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Abstract

Let K be a convex body in Rn (i.e., a compact convex set with nonempty interior). Given a point p
in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of
K ∩ h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p
through which there are at least n+ 1 distinct barycentric hyperplanes. Two years later, this was
seemingly resolved affirmatively by showing that this is the case if p = p0 is the point of maximal
depth in K. However, while working on a related question, we noticed that one of the auxiliary
claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s
question.

It follows from known results that for n ≥ 2, there are always at least three distinct barycentric
cuts through the point p0 ∈ K of maximal depth. Using tools related to Morse theory we are able
to improve this bound: four distinct barycentric cuts through p0 are guaranteed if n ≥ 3.
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62:2 Barycentric Cuts Through a Convex Body

1 Introduction

Grünbaum’s questions. Let K be a convex body in Rn (i.e., compact convex set with
nonempty interior). Given an interior point p ∈ K, a hyperplane h passing through p is
called barycentric if p is the barycenter (also known as the centroid) of the intersection K ∩h.
In 1961, Grünbaum [11] raised the following questions (see also [12, §6.1.4]):

I Question 1. Does there always exist an interior point p ∈ K through which there are at
least n+ 1 distinct barycentric hyperplanes?

I Question 2. In particular, is this true if p is the barycenter of K?

Seemingly, Question 1 was answered affirmatively by Grünbaum himself [12, §6.2] two years
later, by using a variant of Helly’s theorem to show that there are at least n+ 1 barycentric
cuts through the point of K of maximal depth (we will recall the definition below). The
assertion that Question 1 is resolved has also been reiterated in other geometric literature [6,
A8]. However, when working on Question 2, which remains open, we identified a concrete
problem in Grünbaum’s argument for the affirmative answer for the point of the maximal
depth. The first aim of this paper is to point out this problem, which re-opens Question 1.

Depth, depth-realizing hyperplanes, and the point of maximum depth. In order to
describe the problem with Grünbaum’s argument, we need a few definitions. Let p be
a point in K. For a unit vector v in the unit sphere Sn−1 ⊆ Rn, let hv = hpv := {x ∈
Rn : 〈v, x − p〉 = 0} be the hyperplane orthogonal to v and passing through p, and let
Hv = Hp

v := {x ∈ Rn : 〈v, x− p〉 ≥ 0} be the half-space bounded by hv in the direction of v.
Given p, we define the depth function δp : Sn−1 → [0, 1] via δp(v) = λ(Hv∩K)/λ(K), where λ
is the Lebesgue measure (n-dimensional volume) in Rn. The depth of a point p in K is defined
as depth(p,K) := infv∈Sn−1 δp(v). It is easy to see1 that δp is a continuous function, therefore
the infimum in the definition is attained at some v ∈ Sn−1. Any hyperplane hv through p
such that depth(p,K) = δp(v) is said to realize the depth of p. Finally, a point of maximal
depth in K is a point p0 in the interior of K such that depth(p0,K) := max depth(p,K)
where the maximum is taken over all points in the interior of K.2 The point of maximal
depth always exists (by compactness of Sn−1) and it is unique (two such points would yield
a point of larger depth on the segment between them).

Many depth-realizing hyperplanes? Grünbaum’s argument has two ingredients. The first
is the following result, known as Dupin’s theorem [9], which dates back to 1822:

I Theorem 3 (Dupin’s Theorem). If a hyperplane h through p realizes the depth of p then it
is barycentric with respect to p.

1 Given v, v′ ∈ Sn−1, λ(Hv ∩K) and λ(Hv′ ∩K) differ by at most λ((Hv∆Hv′ )∩K) where ∆ is the sym-
metric difference. For ε > 0 and v and v′ sufficiently close, λ((Hv∆Hv′ )∩K) < ελ(K) as K is bounded.

2 We remark that our depth function slightly differs from the function f(H, p) used by Grünbaum [12,
§6.2]. However, the point of maximal depth coincides with the “critical point” in [12] and hyperplanes
realizing the depth for p0 coincide with the ‘hyperplanes through the critical point dividing the volume
of K in the ratio F2(K)’.
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Grünbaum refers to Blaschke [2] for a proof; for a more recent reference, see [22, Lemma 2].3
A stronger statement will be the content of Proposition 11 below.

The second ingredient in Grünbaum’s argument is the following assertion (which in [12,
§6.2] is deduced using a variant of Helly’s theorem, without providing the details).

I Postulate 4. If p0 is the point of K of maximal depth, then there are at least n+ 1 distinct
hyperplanes through p0 that realize the depth.

If correct, Postulate 4, in combination with Dupin’s theorem, would immediately imply an
affirmative answer to Question 1. However, it turns out that this step is problematic. Indeed,
there is a counterexample to Postulate 4:

I Proposition 5. Let K = T × I ⊆ R3 where T is an equilateral triangle and I is a line
segment (interval) orthogonal to T , and let p0 ∈ K be the point of maximal depth (which in
this case coincides with the barycenter of K). Then there are only 3 hyperplanes realizing the
depth of p0.

I Remark 6. We believe that Proposition 5 can be generalized to higher dimensions in the
sense that, for every n, there are only n depth-realizing hyperplanes through the point of
maximal depth in ∆× I ⊆ Rn, where ∆ is a regular (n− 1)-simplex. However, we did not
attempt to work out the details carefully, because Kynčl and Valtr [16] informed us about
stronger counterexamples: For every n, there exists a convex body K ∈ Rn such that there
are only 3 depth-realizing hyperplanes through the point of maximal depth in K. Therefore,
we prefer to keep the proof of Proposition 5 as simple as possible and focus on dimension 3.
I Remark 7. We emphasize that Proposition 5 does not preclude an affirmative answer to
Grünbaum’s Question 1 (nor to Question 2), since T × I contains infinitely many distinct
barycentric hyperplanes through p0. Thus Grünbaum’s questions remain open.

