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THE MAXIMAL NUMBER OF 3-TERM ARITHMETIC
PROGRESSIONS IN FINITE SETS IN DIFFERENT GEOMETRIES

ITAI BENJAMINI AND SHONI GILBOA

Abstract. Green and Sisask showed that the maximal number of 3-term arithmetic
progressions in n-element sets of integers is ⌈n2/2⌉; it is easy to see that the same holds
if the set of integers is replaced by the real line or by any Euclidean space. We study
this problem in general metric spaces, where a triple (a, b, c) of points in a metric space
is considered a 3-term arithmetic progression if d(a, b) = d(b, c) = 1

2
d(a, c). In particular,

we show that the result of Green and Sisask extends to any Cartan–Hadamard manifold
(in particular, to the hyperbolic spaces), but does not hold in spherical geometry or in
the r-regular tree, for any r ≥ 3.

1. Introduction

It was shown in [13, Theorem 1.2] that the maximal number of 3-term arithmetic progres-
sions in n-element sets of integers is ⌈n2/2⌉ (counting increasing, decreasing and constant
progressions). The maximum is attained for n-term arithmetic progressions, but also for
other sets (completely characterized in [13, Theorem 1.2]).

Combined with some tools from additive combinatorics, this result was used in [13] to
obtain their main result that ⌈n2/2⌉ is also the maximal number of 3-term arithmetic
progressions in n-element subsets of the additive group Z/pZ for prime p, provided that
n/p is smaller than some absolute constant.

Additive structure is probably the most natural context of arithmetic progressions, but
it may be viewed also as a metric notion, which is the direction we pursue here.

Definition 1.1. Let M be a metric space.
We say that (a, b, c) ∈ M3 is a 3-term arithmetic progression in M if

dM(a, b) = dM(b, c) = 1
2
dM(a, c),

where dM is the metric of M . For any set A ⊆ M , let

AT M(A) :=
{

(a, b, c) ∈ A3 | dM(a, b) = dM(b, c) = 1
2
dM(a, c)

}

be the set of 3-term arithmetic progressions in the set A. For every positive integer n, let

µn(M) := max {|AT M(A)| : A ⊆ M, |A| = n}
be the maximal number of 3-term arithmetic progressions in n-element subsets of M .

Key words and phrases. arithmetic progressions, metric spaces, Cartan–Hadamard manifolds.
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As already mentioned, it was shown in [13] that µn(Z) = ⌈n2/2⌉ for every n, and the
same argument shows that for every n,

(1) µn(R) = ⌈n2/2⌉.
This yields, by a simple projection argument, that for any k, with respect to the Euclidean
metric, µn(R

k) = ⌈n2/2⌉ for every n.
We show that this extends to a rather large class of metric spaces. First, let us recall

some basic notions. Let M be a metric space; a curve γ : I → M , where I is a connected
subset of the real line, is a geodesic if dM(γ(y), γ(x)) = y − x for every x < y in I; a set
Γ ⊆ M is a geodesic segment with endpoints p, q if there is a geodesic γ : [a, b] → M such
that Γ = γ([a, b]), p = γ(a) and q = γ(b); the metric space M is uniquely geodesic if any
two distinct points in M are the endpoints of a unique geodesic segment; finally, a curve
γ : I → M , where I is a connected subset of the real line, is a local geodesic if around every
a ∈ I there is an interval Ia such that the restriction of γ to I ∩ Ia is a geodesic.

Theorem 1.2. Let M be a uniquely geodesic Riemannian manifold in which every local
geodesic is a geodesic. Then, for every n,

µn(M) = ⌈n2/2⌉.
Moreover, any set A of n points in M for which |AT M(A)| = ⌈n2/2⌉ is contained in the
image of a geodesic.

In particular, Theorem 1.2 applies to the hyperbolic spaces, and more generally, to any
Cartan–Hadamard manifold, i.e., complete simply connected Riemannian manifold that
has everywhere nonpositive sectional curvature (see, e.g., [3, 10]). However, the result
does not extend to the wider class of metric spaces of global nonpositive curvature, in the
sense of A. D. Alexandrov (also coined CAT(0) spaces by Gromov, in honor of Cartan,
Alexandrov and Toponogov; note that each such metric space is uniquely geodesic, and
every local geodesic in it is a geodesic; see, e.g., [5, 7]). For instance, let Tr be the (discrete)

r-regular tree, r ≥ 2, equipped with the graph metric, and let T̂r be the corresponding
metric graph, where all the edges have unit length. The metric tree T̂r is a Hadamard space,
i.e., a complete globally nonpositively curved metric space. We show (see Proposition 5.1)
that

(2) lim sup
n→∞

µn(Tr)

n2
≥ 1

2
+

(r − 2)2

2r2
.

Hence, for every r ≥ 3, since obviously µn(T̂r) ≥ µn(Tr) for every n, it holds that

lim sup
n→∞

µn(T̂r)

n2
≥ lim sup

n→∞

µn(Tr)

n2
>

1

2
= lim sup

n→∞

⌈n2/2⌉
n2

.

Note that µn(T̂r) ≤ n2 − 2n+ 2 for every n, by the following simple claim.

Claim 1.3. Let M be a uniquely geodesic metric space (with more than one point). Then,
for every n,

⌈n2/2⌉ ≤ µn(M) ≤ n2 − 2n+ 2.
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Moreover, there is a uniquely geodesic metric space M0 such that µn(M0) = n2 − 2n + 2
for every n.

Next, we consider some positively curved metric spaces.

Theorem 1.4. For every n 6= 2,

µn(S
1) =

1

2
n2 +



















n n mod 4 = 0,
1
2
n n mod 4 = 1,

2 n mod 4 = 2,
1
2
n− 1 n mod 4 = 3.

In particular, (1) and Theorem 1.4 imply that µn(S
1) > ⌈n2/2⌉ for every n ≥ 4.

We do not know, for general n, what is the maximal number of 3-term arithmetic
progressions in n-element subsets of the 2-dimensional sphere S2. However, we were able
to show (see Proposition 4.7 and the discussion thereafter) that

(3) µn(S
2) > µn(S

1) for every n ≥ 5.

For the ℓ-dimensional lattice graph Z
ℓ (where two vertices are adjacent if the Euclidean

distance between them is 1), with respect to the graph metric, we show (see Proposition
5.2) that

(4) µn

(

Z
ℓ
)

= Ω
(

n3− 1

ℓ

)

.

Finally, we show (see Proposition 5.3) that

(5) max
M is a metric space

µn(M) =
1

4
n3 − 1

2
n2 +Θ(n).

This work was inspired by the analogous route taken by the study of the isoperimetric
problem, from the classical setting in the Euclidean plane to diverse geometric context
(see, e.g., [17, 8, 9] and the references within), including spherical geometry (see, e.g.,
[14]), Cartan–Hadamard manifolds (see, e.g., [15] and the references within), and graphs
(see, e.g., [16] and the references within).

The rest of the paper is organized as follows. In Section 2 we introduce some notation
and make some preliminary observations. In Section 3 we prove Theorem 1.2 and Claim
1.3. In Section 4 we prove Theorem 1.4, confirm (3) and make some additional observations
regarding the problem in the 2-dimensional sphere S2. In Section 5 we prove (2),(4) and
(5). Finally, in Section 6, we suggest several directions for future study.

