
Circumscribing Polygons and Polygonizations for
Disjoint Line Segments
Hugo A. Akitaya
Department of Computer Science, Tufts University, Medford, MA, USA
hugo.alves_akitaya@tufts.edu

Matias Korman
Department of Computer Science, Tufts University, Medford, MA, USA
matias.korman@tufts.edu

Mikhail Rudoy
CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA
Google Inc., Cambridge, MA, USA
mrudoy@gmail.com

Diane L. Souvaine
Department of Computer Science, Tufts University, Medford, MA, USA
diane.souvaine@tufts.edu

Csaba D. Tóth
Department of Mathematics, California State University Northridge, Los Angeles, CA
Department of Computer Science, Tufts University, Medford, MA, USA
csaba.toth@csun.edu

Abstract

Given a planar straight-line graph G = (V, E) in R2, a circumscribing polygon of G is a simple
polygon P whose vertex set is V , and every edge in E is either an edge or an internal diagonal of P .
A circumscribing polygon is a polygonization for G if every edge in E is an edge of P .

We prove that every arrangement of n disjoint line segments in the plane has a subset of size
Ω(

√
n) that admits a circumscribing polygon, which is the first improvement on this bound in 20

years. We explore relations between circumscribing polygons and other problems in combinatorial
geometry, and generalizations to R3.

We show that it is NP-complete to decide whether a given graph G admits a circumscribing
polygon, even if G is 2-regular. Settling a 30-year old conjecture by Rappaport, we also show that it
is NP-complete to determine whether a geometric matching admits a polygonization.
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9:2 Circumscribing Polygons and Polygonizations

1 Introduction

Reconstruction of geometric objects from partial information is a classical problem in
computational geometry. In this paper, we revisit the problem of reconstructing a simple
polygon (alternatively, a triangulated simple polygon) P when some of its edges have been
lost. Given a set V of n points in the plane, a polygonization of V is a simple polygon P
whose vertex set is V . It is easy to see that, unless all points are collinear, V has a simple
polygonization. The number of polygonizations is exponential in n, and there is extensive
work on determining the minimum and maximum number of polygonizations for n points in
general position as a function of n (see [6] and [20] for the latest upper and lower bounds,
and [9] for a survey on this and related problems).

A natural generalization of this problem is to augment a given planar straight-line graph
(PSLG) G = (V,E) into a simple polygon or a Hamiltonian PSLG. In particular, three
variants have been considered: A simple polygon P on a vertex set V is a polygonization
if every edge in E is an edge of P ; a circumscribing polygon if every edge in E is an edge
or an internal diagonal in P ; and a compatible Hamiltonian polygon if every edge in E
is an edge, an internal diagonal, or an external diagonal in P .

Hoffmann and Tóth [8] proved that every planar straight-line matching admits a compat-
ible Hamiltonian polygon, unless all segments are collinear, in which case no such polygon
exists. Urabe and Watanabe [21] constructed an arrangement of 16 disjoint segments that
does not admit a circumscribing polygon. However, a circumscribing polygon is known
to exist when (i) each segment has at least one endpoint on the boundary of the convex
hull [13], or (ii) no segment intersects the supporting line of any other segment [14]. Pach and
Rivera-Campo [16] proved in 1998 that every set of n disjoint segments contains a subset of
Ω(n1/3) segments that admits a circumscribing polygon; no nontrivial upper bound is known.

Rappaport [18] proved that it is NP-complete to decide whether G can be augmented into
a simple polygon. In the reduction, G consists of disjoint paths, and Rappaport conjectured
that the problem remains hard even if G is a perfect matching (i.e., disjoint line segments in
the plane). In the special case that G is perfect matching and every segment has at least one
endpoint on the boundary of the convex hull, then an O(n logn) time algorithm can compute
a polygonization (or report that none exists [19]). If S is a set of n ≥ 3 parallel chords of a
circle, then neither S nor any subset of 3 or more segments from S admits a polygonization
(so the analogue of the problem of Pach and Rivera-Campo [16] has a trivial answer in this
case). In a related result, Ishaque et al. [10] proved that n disjoint line segments in general
position, where n is even, can be augmented to a 2-regular PSLG (i.e., a union of disjoint
simple polygons).

Our Results. In this paper, we obtain the following results.
We prove that every set of n disjoint line segments in general position contains a subset
of Ω(

√
n) segments that admit a circumscribing polygon (Theorem 1 in Section 2). This

is the first improvement over the previous bound of Ω(n1/3) [16] in the last 20 years.
While we do not have any nontrivial upper bound for circumscribing polygons proper,
we relate that problem to the extensibility of disjoint line segments to disjoint rays. For
every n ∈ N, we construct a set of n disjoint line segments in the plane such that the size
of any subset extensible to disjoint rays is O(

√
n) (Section 3).

We prove that it is NP-complete to determine whether a given set of disjoint cycles in
the plane admits a circumscribing polygon (Theorem 13 in Section 4). The reduction is
from Hamiltonian paths in 3-connected cubic planar graphs.
We prove that it is NP-complete to determine whether a given set of disjoint line segments
admits a polygonization (Theorem 14 in Section 5). This settles a 30-year old conjecture
by Rappaport [18] in the affirmative.
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We conclude with a few open problems and three-dimensional generalizations in Section 6.
All omitted proofs are available in the full version of this paper [2].

Further Related Previous Work. Hamiltonicity fascinated graph theorists and geometers for
centuries. Some planar graph results hold for PSLGs, as well (i.e., planar graphs with a fixed
straight-line embeddings). Hamiltonicity is NP-complete for planar cubic graphs [7], but can
be solved in linear time in 4-connected planar graphs [4], and all 4-connected triangulations
(i.e., edge-maximal planar graphs) are Hamiltonian [22]. In terms of augmentation, a non-
Hamiltonian triangulation cannot be augmented to a Hamiltonian planar graph by adding
edges or vertices. However, Pach and Wenger [17] proved that every planar graph on n

vertices can be transformed into a Hamiltonian planar graph on at most 5n vertices by
subdividing some of the edges, with at most two new vertices per edge, and by adding new
edges. See also the surveys [5, 15] on Hamiltonicity of planar graphs and their applications.

2 Large Subsets with Circumscribing Polygons

For every integer n ≥ 2, let f(n) be the maximum integer such that every set of n disjoint
segments in the plane in general position contains a subset of f(n) segments that admit
a circumscribing polygon. Pach and Rivera-Campo [16] proved 20 years ago that f(n) =
Ω(n1/3). In this section, we improve the lower bound to f(n) = Ω(

√
n).

