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Abstract
Tanigawa (2016) showed that vertex-redundant rigidity of a graph implies its global
rigidity in arbitrary dimension. We extend this result to periodic frameworks under
fixed lattice representations. That is, we show that if a generic periodic framework is
vertex-redundantly rigid, in the sense that the deletion of a single vertex orbit under
the periodicity results in a periodically rigid framework, then it is also periodically
globally rigid. Our proof is similar to the one of Tanigawa, but there are some added
difficulties. First, it is not known whether periodic global rigidity is a generic property
in dimension d > 2.We work around this issue by using slight modifications of recent
results of Kaszanitzky et al. (2021). Secondly, while the rigidity of finite frameworks in
R
d on atmost d vertices obviously implies their global rigidity, it is non-trivial to prove

a similar result for periodic frameworks. This is accomplished by extending a result
of Bezdek and Connelly (2002) on the existence of a continuous motion between two
equivalent d-dimensional realisations of a single graph inR2d to periodic frameworks.
As an application of our result, we give a necessary and sufficient condition for the
global rigidity of generic periodic body-bar frameworks in arbitrary dimension. This
provides a periodic counterpart to a result of Connelly et al. (2013) regarding the
global rigidity of generic finite body-bar frameworks.
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1 Introduction

A d-dimensional bar-joint framework is a pair (G, p), where G is a simple graph
and p is a map which assigns a point in R

d to each vertex of G. We think of (G, p)
as a straight line realisation of G in R

d , where the edge lengths are measured by
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the standard Euclidean metric. Loosely speaking, (G, p) is (locally) rigid if any edge-
lengthpreserving continuousmotionof thevertices of (G, p) is necessarily a congruent
motion (i.e., a motion corresponding to an isometry of Rd ). Moreover, (G, p) is
globally rigid if it is the only framework in d-space with the same graph and edge
lengths, up to congruent motions. It is well known that both rigidity and global rigidity
are generic properties, in the sense that a generic realisation of a graphG inRd is rigid
(globally rigid) if and only if every generic realisation of G in R

d is rigid (globally
rigid) [1,7,8]. Therefore, a graphG is called rigid (globally rigid) if some (equivalently
any) generic realisation of G is rigid (globally rigid).

The celebrated Laman’s theorem from 1970 (which had previously been discovered
by Pollaczek-Geiringer in 1927 [17]), gives a combinatorial characterisation of the
rigid graphs in R

2 [15]. Extending this result to higher dimensions is a fundamental
open problem in distance geometry [27]. Similarly, a combinatorial characterisation
of the globally rigid graphs in R

2 has been obtained by Jackson and Jordán in 2005
[9], but the problem of extending this result to higher dimensions also remains open.
For the special class of body-bar frameworks [27], however, complete combinatorial
characterisations for rigidity andglobal rigidity have been established in all dimensions
in [26] and [6], respectively.

Tanigawa recently proved the following result, which is an important new tool to
investigate the global rigidity of frameworks in R

d .

Theorem 1.1 ([24]) Let G be a rigid graph in R
d and suppose G − v remains rigid

for every vertex v of G. Then G is globally rigid in Rd .

In particular, the following combinatorial characterisation of globally rigid body-bar
frameworks in Rd by Connelly et al. [6] easily follows from this result.

Theorem 1.2 ([6,24]) A generic body-bar framework is globally rigid in R
d if and

only if it is rigid in Rd and it remains rigid after the removal of any edge.

In Sects. 4 and 5, we obtain analogues of these results for infinite periodic frameworks
under fixed lattice representations. Due to their applications in fields such as crystal-
lography, materials science, and engineering, the rigidity and flexibility of periodic
structures has seen an increased interest in recent years (see e.g. [3,4,13,16,19,21]). In
particular, combinatorial characterisations of generic rigid and globally rigid periodic
bar-joint frameworks under fixed lattice representations in R

2 were obtained in [21]
and [13], respectively. Analogous to the situation for finite frameworks, extensions of
these results to higher dimensions remain key open problems in the field. In fact, while
it is well known that periodic local rigidity is a generic property in each dimension, it
is currently not even known whether periodic global rigidity is a generic property for
any d > 2.

For the special class of periodic body-bar frameworks, Ross gave a combinato-
rial characterisation for generic local rigidity in R

3 [20], and this result was recently
extended to all dimensions by Tanigawa in [25] (see also Theorem 5.3). As an appli-
cation of the main result of Sect. 4 (Theorem 4.5), we give the first combinatorial
characterisation of generic globally rigid periodic body-bar frameworks in all dimen-
sions in Sect. 5 (Theorem 5.2). We note that the proof of Theorem 5.2 does not rely on
periodic global rigidity being a generic property inRd , and it also does not require the
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notion of stress matrices [5,6]. It is a consequence of Theorem 5.2 that global rigidity
of periodic body-bar frameworks is a generic property in each dimension.