Acknowledgements. We thank Lev Buhovski, Dan Hefetz, Bo’az Klartag and Pierre
Pansu for fruitful discussions, and the anonymous referees for their helpful comments.
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2. Notation and Preliminaries

For a point b in a metric space M and a nonnegative real number d, let

SM(b; d) := {x ∈ M | dM(b, x) = d}, BM(b; d) := {x ∈ M | dM(b, x) ≤ d}.
For a finite set A of points in a metric space M and b ∈ A, denote

wA(b) := |{(x, y, z) ∈ AT M(A) : y = b}|.
Clearly,

(6) |AT M(A)| =
∑

b∈A

wA(b).

Observation 2.1. Note that (b, b, b) ∈ AT M(A) for every b ∈ A and that if (a, b, c) ∈
AT M(A), then (c, b, a) ∈ AT M(A) as well. Therefore, |AT M(A)| − |A| is always even.
Moreover, wA(b) is odd for every b ∈ A.

Claim 2.2. Let M be a metric space such that for any two points a, c ∈ M there is at most
one point b ∈ M such that (a, b, c) is a 3-term arithmetic progression. Then, for every n,

µn(M) ≤ n2 − 2n+ 2.

Proof. Let A be a set of n points in M , and consider the graph G = (A,E), where

E := {{a, c} ⊆ A | there is no b ∈ A such that (a, b, c) ∈ AT M(A)} .
If the graph G is not connected, then let a, c be vertices in different connected components
of G for which dM(a, c) is minimal. Obviously, the vertices a, c are not adjacent, i.e., there
is b ∈ A such that (a, b, c) is a 3-term arithmetic progression in M . At least one of the
vertices a, c is not in the same connected component as b, contradicting the minimality
of dM(a, c), since dM(a, b) = dM(b, c) = 1

2
dM(a, c) < dM(a, c). Thus, the graph G is

necessarily connected. In particular, |E| ≥ n− 1 and hence,

|AT M(A)| ≤ n2 − 2|E| ≤ n2 − 2(n− 1) = n2 − 2n+ 2. �

We remark that there are metric spaces satisfying the assumption of Claim 2.2 for which
the bound given in the claim is tight for every n. One such example is the metric space
M0 presented in the proof of Claim 1.3. A similar, simpler, example is a bipartite graph
with only one vertex in one part and infinitely many vertices in the other part, equipped
with the graph metric.

3. The problem in Cartan–Hadamard manifolds (and beyond)

Lemma 3.1. Let M be a uniquely geodesic metric space, and let (a, b, c) be a nonconstant
3-term arithmetic progression in M . Then, b lies on the geodesic segment with endpoints
a, c.

Proof. For simplicity, denote δ := dM(a, b) = dM(b, c) = 1
2
dM(a, c) > 0. There are geodesics

γa : [−δ, 0] → M, γc : [0, δ] → M such that

γa(−δ) = a, γa(0) = γc(0) = b, γc(δ) = c.
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Define γ : [−δ, δ] → M by

γ(t) :=

{

γa(t) −δ ≤ t ≤ 0,

γc(t) 0 ≤ t ≤ δ.

Then, for every −δ ≤ x < 0 < y ≤ δ,

dM(γ(y), γ(x)) ≤ dM(γ(y), γ(0)) + dM(γ(0), γ(x))

= dM(γc(y), γc(0)) + dM(γa(0), γa(x)) = (y − 0) + (0− x) = y − x,

dM(γ(y), γ(x)) ≥ dM(γ(δ), γ(−δ))− dM(γ(δ), γ(y))− dM(γ(x), γ(−δ))

= dM(c, a)− dM(γc(δ), γc(y))− dM(γa(x), γa(−δ))

= 2δ − (δ − y)− (x− (−δ)) = y − x

and hence dM(γ(y), γ(x)) = y − x. Obviously, this is also true if −δ ≤ x < y ≤ 0 or
0 ≤ x < y ≤ δ. Therefore, γ is a geodesic, and the result follows. �

We may now prove Claim 1.3.

Proof of Claim 1.3. Take an arbitrary nonconstant geodesic γ : I → M . For every n we
may find an n-term arithmetic progression An ⊂ I and then,

µn(M) ≥ |AT M(γ(An))| = |AT R(An)| = ⌈n2/2⌉,
proving the lower bound. The upper bound follows immediately from Lemma 3.1 and
Claim 2.2.

Finally, consider the metric space M0 obtained by endowing the complex plane with the
metric

dM0
(z, w) =

{

|z − w| either w 6= 0 and z/w ∈ R or w = 0,

|z|+ |w| otherwise.

The metric space M0 is clearly uniquely geodesic. For every n, let Cn−1 be a set of n − 1
complex points with modulus 1. Then,

AT M0
(Cn−1 ∪ {0}) = {(a, 0, c) | a, c ∈ Cn−1, a 6= c} ∪ {(b, b, b) | b ∈ Cn−1 ∪ {0}}

and hence

|AT M0
(Cn−1 ∪ {0})| = (n− 1)(n− 2) + n = n2 − 2n+ 2.

Therefore, µn(M0) = n2 − 2n+ 2. �

Theorem 1.2 will easily follow, by using Lemma 3.1, from the following proposition.

Proposition 3.2. Let M be a metric space and let L be a family of subsets of M , that we
will refer to as ‘lines’, such that the following conditions hold:

• Each line in L is isometric to a subset of the real line.
• For any two distinct points in M there is a unique line in L containing them both.
• For every nonconstant 3-term arithmetic progression (a, b, c) in M , the points a, b, c
lie on a common line in L (which is obviously unique, by the previous condition).
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Then, µn(M) ≤ ⌈n2/2⌉ for every n.
Moreover, if µn(M) = ⌈n2/2⌉, then any set A of n points in M for which |AT M(A)| =

⌈n2/2⌉ is contained in a line in L.
Note that it immediately follows from Proposition 3.2 that µn(M) ≤ ⌈n2/2⌉ for every n

in case M is an Euclidean or a hyperbolic space of any dimension, by taking L to be the
family of lines in M , in the usual geometric sense.

Proof of Proposition 3.2. Let A be a set of n points in M .
If A is contained in a line L ∈ L, then since L is isometric to a subset of the real line, it

follows from (1) that |AT M(A)| ≤ ⌈n2/2⌉.
Assume that A is not contained in a line in L. For every L ∈ L, let

rL := |A ∩ L|.
Let

LA := {L ∈ L | rL ≥ 2}
be the set of lines in L ‘determined’ by the set A. For every L ∈ LA, since L is isometric
to a subset of the real line, it follows from (1) that

(7) |AT M(A ∩ L)| − rL ≤
⌈

r2L
2

⌉

− rL =

(

rL
2

)

−
⌊rL
2

⌋

≤
(

rL
2

)

− 1.

For any two distinct points in A, there is a unique line in LA containing them both.
Therefore,

(8)
∑

L∈LA

(

rL
2

)

=

(

n

2

)

,

and moreover, since the points of A are not all on a single line,

(9) |LA| ≥ n,

by the de Bruijn–Erdős theorem [6]. Finally, for each nonconstant (a, b, c) ∈ AT M(A),
there is a unique line in LA containing all three points a, b, c. Hence,

|AT M(A)| − n =
∑

L∈LA

(|AT M(A ∩ L)| − rL) .