I Theorem 1. Every set of n ≥ 2 disjoint line segments in the plane in general position
contains Ω(

√
n) segments that admit a circumscribing polygon.

Proof. Segment Selection. Let S be a set of n ≥ 2 disjoint line segments in the plane. We
may assume without loss of generality that none of the segments is vertical, and all segment
endpoints have distinct x-coordinates. For a subset S′ ⊆ S, a halving line is a vertical line
` such that the number of segments in S′ contained in the left and right open halfplanes
bounded by ` differ by at most one. In particular, each halfplane contains at most |S′|/2
segments from S′.

We partition S recursively as follows. Find a halving line ` for S, and recurse on the
nonempty subsets of segments lying in each open halfplane determined by `. Denote by T
the recursion tree, which is a binary tree of depth at most logn. We denote by V (T ) the set
of nodes of T , and by Vi(T ) the set of nodes at level i of T for i = 0, 1, . . . , blognc. Associate
each node v ∈ V (T ) to a halving line `v and to the subset Sv ⊆ S of segments that intersect
`v without intersecting the halving lines associated with any ancestor of v. This defines a
partition of S into subsets Sv, v ∈ V (T ).

For every v ∈ V (T ), sort the segments in Sv by the y-coordinates of their intersections
with the line `v; and let Qv ⊆ Sv be a maximum subset of segments that have monotonically
increasing or decreasing slopes. By the Erdős-Szkeres theorem, we have |Qv| ≥

√
|Sv| for

every v ∈ V (T ). For a refined analysis, we consider the union of the sets Qv for v ∈ Vi(T )
for i = 0, . . . , blognc, and then take one such union of maximal cardinality.

We need some additional notation. For every v ∈ V (T ), let nv = |Sv| and mv = |Qv|.
For every integer i = 0, 1, . . . , blognc, let Si (resp., Qi) be the union of Sv (resp., Qv) over
all vertices v ∈ Vi(T ). Let νi = |Si| and µi = |Qi|. By definition, we have n =

∑blog nc
i=0 νi.

Let M = max{µi : 0 ≤ i ≤ blognc}. We claim that

M ≥
√
n/2. (1)

SoCG 2019



9:4 Circumscribing Polygons and Polygonizations

By the Erdős-Szekeres Theorem, we have mv ≥
√
nv for every v ∈ V (T ). Since nv ≤ n/2i

for every v ∈ Vi(T ), then mv ≥
√
nv = nv/

√
nv ≥ nv/

√
n/2i =

√
2i/n ·nv. Summation over

all v ∈ Vi(T ) yields M ≥ µi ≥
√

2i/n · νi, which in turn gives νi ≤ M
√
n/2i. Summation

over all i = 0, . . . , blognc now gives n =
∑blog nc

i=0 νi ≤M
√
n

∑blog nc
i=0 2−i/2 ≤ 2M

√
n, hence

M ≥
√
n/2, which proves (1).

Let i∗ ∈ {0, 1, . . . , blognc} be an index where M = µi∗ , and put Ŝ0 = Qi∗ . By construc-
tion, Ŝ0 =

⋃
{Qv : v ∈ Vi∗(T )}. We further partition Ŝ0 into two subsets as follows. Let V <

i∗

(resp., V∗i>) be the set of nodes in Vi(T ) such that the slopes in Qv monotonically increase
(resp., decrease). Let Ŝ1 be the larger of

⋃
{Qv : v ∈ V <

i∗ } and
⋃
{Qv : v ∈ V >

i∗ }, breaking
ties arbitrarily. Note that |Ŝ1| ≥

√
n/4. We may assume, by a reflection in the y-axis if

necessary, that Ŝ1 =
⋃
{Qv : v ∈ V >

i∗ }; see Fig. 1 for an example.

Construction of a Circumscribing Polygon. We construct a simple polygon that is a
circumscribing polygon for a subset Ŝ2 ⊆ Ŝ1 of size |Ŝ2| ≥ |Ŝ1|/2 ≥

√
n/8. Pach and Rivera-

Campo [16] proved that an arrangement of disjoint line segments admits a circumscribing
polygon if they are (1) stabbed by a vertical line, and (2) have monotonically increasing or
decreasing slopes. In particular, each Qv, v ∈ V (T ), admits a circumscribing polygon. In
contrast, we construct a circumscribing polygon for at least half of the segments in Ŝ1, where
Ŝ1 is the union of all Qv, v ∈ Vi∗(T ), separated by vertical lines.

`1 `2 `3 `4

L1 L2 L3

conv(Ŝ1)Q1

Q2

Q3

Q4

Figure 1 A set Ŝ1 =
⋃

{Qv : v ∈ V >
i∗ } of 25 line segments for r = 4; and P = conv(Ŝ1).

For ease of presentation, we introduce new notation for Ŝ1 =
⋃
{Qv : v ∈ V <

i∗ }; see Fig. 1.
Denote by `1, `2, . . . , `r the halving lines {`v : v ∈ V <

i∗ } sorted from left-to-right, and let
Q1, Q2, . . . , Qr be the corresponding sets in {Qv : v ∈ V >

i∗ }. Denote by Li (i = 1, . . . , r − 1)
the vertical lines that separate Qi and Qi+1. Refer to Fig. 1.

Overview. We construct a circumscribing polygon for a subset Ŝ2 ⊆ Ŝ1 incrementally in
two phases, while maintaining a polygon in the segment endpoint visibility graph of Ŝ1. We
use a machinery developed in [8], with several important new elements. Initially, let P be the
boundary of conv(Ŝ1), which is a simple polygon. Intuitively, think of polygon P as a rubber
band, and stretch it successively to visit more segment endpoints from Ŝ1, maintaining the
property that all segments in Ŝ1 remain in the closed polygonal domain of P . A key invariant
of P will be that if P visits only one endpoint of some segment in Ŝ1, then we can stretch
it to visit the other endpoint (a strategy previously used in [8, 13]). This tool allows us to
produce a circumscribing polygon for a subset of Ŝ1. It is enough to ensure that P reaches
an endpoint of at least half of the segments in Ŝ1. To do this, we use the fact that each
set Qv, v ∈ V >

i∗ , is sorted along the halving lines in decreasing order by slope, and we ensure
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that P reaches the left endpoint of at least half of the segments (later, we stretch P to visit
the right endpoints). At the end, we define Ŝ2 as the set of segments in Ŝ1 visited by P (i.e.,
we discard the remaining segments lying in the interior of P ).

