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Abstract

We introduce tools from numerical analysis and high dimensional proba-
bility for precision control and complexity analysis of subdivision-based
algorithms in computational geometry. We combine these tools with the
continuous amortization framework from exact computation. We use
these tools on a well-known example from the subdivision family: the
adaptive subdivision algorithm due to Plantinga and Vegter. The only ex-
isting complexity estimate on this rather fast algorithm was an exponen-
tial worst-case upper bound for its interval arithmetic version. We go be-
yond the worst-case by considering both average and smoothed analysis,
and prove polynomial time complexity estimates for both interval arith-
metic and finite-precision versions of the Plantinga-Vegter algorithm.
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1 Introduction

Subdivision based algorithms are ubiquitous in computational geometry. These
algorithms have the advantage of simplicity, and often have good practical per-
formance. The two main challenges related to subdivision based algorithms are
the control of precision (or a termination criterion), and complexity analysis.
As late as summer 2019, complexity analysis aspect of subdivision based geo-
metric algorithms was considered to be “largely open” [40]. In this paper, we
contribute to both of the main challenges by introducing a hybrid toolbox that
combines condition numbers, high dimensional probability theory, and contin-
uous amortization framework introduced by Burr, Krahmer, and Yap [12]. To
keep our writing focused, and the length of the article finite, we only show-
case the toolbox on a well-known member of this large family; the algorithm
of Plantinga and Vegter.

Plantinga-Vegter (PV) algorithm is an adaptive subdivison algorithm for
meshing curves and surfaces [30]. The algorithm admits an implicit equation
of a curve or a surface and outputs an isotopic piecewise linear approximation
with controlled Hausdorff distance. The initial paper of Plantinga and Vegter
contained no complexity analysis and not even a formal setting fixing either
the kind of functions implicitly defining the considered curves and surfaces or
the arithmetic used. However, concrete implementations in the paper indicated
the efficiency of the algorithm. The algorithm is now widely considered to be
very efficient.

The first complexity analysis of the PV algorithm was published thirteen
years later by Burr, Gao and Tsigaridas [11] (cf. [8]). The paper of Burr,
Gao, and Tsigaridas focused on the subdivision procedure of the
Plantinga-Vegter algorithm and only analyzed the complexity for
polynomials with integer coefficients. The paper provides bounds that are
exponential both in the degree d of the input polynomial and in its
logarithmic height τ . The discrepancy between the exponential complexity
estimate and the practical efficiency of the PV algorithm was marked by the
following comment at the end of the paper

Even though our bounds are optimal, in practice, these are quite pessimistic [. . . ]

The authors further observe that, following from their Proposition 5.2 (see
Theorem 6.2 below) an instance-based analysis of the algorithm (i.e., one
yielding a cost that depends on the input at hand) could be derived from the
evaluation of a certain integral. And they conclude their paper by writing

Since the complexity of the algorithm can be exponential in the inputs [size],
the integral must be described in terms of additional geometric and intrinsic
parameters.

In this paper, we make progress towards these aims by going beyond the
worst-case analysis and by using condition numbers. We believe condition
numbers are a perfect fit for the latter aim as they provide a geometric and
arguably intrinsic parameter.



On the Complexity of the Plantinga-Vegter Algorithm 3

We analyze the complexity of the PV algorithm in two different versions
corresponding, roughly speaking, to its arithmetic complexity and its (arguably
more realistic) bit complexity. Our analysis deals with the subdivision routine
of the PV algorithm for curves and surfaces as the special cases for n = 2 and
n = 3, but we aim for estimates that hold for any n. We perform both average
and smoothed analysis for the two versions of the PV algorithm, so we provide
four different complexity analyses.

The average analysis framework is well-known. The smoothed analysis
framework might, in contrast, require a bit of an explanation. Suppose we
endow the space of n-variate degree d polynomials with a norm ‖ ‖, and a
probability measure µ (with as few assumptions as possible on µ). Suppose g
is a random polynomial distributed with respect to µ. Then we consider an
arbitrary polynomial f , and we fix a tolerance parameter σ > 0. We consider
q = f + σ‖f‖g as random perturbation of f with tolerance σ, and conduct
average analysis of the PV algorithm for q. This type of estimate could a pri-
ori depend on the arbitrary polynomial f . We aim for a uniform estimate that
provides an upper bound for any f , and depends only on σ, n, and d. This
uniform upper bound will be the smoothed analysis of the PV algorithm. It
turns out that this random perturbation idea was already considered in the
computational geometry literature in an experimental fashion, and there were
aims for building a theoretical framework (see section 4 of [23]).