Therefore, by (7), (8) and (9),

|AT M(A)| − n ≤
∑

L∈LA

((

rL
2

)

− 1

)

=

(

n

2

)

− |LA| ≤
(

n

2

)

− n,

and hence, |AT M(A)| ≤
(

n
2

)

< ⌈n2/2⌉, which concludes the proof. �

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Consider the family of ‘lines’

L := {γ(I) | γ : I → M is a maximal geodesic},
where a geodesic is maximal if it can not be extended to a geodesic with a larger domain.

Any geodesic segment inM is contained in a unique line in L. Indeed, let Γ be a geodesic
segment in M , let p, q be its endpoints and let δ := dM(p, q). There is a unique geodesic
γ : [0, δ] → M such that γ([0, δ]) = Γ, γ(0) = p and γ(δ) = q. Since M is a Riemannian
manifold, γ may be uniquely extended to a maximal local geodesic γ̂ : I → M (i.e., a local
geodesic that can not be extended to a local geodesic with a larger domain). Since each
local geodesic in M is a geodesic, it follows that γ̂(I) is the unique line in L containing the
geodesic segment Γ.

Let us verify that the metric space M and the family L of subsets of M satisfy all the
conditions of Proposition 3.2. For any geodesic γ : I → M , the set γ(I) is isometric to the
subset I of the real line; in particular, every line in L is isometric to a subset of the real
line. For any two distinct points p, q in M , since M is uniquely geodesic, there is a unique
geodesic segment Γ with endpoints p, q; the unique line in L containing Γ is obviously
the unique line in L containing both p and q. Finally, if (a, b, c) is a nonconstant 3-term
arithmetic progression in M , then b lies on the geodesic segment Γ with endpoints a, c, by
Lemma 3.1; hence, the points a, b, c lie on the line in L containing Γ.

The result now follows from Proposition 3.2 and the lower bound in Claim 1.3. �

4. The problem in spherical geometry

First, we consider the unit circle S1 = {u ∈ R
2 : |u| = 1}, equipped with the arc length

metric.
For every pair of distinct points a, b in S1, let Ca,b be the open arc of S1 from a to b

counterclockwise, and let Ma,b be the midpoint of the arc Ca,b.
We say that a set {p1, p2, . . . , pn} of n ≥ 2 points in S1, where the points p1, p2, . . . , pn

are ordered counterclockwise, is evenly spread around the circle if

dS1(p1, p2) = · · · = dS1(pn−1, pn) = dS1(pn, p1) = 2π/n.

Let F0 := {∅}, F1 := {{a} | a ∈ S1} and for every n ≥ 2, let Fn be the family of all
n-element subsets of S1 that are evenly spread around the circle. For every positive integer
n which is divisible by 4, let ρn be the rotation of S1 by an angle of π/n (counterclockwise)
and let

F [−1]
n :={A \ {a} | A ∈ Fn, a ∈ A},

F [−2]
n :={A \ {a, b} | A ∈ Fn, a, b ∈ A such that dS1(a, b) ≤ π

2
and Ma,b,Mb,a ∈ A},

F [+1]
n :={A ∪ {a} | A ∈ Fn, ρn(a) ∈ A},

F [+2]
n :={A ∪ {a, b} | A ∈ Fn, a, b ∈ S1 such that ρn(a), ρn(b),Ma,b,Mb,a ∈ A}.

(See some examples in Figure 1; note that F [−2]
4 is empty.)

The following claim will be used to prove the lower bound in Theorem 1.4.
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a set in F8 a set in F [+1]
8 a set in F [+2]

8

a set in F [−2]
12 a set in F [−1]

12
a set in F12

Figure 1

Claim 4.1. For every nonnegative n,

(10) |AT S1(A)| = 2n⌊n/4⌋+ n for any A ∈ Fn,

and for every positive n which is divisible by 4,

|AT S1(A)| =1
2
(n− 1)2 + 1

2
(n− 1)− 1 for any A ∈ F [−1]

n ,(11a)

|AT S1(A)| =1
2
(n− 2)2 + 2 for any A ∈ F [−2]

n ,(11b)

|AT S1(A)| =1
2
(n+ 1)2 + 1

2
(n+ 1) for any A ∈ F [+1]

n ,(11c)

|AT S1(A)| =1
2
(n+ 2)2 + 2 for any A ∈ F [+2]

n .(11d)

Proof. If A ∈ Fn, then wA(a) = 2⌊n/4⌋+ 1 for every a ∈ A and (10) follows, by (6).
For every finite set A of points in S1 and a ∈ A, denote

ΓA(a) := {(x, y, z) ∈ AT S1(A) | a ∈ {x, y, z}} .

Suppose that n > 0 is divisible by 4, and let A ∈ Fn. Clearly, using (10),

∑

a∈A

(|ΓA(a)| − 1) = 3 (|AT S1(A)| − n) = 3
2
n2,

and hence, by symmetry, |ΓA(a)| = 3
2
n + 1 for every a ∈ A. Therefore, for every a ∈ A,

again by (10),

|AT S1(A\{a})| = |AT S1(A)|− |ΓA(a)| =
(

1
2
n2 + n

)

−
(

3
2
n + 1

)

= 1
2
(n−1)2+ 1

2
(n−1)−1.
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which proves (11a). Similarly, if a, b are points in A such that dS1(a, b) ≤ π
2
andMa,b,Mb,a ∈

A, then

|AT S1(A \ {a, b})| = |AT S1(A)| − |ΓA(a)| − |ΓA(b)|+ |ΓA(a) ∩ ΓA(b)|
=
(

1
2
n2 + n

)

− 2
(

3
2
n + 1

)

+ 6 = 1
2
(n− 2)2 + 2.

which proves (11b). For every a ∈ S1 such that ρn(a) ∈ A, it holds that |ΓA∪{a}(a)| =
wA∪{a}(a) =

1
2
n + 1 and hence, once more by (10),

|AT S1(A∪{a})| = |AT S1(A)|+ |ΓA∪{a}(a)| =
(

1
2
n2 + n

)

+
(

1
2
n + 1

)

= 1
2
(n+1)2+ 1

2
(n+1).

which proves (11c). Similarly, if a, b are points in S1 such that ρn(a), ρn(b),Ma,b,Mb,a ∈ A
(in particular, a, b are not antipodal), then

|AT S1(A ∪ {a, b})| = |AT S1(A)|+ |ΓA∪{a}(a)|+ |ΓA∪{b}(b)|+ |ΓA∪{a,b}(a) ∩ ΓA∪{a,b}(b)|
=
(

1
2
n2 + n

)

+ 2
(

1
2
n + 1

)

+ 2 = 1
2
(n + 2)2 + 2.

which proves (11d). �

For every a ∈ S1 denote, for simplicity,

Ha := BS1(a; π
2
)
(

= {x ∈ S1 | dS1(a, x) ≤ π
2
}
)

and let Ra be the restriction to S1 of the Euclidean reflection of R
2 through the line

connecting a to the origin.
For a finite set A of points in S1, let

∆(A) :=
{

{a, b} ⊆ A | a 6= b,
∣

∣|A ∩ Ca,b| − |A ∩ Cb,a|
∣

∣ ≤ 1
}

,

and let ∆0(A) be the set of pairs {a, b} in ∆(A) for which the following conditions hold:

• The points a, b are antipodal (in particular, Ra = Rb).
• The set A is invariant under the reflection Ra = Rb (in particular, |A| is necessarily
even).