We maintain a polygon with the properties listed in Definition 2 below. There are a few
important features to note: P is not necessarily a simple polygon in intermediate steps of
the algorithm: it is a weakly simple polygon that does not have self-crossings; it has clearly
defined interior and exterior; and it can have repeated vertices. Specifically, each vertex
can repeat at most twice (i.e., multiplicity at most 2), and if its multiplicity is 2, then one
occurrence is a reflex vertex and the other is convex. Furthermore, all such reflex vertices
can be removed simultaneously by suitable shortcuts (cf. property (F5) below) to obtain a
simple polygon. We need to be very careful about reflex vertices in P : for each reflex vertex
in P , we ensure either that it will not become a repeated vertex later, or that if it becomes a
repeated vertex, then its reflex occurrence can be removed by a suitable shortcut.

Invariants. As in [8], we maintain a weakly simple polygon, called a frame (defined below).
A weakly simple polygon is a closed polygonal chain P = (v1, . . . , vk) in counterclockwise
order such that, for every ε > 0, displacing the vertices by at most ε can produce a simple
polygon. Denote by P̂ the union of the interior and the boundary of P . A weakly simple
polygon may have repeated vertices. Three consecutive vertices (vi−1, vi, vi+1) define an
interior angle ∠(vi−1, vi, vi+1), or ∠vi, which is either convex (≤ 180◦) or reflex (> 180◦).

The following definitions summarizes the properties that we maintain for a polygon P .
It is based on a similar concept in [8]: we do not allow segments to be external diagonal
(cf. (F2)) and relax the conditions on the possible occurrences of reflex vertices. Property
(F6) is related to the vertical lines `i (i = 1, . . . , r − 1) in the instance S =

⋃r
i=1 Qi. Reflex

vertices play an important role. We distinguish two types of reflex vertices: A reflex vertex
v of a frame P is safe if the (unique) line segment in S incident to v subdivides the reflex
angle ∠v into two convex angles; otherwise v is unsafe.

I Definition 2. A weakly simple polygon P = (v1, . . . , vk) is called frame for a set S of
disjoint line segments in the plane, if (cf. Fig. 2)
(F1) every vertex of P is an endpoint of some segment in S;
(F2) P̂ contains every segment in S;
(F3) every vertex in P has multiplicity at most 2;
(F4) if a vertex in P has multiplicity 2, say vi = vj, then one of ∠vi or ∠vj is convex (and

the other angle is reflex);
(F5) if (vi, . . . , vj) is a maximal chain of unsafe reflex vertices of P that each have multiplicity

2, then (vj+1, vj , . . . vi, vi−1) is a simple polygon that is interior-disjoint from P ;
(F6) the vertical line `i (i = 1, . . . , r − 1) crosses P exactly twice.

v1 v4

v6
v5 = v17

v7 v8

v9

v10

v11

v12

v13

v14

v15

v16v18

v3
v2

Figure 2 A frame P = (v1, . . . , v18) for 10 disjoint line segments (orange). The closed region P̂

is shaded gray. The vertices of multiplicity 1 (resp., 2) are marked with full (resp., empty) dots.

SoCG 2019



9:6 Circumscribing Polygons and Polygonizations

Elementary Operations. Let S be a set of disjoint line segments in general position, and let
P be a frame. We define four elementary operations that each transform P into a new frame
for S. The first operation is the “shortcut” that eliminates reflex vertices of multiplicity
2, and increases the area of the interior. The remaining three operations each increase the
number of vertices of the frame (possibly creating vertices of multiplicity 2) and decrease the
area of its interior.

For shortest path and ray shooting computations, we consider the line segments in S
and the current frame P to be obstacles. For a polygonal path (a, b, c) that does not cross
any segment in S, we define the convex arc carc(a, b, c) to be the shortest polygonal path
between a and c that is homotopic to (a, b, c).

a

b

c

v1

v2

v3

v2

v3v1

v2

v3

(a) (b) (c) (d)

a

b

c a

b

c a

b

c

v1v1

v2

v3

Figure 3 (a) A frame P . (b) P := BuildCap(P, 1, v1). (c) P := BuildCap(P, 1, a). (d) P :=
ChopWedges(P ).

I Operation 1. (ChopWedges(P )) Refer to Fig. 3(c-d). Input: a frame P . Action:
While there is a vertex of multiplicity 2, do: let (vi, . . . , vj) be a maximal chain of convex
vertices of P that each have multiplicity 2, and replace the path (vi−1, vi, . . . vj , vj+1) in P
by a single edge vi−1vj+1.

I Operation 2. (BuildCap(P, %, a)) Refer to Fig. 3(a–c) Input: a frame P , an orientation
% ∈ {−1,+1}, and a convex vertex a of multiplicity 1 in P such that ab ∈ S and b is not a
vertex of P . Action: Let c be the neighbor of a in polygon P in orientation % (where ccw= 1,
cw= −1). Replace the edge ac of P with the polygonal path ab+ carc(b, a, c).

a b

(a) (b) (c)

x
a b

u

v

a b

(d)

b

x
u

v
u

v

a

x

Figure 4 (a) A frame. (b) The result of operation Dip(P, a, b). (c) A frame. (d) The result of
operation ShearDip(P, a, x).

I Operation 3. (Dip(P, a, b)) Refer to Fig. 4(a-b). Input: a frame P , a segment ab ∈ S
such that neither a nor b is a vertex of P , and the ray

−→
ba hits an edge of P that is not a

segment in S. Action: Assume that
−→
ba hits edge uv of P at the point x. Replace the edge

uv of P with the polygonal path carc(u, x, a) + carc(a, x, v).
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I Operation 4. (ShearDip(P, a, x)) Refer to Fig. 4(c-d). Input: a frame P , a segment
endpoint a in the interior of P , and a point x in the interior of an edge of P that is
not a segment in S such that ax does not cross P or any segment in S. Action: Let
uv be the edge of P that contains x. Replace the edge uv of P with the polygonal path
carc(u, x, a) + carc(a, x, v).

Operations 1 and 2 have been previously used in [8, 13]; it was shown that if all reflex
vertices in P have been created by BuildCap operations, then property (F5) automatically
holds [8, Sec. 2]. It is not difficult to see that if all reflex vertices in P have been created
by Dip operations, then property (F5) holds. However, this property does not extend to a
mixed sequence of BuildCap and Dip operations, and certainly not for ShearDip operations.
We maintain property (F5) by a careful application of these operations, using the fact that
each set Qi (i = 1, . . . , r) is stabbed by a vertical line.