We also remark that a weakening of Postulate 4 is known to be true (see the ‘Inverse
Ray Basis Theorem [20], using the proof from [8]):4,5

I Proposition 8. Let U ⊆ Sn−1 be the set of vectors u such that δp0(u) = depth(p0,K).
Then 0 ∈ convU .

In the special case that U is in general position, the cardinality of U is at least n + 1
(otherwise dim convU < n and convU would not contain the origin, by general position),
which proves Postulate 4 in this special case. However, U need not be always in general
position. For example, in the case K = T × I in R3 = R2 × R of Proposition 5, the set U
contains three vectors in the plane through the origin parallel with T . This is also the way
we arrived at the counterexample from Proposition 5.

Inverse Ray Basis Theorem immediately implies that three barycentric hyperplanes are
guaranteed in dimension at least 2.

3 The idea of the proof is simple: For contradiction assume that h realizes the depth of p but that the
barycenter b of K ∩ h differs from p. Let v ∈ Sn−1 be such that h = hv and depth(p,K) = δp(v).
Consider the affine (d− 2)-space ρ in h passing through p and perpendicular to the segment bp. Then by
a small rotation of h along ρ we can get hv′ such that δp(v′) < δp(v) which contradicts that h realizes
the depth of p. Of course, it remains to check the details.

4 We remark that the second condition in the statement of the result in [20] is equivalent to the statement
that 0 ∈ convU , in our notation.

5 Sketch of the inverse ray basis theorem: if there is a closed hemisphere C ⊆ Sn−1 which does not
contain a point of U , let v be the center of C. Then a small shift of p0 in the direction of v yields a
point of larger depth, a contradiction.

SoCG 2020
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I Corollary 9. Let K be a convex body in Rn where n ≥ 2 and p0 be the point of maximal
depth of K. Then there at least three distinct barycentric hyperplanes through p0.

Proof. Let U be the set from Proposition 8. Then, 0 ∈ convU and U ⊆ Sn−1 imply together
|U | ≥ 2. However, if |U | = 2, then U = {u,−u} for some u ∈ Sn−1. This necessarily
means depth(p0,K) = δp0(u) = δp0(−u) = 1/2 as δp0(u) + δp0(−u) = 1. Then for any other
v ∈ Sn−1 we get min{δp0(v), δp0(−v)} ≥ 1/2 which implies δp0(v) = δp0(−v) = 1/2 as well.
Therefore v ∈ U contradicting |U | = 2.) J

Four barycentric cuts via critical points of C1 functions. Using tools related to Morse
theory, we are able to obtain one more barycentric hyperplane, provided that n ≥ 3.

I Theorem 10. Let K be a convex body in Rn where n ≥ 3 and p0 be the point of maximal
depth of K. Then there are at least four distinct hyperplanes h such that p0 is the barycenter
of K ∩ h.

Here we should also mention related work of Blagojević and Karasev [15, Theorem 3.3]
and [1, Theorem 1.13]. They show that there are at least µ(n) barycentric hyperplanes
passing through some interior point of K (not necessarily the point of maximal depth),
where µ(n) := minf maxp∈Sn |f−1(p)| is the minimum multiplicity of any continuous map
f : RPn → Sn (here, RPn is the n-dimensional real projective space). By calculations with
Stiefel–Whitney classes, they obtain lower bounds for µ(n) that depend in a subtle (and
non-monotone) way on n (see [15, Remark 1.3]). For example, µ(n) ≥ n

2 + 1 if n = 2` − 2,
but for values of n of the form n = 2` − 1 (e.g., for n = 3) their methods only give a lower
bound of µ(n) ≥ 2.

Our argument in the proof of Theorem 10 is, in certain sense, tight. This is discussed in
the full version [19, Section 5].

In what follows, we view Sn−1 as a smooth manifold with its standard differential structure.
A key tool in the proof of Theorem 10 is the following close connection between barycentric
hyperplanes and the critical points of the depth function:

I Proposition 11. Let K ⊆ Rn be a convex body and p be a point in the interior of K. Then
the corresponding depth function δp : Sn−1 → R is a C1 function. In addition, v ∈ Sn−1 is
a critical point of δp (that is, Dδp(v) = 0, where Df(v) denotes the total derivative of a
function f at v) if and only if hv is barycentric.

As mentioned earlier, Proposition 11 generalizes Dupin’s theorem. Indeed, if h = hv
realizes the depth, then v is a global minimum of δp, hence h is barycentric by Proposition 11.

In the proof, we closely follow computations by Hassairi and Regaieg [13] who stated an
extension of Dupin’s theorem to absolutely continuous probability measures. As explained
in [18] (see Proposition 29, Example 7, and the surrounding text in [18]), the extension of
Dupin’s theorem does not hold in the full generality stated in [13], and it requires some
additional assumptions. However, a careful check of the computations of Hassairi and
Regiaeg [13] in the special case of uniform probability measures on convex bodies reveals not
only Dupin’s theorem but all items of Proposition 11.