• The points Ma,b,Mb,a are in A.

For a finite set A of points in S1, recall that for any b ∈ A we denote by wA(b) the
cardinality of the set {(x, y, z) ∈ AT S1(A) | y = b}, and note that 1

2
wA(a) +

1
2
wA(b) is an

integer for every a, b ∈ A, by Observation 2.1.

Lemma 4.2. Let A be a set of n points in S1 and suppose that {a, b} ∈ ∆(A). Then,

(12) 1
2
wA(a) +

1
2
wA(b) ≤

⌊

n
2

⌋

+ 1.

Moreover, if n is even and 1
2
wA(a) +

1
2
wA(b) =

n
2
+ 1, then {a, b} ∈ ∆0(A).

Finally, if the arc Ca,b is longer than the arc Cb,a and 1
2
wA(a) +

1
2
wA(b) ≥ ⌈n

2
⌉, then

A ∩Ha ∩ Ca,b ⊆ Ra(A) and A ∩Hb ∩ Ca,b ⊆ Rb(A).

Proof. We may assume that the arc Ca,b is at least as long as the arc Cb,a, and that if the
two arcs have the same length then |A ∩ Ca,b| ≤ |A ∩ Cb,a|.
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If (b, b, b) 6= (x, b, y) ∈ AT S1(A), then x, y are both in A ∩ Rb(A) ∩ Hb and at least
one of them is in the arc Ca,b. Hence, wA(b) ≤ 1 + 2|A ∩ Rb(A) ∩ Hb ∩ Ca,b|. Similarly,
wA(a) ≤ 1 + 2|A ∩ Ra(A) ∩Ha ∩ Ca,b| and hence,

1
2
wA(a) +

1
2
wA(b) ≤ 1 + |A ∩Ra(A) ∩Ha ∩ Ca,b|+ |A ∩Rb(A) ∩Hb ∩ Ca,b|

≤ 1 + |A ∩Ha ∩ Ca,b|+ |A ∩Hb ∩ Ca,b|,(13)

where equality occurs in the second inequality if and only if A ∩ Ha ∩ Ca,b ⊆ Ra(A) and
A ∩Hb ∩ Ca,b ⊆ Rb(A).

If the points a, b are antipodal, then Ha ∪Hb = S1, Ha ∩Hb = {Ma,b,Mb,a}, |A∩Ca,b| =
⌊n−2

2
⌋ and hence,

(14) |A ∩Ha ∩ Ca,b|+ |A ∩Hb ∩ Ca,b| = |A ∩ Ca,b|+ |A ∩ {Ma,b}| ≤
⌊

n−2
2

⌋

+ 1 =
⌊

n
2

⌋

.

If the points a, b are not antipodal, then the set Ca,b ∩Ha ∩Hb is empty and hence

(15) |A ∩Ha ∩ Ca,b|+ |A ∩Hb ∩ Ca,b| ≤ |A ∩ Ca,b| ≤
⌈

n−2
2

⌉

=
⌈

n
2

⌉

− 1.

Combining (13), (15) and (14) yields (12).
Suppose now that n is even and 1

2
wA(a) +

1
2
wA(b) =

n
2
+1. By (13) and (15), the points

a, b are necessarily antipodal. Then, equality must occur in (14), i.e., Ma,b ∈ A, and the
inequalities in (13) are necessarily equalities as well; in particular, A ∩Ha ∩ Ca,b ⊆ Ra(A)
and A ∩Hb ∩ Ca,b ⊆ Rb(A). Therefore, since Ha ∪Hb = S1 and Ra = Rb,

A ∩ Ca,b = (A ∩Ha ∩ Ca,b) ∪ (A ∩Hb ∩ Ca,b) ⊆ Ra(A) ∪ Rb(A) = Rb(A),

and hence, since Ca,b = Rb(Cb,a),

A ∩ Ca,b ⊆ Rb(A) ∩ Ca,b = Rb(A ∩ Cb,a).

Therefore, since |A∩Ca,b| = |A∩Cb,a| = |Rb(A∩Cb,a)|, necessarily A∩Ca,b = Rb(A∩Cb,a),
i.e., the set A is invariant under the reflection Ra = Rb. In particular, since Ma,b ∈ A, it
also holds that Mb,a = Rb(Ma,b) ∈ A. In conclusion, {a, b} ∈ ∆0(A).

Finally, suppose that the arc Ca,b is longer than the arc Cb,a and that 1
2
wA(a)+

1
2
wA(b) ≥

⌈n
2
⌉. In particular, the points a, b are not antipodal. Then, by (15), the inequalities in

(13) are necessarily equalities. In particular, A ∩Ha ∩ Ca,b ⊆ Ra(A) and A ∩Hb ∩ Ca,b ⊆
Rb(A). �

Observation 4.3. Let A be a finite subset of S1 such that r := |∆0(A)| > 1. Then,

∆0(A) = {{p1, pr+1}, {p2, pr+2}, . . . , {pr, p2r}} ,
where the points p1, p2, . . . , p2r are ordered counterclockwise and the set {p1, p2, . . . , p2r} is
evenly spread around the circle.

Proof. Since ∆0(A) is a set of r pairs of antipodal points, it follows that

∆0(A) = {{p1, pr+1}, {p2, pr+2}, . . . , {pr, p2r}} ,
where the points p1, p2, . . . , p2r are ordered counterclockwise. Observe that if the set
A is invariant under some isometry ρ of S1, then by the definition of ∆0(A), the set
{p1, p2, . . . , p2r} is invariant under ρ as well. If the set {p1, p2, . . . , p2r} is not evenly spread
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around the circle, then there is 1 ≤ i ≤ r such that dS1(pi, pi+1) 6= dS1(pi+1, pi+2). With no
loss of generality, assume that dS1(pi, pi+1) < dS1(pi+1, pi+2). Then, Rpi+1

(pi) is in the open
arc Cpi+1,pi+2

and hence Rpi+1
(pi) /∈ {p1, p2, . . . , p2r}. Therefore, the set {p1, p2, . . . , p2r} is

not invariant under the reflection Rpi+1
, contradicting the invariance of A under Rpi+1

. �

Lemma 4.4. Let A be a set of n points in S1 such that n mod 4 = 2 and |∆0(A)| > 1.
There is a set ∆1 ⊆ ∆(A) \∆0(A) such that |∆1| ≥ |∆0(A)| and for every {a, b} ∈ ∆1,

1
2
wA(a) +

1
2
wA(b) ≤ n

2
− 1.

Proof. Denote r := |∆0(A)|. By Observation 4.3,

∆0(A) = {{p1, pr+1}, {p2, pr+2}, . . . , {pr, p2r}} ,
where the points p1, p2, . . . , p2r are ordered counterclockwise and the set {p1, p2, . . . , p2r} is
evenly spread around the circle.

For the rest of the proof we interpret the indices of points in S1 cyclically (e.g., p2r+1 is
interpreted as p1). Let m := |A ∩ Cp1,p2|. Since the set A is invariant under the reflection
Rpi for every 1 ≤ i ≤ 2r, it follows that for every 1 ≤ i ≤ 2r,

|A ∩ Cpi,pi+1
| = m.