Note that Operations 1–4 can only increase the vertex set of the frame (the shortcut
operation decreases the multiplicity of repeated vertices from 2 to 1, but maintains the same
vertex set). Initially, P = ∂conv(S), and so all vertices of conv(S) remain vertices in P in
our algorithm. In particular, the leftmost and rightmost segment endpoint in S are always
vertices in P (with multiplicity 1 by property (F4)). These vertices subdivide P into an
upper arc and a lower arc. As a convention, the leftmost (resp., rightmost) vertex is part
of the lower arc (upper arc). We define an orientation for every vertex v in a frame P : If v
is in the lower arc and the left endpoint of a segment in S, or if it is in the upper arc the
right endpoint of a segment in S, then ϕ(v) = 1; otherwise ϕ(v) = −1. When our algorithm
invokes the BuildCap operation at a vertex v, we use BuildCap(P, %(v), v).

We now can justify the distinction between safe and unsafe reflex vertices.

I Lemma 3. Let v be a reflex vertex of multiplicity 1 in a frame P such that v is safe. Then
after any sequence of the above four operations, the multiplicity of v remains 1.

Proof. Each operation creates at most one new reflex vertex, which has multiplicity 1; and
possibly many convex vertices along the convex arcs, which may have multiplicity 1 or 2.
However, each point can be an interior vertex of at most one convex arc. Consequently, the
multiplicity of a vertex v can possibly increase from 1 to 2 if it is first a reflex vertex of
multiplicity 1, and then visited for a second time (by a convex arc) as a convex vertex; see
Fig. 3(c) and Fig. 4(d) for examples. If v is a safe reflex vertex, then it cannot be an interior
vertex of a convex arc, and so its multiplicity cannot increase from 1 to 2. J

Phase 1: Left Endpoints. Initially, the frame P is the boundary of the convex hull conv(S).
In the first phase of our algorithm, we use operations BuildCap and Dip as follows:

1. Let P = ∂conv(S).
2. While condition (a) or (b) below is applicable, do:

a. If there exits a segment ab ∈ S such that the left endpoint a is a vertex of P , but the
right endpoint is not, then set P := BuildCap(P, %(a), a).

b. Else if there exists a segment ab ∈ Qi for some i ∈ {1, . . . , r} such that a is the left
endpoint, a lies in the interior of P , and

−→
ba hits an edge uv where uv 6∈ S, and the left

endpoint of uv is an endpoint of some segment in Qi, then set P := Dip(P, a, b).
3. Return P , and terminate Phase 1.

An example is shown in Fig. 5. First we show that Phase 1 returns a frame.

I Lemma 4. All operations in Phase 2 maintain properties (F1)–(F6) for P .

SoCG 2019



9:8 Circumscribing Polygons and Polygonizations

`1 `2 `3 `4

L1 L2 L3

Q1

Q2

Q3

Q4

at(2)

at(3) at(4)

Figure 5 A set Ŝ1 of 25 line segments; and the frame P at the end of Phase 1.

We also make simple observation about the frame at the end of Phase 1:

I Lemma 5. Let P be the frame returned by Phase 1, and let ab ∈ Ŝ1. If the left endpoint
of ab is a vertex of P , then it is a convex vertex of multiplicity 1.

The next lemma helps identify the segments in Qi whose left endpoints are not in P .

I Lemma 6. Let P be the frame returned by Phase 1. Let i ∈ {1, . . . , r}, and let Qi =
{ajbj : j = 1, . . . , |Qi|}, be sorted in increasing order by the y-coordinates of ajbj ∩ `i. If aj

is a vertex in the lower (resp., upper) arc of P , then so is aj′ for all j′ < j (resp., j′ > j).

By Lemma 6, the line segments in Ŝ1 whose left endpoints are not in P form a continuous
interval. That is, for every i ∈ {1, . . . , r}, there is a set of consecutive indices Mi ⊆
{1, . . . , |Qi|} (possibly Mi = ∅ or Mi = {1, . . . , |Qi|}) such that j ∈Mi if and only if the left
endpoint of ajbj is not in P . Let Q′i = {ajbj : j ∈Mi} and S′ =

⋃r
i=1 S

′
i

Phase 2: Middle Segments. In Phase 2, we use ShearDip and Dip operations to reach the
left endpoints of at least half of the segments in S′, followed by BuildCap operation to
reach the right endpoints of those segments if necessary. For i = 1, . . . , r, let at(i) be the
leftmost left endpoint in the set S′i. From some suitable point xi on the upper or the lower
arc of P , we use ShearDip(P, at(i), xi) to reach at(i). Choose the points xi, i = 1, . . . , r on the
same (upper or lower) arc of P by comparing the number of segments in S′i above and below
at(i)bt(i) for i = 1, . . . , r. The set of segments above and below are A and B, respectively,
defined as follows:

A =
r⋃

i=1
Ai, where Ai = {ajbj : j ≥ `(i), j ∈Mi, },

B =
r⋃

i=1
Bi, where Bi = {ajbj : j ≤ `(i), j ∈Mi, }.

If |A| ≥ |B|, then we reach the vertices at(i), for i = 1, . . . , r, from the upper arc; otherwise
we reach them from the lower arc. Without loss of generality, assume that |A| ≥ |B|.

It remains to specify the points xi for the operations ShearDip(P, at(i), xi). Consider the
vertical upward ray from at(i), and let ui be the first point on the ray that lies in the upper
arc of P or on a segment in S. If ui is in an edge of the upper arc, but not in a segment in
S, then let xi := ui. Otherwise, ui lies in some segment ab ∈ Qi, which is either an edge or
an internal diagonal of P . Since at(i) is the leftmost left endpoint of a segment in Qi that
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is not a vertex in P , we know that the triangle ∆(at(i)uia) is empty, and in particular at(i)
sees vertex a. Furthermore, a is a convex vertex of P of multiplicity 1 (cf. Lemma 5). In this
case, let xi be an interior point of edge a0a. Phase 2 proceeds as follows:

1. For i = 1 to r:
If Mi 6= ∅, then set P := ShearDip(P, at(i), xi).

2. While condition (a) or (b) below is applicable, do:
a. If there exits a segment ab ∈ S such that the left endpoint a is a vertex of P , but the

right endpoint is not, then set P := BuildCap(P, %(a), a).
b. Else if there exists a segment ab ∈ Qi for some i ∈ {1, . . . , r} such that ab lies in the

interior of P , a is the left endpoint, and
−→
ba hits an edge uv where uv 6∈ S, but both u

and v are endpoints of some segments in Qj , j ≥ i, then set P := Dip(P, a, b).
3. Return P , and terminate Phase 2.