2 Preliminaries

2.1 0-Labelled Graphs and Periodic Graphs

Let � be a group isomorphic to Z
k for some integer k > 0. A �-labelled graph is a

pair (G, ψ) of a finite directed (multi-) graph G and a map ψ : E(G) → �.
For a given �-labelled graph (G, ψ), one may construct a k-periodic graph G̃ by

setting V (G̃) = {γ vi : vi ∈ V (G), γ ∈ �} and E(G̃) = {{γ vi , ψ(viv j )γ v j } :
(vi , v j ) ∈ E(G), γ ∈ �}. This G̃ is called the covering of (G, ψ), and � is the
periodicity of G̃, which acts naturally on V (G̃) and E(G̃). The graph (G, ψ) is also
called the quotient �-labelled graph of G̃.

To guarantee that the covering of (G, ψ) is a simple graph, we assume that (G, ψ)

has no parallel edges with the same label when oriented in the same direction. More-
over, we assume that (G, ψ) has no loops. This is because a loop in (G, ψ) (with a
non-trivial label) does not give rise to any constraint when we study the rigidity and
flexibility of the covering G̃ under fixed lattice representations, as will become clear
below.

Note that the orientation of (G, ψ) is only used as a reference orientation and may
be changed, provided that we also modify ψ so that if an edge has a label γ in one
direction, then it has the label γ −1 in the other direction. The resulting �-labelled
graph still has the same covering G̃.

It is also oftenuseful tomodify (G, ψ)byusing the switchingoperation.A switching
at v ∈ V (G) by γ ∈ � changes ψ to ψ ′ defined by ψ ′(e) = γψ(e) if e is directed
from v, ψ ′(e) = γ −1ψ(e) if e is directed to v, and ψ ′(e) = ψ(e) otherwise. It is easy
to see that a switching operation performed on a vertex in (G, ψ) does not alter the
covering G̃, up to isomorphism.

Given a �-labelled graph (G, ψ), we define a walk in (G, ψ) as an alternating
sequence v1, e1, v2, . . . , ek, vk+1 of vertices and edges such that vi and vi+1 are the
endvertices of ei . For a closed walk C = v1, e1, v2, . . . , ek, v1 in (G, ψ), let ψ(C) =∏k

i=1 ψ(ei )sign(ei ), where sign(ei ) = 1 if ei has forward direction inC , and sign(ei ) =
−1 otherwise. For a subgraph H ofG define�H as the subgroup of� generated by the
elements ψ(C), where C ranges over all closed walks in H . The rank of H is defined
to be the rank of �H . Note that the rank of G may be less than the rank of �, in which
case the covering graph G̃ contains an infinite number of connected components.

2.2 Periodic Bar-Joint Frameworks

Recall that a pair (G, p) of a simple graph G = (V , E) and a map p : V → R
d is

called a (bar-joint) framework inRd . A periodic framework is a special type of infinite
framework defined as follows.
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Let G̃ = (Ṽ , Ẽ) be a k-periodic graph with periodicity �, and let L : � → R
d be a

non-singular homomorphism with k ≤ d, where L is said to be non-singular if L(�)

has rank k. A pair (G̃, p̃) of G̃ and p̃ : Ṽ → R
d is said to be an L-periodic framework

in Rd if

p̃(v) + L(γ ) = p̃(γ v) for all γ ∈ � and all v ∈ Ṽ . (1)

We also say that a pair (G̃, p̃) is k-periodic in R
d if it is L-periodic for some non-

singular homomorphism L : � → R
d . Note that the rank k of the periodicity may be

smaller than d.
An L-periodic framework (G̃, p̃) is generic if the set of coordinates is algebraically

independent over the rationals modulo the ideal generated by the equations (1).
A �-labelled framework is defined to be a triple (G, ψ, p) of a finite �-labelled

graph (G, ψ) and a map p : V (G) → R
d . Given a non-singular homomorphism

L : � → R
d , the covering of (G, ψ, p) is the L-periodic framework (G̃, p̃), where

G̃ is the covering of G and p̃ is uniquely determined from p by (1). (G, ψ, p) is also
called the quotient �-labelled framework of (G̃, p̃).

We say that a �-labelled framework (G, ψ, p) is generic if the set of coordinates in
p is algebraically independent over the rationals. Note that an L-periodic framework
(G̃, p̃) is generic if and only if the quotient (G, ψ, p) of (G̃, p̃) is generic.

2.3 Periodic Body-Bar Frameworks

A d-dimensional body-bar framework consists of disjoint full-dimensional rigid bod-
ies inRd connected bydisjoint bars, andmaybe considered as a special type of bar-joint
framework, as we will describe below. The rigidity and flexibility of body-bar frame-
works has been studied extensively (see e.g. [6,20,26,27]), as they have important
applications in fields such as engineering, robotics, materials science, and biology.
The underlying graph of a body-bar framework is a multi-graph H = (V (H), E(H))

with no loops, where each vertex in V (H) corresponds to a rigid body, and each edge
in E(H) corresponds to a rigid bar. To represent a body-bar framework as a bar-joint
framework, we extract the body-bar graph GH from the multi-graph H as follows
(see also [24], for example). GH is the simple graph with vertex set VH and edge set
EH , where

• VH is the disjoint union of vertex sets Bv
H for each v ∈ V (H), with Bv

H defined
as Bv

H = {v1, v2, . . . , vd+1} ∪ {ve : e ∈ E(H) is incident to v};
• EH = (⋃

v∈V (H) K (Bv
H )

) ∪ {e′ = ueve : e = uv ∈ E(H)}, where K (Bv
H ) is the

complete graph on Bv
H .