Hence, n = |A| = 2r(m + 1). Since n mod 4 = 2, it follows that m is even and r is odd,
i.e., r = 2s+ 1 for some integer s which is necessarily positive since r > 1.

For every 1 ≤ i ≤ 2r, since {pi−s, pi+1+s} ∈ ∆0(A), the point ai := Mpi,pi+1
= Mpi−s,pi+1+s

is in A. Let m0 := |A ∩ Cp1,a1 | and m1 := |A ∩ Ca1,p2|. Since the set A is invariant under
the reflection Rpi for every 1 ≤ i ≤ 2r, it follows that for every 1 ≤ i ≤ 2r,

|A ∩ Cpi,ai| = m(i+1) mod 2, |A ∩ Cai,pi+1
| = mi mod 2.

For every 1 ≤ i ≤ 2r, let bi be the point in A for which {ai, bi} ∈ ∆(A) (see an example,
in which r = 3, m0 = 0, m1 = 1, in Figure 2).

For every 1 ≤ i ≤ 2r, clearly ai /∈ {p1, p2, , . . . , p2r} and hence {ai, bi} /∈ ∆0(A). There-
fore,

∆1 := {{a1, b1}, {a2, b2}, . . . , {a2r, b2r}} ⊆ ∆(A) \∆0(A)

and clearly |∆1| ≥ r = |∆0(A)|. (We remark that it is easy to show that for every
1 ≤ i ≤ 2r, the point bi is in the open arc Cpi+r,pi+1+r

and bi 6= ai+r, implying that the 2r
pairs {a1, b1}, {a2, b2}, . . . , {a2r, b2r} are distinct and hence |∆1| ≥ 2r.)

To conclude the proof, we will show that for every 1 ≤ i ≤ 2r,

1
2
wA(ai) +

1
2
wA(bi) ≤ n

2
− 1.

Since m = m0+m1+1 is even, necessarily m0 6= m1. With no loss of generality, assume
that m0 < m1.

Assume first that 1 ≤ i ≤ 2r is even. Then,

|A∩Cai,ai+r
| = r+(r−1)m+2m0 < r+(r−1)m+m0+m1 = r(m+1)−1 = 1

2
(n−2) = |A∩Cai,bi|.
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p2

p5

a6a3

a1

p1

a5

p6

a2

p3

a4

p4

b4b5

b2

b3

b1

b6

Figure 2

Hence, the point ai+r is in the arc Cai,bi. Therefore, since the points ai, ai+r are antipodal,
the arc Cai,bi is necessarily longer than the arc Cbi,ai . Additionally, since Cai+1,pi+2

=
Rai(Cpi−1,ai−1

),

|Rai(A) ∩ Cai+1,pi+2
| = |A ∩ Cpi−1,ai−1

| = m0 < m1 = |A ∩ Cai+1,pi+2
|

and hence A ∩ Cai+1,pi+2
6⊆ Rai(A). Surely, Cai+1,pi+2

⊂ Cai,ai+r
⊂ Cai,bi , since r > 1

and the point ai+r is in the arc Cai,bi. Moreover, Cai+1,pi+2
⊂ Hai, since r ≥ 3. Hence,

Cai+1,pi+2
⊂ Hai ∩ Cai,bi and therefore, A ∩Hai ∩ Cai,bi 6⊆ Rai(A). Hence, by the last part

of Lemma 4.2,
1
2
wA(ai) +

1
2
wA(bi) ≤ n

2
− 1.

Similarly, if 1 ≤ i ≤ 2r is odd, then the arc Cbi,ai is longer than the arc Cai,bi and
A ∩Hai ∩ Cbi,ai 6⊆ Rai(A) (since A ∩ Cpi−1,ai−1

6⊆ Rai(A)) and hence,

1
2
wA(ai) +

1
2
wA(bi) =

1
2
wA(bi) +

1
2
wA(ai) ≤ n

2
− 1. �

By combining (6), Lemma 4.2 and Lemma 4.4, we may now prove the following propo-
sition that will be used to prove the upper bound in Theorem 1.4.

Proposition 4.5. Let A be a set of n points in S1. Then,

(16) |AT S1(A)| ≤ n ⌊n/2⌋+ n.

Moreover, if n mod 4 = 2, then

(17) |AT S1(A)| ≤ 1
2
n2 + 2.
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Proof. For simplicity, denote

ν :=

{

1 n is even,

2 n is odd.

Clearly, for every a ∈ A,

(18) |{b ∈ A : {a, b} ∈ ∆(A)}| = ν,

and hence

(19) |∆(A)| = ν
2
n.

By (6), in light of (18),

(20) |AT S1(A)| = 2
ν

∑

{a,b}∈∆(A)

(

1
2
wA(a) +

1
2
wA(b)

)

,

and (16) follows, by using (19) and (12).
Suppose now that n mod 4 = 2. Then, ν = 1; hence, |∆(A)| = n/2, by (19); moreover,

|AT S1(A)| = 2
∑

{a,b}∈∆(A)

(

1
2
wA(a) +

1
2
wA(b)

)

,

by (20). Therefore, if |∆0(A)| ≤ 1, then by Lemma 4.2,

|AT S1(A)| ≤ 2|∆0(A)|
(

n
2
+ 1
)

+ 2|∆(A) \∆0(A)|n2 = n|∆(A)|+ 2|∆0(A)| ≤ 1
2
n2 + 2,

and if |∆0(A)| > 1 then, by Lemma 4.4, there is a set ∆1 ⊆ ∆(A) \ ∆0(A) such that
|∆1| ≥ |∆0(A)| and 1

2
wA(a) +

1
2
wA(b) ≤ n

2
− 1 for every {a, b} ∈ ∆1 and hence, by Lemma

4.2,

|AT S1(A)| ≤ 2|∆0(A)|
(

n
2
+ 1
)

+ 2|∆1|
(

n
2
− 1
)

+ 2|∆(A) \ (∆0(A) ∪∆1)|n2
= n|∆(A)| − 2 (|∆1| − |∆0(A)|) ≤ 1

2
n2. �

We are finally ready to prove Theorem 1.4.

Proof of Theorem 1.4. Recall that we need to show that for every n 6= 2,

µn(S
1) =



















1
2
n2 + n n mod 4 = 0,

1
2
n2 + 1

2
n n mod 4 = 1,

1
2
n2 + 2 n mod 4 = 2,

1
2
n2 + 1

2
n− 1 n mod 4 = 3.