Regarding the proof of Theorem 10, the Inverse Ray Basis Theorem (Proposition 8) and
Corollary 9 imply that δp0 has at least three global minima. This gives three barycentric
hyperplanes via Proposition 11. Furthermore, we also get three maxima of δ, as a maximum
appears at v, if and only if a minimum appears at −v (note that hv = h−v). However,
it should not happen for a C1 function on Sn−1 that it has only such critical points. We
will show that there is at least one more critical point, which yields another barycentric
hyperplane via Proposition 11. Namely, we show the following proposition.
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I Proposition 12. Let n ≥ 2 and let f : Sn → R be a C1 function. Let m1, . . . ,mk be (not
necessarily strict) local minima or maxima of f , where k ≥ 3. Then there exists u ∈ Sn,
different from m1, . . . ,mk, such that Df(u) = 0.

This finishes the proof of Theorem 10 modulo Propositions 11 and 12. (Proposition 12 is
applied with k = 6.) The main idea beyond the proof of Proposition 12 is that if we have
at least three local minima or maxima, then we should also expect a saddle point (unless
there are infinitely many local extrema). This would be an easy exercise for Morse functions
(which are in particular C2) via Morse theory (actually, the Morse inequalities would provide
even more critical points). Working with C1 functions adds a few difficulties, but all of them
can be overcome.

Relation to probability and statistics. The depth function, as we define it above is a
special case of the (Tukey) depth of a probability measure in Rd, a well-known notion
in statistics [23, 7, 8]. More precisely, given a probability measure P on Rd and p ∈ Rd,
we can define depth(p,P) := infv∈Sn−1 P(Hv). Then depth(p,K) is a special case of the
uniform probability measure on a convex body K, i.e., P(A) := λ(A)/λ(K) for A Lebesgue-
measurable. We refer to [18] for an extensive recent survey making many connections between
the depth function in statistics and geometric questions.

There is a vast amount of literature, both in computational geometry and statistics,
devoted to computing the depth function in various settings (which is not easy in general).
We refer, for example, to [21, 4, 3, 5, 10, 17] and the references therein. From this point of
view, understanding the minimal possible number of critical points of the depth function is
a quite fundamental property of the depth function. Via Proposition 11, this is essentially
equivalent to Grünbaum’s questions.

Organization. Proposition 5 is proved in Section 2; Proposition 11 is proved in Section 3;
and Proposition 12 is proved in Section 4.

2 Few hyperplanes realizing the depth

In this section we prove Proposition 5, assuming Proposition 11.

Preliminaries. Let us recall that given a bounded measurable set Y ⊆ Rn of positive
measure, the barycenter of Y is defined as

cenY =
∫
Rn xχY (x)dx∫
Rn χY (x)dx

= 1
λ(Y )

∫
Y

xdx (1)

where χY is the characteristic function and the integral is considered as a vector in Rn.
If Y splits as a disjoint union Y = Y1 t · · · t Y` of sets of positive measure then

cenY = 1
λ(Y )

(∑̀
i=1

λ(Yi) cenYi

)
(2)

which easily follows from (1). If h is a hyperplane, and Y ⊆ h has positive (n−1)-dimensional
Lebesgue measure inside h, then the formula for the barycenter is analogous to (1):

cenY =
∫
h
xχY (x)dλn−1(x)∫
h
χY (x)dλn−1(x)

= 1
λn−1(Y )

∫
Y

xdλn−1(x) (3)

where λn−1 denotes the (n− 1)-dimensional Lebesgue measure on h in this formula.

SoCG 2020



62:6 Barycentric Cuts Through a Convex Body

If h ⊆ Rn is a hyperplane whose orthogonal projection π(h) onto Rn−1 × {0} (the first
n− 1 coordinates) equals Rn−1 × {0}, then cen π(Y ) = π(cenY ).

Proof of Proposition 5. Let T ⊆ R2 be an equilateral triangle with cen(T ) = 0 and I =
[−1, 1]. Then cen(K) = 0. In addition, because the point of maximal depth p0 is unique and
invariant under isometries of K, we get p0 = 0.

We will use the following notation: a, b, c are the vertices of T and α, β, and γ are lines
perpendicular to T passing through a, b, and c respectively.

Now let h be a hyperplane passing through 0. We want to find out whether h realizes the
depth. We will consider three cases:

(i) h is perpendicular to T ;
(ii) h is not perpendicular to T and all intersection points of h with α, β, and γ belong

to K;
(iii) h is not perpendicular to T and at least one of the intersection points of h with α, β,

and γ does not belong to K.

In case (i), we will find three candidates for hyperplanes realizing the depth. Then we
show that there is no hyperplane realizing the depth in cases (ii) and (iii), which shows that
only the three candidates from case (i) may realize the depth. They realize the depth because
we have at least three hyperplanes realizing the depth by the discussion in the introduction
above Theorem 10.

Let us focus on case (i). This is the same as considering the lines realizing the depth
in an equilateral triangle. It is easy to check and well known (see e.g. [20, §5.3]) that the
depth of the equilateral triangle is 4/9 and it is realized by lines parallel with the sides of
the triangle. It follows that we can reach depth 4/9 in K by hyperplanes perpendicular to
T and parallel with the three sides of T , and all other hyperplanes from case (i) bound a
portion of K strictly larger than 4/9 on each of their sides.

Case (ii) is very easy: It is easy to compute that each hyperplane of type (ii) splits K
into two parts of equal volume 1/2. Therefore, no such hyperplane realizes the depth.

Finally, we investigate case (iii). Here we show that no hyperplane h of case (iii) is
barycentric. Therefore, by Theorem 3, it cannot realize the depth either.

We aim to show that 0 is not the barycenter of h∩K. Let U be the orthogonal projection
of h ∩K to the triangle T . Equivalently, we want to show that 0 is not the barycenter of
U . We also realize that U = T ∩ S, where S is an infinite strip obtained as the orthogonal
projection of h ∩ (R2 × I) to R2 × {0}; see Figure 1.