For each v ∈ V (H), the vertices of Bv
H induce a complete subgraph of GH , which

is referred to as the body associated with v. A bar-joint framework (GH , p) with
p : VH → R

d is called a body-bar realisation of H in Rd . See Fig. 1 for an example.
To define a periodic body-bar framework, we start with a �-labelled graph (H , ψ),

as defined in Sect. 2.1. However, we now allow (H , ψ) to have loops with non-trivial
labels, as well as parallel edges with equal labels when oriented in the same direction.
Thus, (H , ψ) defines a k-periodic multi-graph H̃ which has no loops but may have
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Fig. 1 Example of a 2-dimensionalmulti-graph H (on the left) which is the underlying graph of the body-bar
framework in the middle. On the right the graph GH is shown

parallel edges. We now use the procedure described above to construct the k-periodic
body-bar graph GH̃ from the multi-graph H̃ , with the slight modification that for any
edge e ∈ E(H̃) joining a vertex v with γ v for some γ �= id, we add two vertices ve−
and ve+ (instead of just one vertex ve) to Bv

H̃
, and define e′ to be the edge ve−γ ve+

(instead of veγ ve). This guarantees that the quotient �-labelled graph of the body-bar
graph GH̃ has no loops.

An L-periodic bar-joint framework (GH̃ , p̃) with p̃ : VH̃ → R
d is called an L-

periodic body-bar realisation of H̃ in Rd .

2.4 Rigidity and Global Rigidity

Let G = (V , E) be a graph. Two bar-joint frameworks (G, p) and (G, q) in R
d are

said to be equivalent if

‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ for all uv ∈ E .

They are congruent if

‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ for all u, v ∈ V .

A bar-joint framework (G, p) is called globally rigid if every framework (G, q) inRd

which is equivalent to (G, p) is also congruent to (G, p).
Analogously, following [13], we define an L-periodic bar-joint framework (G̃, p̃)

inRd to be L-periodically globally rigid if every L-periodic framework inRd which is
equivalent to (G̃, p̃) is also congruent to (G̃, p̃). Note that if the rank of the periodicity
is equal to zero, then L-periodic global rigidity coincides with the global rigidity of
finite frameworks.

A key notion to analyse L-periodic global rigidity is L-periodic rigidity. A frame-
work (G̃, p̃) is called L-periodically rigid if there is an open neighborhood N of p̃ in
which every L-periodic framework (G̃, q̃) which is equivalent to (G̃, p̃) is also con-
gruent to (G̃, p̃). If (G̃, p̃) is not L-periodically rigid, then it is called L-periodically
flexible.

A bar-joint framework (G̃, p̃) is called L-periodically vertex-redundantly rigid,
or L-periodically 2-rigid in short, if for every vertex orbit ṽ of G̃, the framework
(G̃ − ṽ, p̃|V (G̃)−ṽ

) is L-periodically rigid.
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2.5 Characterisation of L-Periodic Rigidity

A key tool to analyse the rigidity or global rigidity of finite frameworks is the length-
squared function and its Jacobian, called the rigidity matrix. We may use the same
approach to analyse periodic rigidity or periodic global rigidity (see also [13]).

For a �-labelled graph (G, ψ) and L : � → R
d , we define fG,L : Rd|V (G)| →

R
|E(G)| to be the function that assigns to every p ∈ R

d|V (G)| the tuple of squared edge
lengths of the �-labelled framework (G, ψ, p) (for a given order of the edges). That
is, for p ∈ R

d|V (G)|, we have

fG,L(p) = (
. . . , ‖p(vi ) − (p(v j ) + L(ψ(viv j )))‖2, . . .

)
.

For a finite set V , the complete �-labelled graph K (V , �) on V is defined to be the
�-labelled graph with vertex set V and edge set {((u, v); γ ) : u, v ∈ V , γ ∈ �},
where ((u, v); γ ) denotes the directed edge (u, v) with label γ . We simply denote
fK (V ,�),L by fV ,L . By (1) we have the following fundamental fact.

Proposition 2.1 Let (G̃, p̃) be an L-periodic framework and let (G, ψ, p) be a quo-
tient �-labelled framework of (G̃, p̃). Then (G̃, p̃) is L-periodically globally rigid
(resp. rigid) if and only if for every q ∈ R

d|V (G)| (resp. for every q in an open neigh-
borhood of p in Rd|V (G)|), fG,L(p) = fG,L(q) implies fV (G),L(p) = fV (G),L(q).