Suppose first that n mod 4 = 0. The lower bound follows since |AT S1(A)| = 1
2
n2+n for

any A ∈ Fn, by (10). The upper bound follows immediately from (16).
Suppose now that n mod 4 = 1. The lower bound follows since |AT S1(A)| = 1

2
n2 + 1

2
n

for any A ∈ Fn ∪ F [+1]
n−1 , by (10) and (11c). The upper bound follows immediately from

(16).
Next, suppose that n mod 4 = 2. The lower bound follows since |AT S1(A)| = 1

2
n2 + 2

for any A ∈ F [−2]
n+2 ∪F [+2]

n−2 , by (11b) and (11d). The upper bound follows immediately from
(17).
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Finally, suppose that n mod 4 = 3. The lower bound follows since |AT S1(A)| = 1
2
n2 +

1
2
n− 1 for any A ∈ F [−1]

n+1 , by (11a). To prove the upper bound, let A be a set of n points

in S1. By (16), it holds that |AT S1(A)| ≤ nn−1
2

+ n = 1
2
n2 + 1

2
n, and the result follows

since |AT S1(A)| − n is even, by Observation 2.1, whereas nn−1
2

is odd. �

Remark 4.6. Let n be a positive integer which is divisible by 4. It was mentioned in the
proof of Theorem 1.4 that |AT S1(A)| = µn(S

1) for every A ∈ Fn. In fact,

{A ⊂ S1 : |A| = n, |AT S1(A)| = µn(S
1)} = Fn.

Indeed, let A be a set of n points in S1 such that |AT S1(A)| = µn(S
1), i.e., |AT S1(A)| =

1
2
n2 + n. Then, the proof of Proposition 4.5 reveals that for every {a, b} ∈ ∆(A), it holds

that 1
2
wA(a) +

1
2
wA(b) = n

2
+ 1 and hence {a, b} ∈ ∆0(A), by Lemma 4.2. Therefore,

∆(A) = ∆0(A) and it follows, by Observation 4.3, that A is evenly spread around the
circle.

We were not able to determine, for general n, the maximal number of 3-term arithmetic
progressions in n-element subsets of the 2-dimensional sphere S2 = {u ∈ R

3 : |u| = 1}.
We believe that the maximum is attained for (appropriate) sets that are contained in the
union of a great circle of the sphere and the pair of respective ‘poles’. We proceed to find
the maximal number of 3-term arithmetic progressions in sets of this form. Let

P := {(1, 0, 0), (−1, 0, 0)}
be the pair of ‘north and south pole’ of the sphere S2, let

E0 :=
{

(x, y, z) ∈ S2 | z = 0
}

=
{

(x, y, 0) | (x, y) ∈ S1
}

be the corresponding ‘equator’ and consider the set

E :=
{

(x, y, z) ∈ S2 | z ∈ {−1, 0, 1}
}

= E0 ∪ P
(with respect to the metric of the sphere S2).

Proposition 4.7. For every n ≥ 2,

(21) µn(E) =
1

2
n2 +



















2n− 4 n mod 4 = 0,
5
2
n− 8 n mod 4 = 1,

3n− 6 n mod 4 = 2,
5
2
n− 7 n mod 4 = 3.

In particular, (21) implies, in light of Theorem 1.4, that µn(E) > µn(S
1) for every n ≥ 5,

thus confirming (3), since for every n, obviously

(22) µn(S
2) ≥ µn(E).

As already mentioned, we believe that the lower bound (22) for µn(S
2) is tight for every

n, i.e., we make the following conjecture.
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Conjecture 4.8. For every n ≥ 2

µn(S
2) =

1

2
n2 +



















2n− 4 n mod 4 = 0,
5
2
n− 8 n mod 4 = 1,

3n− 6 n mod 4 = 2,
5
2
n− 7 n mod 4 = 3.

Note that for every n, the upper bound µn(S
2) ≤ n2 trivially holds, since for any two

points a, b ∈ S2 there is a unique point c ∈ S2 such that (a, b, c) is a 3-term arithmetic
progression.

Proof of Proposition 4.7. Clearly µ2(S
2) = 2, hence we assume that n ≥ 3. For simplicity,

denote by µ∗
n the right hand side of (21). By Theorem 1.4 (and since µ2(S

1) = 2),

µ∗
n ≥ µn(S

1),(23a)

µ∗
n ≥ µn−1(S

1) + n,(23b)

µ∗
n = µn−2(S

1) +

{

4n− 8 n mod 4 6= 2 and n 6= 4,

4n− 6 n mod 4 = 2 or n = 4.
(23c)

For any (x, y) ∈ S1, let ν(x, y) := (−x,−y) and let ι(x, y) := (x, y, 0) ∈ E0. Let A be a set
of n points in E . For simplicity, denote A0 := {u ∈ S1 | ι(u) ∈ A}, A± := A ∩ P. Note
that

AT E(A) ⊂ E3
0 ∪ (E0 ×P × E0) ∪ (P × E0 ×P) ∪ {(u, u, u) | u ∈ P},

AT E(A) ∩ E3
0 = AT E0(ι(A0)) = {(ι(a), ι(b), ι(c)) | (a, b, c) ∈ AT S1(A0)},

AT E(A) ∩ (E0 × P × E0) = {(ι(a), u, ι(ν(a))) | a ∈ A0 ∩ ν (A0) , u ∈ A±},
and

AT E(A) ∩ (P × E0 ×P) =

{

∅ P 6⊂ A,

{(u, ι(a),−u) | u ∈ P, a ∈ A0} P ⊂ A.

Therefore,

(24) |AT E(A)| =
{

|AT S1(A0)|+ |A±| · |A0 ∩ ν (A0) |+ |A±| P 6⊂ A,

|AT S1(A0)|+ 2|A0 ∩ ν (A0) |+ 2|A0|+ 2 P ⊂ A.

Now, if A± = ∅, then |AT E(A)| = |AT S1(A0)| ≤ µn(S
1) ≤ µ∗

n, by (23a); if |A±| = 1, then
|AT E(A)| ≤ µn−1(S

1) + 2⌊(n− 1)/2⌋+ 1 ≤ µ∗
n, by (24) and (23b); if P ⊂ A and n is not

divisible by 4 then, by (24) and (23c),

(25) |AT E(A)| ≤ µn−2(S
1) + 2 · 2⌊(n− 2)/2⌋+ 2(n− 2) + 2 = µ∗

n;

and if P ⊂ A, n is divisible by 4 and ν(A0) 6= A0 then, again by (24) and (23c),

(26) |AT E(A)| ≤ µn−2(S
1) + 2(n− 4) + 2(n− 2) + 2 ≤ µ∗

n − 2.
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Finally, suppose that P ⊂ A, n is divisible by 4 and ν(A0) = A0. If {a, b} ∈ ∆0(A0), then
|A0 ∩ Ca,Ma,b

| = |A0 ∩ CMa,b,b|, since the set A0 is invariant under both the antipodal map
ν and the reflection Ra = Rb, and hence, since Ma,b ∈ A0, it follows that

(n−2)−2
2

= |A0 ∩ Ca,b| = |A0 ∩ Ca,Ma,b
|+ 1 + |A0 ∩ CMa,b,b|

is odd, contradicting the assumption that n is divisible by 4. Therefore, ∆0(A0) is neces-
sarily empty and hence,

(27) |AT S1(A0)| ≤ 1
2
(n− 2)2,

by (6) and Lemma 4.2. Therefore, by (24),

(28) |AT E(A)| ≤ 1
2
(n− 2)2 + 2(n− 2) + 2(n− 2) + 2 = µ∗

n.