Our main results Theorem 3.6 and Theorem 3.7 provide the four promised
estimates on the complexity of the PV algorithm for any number of variables
n. For the special case of the plane curves, the average and smoothed analysis
of the arithmetic complexity of the PV algorithm are respectively O(d7) and
O
(
d7(1 + 1

σ )3
)
. The average and smoothed analysis of the bit complexity are

just slightly worse: O(d7 log2 d) and O(d7 log2 d (1 + 1
σ )3), respectively. These

bounds are in marked contrast with the O(2τd
4 log d) worst-case complexity

bound in [11].
For a clear presentation of our contribution and related complexity

considerations we need to make a few remarks:

(1) The use of floating-point arithmetic generates numerical errors which ac-
cumulate during the computation. An important remark is that, despite this
accumulation of errors, our algorithm returns a correct output, a subdivision
with the properties we want. It is, in this sense, a certified algorithm. At the
heart of this remark is the fact that a sufficiently small perturbation of a correct
subdivision is still a correct subdivision for a generic (i.e. non-singular) input.
Condition numbers allow us to estimate how large this perturbation may be.
Then, the fact that we can estimate these condition numbers, we control the
precision of the operations’ round-off, and we know how these operations are
sequenced further allows us to ensure that the subdivision we constructed is
close enough to the one we would have done in an error-free context and both
yield polygons with the same isotopy type.

Needless to say, for input data outside the set satisfying the generic prop-
erty above our reasoning does not hold. The set of such inputs, referred to as
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ill-posed in numerical analysis, has measure zero. Condition numbers relate to
ill-posedness in the sense that the closer a data is to the set of ill-posed inputs
the larger becomes its condition number. It is these facts that allows one to
establish average and smoothed analysis by means of probabilistic estimates
on the condition numbers. This general scheme was proposed in [34]. A more
detailed discussion of these issues is in [2, §9.5]. A relatively early case of a
fully studied variable-precision algorithm is in [19]. An account of the use of
floating-point arithmetic in computational geometry is given in [23].

(2) Most of the probabilistic analyses for cost measures or condition numbers
use the Gaussian measure. This choice is mainly for technical convenience.
For the analysis of condition numbers, this goes back to Goldstine and von
Neumann [25] and, more recently, resulted in simple bounds for a large class
of condition numbers [20, 4, 5, 29].

In the last few years, however, the search for more robust complexity anal-
ysis resulted in estimates that hold for a (quite) general family of measures.
The family of subgaussian measures which includes all compactly supported
random variables provides a good testing ground. An analysis of a condition
number for these distributions occupies [22, 21]. It is for this class of distri-
butions (subgaussians with an anti-concentration property) that our results,
both average and smoothed, are proved.

(3) The subdivision procedure we analyze can be considered at three levels
of generality: the abstract, in which we only take into account the number of
iterations of the subdivision procedure; the interval, in which we take also into
account the number of arithmetic operations; and the effective, in which we
take into account not only the number of arithmetic operations, but also the
precision that they need, obtaining a realistic estimation of the bit-cost of the
algorithm. This division follows a trend for analysing subdivision algorithms
initiated by Xu and Yap [39] (cf. [40]).

Our condition-based analysis can be applied at each of these three levels,
hopefully showing the usefulness of the approach. Whereas this paper focuses
on a particular subdivision procedure we believe that the techniques in this
paper can be readily applied to other subdivision based algorithms in com-
putational geometry. We note, however, that the complexity analysis in this
paper would have been impossible without the continuous amortization tech-
nique developed in the exact numerical context [12, 9]. In this regard, we hope
to trigger a fruitful exchange of ideas between the different approaches to con-
tinuous computation and improve our (seemingly preliminary) understanding
of the complexity of subdivision algorithms in computational geometry.