Wemay therefore say that a�-labelled framework (G, ψ, p) is L-periodically globally
rigid (or rigid) if for every q ∈ R

d|V (G)| (resp. for every q in an open neighborhood
of p in R

d|V (G)|), fG,L(p) = fG,L(q) implies fV (G),L(p) = fV (G),L(q), and we
may focus on characterising the L-periodic global rigidity (or rigidity) of �-labelled
frameworks. If (G, ψ, p) is not L-periodically rigid, then it is called L-periodically
flexible. A�-labelled framework (G, ψ, p) is L-periodically 2-rigid if for every vertex
v of G, the �-labelled framework (G − v,ψ |G−v, p|V (G)−v) is L-periodically rigid.
We have the following basic result for analysing L-periodic rigidity.

Theorem 2.2 ([13,19]) Let (G, ψ, p) be a generic �-labelled framework in Rd with
|V (G)| ≥ d + 1 and rank k periodicity �, and let L : � → R

d be non-singular. Then
(G, ψ, p) is L-periodically rigid if and only if

rank d fG,L |p = d|V (G)| − d −
(
d − k

2

)

,

where d fG,L |p denotes the Jacobian of fG,L at p.

For combinatorial characterisations of generic L-periodically rigid or globally rigid
�-labelled frameworks in R2, we refer the reader to [13,21] and [13], respectively. A
combinatorial characterisation of generic L-periodically rigid body-bar frameworks
in Rd has been established in [25] (see also Theorem 5.3).

3 Rigidity Implies Global Rigidity for Small Graphs

We first prove the following periodic counterpart of [2, Lem. 1].

123



Discrete & Computational Geometry (2022) 67:1–16 7

Lemma 3.1 Let (G, ψ)be theZk-labelled graphwith verticesv1, . . . , vn andno edges,
and let L : Zk → R

d be a non-singular homomorphism. Further, let (G, ψ, p) and
(G, ψ, q) be two Zk-labelled frameworks whose coverings are the L-periodic frame-
works (G̃, p̃) and (G̃, q̃) in Rd .

We denote pγ,i = p̃(γ vi ) = p(vi ) + L(γ ) and qγ,i = q̃(γ vi ) = q(vi ) + L(γ ) for
i = 1, . . . , n and γ ∈ Z

k . Let p̄γ,i : [0, 1] → R
2d be the following continuous maps

for i = 1, . . . , n:

p̄γ,i (t) =
(
pγ,i + qγ,i

2
+ pγ,i − qγ,i

2
cosπ t,

pγ,i − qγ,i

2
sin π t

)

. (2)

Then p̄γ,i (0) = (pγ,i , 0d) and p̄γ,i (1) = (qγ,i , 0d), where 0d denotes the d-
dimensional zero vector. Further, | p̄γ,i (t) − p̄γ ′, j (t)| is monotone and p̄γ,i (t) =
p̄0k ,i (t) + (L(γ ), 0d) for every i, j ∈ {1, . . . , n} and γ, γ ′ ∈ Z

k .

Proof We only prove the last equation as the other statements follow directly from
[2, Lem. 1]. Observe that

p̄γ,i (t) =
(
pγ,i + qγ,i

2
+ pγ,i − qγ,i

2
cosπ t,

pγ,i − qγ,i

2
sin π t

)

=
(
p0k ,i + L(γ ) + q0k ,i + L(γ )

2
+ p0k ,i + L(γ ) − (q0k ,i + L(γ ))

2
cosπ t,

p0k ,i + L(γ ) − (q0k ,i + L(γ ))

2
sin π t

)

=
(
p0k ,i + q0k ,i

2
+ L(γ ) + p0k ,i − q0k ,i

2
cosπ t,

p0k ,i − q0k ,i
2

sin π t

)

= p̄0k ,i (t) + (L(γ ), 0d)

holds for every i ∈ {1, . . . , n} and γ ∈ Z
k . 
�

Lemma 3.1 implies the following theorem.

Theorem 3.2 Let L : � → R
d be a non-singular homomorphism and let (G, ψ, p)

be a �-labelled framework in R
d which is not L-periodically globally rigid. Then

the framework (G, ψ, (p, 0d)) with (p, 0d) : V (G) → R
2d is (L, 0d)-periodically

flexible in R2d , where (L, 0d) : � → R
2d maps γ ∈ � to (L(γ ), 0d).

Proof Since (G, ψ, p) is not L-periodically globally rigid, it follows from Proposi-
tion 2.1 that there exists a �-labelled framework (G, ψ, q) whose covering (G̃, q̃)

is equivalent but not congruent to the covering (G̃, p̃) of (G, ψ, p). By Lemma 3.1,
there exists a continuous deformation between (G̃, ( p̃, 0d)) and (G̃, (q̃, 0d)) in R

2d

that maintains the lattice (L, 0d) and, by the monotonicity of the distances, also
maintains the edge lengths. Therefore, this map proves that (G, ψ, (p, 0d)) is (L, 0d)-
periodically flexible. 
�
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Let (G, ψ, p) be a �-labelled framework in R
d , G̃ be the covering of (G, ψ), and

L : � → R
d be a non-singular homomorphism. Suppose |V (G)| ≤ d − k + 1.