Let s be the center line of S. This is the line where h meets the plane of T . We remark
that 0 belongs to s and in addition U is a proper subset of T (otherwise we would be in
case (ii)). We again distinguish three cases:

(a) none of the vertices a, b, c belongs to U ,
(b) one of the vertices a, b, c belongs to U ,
(c) two of the vertices a, b, c belong to U .

In all the cases we will show cenU 6= cenT . In case (a), s splits one of the vertices of T
from the other two. Without loss of generality, a is on one side of s and b and c are on the
other side. The center line s also splits U into two parts. Let W ′ be the (closed) part on the
side of a, W ′′ be the mirror image of W ′ along S and W := W ′ ∪W ′′. Note that W is a
proper subset of U ; indeed, since cenT = 0 and T is equilateral, the line s splits the segment
ab closer to b and the segment ac closer to c. By the symmetry of W , the barycenter cenW
belongs to the line s. However, this means that the barycenter of U is not on s; it is on the
bc side of s. Formally, this follows from (2) for the decomposition U = W t (U \W ).
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a b
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a b
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Figure 1 Three cases for the intersection U = T ∩ S.

In case (b), without loss of generality, U contains c. Then T \ U is the union of two
triangles Ta and Tb. Let κ be the line parallel with ab passing through 0. Without loss of
generality, up to rotating T , κ is the x-axis. From (2), we get 0 = cenT = 1

λ(T ) (λ(U) cenU +
λ(Ta) cenTa + λ(Tb) cenTb). The barycenters cenTa and cenTb are below the line κ or on it.
At least one of these barycenters is strictly below (cenTa is on κ if and only if c belongs to
the closure of Ta, and similarly with Tb). Therefore, cenU must be strictly above κ if the
above equality is supposed to hold.

In case (c), it is even more obvious that cenU 6= cenT . Without loss of generality U
contains b and c. Then T \ U is a triangle Ta. Since both T and Ta are convex and Ta does
not contain cenT , we have cenTa 6= cenT . Therefore cenT 6= cenU follows from (2) for the
decomposition T = U t Ta. J

Bipyramid over a triangle. In R3, we have a candidate example of a convex body, namely
the regular bipyramid B over an equilateral triangle T , such that there are exactly four
barycentric hyperplanes (with respect to the barycenter of B, which coincides with the point
of maximal depth in this case). On the one hand, this is not surprising, because this is
n+ 1 hyperplanes, where n = 3 is the dimension of the ambient space. On the other hand,
if this is true, then it answers negatively, in dimension 3, a question from [6, A8], whether
2n − 1 barycentric hyperplanes always exist. More concretely, we conjecture that the only
barycentric hyperplanes are the following: three planes perpendicular to T which meet T
in lines realizing the depth of T (these would be the hyperplanes realizing the depth), and
the plane of T (this is the one extra plane). Unfortunately, in this case, it is not so easy to
analyze the depth function as in the case of T × I.

3 Critical points of the depth function

Here we prove Proposition 11. We follow [13] with a slightly adjusted notation and adding a
few more details here and there.

Proof of Proposition 11. Without loss of generality, we can assume that the point p coincides
with the origin and we suppress it from the notation. That is, we write δ for the depth
function instead of δp.

SoCG 2020
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Let e1, . . . , en be the canonical basis of Rn and let

Sn−1
j+ = {u =

n∑
i=1

uiei ∈ Sn−1;uj > 0} and Sn−1
j− = {u =

n∑
i=1

uiei ∈ Sn−1;uj < 0}

be the relatively open hemispheres of Sn−1 with poles at ej and −ej , for j ∈ [n]. These sets
form an atlas on Sn−1.

Let us consider j ∈ [n]. Given x ∈ Rn and i ∈ [n], xi denotes the ith coordinate of x, that
is x =

∑n
i=1 xiei. With a slight abuse of the notation, we identify Rn−1 with the subspace of

Rn spanned by e1, . . . , ej−1, ej+1, . . . , en. Let x̂ :=
∑n
i=1,i6=j xiei ∈ Rn−1. Following [13] we

consider the diffeomorphisms u 7→ β(u) = − û
uj

between Sn−1
j+ and Rn−1 or between Sn−1

j−
and Rn−1. We will check the required properties of δ locally at each of the 2n hemispheres
Sn−1
j+ or Sn−1

j− (with respect to the aforementioned diffeomorphisms). Given that all cases are
symmetric, it is sufficient to focus only on the Sn−1

n+ case. That is, from now on, we assume
that j = n and Rn−1 is spanned by the first (n − 1) coordinates in the convention above.
Given a point x ∈ Rn, we also write it as x = (x̂;xn).

Now, for y ∈ Rn−1 we consider the hyperplane h′y in Rn containing the origin and
defined by h′y = {(x̂;xn) ∈ Rn : xn = 〈y, x̂〉}. Note that if u ∈ Sn−1

j+ , then h′β(u) =
{x ∈ Rn : 〈x, u〉 = 0}. In particular, since p is the origin, h′β(u) coincides with hu used
in the introduction for definition of the depth function. This also means that the map
y 7→ h′y provides a parametrization of a family of those hyperplanes containing the origin
which do not contain en. We also set H ′y to be the positive halfspace bounded by h′y:
H ′y = {(x̂;xn) ∈ Rn : xn ≥ 〈y, x̂〉}. Again, if u ∈ Sn−1

j+ , then H ′β(u) coincides with Hu from
the introduction (here we use un > 0).