Outline

The rest of the paper is structured as follows: We start with a section that
contains notation. We beg readers’ pardon for this inconvenient start; this
seemed the simplest way for getting things clear. Then in Section 2 we dis-
cuss the Plantinga-Vegter algorithm and the n-dimensional generalization of
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its subdivision method in the abstract, the interval arithmetic, and the effec-
tive versions. Section 3 introduces our randomness model and contains main
complexity estimates of this paper. In Section 4, we present a geometric frame-
work (read Hilbert space structure) to deal with homogeneous polynomials. In
Section 5, we introduce the condition number κaff —both local, i.e., at a point
x, and global— along with its main properties. In Section 6, we present the ex-
isting results on the complexity of Plantinga-Vegter algorithm from [11], and
we relate these results to the local condition number. In Section 7, we carry out
the finite-precision analysis deriving the corresponding bounds for bit-cost. Fi-
nally, in Section 8, we derive average and smoothed complexity bounds under
(quite) general randomness assumptions.

Notation

Throughout the paper, we will assume some familiarity with the basics of
differential geometry. For a smooth map f : Rm → R, Dxf : TxRm ∼= Rm →
TxR ∼= R denotes the tangent map of f at x ∈ Rm. We will write ∂f :
Rm → Rm, x 7→ ∂f(x) when we see it as a smooth function of x. When
we want to see ∂f as a vector of formal derivatives, we will write ∂f(X)
where X represents formal variables. For general smooth maps between smooth
manifolds F : M → N , we will just write DxF : TxM → TF (x)N as the
tangent map.

In what follows, Pn,d will denote the set of real polynomials in the n vari-
ables X1, . . . , Xn with degree at most d, Hn,d the set of homogeneous real
polynomials in the n + 1 variables X0, X1, . . . , Xn of degree d, and ‖ ‖ and
〈 , 〉 will denote the standard norm and inner product in Rm as well as the
Weyl norm and inner product in Pmn,d and Hmn,d. Given a polynomial f ∈ Pn,d,
fh ∈ Hn,d will be its homogenization and ∂f the polynomial map given by
its partial derivatives. We will denote by the Cyrillic character �, ’yu’, the
central projection (4.1) that maps Rn into Sn. For details see Section 4. Addi-
tionally, VR(f) and VC(f) will be, respectively, the real and complex zero sets
of f .

For a set S ⊂ Rn, we will denote by �S the set of n-boxes of the form
x + In, where I is an interval, that are contained in S and, for a given box
B ∈ �Rn, m(B) will be its middle point, w(B) its width, and volB = w(B)n

its volume.
Regarding probabilistic conventions, we will denote the probability of an

event by P, random variables by x, y, . . . and random polynomials by f, g, q, . . .
The expression Ex∈Kg(x) will denote the expectation of g(x) when x is sampled
uniformly from the set K and Eyg(y) the expectation of g(y) with respect to
a previously specified probability distribution of y.

Regarding complexity parameters, n will be the number of variables, d the
degree bound, and N =

(
n+d
n

)
the dimension of Pn,d. Finally, ln will denote

the natural logarithm and log the logarithm in base 2.
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2 The Plantinga-Vegter (Subdivision)
Algorithm

Given a real smooth hypersurface in Rn described implicitly by a map f :
Rn → R and a region [−a, a]n, the Plantinga-Vegter Algorithm constructs a
piecewise-linear approximation of the intersection of its zero set VR(f) with
[−a, a]n isotopic to this intersection inside [−a, a]n. The Plantinga-Vegter
algorithm (see Figure 1 for an illustration1) is divided in two phases:

1. Subdivision phase: In this phase, the Plantinga-Vegter algorithm subdivides
[−a, a]n into smaller and smaller boxes until all the boxes satisfy a certain
condition (see (2.1)).

2. Post-processing phase: In this phase, the Plantinga-Vegter algorithm uses
the obtained subdivision to produce a piecewise-linear approximation of
the given hypersurface.

We will focus on the subdivision phase of the Plantinga-Vegter algorithm. We
do this because the complexity of subdivision-based algorithms is usually dom-
inated by the complexity of the subdivision phase. This follows the guidelines
of the first complexity analysis given by Burr, Gao and Tsigaridas [11] (cf. [8]).

We note that it would be interesting to incorporate the complexity of the
post-processing phase of the algorithm to our estimates in this paper: either
the original one by Plantinga-Vegter [30], for n ≤ 3, or the generalization
to higher dimensions by Galehouse [24], for arbitrary n. We also don’t cover
existing extensions of the Plantinga-Vegter algorithm to singular curves [10].

From now on, when we say Plantinga-Vegter algorithm we are referring to
the Plantinga-Vegter subdivision phase and, following [11], we restrict to the
case in which f : Rn → R is a polynomial. We now describe this algorithm at
three levels: abstract, interval and effective.