Observe that for D ≥ d, the points (q̃(v), 0D−d), v ∈ V (G̃), of the (L, 0D−d)-
periodic framework (G̃, (q̃, 0D−d)) in RD affinely span a space of dimension at most
|V (G)| + k − 1 ≤ d. Now suppose that (G, ψ, p) is L-periodically rigid in Rd . Then
it also has to be L-periodically globally rigid in R

d . If not, then during its non-trivial
continuous motion in R

2d , which is guaranteed to exist by Theorem 3.2, the points
of the corresponding covering frameworks span an at most d-dimensional subspace,
a contradiction. Hence we have the following corollary of Theorem 3.2.

Corollary 3.3 Let (G, ψ, p) be a �-labelled framework in Rd with rank k periodicity
and L : � → R

d . Suppose that (G, ψ, p) is L-periodically rigid and |V (G)| ≤
d − k + 1. Then (G, ψ, p) is also L-periodically globally rigid.

4 2-Rigidity Implies Global Rigidity

In this section we extend Theorem 1.1 to periodic frameworks by showing that L-
periodic 2-rigidity, together with a rank condition on the �-labelled graph in the case
when the framework is d-periodic in Rd , implies L-periodic global rigidity. We need
several lemmas. The first one is [11, Prop. 13].

Lemma 4.1 Let f : Rd → R
d be a polynomial map with rational coefficients and

p be a generic point in R
d . Suppose that d f |p is non-singular. Then for every q ∈

f −1( f (p)) we have Q(p) = Q(q), where Q(p) and Q(q) denote the algebraic
closures of Q(p) and Q(q), respectively.

Let � be a group isomorphic to Zk , t = max {d − k, 1}, (G, ψ) be a �-labelled graph
with |V (G)| ≥ t , and L : � → R

d be non-singular. For simplicity we suppose that
the linear span of L(�) is {0}d−k × R

k , the linear subspace spanned by the last k
coordinates. We pick any t vertices v1, . . . , vt , and define the augmented function of
fG,L by f̂G,L := ( fG,L , g), where g : Rd|V | → R

d+(t2) is a rational polynomial map
given by

g(p) = (
p1(v1), . . . , pd(v1), p1(v2), . . . , pt−1(v2),

p1(v3), . . . , pt−2(v3), . . . , p1(vt )
)
,

where p ∈ R
d|V | and pi (v j ) denotes the i-th coordinate of p(v j ). Augmenting fG,L

by g corresponds to “pinning down” some coordinates to eliminate trivial continuous
motions. The following lemma is [13, Prop. 3.6].

Lemma 4.2 Let (G, ψ, p) be a �-labelled framework in R
d with rank k periodicity

and L : � → R
d be a non-singular homomorphism such that L(�) ⊂ {0}d−k × R

k .
Suppose that p is generic and |V (G)| ≥ max {d − k, 1}. Then

rank d f̂G,L |p = rank d fG,L |p + d +
(
d − k

2

)

.
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We also need an adapted version of [13, Lem. 4.5], which is a periodic generalisation
of an observation made in [10,24]. To state this lemma, we require the following
definition.

Let (G, ψ) be a �-labelled graph and let v be a vertex of G. Suppose that every
edge incident to v is directed from v. For each pair of nonparallel edges e1 = vu and
e2 = vw in (G, ψ), let e1 · e2 be the edge from u to w with label ψ(vu)−1ψ(vw). We
define (Gv, ψv) to be the �-labelled graph obtained from (G, ψ) by removing v and
inserting e1 · e2 (unless it is already present) for every pair of nonparallel edges e1, e2
incident to v.

Lemma 4.3 Let (G, ψ, p) be a generic�-labelled framework inRd with rank k period-
icity� and with |V (G)| ≥ d−k+2 and let L : � → R

d be non-singular. Suppose that
the covering (G̃, p̃) has a vertex v with at least d+1 neighbours γ0v0, γ1v1, . . . , γdvd ,
where v, vi ∈ V (G) and γi ∈ �, so that the points p̃(γ0v0), p̃(γ1v1), . . . , p̃(γdvd)
affinely span Rd . Suppose further that

• (G − v,ψ |G−v, p′) is L-periodically rigid in R
d , with notation p′ = p|V (G)−v ,

and
• (Gv, ψv, p′) is L-periodically globally rigid in Rd .

Then (G, ψ, p) is L-periodically globally rigid in Rd .

Proof We assume (by rotating the whole space if necessary) that L(�) = {0}d−k ×R
k .

We pin the framework (G, ψ, p) and take any q ∈ f̂ −1
G,L( f̂G,L(p)). Since |V (G)| ≥

d − k + 2 > max {d − k, 1}, we may assume that v is not “pinned” (i.e., v is different
from the vertices selected when augmenting fG,L to f̂G,L ). Our goal is to show that
p = q.