To conclude the proof, note that by using Claim 4.1, equality occurs in (25) whenever

A0 ∈











F [−1]
n−1 n mod 4 = 1,

Fn−2 n mod 4 = 2 or n = 3,

F [+1]
n−3 n mod 4 = 3 and n 6= 3,

and for every n divisible by 4, equality occurs in (28) whenever A0 ∈ Fn−2. �

Remark 4.9. It is not true in general that if A0 is a set of n − 2 points in S1 for which
|AT S1(A0)| = µn−2(S

1), then |AT E(ι(A0) ∪ P)| = µn(E) (where ι is as in the proof of
Proposition 4.7). Indeed, if n mod 4 = 3, then for any A0 ∈ Fn−2, it was mentioned in the
proof of Theorem 1.4 that |AT S1(A0)| = µn−2(S

1), but the set A0 ∩ ν (A0) is empty and
hence |AT E(ι(A0) ∪ P)| = µn(E)− 2(n− 3), by (24) and Proposition 4.7.

Moreover, if n > 4 is divisible by 4, then there is not a single set A0 of n − 2 points
in S1 for which both |AT S1(A0)| = µn−2(S

1) and |AT E(ι(A0) ∪ P)| = µn(E). Indeed,
if ν(A0) = A0 then |AT S1(A0)| ≤ µn−2(S

1) − 2, by (27) and (11b) (or (11d)), and if
ν(A0) 6= A0 then |AT E(ι(A0) ∪ P)| ≤ µn(E)− 2, by (26) and the last line of the proof of
Proposition 4.7.

5. Additional bounds

Proposition 5.1. Let Tr be the (discrete) r-regular tree, equipped with the graph metric.
For every ball A in Tr it holds that

(29) |AT Tr
(A)| =

(

1

2
+

(r − 2)2

2r2

)

|A|2 + 2(r − 2)

r2
|A|+ 2

r2
.

Consequently,

lim sup
n→∞

µn(Tr)

n2
≥ 1

2
+

(r − 2)2

2r2
.

Note that for any tree T , it holds that µn(T ) ≤ n2 − 2n+ 2 for every n, by Claim 2.2.
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Proof of Proposition 5.1. Consider a ball A = BTr
(v0; d0) for some vertex v0 and a non-

negative integer d0. Note that

(30) |A| = 1 + r

d0
∑

d=1

(r − 1)d−1 = 1 +
r

r − 2

(

(r − 1)d0 − 1
)

=
r

r − 2

(

(r − 1)d0 − 2

r

)

.

Let b be a vertex in A, let d1 := d0 − dTr
(v0, b), and let C be the collection of connected

components of the graph that is obtained from Tr by removing the vertex b (and all edges
adjacent to it). For a, c ∈ Tr it holds that (a, b, c) ∈ AT Tr

(A) if and only if either a = b = c
or a, c belong to different sets in the collection C and dTr

(b, a) = dTr
(b, c) ≤ d1. Therefore,

wA(b) = 1 + |C|(|C| − 1)

d1
∑

d=1

(

(r − 1)d−1
)2

= 1 + r(r − 1)

d1
∑

d=1

(

(r − 1)2
)d−1

= 1 + r(r − 1)
((r − 1)2)

d1 − 1

(r − 1)2 − 1
=

(r − 1)2d1+1 − 1

r − 2
.

Hence, by (6),

(r − 2)|AT Tr
(A)|+ |A| =

∑

b∈A

((r − 2)wA(b) + 1)

= ((r − 2)wA(v0) + 1) +

d0−1
∑

d1=0





∑

b∈STr (v0;d0−d1)

((r − 2)wA(b) + 1)





= (r − 1)2d0+1 +

d0−1
∑

d1=0

r(r − 1)d0−d1−1(r − 1)2d1+1.

Therefore, by (30),

(r − 2)|AT Tr
(A)|+ |A| = (r − 1)d0

(

(r − 1) · (r − 1)d0 + r

d0−1
∑

d1=0

(r − 1)d1

)

=

(

r − 2

r
|A|+ 2

r

)(

(r − 1)

(

r − 2

r
|A|+ 2

r

)

+ (|A| − 1)

)

,

which implies (29). �

Proposition 5.2. Consider the ℓ-dimensional lattice graph Z
ℓ (where two vertices are

adjacent if the Euclidean distance between them is 1), with respect to the graph metric

(alternatively, dZℓ(a, b) =
∑ℓ

i=1 |ai − bi| for every a = (ai)
ℓ
i=1 and b = (bi)

ℓ
i=1 in Z

ℓ). There
is a positive constant cℓ such that for every n,

µn

(

Z
ℓ
)

≥ cℓ n
3− 1

ℓ .

Proof. With no loss of generality we may assume that n > (6e)ℓ. Let

d0 :=

⌊

ℓ

(

ℓ
√
n

2e
− 1

)⌋
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and consider the ball A = BZℓ(v0; d0) for an arbitrary v0 ∈ Z
ℓ. Note that

(31) |A| =
ℓ
∑

k=0

(

ℓ

k

)

2k
(

d0
k

)

≤ 2ℓ
ℓ
∑

k=0

(

ℓ

k

)(

d0
k

)

= 2ℓ
(

d0 + ℓ

ℓ

)

<

(

2e(d0 + ℓ)

ℓ

)ℓ

≤ n

and for every positive integer d,

(32) |SZℓ(v0; d)| =
ℓ
∑

k=1

(

ℓ

k

)

2k
(

d− 1

k − 1

)

≥ 2ℓ
(

d− 1

ℓ− 1

)

.

For a = (a1, a2, . . . , aℓ), b = (b1, b2, . . . , bℓ), c = (c1, c2, . . . , cℓ) ∈ Z
ℓ, it holds that (a, b, c) is

a 3-term arithmetic progression in Z
ℓ if and only if (bi−ai)(bi− ci) ≤ 0 for every 1 ≤ i ≤ ℓ

and
∑ℓ

i=1 |ai − bi| =
∑ℓ

i=1 |bi − ci|. In particular, if b = (b1, b2, . . . , bℓ) ∈ SZℓ(v0; d) for some
0 ≤ d ≤ d0, then (a, b, c) ∈ AT Zℓ(A) for any a = (a1, a2, . . . , aℓ), c = (c1, c2, . . . , cℓ) ∈ Z

ℓ

such that ai ≥ bi ≥ ci for every 1 ≤ i ≤ ℓ and

ℓ
∑

i=1

(ai − bi) =
ℓ
∑

i=1

(bi − ci) ≤ d0 − d.

Hence, for every 0 ≤ d ≤ d0 and every b ∈ SZℓ(v0; d),

wA(b) ≥
d0−d
∑

k=0

(

k + ℓ− 1

ℓ− 1

)2

≥
d0−d
∑

k=0

(

k + ℓ− 1

2ℓ− 2

)

=

(

d0 − d+ ℓ

2ℓ− 1

)

.

Therefore, by (6) and (32),

|AT Zℓ(A)| =
d0
∑

d=0





∑

b∈S
Zℓ

(v0;d)

wA(b)



 >

d0−ℓ+1
∑

d=ℓ





∑

b∈S
Zℓ

(v0;d)

wA(b)





≥
d0−ℓ+1
∑

d=ℓ

2ℓ
(

d− 1

ℓ− 1

)(

d0 − d+ ℓ

2ℓ− 1

)

= 2ℓ
(

d0 + ℓ

3ℓ− 1

)

.