2.1 Abstract level: Algorithm PV-Abstract

The Plantinga-Vegter algorithm subdivides [−a, a]n until a certain regularity
condition is satisfied in each of the boxes B of the subdivision. Let h, h̃ :
Rn → (0,∞) be some fixed positive maps, conveniently chosen (see (2.3) and
Remark 2.2 below). Then this regularity condition is

Cf (B): either 0 /∈ (hf)(B) or 0 /∈ 〈(h̃∂f)(B), (h̃∂f)(B)〉. (2.1)

Here f(B) stands for the set of values of f on the box B. Note that this
condition is satisfied when either B does not contain any zero of f or no pair
of gradient vectors of f are orthogonal in B.

In its abstract form, the Plantinga-Vegter algorithm is described in Algo-
rithm PV-Abstract below. The StandardSubdivision procedure in the
description refers to taking a box B and subdividing it into 2n boxes of equal
size.

1This figure is taken from [37, Figure 5§1].
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Step 0 of subdivision phase Step 1 of subdivision phase

Step 2 of subdivision phase Step 4 of subdivision phase

Post-processing phase

Green: VR(f) Red: Subdivision Blue: PL approximation of VR(f)

Figure 1 Plantinga-Vegter applied to f = X4 − 6X3 + 2X2Y 2 − 6X2Y −
34X2 − 6XY 2 − 320XY + 376X + Y 4 − 6Y 3 − 34Y 2 + 376Y + 3128
in [−10, 10]2.
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Algorithm 1: PV-Abstract

Input : f : Rn → R with interval approximations �[hf ] and
�[h̃∇f ]
a ∈ (0,∞)

Precondition : VR(f) is smooth inside [−a, a]n

S̃ ← {[−a, a]n}
S ← ∅
repeat

Take B in S̃
S̃ ← S̃ \ {B}
if Cf (B) true then
S ← S ∪ {B}

else

S̃ ← S̃ ∪ StandardSubdivision(B)

until S̃ = ∅
return S

Output : Subdivision S ⊆ �[−a, a]n of [−a, a]n

Postcondition: For all B ∈ S, Cf (B) is true

2.2 Interval level: Algorithm PV-Interval

To check condition Cf (B), we use interval approximations allowing us to certify
whether or not 0 is in the image of B under a certain map. Recall that an
interval approximation [31] of a function F : Rm → Rm′ is a map

�[F ] : �Rm → �Rm
′

such that for all B ∈ �Rm,

F (B) ⊆ �[F ](B). (2.2)

A natural choice for the interval approximation of a C1-function F : Rm →
Rm′ is its standard interval approximation

�Rm 3 B 7→ �std[F ](B) := F (m(B))+
√
m

(
sup
x∈B
‖DxF‖

)[
−w(B)

2
,
w(B)

2

]m′
where DxF is the tangent map of F at x and ‖DxF‖ its operator norm. Note
that to construct this one in practice, we need to be able to evaluate F and
to compute efficiently upper bounds for supx∈B ‖DxF‖. In our case, this is
possible due to the fact that we are working with polynomials.



On the Complexity of the Plantinga-Vegter Algorithm 9

Let f ∈ Pn,d. We will consider

h(x) =
1

‖f‖(1 + ‖x‖2)(d−1)/2
and h̃(x) =

1

d‖f‖(1 + ‖x‖2)d/2−1
(2.3)

along with the maps

f̂ : x 7→ h(x)f(x) =
f(x)

‖f‖(1 + ‖x‖2)(d−1)/2
(2.4)

and

∂̂f : x 7→ h̃(x)∂f(x) =
∂f(x)

d‖f‖(1 + ‖x‖2)d/2−1
(2.5)

where ‖f‖ is the Weyl norm of f (which we recall in Definition 4.2). In §4.3

we will prove the following property of f̂ and ∂̂f .

Proposition 2.1 Let f ∈ Pn,d. Then

�[hf ] : B 7→ f̂(m(B)) + (1 +
√
d)
√
n

[
−w(B)

2
,
w(B)

2

]
is an interval approximation of hf , and

�[h̃∂f ] : B 7→ ∂̂f(m(B)) +
(
1 +
√
d− 1

)√
n

[
−w(B)

2
,
w(B)

2

]n
is an interval approximation of h̃∂f .