Now, we consider the map f : Rn−1 → R defined by

f(y) = λ(H ′y ∩K) =
∫
Rn−1

∫ ∞
〈y,x̂〉

χK(x̂;xn)dxndx̂, (4)

where χK is the characteristic function of K. When y = β(u) for some u ∈ Sn−1
j+ , then

f(β(u)) = δ(u). Therefore, given that the map u→ β(u) is a diffeomorphism, it is sufficient
to prove that f is a C1 function and that β(v) ∈ Rn−1 is a critical point of f if and only if
h′β(v) = hv is barycentric.

The aim now is to differentiate f(y) with respect to y. We will show that the total
derivative equals

Df(y) = −
∫
Rn−1

x̂ · χK(x̂; 〈y, x̂〉)dx̂ (5)

considering the integral on the right-hand side as a vector. Deducing (5) is a quite routine
computation skipped in [13].6 However, this is the step in the proof of Theorem 3.1 in [13]
which reveals that some extra assumptions in [13] are necessary. Thus we carefully deduce (5)
at the end of this proof for completeness.

We will also see that all partial derivatives of f are continuous which means that f is a C1

function which is one of our required conditions. Now we want to show that Df(β(v)) = 0 if
and only if hv is barycentric.

6 When compared with formula (3.1) in [13], we obtain a different sign in front of the integral. This is
caused by integration over the opposite halfspace.
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First, assume that Df(β(v)) = 0. This gives

0 =
∫
Rn−1 x̂ · χK(x̂; 〈β(v), x̂〉)dx̂∫
Rn−1 χK(x̂; 〈β(v), x̂〉)dx̂

(6)

which means that 0 is the barycenter of K ∩ h′β(v) from the definition of h′β(v). On the other
hand, if 0 is the barycenter of K ∩ h′β(v), then we deduce (6) which implies Df(β(v)) = 0.

It remains to show (5). For this purpose, we compute partial derivatives ∂
∂yk

f(y),
1 ≤ k ≤ n− 1. In the following computations, recall that ek stands for the standard basis
vector for the kth coordinate and let

∫ b
a

:= −
∫ a
b

if a > b. We get

∂

∂yk
f(y) = lim

t→0

1
t

∫
Rn−1

(∫ ∞
〈y+tek,x̂〉

χK(x̂;xn)dxn −
∫ ∞
〈y,x̂〉

χK(x̂;xn)dxn

)
dx̂

= lim
t→0

∫
Rn−1

1
t

∫ 〈y,x̂〉
〈y,x̂〉+txk

χK(x̂;xn)dxndx̂.

Let y, x̂ ∈ Rd−1 be such that (x̂; 〈y, x̂〉) 6∈ ∂K. Then we get

lim
t→0

1
t

∫ 〈y,x̂〉
〈y,x̂〉+txk

χK(x̂;xn)dxn = −xkχK(x̂; 〈y, x̂〉),

because (x̂; 〈y, x̂〉) 6∈ ∂K implies that the function χK(x̂;xn) as a function of xn is constant
on the interval (〈y, x̂〉− |txk|, 〈y, x̂〉+ |txk|) for small enough |t|. Therefore, by the dominated
convergence theorem,

∂

∂yk
f(y) =

∫
Rn−1

−xkχK(x̂; 〈y, x̂〉)dx̂. (7)

For fixed y, the condition (x̂; 〈y, x̂〉) 6∈ ∂K holds for almost every x̂ because (x̂; 〈y, x̂〉) ∈ hy
and hy passes through the interior of K (through the origin). By another application of
dominated convergence theorem, we realize that the right hand side of (7) is continuous in y
(this time, we consider a sequence yi → y and we observe that χK(x̂; 〈yi, x̂〉)→ χK(x̂; 〈y, x̂〉)
for almost every x̂). Therefore the total derivative of f at any y exists and (7) gives the
formula (5). J

I Remark 13. In the last paragraph of the proof above we crucially use the convexity of K.
Without convexity, there is a compact nonconvex polygon K ′ ⊆ R2, with 0 in the interior,
such that there is y with the property that the set of those x̂ for which (x̂; 〈y, x̂〉) ∈ ∂K ′ has
positive measure; see Figure 2. In fact, even (5) does not hold for K ′. Here we took K ′ to be
the polygon from Example 7 of [18], and we refer the reader to that paper for more details.

4 One more critical point

In this section, we prove Proposition 12. Given a manifold M and a continuous function
f : M → R and s ∈ R we define the level set Ls := {w ∈ M : f(w) = s}. In the proof of
Proposition 12 we will need that the level sets are well-behaved in the neighborhoods of
points u for which the total derivative Df(u) is nonzero.

I Proposition 14. Let n ≥ 1, f : Rn → R be a C1 function and u ∈ Rn be such that
Df(u) 6= 0. Then there is a neighborhood N(u) of u such that for every v, w ∈ N(u) if
f(v) = f(w), then v and w can be connected with a path within the level set Lf(v). (It is
allowed that this path leaves N(u) provided that it stays in Lf(v).)
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h′
y

0

K ′

Figure 2 A nonconvex polygon K′ and y such that the total derivative of f does not exist at y.