I Lemma 7. All operations in Phase 2 maintain properties (F1)–(F6) for P ; and at the end
of Phase 2, every vertex at(i), i = 1, . . . , r, has multiplicity 1 in P .

I Lemma 8. At the end of Phase 2, P visits both endpoints of all segments in A. Consequently,
P visits both endpoints of at least half of the segments in Ŝ1.

`1 `2 `3 `4

L1 L2 L3

Q1

Q2

Q3

Q4

at(2)

at(3) at(4)

v

Figure 6 The set Ŝ1 from Fig. 5, and frame P at the end of Phase 2. Vertex v has multiplicity 2.

Phase 3: Right Endpoints. At the end of Phase 2, P visits the left endpoint of every
segment in A, and none in B \A. However, it may visit the right endpoint of some segments
in B \A. In this phase, we use BuildCap operations to ensure that P visits both endpoints
of these segments. Phase 3 proceeds as follows.

1. While condition (a) below is applicable, do
a. If there exists a segment ab ∈ S such that the one endpoint, say b, is a vertex of P ,

but the other endpoint is not, then set P := BuildCap(P, %(b), b).
2. Return P , and terminate Phase 3.

At the end of Phase 3, we obtain a frame P that contains, for each segment, either both
endpoints or neither endpoint; see Fig. 6. Some vertices may have multiplicity 2, but the
multiplicity of the special vertices at(i) (i = 1, . . . , r) remains 1.

I Lemma 9. All operations in Phase 3 maintain properties (F1)–(F6) for P ; and the
multiplicity of every vertex at(i), i = 1, . . . , r, remains 1.

I Lemma 10. Let P be the frame at the end of Phase 3. If one endpoint of a segment in Ŝ1
is a vertex in P , then so is the other endpoint.
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9:10 Circumscribing Polygons and Polygonizations

Phase 4: Obtaining a Simple Polygon. In the last phase of our algorithm, we set P =
ChopWedges(P ). This is a valid operation by property (F5). The resulting frame P is a
simple polygon whose vertex set is the same as at the end of Phase 3. By Lemma 10, if one
endpoint of a segment in Ŝ1 is a vertex in P , then so is the other endpoint. Consequently, P
is a circumscribing polygon for a set of segments in Ŝ1, which we denote by Ŝ2. By Lemma 8,
we have |Ŝ2| ≥ |Ŝ1|/2, as claimed. This completes the proof of Theorem 1. J

3 Disjoint Segments versus Disjoint Rays

In this section, we give two sufficient conditions for an arrangement of disjoint segments to
admit a circumscribing polygon. Both conditions involve extending the segments.

a1

b1

a2b2

a3b3

a4

b4

a5

b5
a6b6

a7 a8

b8b7

a9 b9

Figure 7 Left: an arrangement of disjoint segments extensible to rays. Right: an arrangement of
disjoint segments that is not extensible to rays, but admits escape routes.

(C1) A set S of n disjoint line segments is extensible to rays if there exists a set R of n
disjoint rays, each of which contains a segment from S; see Fig. 7(left).

(C2) A set S of n disjoint line segments admits escape routes if there exists an ordering
and orientation of the segments S = {ai, bi : i = 1, . . . , n} if the following process produces
a set of n rays or directed segments that do not cross any segment in S: For i = 1, . . . , n,
shoot a ray from bi in direction

−−→
aibi that ends at the first point where it hits a previous

ray or goes to infinity; see Fig. 7(right).
Clearly, (C1) implies (C2), but the converse is false in general. We can test property (C1) in
O(n logn) time. Indeed, there are two possible directions to extend each segment into a ray,
which can be encoded by a Boolean variable, and pairwise disjointness can be expressed by a
2SAT formula. For given ordering and orientation, it takes O(n log2 n) time to test whether
the extensions form escape routes [11]. However, we do not know whether condition (C2)
can be tested efficiently. Here we show that (C1) and (C2) each imply the existence of a
circumscribing polygon.

I Theorem 11. If S is a set of disjoint line segments satisfying (C2), then there is a
circumscribing polygon for S.

Proof sketch. By (C2), we may assume that S = {aibi : i = 1, . . . n} such that if we shoot a
ray from bi in direction

−−→
aibi for i = 1, . . . , n, then each ray either goes to infinity or intersects

a previous ray. We call the part of the ray
−−→
aibi from bi to the first point where it intersects a

previous ray or ∂conv(S) the extension of segment aibi.
Given the ordering and orientation of the segments in S, we construct a circumscribing

polygon using the following algorithm, using the operations BuildCap and Dip introduced in
Section 2; see Fig. 8 for an example.
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a1

b1

a2
b2

a3b3

a4

b4

a5

b5 a6

b6

a7 a8

b8b7

a9 b9

a1

b1

a2
b2

a3b3

a4

b4

a5

b5 a6

b6

a7 a8

b8b7

a9 b9

a1

b1

a2b2

a3b3

a4

b4

a5

b5 a6

b6

a7 a8

b8b7

a9 b9

a1

b1

a2b2

a3b3

a4

b4

a5

b5 a6

b6

a7 a8

b8b7

a9 b9

(a) (b)

(c) (d)

Figure 8 (a) An arrangement of 9 segments that admit escape routes from Fig. 7(right), and
P = conv(S). (b) Polygon P after the for loop of Dip operations. (c) Polygon P after the for loop
of BuildCap operations. (d) The circumscribing polygon for S after the ChopWedges operation.

1. Initialize P := ∂conv(S).
2. For i = 1 to n: if bi is not a vertex of P , then set P := Dip(P, bi, ai).
3. For i = 1 to n: if ai is not a vertex of P , then set P := BuildCap(P, 1, bi).
4. ChopWedges(P ).
5. Return P . J

The above results link the circumscribing polygon problem to the problem of extending
line segments to rays. We now give an upper bound for the latter problem that seems to
imply that the lower bound of the former problem (Theorem 1) is tight.

I Lemma 12. For every n ∈ N, there is a set S of n disjoint line segments in the plane such
that the cardinality of every subset S′ ⊆ S that admits an escape route is |S′| ≤ 2d

√
ne − 1.