Remark 2.2 A natural question at this point is why we are using interval approxima-
tions for hf and h̃∂f instead of for f and ∂f . We work with hf and h̃f for the sake
of simplicity. We prefer to work with the simpler interval approximations for hf and
h̃∂f (shown in Proposition 2.1) than with possibly more complex ones for f and ∂f .

We now note that checking the condition “0 /∈ 〈B,B〉” for a box B can be
reduced to checking √

n

2
w(B) ≤ ‖m(B)‖.

To do the latter we will use Lemma 4.6 (which we also prove in §4.3). Together
with the interval approximations in Proposition 2.1, we derive a condition C�f ,
implying Cf (B) and easy to check.

Theorem 2.3 Let B ∈ �Rn. If the condition

C�f (B) :=
∣∣∣f̂(m(B))

∣∣∣ > 2
√
dnw(B) or

∥∥∥∂̂f(m(B))
∥∥∥ > 2

√
2
√
dnw(B).

is satisfied, then Cf (B) is true.

Theorem 2.3 is the basis of the interval version of Algorithm PV-Interval
below.
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Algorithm 2: PV-Interval

Input : f ∈ Pn,d
a ∈ (0,∞)

Precondition : VR(f) is smooth inside [−a, a]n

S̃ ← {[−a, a]n}
S ← ∅
repeat

Take B in S̃
S̃ ← S̃ \ {B}
if
∣∣∣f̂(m(B))

∣∣∣ > (1 +
√
d)
√
nw(B) then

S ← S ∪ {B}
else if

∥∥∥∂̂f(m(B))
∥∥∥ > √2(1 +

√
d− 1)nw(B) then

S ← S ∪ {B}
else

S̃ ← S̃ ∪ StandardSubdivision(B)

until S̃ = ∅
return S

Output : Subdivision S ⊆ �[−a, a]n of [−a, a]n

Postcondition: For all B ∈ S, Cf (B) is true

Remark 2.4 There are other alternatives for interval approximations and our frame-
work has the flexibility to incorporate these alternatives. For instance, the interval
approximations in [11], which we will refer to as BGT, are based on the Taylor ex-
pansion at the midpoint. In the interlude at the end of Section 6, we will show that
our complexity analysis also applies to this interval approximation.

Remark 2.5 We have described PV-Interval without any reference to interval ap-

proximations. Such references have been replaced by explicit conditions on
∣∣∣f̂(m(B))

∣∣∣
and

∥∥∥∂̂f(m(B))
∥∥∥.

2.3 Effective level: Algorithm PV-Effective

For the effective version (Algorithm PV-Effective), we will use floating-
point numbers (cf. [2, §O.3.1] or [26, §1.2]). We do this, instead of using fixed-
point or big rationals, because the use of floating-point is computationally
cheap, both in time and space. We want to emphasize, however, that our use of
floating-point numbers does not compromise the correctness of the algorithm
(cf. Corollary 7.4).
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A floating-point number has the form

± 0.a1a2 · · · am 2e

where a1, . . . , am ∈ {0, 1} and e ∈ Z. In general, the number of significant
digits, m, is fixed during the computation of arithmetic expressions, but it can
be updated at different iterations of an algorithm if an increase in precision is
needed.

We note that every real number x ∈ R has a floating-point approximation
rm(x) with m digits, such that

rm(x) = x(1 + δ)

for some δ ∈ (−2−(m−1), 2−(m−1)). Moreover, given two floating-point numbers
x and y with m significant digits, we can easily compute

rm(x+ y), rm(x− y), rm(xy), rm(x/y), and rm
(√
x
)

in O(m2) bit-operations. Comparisons between floating-point numbers can
also be made using this amount of bit-operations.

Remark 2.6 In the above estimation we are ignoring the complexity of adding the
exponents or operating with them. In general the size of e is of the order of |log|x||,
and so the bit-size of e is of the order of |log|log|x|||. This means that, unless the
numbers we deal with are enormous, one should not worry about the bit-size of e for
cost estimates.

Finite-precision analyses do not rely on the precise form of floating-point
numbers but just in some general properties which we now summarize. There
is a subset F ⊂ R of floating-point numbers (which we assume contains 0),
a rounding map r : R → F, and a round-off unit u ∈ (0, 1) satisfying the
following conditions:

(i) For any x ∈ F, r(x) = x. In particular, r(0) = 0.
(ii) For any x ∈ R, r(x) = x(1 + δ) with |δ| ≤ u.