Let p′ and q ′ be the restrictions of p and q to V (G) − v, respectively. Since
(G−v,ψ |G−v, p′) is L-periodically rigid, we have rank d fG−v,L |p′ = d |V (G−v)|−
d − (d−k

2

)
by Theorem 2.2. Then, by Lemma 4.2, we further have rank d f̂G−v,L |p′ =

d |V (G − v)|. Thus we can take a spanning subgraph H of G − v such that d f̂H ,L |p′

has linearly independent rows and is hence non-singular. Since q ′ ∈ f̂ −1
H ,L( f̂H ,L(p′)),

it follows from Lemma 4.1 thatQ(p′) = Q(q ′). This in turn implies that q ′ is generic.
Consider the edges e0 = vv0, e1 = vv1, . . . , ed = vvd in (G, ψ) (all assumed to

be directed from v) with respective labels ψ(e0) = γ0, ψ(e1) = γ1, . . ., ψ(ed) = γd .
Note that we may have vi = v j for some i, j . By switching, we may further assume
that γ0 = id. For each 1 ≤ i ≤ d, let

xi = p(vi ) + L(γi ) − p(v0), yi = q(vi ) + L(γi ) − q(v0),

and let P and Q be the d × d-matrices whose i-th column is xi and yi , respectively.
Note that since p(vi )+L(γi )− p(v0) = p̃(γivi )− p̃(v0), and q(vi )+L(γi )−q(v0) =
q̃(γivi ) − q̃(v0), and p′, q ′ are generic, x1, . . . , xd and y1, . . . , yd are, respectively,
linearly independent, and hence P and Q are both non-singular.

Let xv = p(v) − p(v0) and yv = q(v) − q(v0). We then have ‖xv‖ = ‖yv‖ since
G has the edge vv0 with ψ(vv0) = id. Due to the existence of the edge ei we also
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have

0 = 〈p(vi ) + L(γi ) − p(v), p(vi ) + L(γi ) − p(v)〉
− 〈q(vi ) + L(γi ) − q(v), q(vi ) + L(γi ) − q(v)〉

= 〈xi − xv, xi − xv〉 − 〈yi − yv, yi − yv〉
= ‖xi‖2 − ‖yi‖2 − 2〈xi , xv〉 + 2〈yi , yv〉,

where we used ‖xv‖ = ‖yv‖. Denoting by δ the d-dimensional vector whose i-th
coordinate is equal to ‖xi‖2 − ‖yi‖2, the above d equations can be summarized as

0 = δ − 2PT xv + 2QT yv,

which is equivalent to

yv = (QT )−1PT xv − 1

2
(QT )−1δ.

By putting this into ‖xv‖2 = ‖yv‖2, we obtain

xTv (Id − PQ−1(PQ−1)T )xv − (δT Q−1(Q−1)T PT )xv

+ δT Q−1(Q−1)T δ

4
= 0,

(3)

where Id denotes the d × d identity matrix.
Note that each entry of P is contained in Q(p′), and each entry of Q is contained

in Q(q ′). Since Q(p′) = Q(q ′), this implies that each entry of PQ−1 is contained
in Q(p′). On the other hand, since p is generic, the set of coordinates of p(v) (and
hence those of xv) is algebraically independent over Q(p′). Therefore, by regarding
the left-hand side of (3) as a polynomial in xv , the polynomial must be identically
zero. In particular, we get

Id − PQ−1(PQ−1)T = 0.

Thus, PQ−1 is orthogonal. In other words, there is some orthogonal matrix S such
that P = SQ, and we get

‖p(vi ) + L(γi ) − p(v0)‖ = ‖xi‖ = ‖Syi‖ = ‖yi‖ = ‖q(vi ) + L(γi ) − q(v0)‖

for every 1 ≤ i ≤ d. Therefore, q ′ ∈ f −1
Gv,L( fGv,L(p′)). Since (Gv, ψv, p) is L-

periodically globally rigid, this in turn implies that fV−v,L(p′) = fV−v,L(q ′). Thus
we have p′ = q ′.

Since {p(vi ) + L(γi ) : 0 ≤ i ≤ d} affinely spans Rd , there is a unique extension
of p′ : V (G) − v → R

d to r : V (G) → R
d such that fG,L(r) = fG,L(p). Thus we

obtain p = q. 
�
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(0 , 0)

(1 , 0)

Fig. 2 Example of a Z2-labelled graph (G, ψ) with rank(G, ψ) = 1 (on the left) and two equivalent but
not congruent L-periodic frameworks (G̃, p̃) and (G̃, q̃) with rank 2 periodicity in R2

Finally, we need the following special case of [13, Lem. 3.1].

Lemma 4.4 Let (G, ψ, p) be a generic �-labelled framework inRd with |V (G)| ≥ 2,
rank k periodicity �, and let L : � → R

d be a non-singular homomorphism. If
(G, ψ, p) is L-periodically globally rigid, then the rank of (G, ψ) is equal to k.

Lemma 4.4 is easily seen to be true, because if the rank of (G, ψ) is less than k, then
the covering (G̃, p̃) of (G, ψ, p) has infinitely many connected components, each
of which may be ‘flipped’ individually in a periodic fashion to obtain an L-periodic
framework (G̃, q̃) which is equivalent, but not congruent to (G̃, p̃). Thus, (G, ψ, p)
is not L-periodically globally rigid.