C

a1a2
a3
a4

b1

b2

b3

b4

C1

C2

C3

C4

Figure 9 Our lower bound construction for k = 4.
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9:12 Circumscribing Polygons and Polygonizations

Proof sketch. We create a problem instance S with
√
n groups, each containing

√
n segments

(see Fig. 9). The key idea is that in any subset Q of S that admits escape routes, only
segments of one group can extend to the left. Moreover, we show that from each group only
one segment can extend to the right, giving the 2d

√
ne − 1 bound. J

4 Hardness for Circumscribing Polygons

In this section we prove that it is NP-hard to decide whether a given set of disjoint line
segments admits a circumscribing polygon. We reduce from a problem that we call Hamilto-
nian Path in 3-Connected Planar Cubic Graphs with Start Edge (HP3CPG-SE):
Given a 3-connected cubic planar graph G = (V,E) and an edge uv ∈ E, decide whether G
has Hamiltonian path whose first edge is uv, which is NP-complete [7, p. 713].

I Theorem 13. It is NP-complete to decide whether a given PSLG admits a circumscribing
polygon, even if the PSLG is max-degree-2.

Proof sketch. The membership to NP is trivial. Let G = (V,E) and uv ∈ E be an instance
of HP3CPG-SE, and let n = |V | (Fig. 10 (a)). We modify G by a Y∆-transform at u
producing a graph G′ with a new triangular face ∆(abu′) (Fig. 10 (b)). It is clear that G
admits a Hamiltonian path starting with uv if and only if G′ admits a Hamiltonian path
starting with abu′v. Embed G′ so that the outer face is ∆(abu′) (Fig. 10 (c)). Delete the
edge incident to a (b) that does not bound the outer face. Rotate by a small amount all
edges that do not bound the outer face, splitting each internal degree-3 vertex w into a
triangle ∆(w1w2w3) (Fig. 10(d) and Fig. 11(a–b)). We call these newly created triangles
transparent faces, and every remaining internal face opaque. Create a small new edge
in each transparent face, and shrink each opaque face by a small amount using its straight
skeleton (Fig. 10 (e)). After this step, each added small segment can still only see the three
vertices (Fig. 11 (c)). This construction defines a max-degree-2 PSLG Ĝ = (V̂ , Ê).

u v v
u0

u0

a

b

a

b

v

u0 a

b

u0 a

b

Figure 10 (a) A 3-connected cubic graph G with special edge uv. (b) Graph G′ after a Y ∆-
transform around vertex u. (c) A convex embedding of G′ such that the outer face is ∆u. (d) Rotating
the supporting line of internal edges. (e) Thickening the edges into corridors.

⇒ ⇒

Figure 11 A chamber incident to three corridors and a segment in the chamber that sees only
three other vertices.



H.A. Akitaya, M. Korman, M. Rudoy, C.D. Tóth, and D. L. Souvaine 9:13

A circumscribing polygon of Ĝ must enclose all of its opaque faces. We partition the
regions of the outer face of Ĝ that lies in the convex hull of the embedding into corridors
and chambers. They correspond to edges and vertices of G′ respectively. We show that a
circumscribing polygon of Ĝ must behave as in Figs. 12 (a–d) in the vicinity of the endpoints
of a corridor, up to symmetry. Then, such a circumscribing polygon defines a Hamiltonian
path on the chambers. Hence, Ĝ admits a circumscribing polygon if and only if G admits a
Hamiltonian path starting with uv. J

u0 a

b

Figure 12 A circumscribing polygon P̂ at a chamber and a solution to the reduction in Fig. 10.

5 Simple Polygonizations of Disjoint Segments

Rappaport [18] proved that it is NP-hard to decide whether a given PSLG G = (V,E) admits
a polygonization. The reduction in [18] is from Hamiltonian Path in Planar Cubic
Graphs (HPPCG) and produces an instance in which G is a union of disjoint paths, every
edge in E is horizontal or vertical, and the vertices in V have integer coordinates, bounded
by a polynomial in n = |V |. In this section, we describe the connection gadget made of
disjoint line segments that simulates a pair of line segments that share an endpoint. Using
this gadget, we show that finding a simple polygonization of disjoint line segments is NP-hard.
Informal description of the connection gadget. Refer to Figure 13. Given a PSLG
G = (V,E), with a vertex p2 ∈ V of degree 2, incident to p1p2, p2p3 ∈ E, delete the edge
p1p2, and insert 6 new edges p1p

′
2, p4p5, p6p7, p8p9, p10p11, p12p13, and 11 new vertices p′2

and pi (i = 3, . . . , 13). Denote by G′ = (V ′, E′) the resulting new PSLG. We choose the
position of the new vertices close to p2 so that: (i) the two small segments p6p7 and p10p11 are
only visible from points p4, p5, p8, and p9, p12, p13 respectively; (ii) the union of the visibility
regions of p4, p5, p12, and p13 contain only vertices p2, p

′
2, p4, . . . , p13 and no other vertices.

Figure 13 (a) Two line segments p1p2 and p2p3. (b) Connection gadget that simulates (a) using
seven disjoint line segments. The polygonal path shown with black and blue line segments is
[p1, p′

2, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p2, p3]. (c) The union of the visibility region of the solid
black points p4 and p13.
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9:14 Circumscribing Polygons and Polygonizations

I Theorem 14. It is NP-complete to decide whether a set S of disjoint line segments admits
a simple polygonization, even if S contains only segments with 4 distinct slopes.

Proof. Membership in NP is proven in [18]. We reduce NP-hardness from finding polygoniz-
ations for a disjoint union of paths. Let G = (V,E) be a PSLG produced by the reduction
in [18], and let n = |V |. We modify G by simultaneously replacing every vertex of degree 2
by a connection gadget (described above), and show that the resulting planar straight-line
matching M admits a polygonization if and only if G does. Since each gadget is constructed
independently, all coordinates can be described by polynomials as they are each obtained
by a constant number of intersections between lines and circles determined by G. Since G
contains only axis-parallel edges, edges of M have up to four distinct slopes. The reduction
runs in polynomial time.

We now show that M admits a polygonization if and only if G does. Note that the
connection gadget places edges in the convex corner of a degree-2 vertex in G, and it does
not block or create visibility between two leafs of G. By construction, if p is a leaf in G,
then the set of other leaves visible from p remains same in M . Since G is max-degree-2, it
remains to prove that, for every connection gadget, a polygonization of M must contain a
chain of length 11 from p′2 to p2 that uses only edges of the connection gadget.