Proof. Without loss of generality assume that ∂f
∂xn

(u) > 0, otherwise we permute the
coordinates and/or swap xn and −xn. Consistently with the previous section, given x ∈ Rn,
we write x = (x̂, xn) where x̂ ∈ Rn−1 and xn ∈ R. Now we consider the C1 function
F : Rn−1 ×R×R→ R defined as F (x̂, t, xn) := f(x̂, xn)− t. Note that ∂F

∂xn
= ∂f

∂xn
. We also

observe that F (û, f(u), un) = 0. Therefore, by the implicit function theorem, there is an
open neighborhood N ′ of (û, f(u)) in Rn−1 × R such that there is a C1 function g : N ′ → R
with g(û, f(u)) = un and that F (v̂, t, g(v̂, t)) = 0 for any (v̂, t) ∈ N ′. From the definition of
F this gives

f(v̂, g(v̂, t)) = t. (8)

By possibly restricting the neighborhood to a smaller set, we can assume that N ′ is the
Cartesian product of a neighborhood N ′(û) of û in Rn−1 and N ′(f(u)) of f(u) in R, and that
both N ′(û) and N ′(f(u)) are open balls. Moreover, we can assume that ∂F

∂xn
(v̂, t, vn) > 0 for

any (v̂, t, vn) ∈ N ′ ×N ′′(un) where N ′′(un) is some neighborhood of un in R, again a ball.
Now we possibly further restrict N ′(û) and N ′(f(u)) so that g(v̂, t) belongs to N ′′(un) for
any (v̂, t) ∈ N ′.

The condition on the partial derivative of F implies that for every (v̂, t) ∈ N ′ the equation
F (v̂, t, xn) = 0 has at most one solution xn ∈ N ′′(un). Therefore it has a unique solution
xn = g(v̂, t). In other words we get:

If f(v̂, xn) = t, then xn = g(v̂, t). (9)

Now, we define N(u) := Ψ−1(N ′) where Ψ: Rn−1 × R → Rn−1 × R is defined as
Ψ(v) = (v̂, f(v)) for any v ∈ Rn−1 × R. In particular (v̂, f(v)) belongs to N ′ for any
v ∈ N(u).

Let t := f(v) = f(w). From (9) we get vn = g(v̂, t) and wn = g(ŵ, t). Let us consider an
arbitrary path P : [0, 1]→ N ′(û) connecting v̂ and ŵ. Let us “lift” P to a path Pt : [0, 1]→
Rn−1 × R given by Pt(s) := (P (s), g(P (s), t)). This is a path connecting v and w. We
will be done once we show Pt([0, 1]) ⊆ Lt. This means that we are supposed to show that
f(P (s), g(P (s), t)) = t for every s ∈ [0, 1] which follows from (8). J

Let x ∈ Rn and ρ > 0, by B(x, ρ) ⊆ Rn we denote the compact ball of radius ρ centered
in x with respect to the standard Euclidean metric.

I Lemma 15. Let f : Rn → R be a C1 function, let x ∈ Rn and let ζ, ρ > 0. Assume that
‖Df(u)‖ ≥ ζ for every u ∈ B(x, ρ). Then there is v ∈ B(x, ρ) such that f(v) ≥ f(x) + ζρ

2 .

The proof is given in the full version [19]; intuitively, we follow the gradient to find v.
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Figure 3 If we are in mountains and we want to hike from one peak to another without losing
too much altitude, then the best way is to pass through a saddle point (see the upper path in blue).
If we do not pass very close to a saddle point, then the positive gradient allows us to improve the
path (see the lower path in red).

Proof of Proposition 12. First, we can assume that all local extrema m1, . . . ,mk are strict.
Indeed, if some of them is not strict, saym1, then we can find u 6= m1, . . . ,mk with Df(u) = 0
in a neighborhood of m1.

Next, because k ≥ 3, there are at least two local maxima or two local minima among
m1, . . . ,mk. Without loss of generality, m1 and m2 are local maxima.

Now, let us consider a path γ : [0, 1] → Sn such that γ(0) = m1 and γ(1) = m2.
Let minf (γ) := min{f(γ(t)) : t ∈ [0, 1]} (the minimum exists by compactness) and let
s := sup(minf (γ)) where the supremum is taken over all γ as above.

Before we proceed with the formal proof, let us sketch the main idea of the proof; see
also Figure 3. For contradiction assume that Df(u) 6= 0 for every u ∈ Sn \ {m1, . . . ,mk}.
Consider γ such that minf (γ) is very close to s. We will be able to argue that we can
assume that such γ is not close to any of the other extrema m3, . . . ,mk. This guarantees
that ‖Df(γ(t))‖ is bounded from 0 for every t ∈ [0, 1] except the cases when γ(t) is close to
m1 or m2. Using Lemma 15, we will be able to modify γ to γ′ with minf (γ′) > s obtaining
a contradiction with the definition of s.

In further consideration, we consider the standard metric on Sn obtained by the standard
embedding of Sn into Rn+1 and restricting the Euclidean metric on Rn+1 to a metric on
Sn. For every i ∈ [k], we pick two closed metric7 balls Bi and B′i centered in mi. Namely,
Bi is chosen so that mi is a global extreme on Bi. We also assume that the balls Bi are
pairwise disjoint. Next, we distinguish whether mi is a local maximum or minimum. If
mi is a local maximum, let us define ai := max{f(x) : x ∈ ∂Bi}. Note that f(mi) > ai as
mi is a global maximum on Bi. Then we pick a closed ball B′i centered in mi inside Bi so
that f(x) > ai for every x ∈ B′i. If mi is a local minimum, we proceed analogously. We set
ai := min{f(x) : x ∈ ∂Bi} and we pick B′i so that f(x) < ai for every x ∈ B′i. For later use,
we also define a′i := min{f(x) : x ∈ B′i} for i ∈ {1, 2}. Note that a′i > ai.