This is illustrated by the two equivalent but non-congruent 2-periodic frameworks
in R2 shown in Fig. 2 whose �-labelled graph (G, ψ) has rank 1. Note, however, that
(G, ψ) is L-periodically 2-rigid, since it is L-periodically rigid and the removal of
any vertex results in a trivial framework with one vertex orbit and no edges (recall
also Theorem 2.2).

It follows that in the case when k = d, L-periodic 2-rigidity is not sufficient for L-
periodic global rigidity. In this case we need the added assumption that rank(G, ψ) =
d. In the case when k < d and rank(G, ψ) < k, (G, ψ, p) can also not be L-
periodically globally rigid, by Lemma 4.4. However, in this case, (G, ψ, p) is also not
L-periodically 2-rigid.

Theorem 4.5 Let (G, ψ, p) be a generic �-labelled framework in R
d with rank k

periodicity �, and let L : � → R
d be non-singular. If (G, ψ, p) is L-periodically

2-rigid, and if (G, ψ) is also of rank d in the case when k = d, then (G, ψ, p) is
L-periodically globally rigid in R

d .

Proof We use induction on |V (G)|. If |V (G)| ≤ d − k + 1, then (G, ψ, p) is L-
periodically globally rigid by the L-periodic rigidity of (G, ψ, p) and Corollary 3.3.

Now suppose that |V (G)| ≥ d−k+2, and let (G̃, p̃) be the covering of (G, ψ, p).
By our assumption, (G − v,ψ |G−v, p|V (G)−v) is L-periodically rigid for any vertex
v ∈ V (G).

Suppose first that |V (G)| = d − k + 2. Then (G − v,ψ |G−v, p|V (G)−v) is also
L-periodically globally rigid by Corollary 3.3. We claim that for any occurrence of
any v ∈ V (G) in the covering G̃, the affine span of the set { p̃(w) : vw ∈ E(G̃)} is all
of Rd .

If d = k (and hence |V (G)| = d − k + 2 = 2) the claim follows from the fact that
rank(G, ψ) = d, by our assumption.
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If d > k (and hence |V (G)| = d − k+2 > 2), then we suppose for a contradiction
that the claim is not true. Then the removal of a neighbour of v (and of all vertices
belonging to that same vertex orbit) results in an L-periodic framework with at least
two distinct orbits of points (since |V (G)| > 2) and, by our genericity assumption, this
framework has the property that all the points connected to p̃(v) affinely span a space
of dimension at most d−2, so that p̃(v) can be rotated about this (d−2)-dimensional
axis. Since all copies of points in the same orbit can then also be rotated in a periodic
fashion and the affine span of the non-moving points is (d − 1)-dimensional (as a
k-periodic configuration with d − k vertex orbits), we obtain a contradiction to the
L-periodic 2-rigidity of (G̃, p̃).

Thus, the affine span of the points { p̃(w) : vw ∈ E(G̃)} is indeed all of Rd as
claimed, and it follows from Lemma 4.3 that (G, ψ, p) is L-periodically globally
rigid.

We may therefore assume that |V (G)| > d − k + 2. We show that (Gv, ψv, p′)
is L-periodically 2-rigid for any v ∈ V (G). Suppose for a contradiction that this is
not true. Then there is a vertex u whose removal results in an L-periodically flex-
ible framework. As the neighbours of one occurrence of v in G̃ induce a complete
graph in G̃v (where any pair of vertices from the same vertex orbit may always be
considered adjacent due to the fixed lattice representation), adding v together with
its incident edges to (Gv − u, ψv|Gv−u, p|V (G)−{u,v}) still yields an L-periodically
flexible framework. This is a contradiction, as (G − u, ψ |G−u, p|V (G)−u) is an L-
periodically rigid �-labelled spanning subframework of the framework obtained from
(Gv − u, ψv|Gv−u, p|V (G)−{u,v}) by adding v and its incident edges.

Thus (Gv, ψv, p′) is L-periodically 2-rigid as claimed. Moreover, since (G, ψ) is
2-connected by the L-periodic 2-rigidity of (G, ψ, p), it follows from the definition
of (Gv, ψv) that �G = �Gv . Thus, if (G, ψ) is of rank d then so is (Gv, ψv). It now
follows from the induction hypothesis that (Gv, ψv, p′) is L-periodically globally
rigid. Moreover, by the same argument as above for the case when |V (G)| = d −
k + 2 > 2, the affine span of the points { p̃(w) : vw ∈ E(G̃)} is all of Rd . Thus, by
Lemma 4.3, (G, ψ, p) is L-periodically globally rigid. 
�

5 Global Rigidity of Body-Bar Frameworks

Using Theorem 4.5 in combination with Lemma 4.4 and the following Lemma 5.1
(which is [13, Lem. 3.7]) we can now easily prove an extension of Theorem 1.2 to
periodic body-bar frameworks. We need the following definitions.

An L-periodic framework (G̃, p̃) with rank k periodicity � is said to be L-
periodically bar-redundantly rigid if (G̃ − ẽ, p̃) is L-periodically rigid for every edge
orbit ẽ of G̃.