Hence, since |A| < n, by (31), and d0 > 2ℓ− 1,

µn(Z
ℓ) > µ|A|(Z

ℓ) ≥ |AT Zℓ(A)| > 2ℓ
(

d0 + ℓ

3ℓ− 1

)

> 2ℓ
(

d0 + ℓ

3ℓ− 1

)3ℓ−1

> 2ℓ
(

d0 + ℓ+ 1

3ℓ

)3ℓ−1

> 2ℓ
(

ℓ
√
n

6e

)3ℓ−1

=
2ℓ

(6e)3ℓ−1
n3− 1

ℓ . �

Proposition 5.3. For every metric space M and every n,

(33) µn(M) ≤ 2

⌊

n

2

⌊

n− 1

2

⌋⌈

n− 1

2

⌉⌋

+ n =
1

4
n3 − 1

2
n2 +











n n is even,
5
4
n n mod 4 = 1,

5
4
n− 1 n mod 4 = 3.
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Moreover, there is a metric space M0 such that for every n,

µn(M0) = (n− 2)
⌊n

2

⌋ ⌈n

2

⌉

+ n =
1

4
n3 − 1

2
n2 +

{

n n is even,
3
4
n + 1

2
n is odd.

Proof. Let A be a set of n points in some metric space M . For every a ∈ A we may
partition the set A \ {a} to two sets A1, A2 such that none of them contains points b, c for
which dM(a, c) = 2 dM(a, b) (for instance, we may take A1 to be the set of x ∈ A \ {a} for
which ⌊log2 dM(a, x)⌋ is odd and A2 to be the set of x ∈ A \ {a} for which ⌊log2 dM(a, x)⌋
is even). Hence,

|{(x, y, z) ∈ AT M(A) : x = a}| ≤ 1 + |A1| |A2| ≤ 1 +

⌊

n− 1

2

⌋⌈

n− 1

2

⌉

.

It follows that

|AT M(A)| =
∑

a∈A

|{(x, y, z) ∈ AT M(A) : x = a}| ≤ n + n

⌊

n− 1

2

⌋⌈

n− 1

2

⌉

,

and hence, by Observation 2.1,

|AT M(A)| ≤ n+ 2

⌊

n

2

⌊

n− 1

2

⌋⌈

n− 1

2

⌉⌋

,

which proves (33).
To get the second part, consider a complete bipartite graph with infinite parts L and

R, with respect to the graph metric, i.e., dL∪R(x, y) = 2 if x, y are distinct vertices in the
same part and dL∪R(x, y) = 1 if x, y are in different parts. For every finite A ⊂ L ∪ R,
clearly

|AT L∪R(A)| = |A ∩ L| |A ∩ R|(|A ∩ L| − 1) + |A ∩R| |A ∩ L|(|A ∩R| − 1) + |A|
= (|A| − 2)|A ∩ R| |A ∩ L| + |A|.

Hence, for every n,

µn(L ∪ R) = (n− 2) ⌊n/2⌋ ⌈n/2⌉ + n. �

Remark 5.4. The argument proving (33) may also be presented as follows. Let A be a
set of n points in some metric space M . We may partition the finite set {dM(a, b) | a, b ∈
A, a 6= b} of positive real numbers to two sets D1, D2 such that none of them contains
a number α and the number 2α. Now consider the graph on the vertex set A such that
distinct vertices a, b ∈ A are adjacent if dM(a, b) ∈ D1. For any 0 ≤ i ≤ 3, let ri denote the
number of sets of three distinct vertices of the graph having exactly i edges between them.
Clearly,

|AT M(A)| ≤ n + 2(r1 + r2) = n + 2

(

n

3

)

− 2(r0 + r3),
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and the result follows, since

r0 + r3 ≥
1

24
n3 − 1

4
n2 +











1
3
n n is even,
5
24
n n mod 4 = 1,

5
24
n+ 1

2
n mod 4 = 3,

by Goodman’s theorem [12].

6. Concluding remarks and open questions

In this paper we studied the maximal number of 3-term arithmetic progressions in n-
element subsets of a metric space. We suggest a few directions for future research.

The extent to which the result of Green and Sisask extends. Green and Sisask
proved that the maximal number of 3-term arithmetic progressions in n-element sets of
integers is ⌈n2/2⌉. In Theorem 1.2 we showed that the same holds if the set of integers
is replaced by any uniquely geodesic Riemannian manifold in which every local geodesic
is a geodesic. In particular, the result of Green and Sisask is valid in Cartan–Hadamard
manifolds, i.e., complete simply connected Riemannian manifolds that have everywhere
nonpositive sectional curvature. However, (2) implies that this result does not extend to
the wider class of Hadamard spaces, i.e., complete globally nonpositively curved (in the
sense of A. D. Alexandrov) metric spaces.

It would be interesting to understand what is the largest natural family of metric spaces
to which the result of Greem and Sisask extends.

Spherical geometry. In Theorem 1.4 we determined the maximal number of 3-term
arithmetic progressions in n-element subsets of the 1-dimensional sphere S1.

It would be very interesting to confirm or refute Conjecture 4.8 regarding the 2-dimensional
sphere S2 and proceed to understand the maximal number of 3-term arithmetic progres-
sions in n-element subsets of higher dimensional spheres.

Asymptotic bounds. It would be interesting to determine, at least asymptotically, the
maximal number of 3-term arithmetic progressions in n-element subsets of additional met-
ric spaces. In particular, it would be interesting to decide whether the asymptotic lower
bounds (2), in the case of the r-regular tree Tr, and (4), in the case of the lattice graph
Z
ℓ, are tight.

Equilateral (and other) triangles. A 3-term arithmetic progression in a metric space
may also be viewed as a (degenerate) isosceles triangle. One may ask what is the maximal
number of triangles of other types in n-element subsets of a metric space. In the Euclidean
setting, this question was already studied in [11] for various types of triangles, including
equilateral triangles. For a metric space M and a positive integer n, let us denote:

ηn(M) := max
A⊆M, |A|=n

∣

∣

{

(a, b, c) ∈ A3 : dM(a, b) = dM(a, c) = dM(b, c) > 0
}∣

∣ .

It was shown in [11] that ηn(R
2) = Θ(n2), ηn(R

3) = O(n7/3) (later improved to ηn(R
3) =

O(n11/5) in [2]), ηn(R
4) = O(n8/3), ηn(R

5) = O(n26/9) and ηn(R
k) = Θ(n3) for any k ≥ 6.
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It would be interesting to understand the asymptotics of ηn in other metric spaces. It is
simple to show that ηn(Tr) = Θ(n3) for any r ≥ 3 (for the lower bound, take points on a
sphere around an arbitrary vertex v0, evenly distributed among the connected components
of the graph that is obtained from the tree by removing v0). The argument in [11] showing
the quadratic upper bound in the Euclidean plane is valid for the hyperbolic plane as well,
but we believe that in fact ηn(H

2) = Θ(n).

Longer arithmetic progressions. The result of Green and Sisask on the maximal num-
ber of 3-term arithmetic progressions in n-element sets of integers was recently extended
to arithmetic progressions of any length in [4, §8.1], where it was proved that for any k,
the maximal number of k-term arithmetic progressions in n-element sets of integers is at-
tained for n-term arithmetic progressions (among other sets). Another generalization of
the problem for integers was studied in [1].

It would be interesting to study the maximal number of k-term arithmetic progressions
in n-element subsets of a metric space for k > 3.
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