By property (i) of the connection gadget, if a simple polygonization P of M exists, P
must connect p8 with p6 or p7, and p6 or p7 to p4 or p5, otherwise P would contain a cycle
of length 4 and P would be disconnected. The same argument applies to vertices p9, . . . , p13.
Fig. 13(c) shows the forced edges in a polygonization in red. By property (ii), p′2 must be
adjacent to p4 or p5, and p2 must be adjacent to p12 or p13, or else either P would contain a
cycle of length 10 and P would be disconnected, or P would not be simple. J

6 Conclusions

Our results raise interesting open problems, among others, about circumscribing polygons in
the plane (Section 6.1), and about higher dimensional generalizations (Section 6.2).

6.1 Geometric Matching or Few Slopes
As noted above, Urabe and Watanabe [21] constructed an arrangement of 16 disjoint segments
in R2 that does not admit a circumscribing polygon. If all segments have the same slope (but
they are not all collinear), then there always exists a circumscribing polygon. We conjecture
that disjoint segments with two distinct slopes still admit a circumscribing polygon. Here we
present negative instances with three slopes.

I Proposition 15. For every n ≥ 9, there is a set of n disjoint segments of 3 different slopes
that do not admit a circumscribing polygon.

Our construction for n = 9 is depicted in Figure 14(a).

6.2 Higher Dimensions
Generalizations to higher dimensions are also of interest. For a set V of points in R3, a
polyhedralization is a polyhedron homotopic to a sphere whose vertex set is V 1. It is
known that every set of n ≥ 4 points in general position admits a polyhedralization [1], and
even a polyhedralization of bounded vertex degree [3].

1 We thank Joe Mitchell for introducing us to the high dimensional variations of this problem.
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a1 b1

a2 b2
a3

b3

b4

a4 a5

b5

a6

b6

s7
s8

s9

s0

s1

s2

s3 s0

s1

s2

s3

s1

(c)(b)(a)

Figure 14 (a) A set of 9 disjoint line segments of slopes 0, 1, and ∞, that do not admit a
circumscribing polygon. (b–c) A set of 4 disjoint segments in R3 that do not admit a polyhedralization:
perspective view (b) and view from above (c).

For a set S of disjoint line segments in R3, we define a polyhedralization as a polyhedron
homotopic to a ball whose vertices are the segment endpoints, and every segment in S is either
an edge or an (external or internal) diagonal. A polyhedralization circumscribes S if every
segment in S is an edge or an internal diagonal. It is not difficult to see that an arrangement
of disjoint segments in general position in R3 need not admit a polyhedralization.

I Proposition 16. For every n ≥ 4, there is a set of n disjoint segments in R3 that do not
admit a polyhedralization.

Our construction is depicted in Figure 14(b–c).
We suspect that it is NP-hard to decide whether a set of n segments in R3 admit a

polyhedralization (or even a circumscribing polyhedralization). However, our proof techniques
do not seem to extend to higher dimensions.

6.3 Open Problems

We conclude with a collection of open problems.
1. In Section 5 we established NP-hardness for the polygonization problem, even when the

input consists of disjoint segments with four distinct slopes. Is it NP-hard to decide
whether n disjoint axis-parallel segments in the plane admit a polygonization? Is it
NP-hard for segments of 3 possible directions?

2. In Section 4 we proved that it is NP-complete to decide whether a 2-regular PSLG
admits a circumscribing polygon. We do not know whether the problem remains hard for
1-regular PSLGs (i.e., disjoint line segments). The connection gadgets we designed for
the polygonization problem (Section 4) do not seem to work for circumscribing polygons.
Is it NP-hard to decide whether n disjoint segments admit a circumscribing polygon?

3. Does every arrangement of disjoint axis-parallel segments in R2, not all in a line, admit a
circumscribing polygon?

4. Does every arrangement of disjoint line segments in R3, not all in a plane, admit a
circumscribing polyhedron?

5. We can decide in O(n logn) time whether n disjoint segments are extensible to disjoint
rays (Section 3). Can we decide efficiently whether they admit escape routes?

6. Let f(n) be the maximum integer such that every set of n disjoint segments contains f(n)
segments that admit a circumscribing polygon. In Section 2, we prove a lower bound of
f(n) = Ω(

√
n). Is it possible that f(n) = Ω(n)? Is there a nontrivial upper bound?

SoCG 2019



9:16 Circumscribing Polygons and Polygonizations

7. Let g(n) be the maximum integer such that every set of n disjoint segments contains
g(n) segments that are extensible to disjoint rays. Theorem 11 implies g(n) ≤ f(n). PA
Ramsey-type result on the intersection graph of rays [12, Remark 2] yields g(n) = Ω(n1/3),
and Lemma 12 gives g(n) = O(

√
n). What is the asymptotic growth rate of g(n)?

8. Let h(n) be the maximum integer such that every set of n disjoint segments contains
h(n) segments that admit an escape route. Theorem 11 implies g(n) ≤ h(n) ≤ f(n). We
have h(n) = Ω(n1/3) and h(n) = O(

√
n). What is the asymptotic growth rate of h(n)?

References
1 Pankaj K. Agarwal, Ferran Hurtado, Godfried T. Toussaint, and Joan Trias. On polyhedra

induced by point sets in space. Discrete Applied Mathematics, 156(1):42–54, 2008. doi:
10.1016/j.dam.2007.08.033.

2 Hugo A. Akitaya, Matias Korman, Mikhail Rudoy, Diane L. Souvaine, and Csaba D. Tóth.
Circumscribing Polygons and Polygonizations. CoRR, abs/1903.07019, 2019. arXiv:1903.
07019.

3 Gill Barequet, Nadia Benbernou, David Charlton, Erik D. Demaine, Martin L. Demaine,
Mashhood Ishaque, Anna Lubiw, André Schulz, Diane L. Souvaine, Godfried T. Toussaint,
and Andrew Winslow. Bounded-degree polyhedronization of point sets. Comput. Geom.,
46(2):148–153, 2013. doi:10.1016/j.comgeo.2012.02.008.

4 Norishige Chiba and Takao Nishizeki. The Hamiltonian cycle problem is linear-time solvable
for 4-connected planar graphs. Journal of Algorithms, 10(2):187–211, 1989. doi:10.1016/
0196-6774(89)90012-6.