Moreover, for ◦ ∈ {+,−,×, /}, there are approximate versions

◦̃ : F× F→ F

such that for all x, y ∈ F,

x ◦̃ y = (x ◦ y)(1 + δ) (2.6)

for some δ such that |δ| < u. We also assume that there is

√̃
: F→ F
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such that for all x ∈ F with x ≥ 0,

√̃
x =
√
x(1 + δ)

for some δ such that |δ| < u. Each of these operations and comparisons between
numbers in F can be done with cost O

(
log2 1

u

)
. For the floating-point numbers

we described above we have u = 2−(m−1).
Once the way we deal with finite precision is clear, we introduce the efficient

version of the Plantinga-Vegter algorithm (PV-Effective below). We note
that the algorithm updates the number of significant digits, m := |logu|+ 1,
depending on the width of the box that is being considered, being able, if
necessary, to read the coefficients of f with this updated precision.

Algorithm 3: PV-Effective

Input: f ∈ Pn,d
a ∈ [1,∞)
Precondition : VR(f) is smooth inside [−a, a]n

m0 ← 7 +
⌈
log
√
dn
⌉

S̃ ← {[−a, a]n}
S ← ∅
repeat

Take B in S̃
S̃ ← S̃ \ {B}
mB ←m0 + dmax {log a, log(a/w(B))}e
Switch to floating-point numbers with mB significant digits

if
∣∣∣f̂(m(B))

∣∣∣ > 4
√
dnw(B) then

S ← S ∪ {B}
else if

∥∥∥∂̂f(m(B))
∥∥∥ > 6

√
dnw(B) then

S ← S ∪ {B}
else

S̃ ← S̃ ∪ StandardSubdivision(B)

until S̃ = ∅
return S

Output: Subdivision S ⊆ �[−a, a]n of [−a, a]n

Postcondition: For all B ∈ S, Cf (B) is true
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Remark 2.7 As in the case of PV-Interval, we could rewrite the conditions∣∣∣f̂(m(B))
∣∣∣ > 4

√
dnw(B) and

∥∥∥∂̂f(m(B))
∥∥∥ > 6

√
dnw(B) in PV-Effective by

0 /∈ �̃ [hf ] and 0 /∈ �̃
[
‖h̃∂f‖

]
, respectively, for some effective interval approxima-

tions �̃ (in the sense of [40]). Our writing of the algorithm, however, is led by the wish
to explicitly describe the interval approximations we use, as noted in Remark 2.5.

3 Main results

In this section, we outline without proofs the main results of this paper. In
the first part, we describe our randomness assumptions for polynomials. In
the second one, we give precise statements for our bounds on the average
and smoothed complexity of phase I of the Plantinga-Vegter Algorithm with
infinite precision. In the last part, we state similar results in the context of
finite-precision arithmetic.

3.1 Randomness Model

Most of the literature on random multivariate polynomials considers polyno-
mials with Gaussian independent coefficients and relies on techniques that are
only useful for Gaussian measures. We will instead consider a general family
of measures relying on robust techniques coming from geometric functional
analysis. Let us recall some basic definitions.

(P1) A random variable x ∈ R is called centered if Ex = 0.
(P2) A random variable x ∈ R is called subgaussian if there exists a K such that

for all p ≥ 1,

(E|x|p)
1
p ≤ K√p.

The smallest such K is called the Ψ2-norm of x.
(P3) A random variable x ∈ R satisfies the anti-concentration property with

constant ρ if
max {P (|x− u| ≤ ε) | u ∈ R} ≤ ρε.

The subgaussian property (P2) has other equivalent formulations. We refer
the interested reader to [38]. We note that the anti-concentration property
(P3) is equivalent to having a density (with respect to the Lebesgue measure)
bounded by ρ/2.

Definition 3.1 A dobro random polynomial f ∈ Hn,d with parameters K and ρ is a
polynomial

f :=
∑
|α|=d

(
d

α

) 1
2

cαX
α (3.1)

such that the cα are independent centered subgaussian random variables with Ψ2-
norm at most K and anti-concentration property with constant ρ. A dobro random
polynomial f ∈ Pn,d is a polynomial f such that its homogenization fh is so.
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Remark 3.2 The word “dobro” comes from Russian and it means good. The word
“dobra” in Turkish means straight and honest, and the word has similar connotations
in Greek.

