1)m+n − ((q − 1)n − (q − 2)n)(q − 1)m}

= max{(q − 2)m(q − 1)n, (q − 2)n(q − 1)m}

= (q − 2)m(q − 1)n.

In particular, if m = n, then we see that

d(COAm⊕OAn
) ≤ (q − 2)m(q − 1)m. (5.3)
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We notice that the poset Am ⊕ Am is covered by m 2-chains, Hm := ⊔m
i=1C2. It is easy to

check the polytope containment
OAm⊕Am

⊆ OHm
.

This means that the space of sections of the line bundle determined by OAm⊕Am
is contained

in the space of sections of the line bundle determined by OHm
. Since these sections are

evaluated on the same torus, the minimum distance of the code COAm⊕OAm
is bounded from

below by the minimum distance of COHm
, which is equal to (q − 1)m(q − 2)m. The rest of

the proof follows from (5.3).

Theorem 5.4. Let m be a positive integer. The minimum distance of a toric code associated
with an (m,m)-bipartite poset is given by (q − 1)m(q − 2)m.

Proof. Let Hm denote ⊔m
i=1C2. By the proof of Lemma 5.2, we know that

d(COAm⊕Am
) = d(COHm

) = (q − 1)m(q − 2)m.

It is easy to check (by computing the vertices of the order polytopes) that if P is an (m,m)-
bipartite poset, thenOAm⊕Am

⊆ OP ⊆ OHm
. These inclusions give the following inequalities:

d(COAm⊕Am
) ≥ d(COP

) ≥ d(COHm
),

which are actually equalities. This finishes the proof of our theorem.

Proposition 5.5. Let m be a positive integer. Then we have the following formulas for the
dimensions of the toric codes associated with Am ⊕Am and Hm := ⊔m

i=1C2.

1. dim COAm⊕Am
= 2m+1 − 1, and

2. dim COHm
= 3m.

Proof. The dimension of a toric code defined by an order polytope is equal to the number
of vertices of the polytope. In the former case, we have the free sum of two m dimensional
cubes. Therefore, the dimension in this case is given by 2m + 2m − 1 = 2m+1 − 1. In the
latter case, the vertices of OHm

are given by the upper order ideals in Hm. Any such idea
is uniquely determined by a minimal elements 0̂i1 , . . . , 0̂ia in Hm, and b maximal elements
1̂j1, . . . , 1̂jb, where 1̂jr (1 ≤ r ≤ b) does not cover any element from {0̂i1, . . . , 0̂ia}. Therefore,
the total number of such upper order ideals is given by

∑m

a=0

∑m−a

b=0

(

m

a

)(

m−a

b

)

. By using the
binomial theorem, we see that this sum is equal to 3m.

Example 5.6. We consider the posets P1, P2 and P3 that are defined in Figure 5.1. In
Table 1 we listed their upper order ideals.

The minimum distance of the toric code associated with the order polytope of Pi (i ∈
{1, 2, 3}) equals

d(COPi
) = (q − 1)2(q − 2)2.
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ε1 ε2

ε3 ε4

ε1 ε2

ε3 ε4

ε1 ε2

ε3 ε4

Figure 5.1: The posets P1, P2, and P3 (from left to right).

J(P opp
1 ) J(P opp

2 ) J(P opp
3 )

{ε1, ε2, ε3, ε4} {ε1, ε2, ε3, ε4} {ε1, ε2, ε3, ε4}
{ε1, ε3, ε4} {ε1, ε3, ε4} {ε1, ε3, ε4}
{ε2, ε3, ε4} {ε2, ε3, ε4} {ε2, ε3, ε4}
{ε3, ε4} {ε3, ε4} {ε3, ε4}
{ε3} {ε1, ε3} {ε1, ε3}
{ε4} {ε3} {ε2, ε4}
∅ {ε4} {ε3}

∅ {ε4}
∅

Table 1: The upper order ideals of P1, P2, P3.
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