5 Emilio Di Giacomo and Giuseppe Liotta. The Hamiltonian Augmentation Problem and Its
Applications to Graph Drawing. In Md. Saidur Rahman and Satoshi Fujita, editors, Proc.
4th International Workshop Algorithms and Computation (WALCOM), volume 5942 of LNCS,
pages 35–46, Berling, 2010. Springer. doi:10.1007/978-3-642-11440-3_4.

6 Alfredo García, Marc Noy, and Javier Tejel. Lower bounds on the number of crossing-free
subgraphs of KN. Comput. Geom., 16(4):211–221, 2000. doi:10.1016/S0925-7721(00)
00010-9.

7 Michael R. Garey, David S. Johnson, and Robert E. Tarjan. The Planar Hamiltonian Circuit
Problem is NP-Complete. SIAM J. Comput., 5(4):704–714, 1976. doi:10.1137/0205049.

8 Michael Hoffmann and Csaba D. Tóth. Segment endpoint visibility graphs are Hamiltonian.
Comput. Geom., 26(1):47–68, 2003. doi:10.1016/S0925-7721(02)00172-4.

9 Ferran Hurtado and Csaba D. Tóth. Plane Geometric Graph Augmentation: A Generic
Perspective. In János Pach, editor, Thirty Essays on Geometric Graph Theory, pages 327–354.
Springer, New York, 2013. doi:10.1007/978-1-4614-0110-0_17.

10 Mashhood Ishaque, Diane L. Souvaine, and Csaba D. Tóth. Disjoint Compatible Geomet-
ric Matchings. Discrete & Computational Geometry, 49(1):89–131, 2013. doi:10.1007/
s00454-012-9466-9.

11 Mashhood Ishaque, Bettina Speckmann, and Csaba D. Tóth. Shooting Permanent Rays
among Disjoint Polygons in the Plane. SIAM J. Comput., 41(4):1005–1027, 2012. doi:
10.1137/100804310.

12 David Larman, Jiří Matoušek, János Pach, and Jenő Törőcsik. A Ramsey-Type Result for
Convex Sets. Bull. London Math. Soc., 26(2):132–136, 1994. doi:10.1112/blms/26.2.132.

13 Andranik Mirzaian. Hamiltonian Triangulations and Circumscribing Polygons of Disjoint Line
Segments. Comput. Geom., 2:15–30, 1992. doi:10.1016/0925-7721(92)90018-N.

14 Joseph O’Rourke and Jennifer Rippel. Two Segment Classes with Hamiltonian Visibility
Graphs. Comput. Geom., 4:209–218, 1994. doi:10.1016/0925-7721(94)90019-1.

15 Kenta Ozeki, Nico Van Cleemput, and Carol T. Zamfirescu. Hamiltonian properties of
polyhedra with few 3-cuts—a survey. Discrete Mathematics, 341(9):2646–2660, 2018. doi:
10.1016/j.disc.2018.06.015.

http://dx.doi.org/10.1016/j.dam.2007.08.033
http://dx.doi.org/10.1016/j.dam.2007.08.033
http://arxiv.org/abs/1903.07019
http://arxiv.org/abs/1903.07019
http://dx.doi.org/10.1016/j.comgeo.2012.02.008
http://dx.doi.org/10.1016/0196-6774(89)90012-6
http://dx.doi.org/10.1016/0196-6774(89)90012-6
http://dx.doi.org/10.1007/978-3-642-11440-3_4
http://dx.doi.org/10.1016/S0925-7721(00)00010-9
http://dx.doi.org/10.1016/S0925-7721(00)00010-9
http://dx.doi.org/10.1137/0205049
http://dx.doi.org/10.1016/S0925-7721(02)00172-4
http://dx.doi.org/10.1007/978-1-4614-0110-0_17
http://dx.doi.org/10.1007/s00454-012-9466-9
http://dx.doi.org/10.1007/s00454-012-9466-9
http://dx.doi.org/10.1137/100804310
http://dx.doi.org/10.1137/100804310
http://dx.doi.org/10.1112/blms/26.2.132
http://dx.doi.org/10.1016/0925-7721(92)90018-N
http://dx.doi.org/10.1016/0925-7721(94)90019-1
http://dx.doi.org/10.1016/j.disc.2018.06.015
http://dx.doi.org/10.1016/j.disc.2018.06.015


H.A. Akitaya, M. Korman, M. Rudoy, C.D. Tóth, and D. L. Souvaine 9:17

16 János Pach and Eduardo Rivera-Campo. On circumscribing polygons for line segments.
Comput. Geom., 10(2):121–124, 1998. doi:10.1016/S0925-7721(97)00023-0.

17 János Pach and Rephael Wenger. Embedding Planar Graphs at Fixed Vertex Locations.
Graphs and Combinatorics, 17(4):717–728, 2001. doi:10.1007/PL00007258.

18 David Rappaport. Computing simple circuits from a set of line segments is NP-complete.
SIAM Journal on Computing, 18(6):1128–1139, 1989. doi:10.1137/0218075.

19 David Rappaport, Hiroshi Imai, and Godfried T. Toussaint. Computing simple circuits
from a set of line segments. Discrete & Computational Geometry, 5(3):289–304, 1990. doi:
10.1007/BF02187791.

20 Micha Sharir, Adam Sheffer, and Emo Welzl. Counting plane graphs: Perfect matchings,
spanning cycles, and Kasteleyn’s technique. J. Comb. Theory, Ser. A, 120(4):777–794, 2013.
doi:10.1016/j.jcta.2013.01.002.

21 Masatsugu Urabe and Mamoru Watanabe. On a Counterexample to a Conjecture of Mirzaian.
Comput. Geom., 2:51–53, 1992. doi:10.1016/0925-7721(92)90020-S.

22 Hassler Whitney. A Theorem on Graphs. Annals of Mathematics, 2nd Ser., 32(2):378–390,
1931.

SoCG 2019

http://dx.doi.org/10.1016/S0925-7721(97)00023-0
http://dx.doi.org/10.1007/PL00007258
http://dx.doi.org/10.1137/0218075
http://dx.doi.org/10.1007/BF02187791
http://dx.doi.org/10.1007/BF02187791
http://dx.doi.org/10.1016/j.jcta.2013.01.002
http://dx.doi.org/10.1016/0925-7721(92)90020-S

	Introduction
	Large Subsets with Circumscribing Polygons
	Disjoint Segments versus Disjoint Rays
	Hardness for Circumscribing Polygons
	Simple Polygonizations of Disjoint Segments
	Conclusions
	Geometric Matching or Few Slopes
	Higher Dimensions
	Open Problems