Given a path γ connecting m1 and m2, we say that γ is avoiding if it does not pass
through the interior of any of the balls B′3, . . . , B′k.

7 By a metric ball we mean a ball with a given center and radius. This way, we distinguish a metric ball
from a general topological ball.
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B Claim 16. Let γ be a path connecting m1 and m2. Then there is an avoiding path γ̄
connecting m1 and m2 such that minf (γ̄) ≥ minf (γ).

Proof. Assume that γ enters a ball B′i for i ∈ {3, . . . , k}. Let us distinguish whether mi is a
local maximum or minimum.

First assume that mi is a local maximum. Then minf (γ) ≤ ai because γ has to pass
through ∂Bi. By a homotopy, fixed outside the interior of B′i we can assume that γ avoids
mi (here we use n ≥ 2); see, e.g., the proof of Proposition 1.14 in [14] how to perform this
step.8 In addition, by further homotopy fixed outside the interior of B′i we can modify γ so
that it avoids the interior of B′i (the second homotopy pushes γ in direction away from mi).
This does not affect minf (γ) because f(x) > ai for every x ∈ B′i.

Next let us assume that mi is a local minimum. Then minf (γ) < ai because γ has to
pass through ∂B′i (this is not a symmetric argument when compared with the previous case).
Modify γ by analogous homotopies as above; however, this time with respect to Bi (so that γ
completely avoids the interior of Bi). Because minf (γ) < ai and f(x) ≥ ai for x ∈ ∂Bi, the
minimum of γ cannot decrease by these modifications. By performing these modifications
for all B′i when necessary, we get the required γ̄. C

Now, let us consider a diffeomorphism ψ : Sn \ {mk} → Rn given by the stereographic
projection (in particular, it maps closed balls avoiding mk to closed balls). Let g : Rn → R
be defined as g := f ◦ ψ−1. Let ni := ψ(mi) for i ∈ [k − 1]. Once we find v ∈ Rn,
v 6= n1, . . . , nk−1 such that Dg(v) = 0, then u := ψ−1(v) is the required point with
Df(u) = 0. Note that n1, n2 are still local maxima of g and n3, . . . , nk−1 are local maxima
or minima. We also set Di := ψ(Bi) and D′i := ψ(B′i) for i ∈ [k−1] and Ck := ψ(Bk \{mk}),
C ′k := ψ(B′k \ {mk}). The sets Di and D′i are closed (metric) balls centered in ni whereas Ck
and C ′k are complements of open (metric) balls in Rn. Let K be the compact set obtained
from Rn by removing the interiors of D′1, . . . , D′k−1, C

′
k. Let us fix small enough η > 0 such

that the closed η-neighborhood Kη of K avoids n1, . . . , nk−1. We will also use the notation
Kη/3 for the closed η

3 -neighborhood of K. See Figure 4.
Assume, for contradiction, that Kη does not contain v with Dg(v) = 0. Because Kη is

compact and g is C1, there is ζ > 0 such that ‖Dg(w)‖ ≥ ζ for every w ∈ Kη.
For every w ∈ Kη/3 let N(w) be the neighborhood given by Proposition 14 (the neigh-

borhood is considered in the whole Rn not only in Kη/3). By possibly restricting N(w) to
smaller sets, we can assume that each N(w) is open and fits into a ball of radius 2

3η. (In
particular, if w ∈ Kη/3, then N(w) ⊆ Kη.)

B Claim 17. There is ε > 0 such that for every x ∈ Kη/3 the metric ball B(x, ε) ⊆ Rn
centered in x of radius ε fits into N(w) for some w ∈ Kη/3.

This is a variant of the Lebesgue number lemma; see the full version [19] for a proof.
Let ε be the value obtained from Claim 17. Because some ball B(x, ε) fits into some

N(w) which fits into a ball of radius 2
3η, we get ε ≤ 2

3η.
Let γ be a path in Sn such that

(s1) s−minf (γ) < a′1 − a1;
(s2) s−minf (γ) < a′2 − a2; and
(s3) s−minf (γ) < ζε

4 .

8 We point out that the current online version of [14] contains a different proof of Proposition 1.14.
Therefore, here we refer to the printed version of the book.
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n1

n2

K

∂D1∂D′
1

∂D2

∂D′
2

∂Kη

∂Kη

∂Kη

∂Kη/3

∂C ′
k

∂Ck

K : +

Kη/3 : + +

Kη : + + +

α

Figure 4 The sets K, Kη/3 and Kη and some path α connecting n1 and n2 of the form α = ψ ◦ γ
where γ is avoiding. In the picture, k = 3.

[0, 1] Sn \ {mk} ⊆ Sn R

Rn

γ

α

f

ψ g

Figure 5 The maps α, γ, ψ, f and g. The two triangles are commutative.

By Claim 16, we can assume that γ is avoiding. We will start modifying γ to γ′ with
minf (γ′) > s, which will be the required contradiction. Let α := ψ ◦ γ; see the diagram at
Figure 5. Then α connects n1 and n2, and α avoids the interiors of D′3, . . . , D′k−1 and C ′k;
see Figure 4.

Because, α is a continuous function on the compact interval [0, 1], we get, by the Heine-
Cantor theorem, that α is uniformly continuous. In particular, there is δ > 0 such that
if t1, t2 ∈ [0, 1] with |t1 − t2| ≤ δ, then ‖α(t1) − α(t2)‖ ≤ ε

3 . Let us consider a positive
integer ` > 1

δ . We will be modifying α in two steps. First, we get α′′ such that α′′(t) > s if
t = j

` for some j ∈ {0, . . . , `}. Then we modify α′′ individually on the intervals ( j` ,
j+1
` ) for

j ∈ {0, . . . , `− 1} obtaining α′ with ming(α′) > s. (Given a path β : [0, 1]→ Rn connecting
n1 and n2, we define ming(β) := min{g(β(t)) : t ∈ [0, 1]} = minf (ψ−1 ◦ β).) The required γ′
will be obtained as ψ−1 ◦ α′.