Some classes of dobro random polynomials of interest are the following
three.

(N) A KSS random polynomial is a dobro random polynomial such that each
cα in (3.1) is Gaussian with unit variance. For this model we have Kρ =
1/
√

2π.
(U) A Weyl random polynomial is a dobro random polynomial such that each

cα in (3.1) have uniform distribution in [−1, 1]. For this model we have
Kρ ≤ 1.

(E) For ` ≥ 2, a `-random polynomial is a dobro random polynomial whose
coefficients are independent identically distributed random variables with
density function

t 7→ 1

2Γ
(
1 + 1

`

) e−|t|` .
We have in this case that ρ ≤ 1 and K ≤ 6/5.

Remark 3.3 The relevant complexity parameter for a dobro random polynomial f ∈
Pn,d with constants K and ρ is the product Kρ. This is so because this product
is invariant under scalings of f and condition numbers will be scale-invariant. Note
that, for t > 0, tf is still dobro, but with constants tK and ρ/t.

Remark 3.4 If we are interested in integer polynomials, dobro random polynomials
may seem inadequate. One may be inclined to consider random polynomials f ∈ Pn,d
such that cα is a random integer in the interval [−2τ , 2τ ], i.e., cα is a random integer
of bit-size at most τ .

As τ → ∞ and after we normalize the coefficients dividing by 2τ , this random
model converges to that of Weyl random polynomials.

Yet, in order to have a more satisfactory understanding of random integer poly-
nomials, one has to consider random variables without a continuous density function.
The techniques we employed in this note, coming originally from geometric functional
analysis, have already been used to analyze condition numbers of random matrices
with such discrete distributions [32, 38].

Remark 3.5 Even though there is a widespread agreement that average-case analysis
is a better picture of performance in practice than worst-case analysis, it is not itself
without contention. The most common objection to average-case analysis is that its
underlying probability distribution may not be an accurate reflection of “real life.” In
particular, that it may result in bounds that are too “optimistic.” An alternate form
of analysis, called smoothed analysis, was introduced by D. Spielmann and S.-H. Teng
with the goal of overcoming this objection. The basic idea is to replace “behavior at
a random data” by “behavior at a random small perturbation of arbitrary data.” We
won’t attempt to describe the rationale of this setting. This can be read in [35, 36]
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or in [2, §2.2.7]. But as our development allows to include smoothed-analysis results
without a substantial additional effort, we do so in parts (S) of Theorems 3.6, 3.7,
and 6.9.

3.2 Complexity at the interval and effective levels

The following two theorems give bounds for, respectively, the average and
smoothed complexity of PV-Interval and PV-Effective. In both of them,
the ‘big O’ notation is not asymptotic. It refers to the existence of a multi-
plicative constant, which we don’t specify, and holds for all values of a,K, ρ, d
and n.

Theorem 3.6 Complexity of PV-Interval:

(A) Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ. The
expected number of boxes in the final subdivision S of PV-Interval on
input (f, a) is at most

dnN
n+1
2 max{1, an}212n logn+8(Kρ)n+1

and the expected number of arithmetic operations is at most

O
(
dn+1N

n+3
2 max{1, an}212n logn+8(Kρ)n+1

)
.

(S) Let f ∈ Pn,d, σ > 0, and g ∈ Pn,d a dobro random polynomial with pa-
rameters K ≥ 1 and ρ . Then the expected number of n-cubes of the final
subdivision S of PV-Interval on input (qσ, a) where qσ = f + σ‖f‖g is
at most

dnN
n+1
2 max{1, an}212n logn+8(Kρ)n+1

(
1 +

1

σ

)n+1

and the expected number of arithmetic operations is at most

O

(
dn+1N

n+3
2 max{1, an}212n logn+8(Kρ)n+1

(
1 +

1

σ

)n+1
)
.

Theorem 3.7 Complexity of PV-Effective:

(A) Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ. The
expected number of boxes in the final subdivision S of PV-Effective on
input (f, a) is at most

dnN
n+1
2 an215n logn+12(Kρ)n+1
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and the expected number of arithmetic operations is at most

O
(
dn+1N

n+3
2 an215n logn+12(Kρ)n+1

)
.

Moreover, the expected bit-cost of PV-Effective on input (f, a) is at most

O
(
dn+1N

n+3
2 an215n logn+12 log2(dna)(Kρ)n+1

)
,

under the assumptions that floating-point arithmetic is done using standard
arithmetic and that the cost of operating with the exponents is negligible.