Similarly, an L-periodic body-bar realisation (GH̃ , p̃) of a multi-graph H̃ is L-
periodically bar-redundantly rigid if for every edge orbit ẽ of H̃ , the framework
(GH̃ − ẽ, p̃) is L-periodically rigid. (Recall the definition of a body-bar realisation in
Sect. 2.3.)
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Lemma 5.1 ([13]) Let (G̃, p̃) be a generic L-periodic framework in R
d with rank k

periodicity �, and let L : � → R
d be non-singular. Suppose also that the quotient

�-labelled graph (G, ψ) of G̃ has |V (G)| ≥ d + 1 if k ≥ 1 and |V (G)| ≥ d + 2
if k = 0. If (G̃, p̃) is L-periodically globally rigid, then (G̃, p̃) is L-periodically
bar-redundantly rigid.

The following extension of Theorem 1.2 gives a combinatorial characterisation of
generic L-periodically globally rigid body-bar frameworks in Rd .

Theorem 5.2 Let (GH̃ , p̃) be a generic L-periodic body-bar realisation of the multi-
graph H̃ in R

d with rank k periodicity �, and let L : � → R
d be non-singular. Then

(GH̃ , p̃) is L-periodically globally rigid inRd if and only if (GH̃ , p̃) is L-periodically
bar-redundantly rigid in Rd , and the quotient �-labelled graph of GH̃ is of rank d in
the case when k = d.

Proof It immediately follows from Lemma 5.1 that L-periodic bar-redundant rigidity
is necessary for a generic L-periodic body-bar realisation to be L-periodically globally
rigid. Moreover, it follows from Lemma 4.4 that in the case when k = d, the rank
of the quotient �-labelled graph of GH̃ must be equal to d for a generic L-periodic
body-bar realisation to be L-periodically globally rigid. It is also easy to see that if a
generic L-periodic body-bar realisation is L-periodically bar-redundantly rigid, then
it is L-periodically 2-rigid, since the edges connecting the bodies are all disjoint. The
result now follows from Theorem 4.5. 
�
Note that generic L-periodic bar-redundant rigidity can easily be checked in polyno-
mial time based on the combinatorial characterisation of generic L-periodic rigidity
of body-bar frameworks in R

d conjectured by Ross in [20, Conj. 5.1] and proved by
Tanigawa in [25, Thm. 7.2]. Using our notation and a simplified expression for the
dimension of the space of trivial motions for a k-periodic framework inRd , this result
may be restated as follows.

Theorem 5.3 ([25]) Let (GH̃ , p̃) be a generic L-periodic body-bar realisation of the
multi-graph H̃ in R

d with rank k periodicity �, and L : � → R
d be non-singular.

Then (GH̃ , p̃) is L-periodically rigid inRd if and only if the quotient�-labelled graph
H of H̃ contains a spanning subgraph (V , E) satisfying the following counts:

• |E | =
(
d + 1

2

)

|V | − d −
(
d − k

2

)

;

• |F | ≤
(
d + 1

2

)

|V (F)| − d −
(
d − k(F)

2

)

for all non-empty F ⊆ E,

where k(F) is the rank of F.

6 Conclusion and Further Comments

Real-world structures, whether they are natural such as crystals or proteins, or
man-made such as buildings or linkages, are usually non-generic, and often exhibit
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non-trivial symmetries. This fact has motivated a significant amount of research in
recent years on how symmetry impacts the rigidity and flexibility of frameworks (see
[23], for example, for a summary of results). In Theorem 4.5, we have shown that
the sufficient condition given by Tanigawa in [24] for generic global rigidity of finite
frameworks can be transformed to a sufficient condition for generic global rigidity of
infinite L-periodic frameworks (under a fixed lattice L). It remains open whether this
result can be extended to other types of frameworks with symmetries such as infinite
periodic frameworks with (partially) flexible lattices or finite frameworks with point
group symmetries. Following the proof of Theorem 5.2, such an extension would
imply the characterisation of the generic global rigidity of finite body-bar frameworks
with these symmetries by using the existing (local) rigidity characterisations of these
frameworks by Tanigawa [25]. Furthermore, such a result would be useful for the char-
acterisation of the generic global rigidity of body-hinge frameworks with symmetries
(where the bodies are connected in pairs by (d−2)-dimensional hinges) such as in the
(finite) generic version established by Jordán, Király, and Tanigawa [12]. However,
the characterisation of generic (local) rigidity for periodic body-hinge frameworks is
still open (even for fixed lattices). For finite symmetric body-hinge frameworks, such
a characterisation is only known for groups of the form Z2 × Z2 × · · · × Z2 [22].
A major goal in this research area is to obtain a combinatorial characterisation of
the generic global rigidity of infinite L-periodic or finite symmetric molecular frame-
works in 3-space (i.e., body-hinge frameworks in 3-space with the added property
that the lines of the hinges attached to each body all meet in a single point on that
body), since they may be used to model crystals and protein structures. We note that
for finite molecular frameworks, their generic (local) rigidity was recently charac-
terised by the celebrated result of Katoh and Tanigawa [14]. However, their generic
global rigidity has not yet been characterised, and there are also no generic local or
global rigidity characterisations for infinite L-periodic or finite symmetric molecular
frameworks [18].
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