For the first step, let us first say that an interval Ij = [ j` ,
j+1
` ] where j ∈ {0, . . . , `− 1}

requires a modification if g(α(t)) ≤ s for some t ∈ Ij . This in particular means that α(t) ∈ K
for this t: Indeed, this follows from (s1) and (s2). We already know that α avoids the interiors
of D′3, . . . , D′k−1 and C ′k. It remains to check that α(t) does not belong to the interiors of D′1
andD′2 as well. Because α has to meet ∂D1 and ∂D2, we get that minf (γ) = ming(α) ≤ a1, a2
from the definition of a1 and a2. By (s1) and (s2), we get s < a′1, a

′
2. Therefore, from the

definition of a′1 and a′2, we get that α(t) cannot belong neither to D′1 nor to D′2 as required.
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α

α( j` )

α( j+1
` )

α( 2j+1
2` )

α( 2j−12` )

α( j−1` )

≤ ε
3

ε
ε

2
3ε

Uj

Uj−1 Vj

Figure 6 The sets Uj−1, Uj and Vj in the case that g(α( j
`
)) ≤ s.

By the uniform continuity, the fact that g(α(t)) ≤ s for some t ∈ Ij implies that
α(Ij) belongs to the closed ε

3 -neighborhood of K. In particular, α(Ij) belongs to Kη/3 as
ε ≤ 2

3η < η.
Now, for each Ij which requires a modification, consider the open ε-ball Uj ⊆ Rn centered

in α( 2j+1
2` ). (Note that, 2j+1

2` is the midpoint of Ij .) From the previous considerations, the
center of each Uj belongs to Kη/3 and the whole Uj is a subset of Kη.

Now we perform the first step. Consider t = j
` for some j ∈ {0, . . . , `}. If g(α(t)) > s,

then we do nothing. Note that this includes the cases j = 0 or j = `. If g(α(t)) ≤ s, then
both intervals Ij−1 and Ij require a modification. By the uniform continuity, the open ball
Vj ⊆ Rn centered in α(t) of radius 2ε

3 is a subset of both Uj−1 and Uj ; see Figure 6. We
observe that Vj is a subset of Kη as Vj ⊆ Uj . In particular, by the definition of ζ, we get
that ‖Dg(w)‖ ≥ ζ for every w ∈ Vj . By Lemma 15, used on a closed ball of a slightly smaller
radius ε

2 , there is a point v in Vj such that

g(v) ≥ g(α(t)) + ζε

4 ≥ ming(α) + ζε

4 = minf (γ) + ζε

4 .

Using (s3), we get g(v) > s. Now, by a homotopy, we modify α to α′′ so that it stays fixed
outside the interval (t− 1

4` , t+ 1
4` ), the modification of α occurs only in Vj and α′′(t) = v; see

Figure 7. We perform these modifications simultaneously for every t = j
` with g(α(t)) ≤ s.

This is possible as the intervals [t− 1
4` , t+ 1

4` ] are pairwise disjoint. This way, we obtain the
required α′′.

Finally, we perform the second step of the modification. Let Ij = [ j` ,
j+1
` ] be an interval

requiring a modification. We already know that g(α′′( j` )) > s and g(α′′( j+1
` )) > s. In

addition, we know that both α′′( j` ) and α′′( j+1
` ) belong to Uj as they belong to Vj or Vj+1.

We set α′( j` ) := α′′( j` ) and α′( j+1
` ) := α′′( j+1

` ). Next, we aim to define α′ on ( j` ,
j+1
` ),

which is the interior of Ij , so that min(g(α′(Ij))) > s. By Claim 17, Uj fits into some
N(w) for some w ∈ Kη/3. (Here we use that the center of Uj belongs to Kη/3.) Now,
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α

α( j` )

α( j+1
` )

Uj

Vj

Vj+1

Ls

α′′
Uj

Vj

Ls

α′′( j` )

α′′( j+1
` )

α′

Uj

Ls

α′( j` ) α′( j+1
` )

x

P

Lg(x)

Figure 7 The first and the second step of modifications of α on an interval Ij requiring a
modification (the modification is shown only on this interval).

Proposition 14 implies that α′( j` ) and α′( j+1
` ) may be connected by a path P : [0, 1]→ Rn

such that g(P (t)) > s for every t ∈ [0, 1]: Indeed, let us assume that, without loss of
generality, g(α′( j` )) ≥ g(α

′( j+1
` )) > s. First, draw P as a straight line from α′( j` ) towards

α′( j+1
` ) until we reach a (first) point x ∈ Uj ⊆ N(w) with g(x) = g(α′( j+1

` )); of course, it
may happen that x = α′( j+1

` ). Then by Proposition 14, x and α′( j` ) can be connected within
the level set Lg(x); see Figure 7. (This may mean that P leaves N(w), or even Kη, but this
is not problem for the argument.) Altogether, we set α′ on Ij so that it follows the path
P , and this we do independently on each interval requiring a modification. Other intervals
remain unmodified.

From the construction, we get ming(α′) > s; therefore the path γ′ := ψ−1 ◦ α′ satisfies
minf (γ′) = ming(α′) > s which contradicts the definition of s. J
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