(S) Let f ∈ Pn,d, σ > 0, and g ∈ Pn,d a dobro random polynomial with pa-
rameters K ≥ 1 and ρ . Then the expected number of n-cubes of the final
subdivision S of PV-Effective on input (qσ, a) where qσ = f + σ‖f‖g is
at most

dnN
n+1
2 an215n logn+12(Kρ)n+1

(
1 +

1

σ

)n+1

and the expected number of arithmetic operations is at most

O

(
dn+1N

n+3
2 an215n logn+12(Kρ)n+1

(
1 +

1

σ

)n+1
)
.

Moreover, the expected bit-cost of PV-Effective on input (qσ, a) is at
most

O

(
dn+1N

n+3
2 an215n logn+12 log2(dna)(Kρ)n+1

(
1 +

1

σ

)n+1
)
,

under the assumptions that floating-point arithmetic is done using standard
arithmetic and that the cost of operating with the exponents is negligible.

Fix a dimension n, a box [−a, a]n and a dobro distribution (and with it,
the parameters ρ and K). If d is let to vary, N =

(
n+d
n

)
≤ en(1 + d

n )n. Hence

the bounds of Theorems 3.6 and 3.7 are of the order d
n2+5n

2 . The complexity
estimate in [11, Theorem 4.3] reads as follows:

2O(dn+1(nτ+nd log (nd))n log a)

with τ being the largest bit-size of the coefficients of f . One can see that
the average analysis estimates (and the smoothed analysis, for a fixed σ) are
exponentially smaller than this worst-case estimate. This seems to relate better
with the efficiency in practice of the Plantinga-Vegter algorithm.

We note, however, that the bound in [11] and our bounds cannot be directly
compared. Not only because the former is worst-case and the latter average-
case (or smoothed) but because of the different underlying settings: the bound
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in [11] applies to integer data, ours to real data. Nevertheless, the bounds
for the effective version PV-Effective apply to the real data under finite
precision and provides estimates for the bit complexity.

4 Geometric framework

There is an extensive literature on norms of polynomials and their relation to
norms of gradients in Hn,d. The PV algorithm, however, works in the affine
space with non-homogenous polynomials. We first establish basic definitions
and inequalities that allow us to translate existing results into the setting of the
PV algorithm. After the transfer is completed, we continue with establishing
interval approximations.

4.1 Weyl norm

We first introduce the Weyl inner product on Hn,d.

Definition 4.1 The Weyl inner product on Hn,d is given by

〈f, g〉 :=
∑
α

(
d

α

)−1

fαgα

for f =
∑
α fαX

α, g =
∑
α gαX

α,∈ Hn,d; and the Weyl inner product on Hqn,d is
given by

〈f ,g〉 :=

q∑
i=1

〈fi, gi〉

for f = (fi),g = (gi) ∈ Hqn,d.

To extend this inner product to Pn,d, we use the homogeneization map

h : Pn,d → Hn,d
f 7→ fh := f(X1/X0, . . . , Xn/X0)Xd

0 .

and its componentwise extension h : Pqn,d → H
q
n,d.

Definition 4.2 The Weyl inner product on Pqn,d is given by

〈f ,g〉 := 〈fh,gh〉

for f ,g ∈ Pqn,d.

For both Hqn,d and Pqn,d the Weyl norm is the norm induced by the Weyl
inner product.

Note that for F ∈ Hqn,d, we have that ∂F (X) ∈ Hq(n+1)
n,d−1 and so we can talk

about the Weyl norm of ∂F (X). Recall that we write explicitly the vector X
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of indeterminates to indicate that we are working with ∂F (X) as a vector of
formal derivatives of F . The following proposition comes in handy.

Proposition 4.3 Let f ∈ Hqn,d and y ∈ Sn. Then, (1) ‖f(y)‖ ≤ ‖f‖ ,

(2)
∥∥∥Dyf|TySn

∥∥∥ ≤ √d‖f‖ , (3) ‖∂f(X)‖ ≤ d‖f‖.

Proof (1) is [2, Lemma 16.6], (2) the Exclusion Lemma [2, Lemma 19.22], and (3)
by a direct computation, arguing as in the proof of [2, Lemma 16.46]. Alternatively,
one can also see [37, 1§1] for a direct account of the proofs. �

4.2 Central projection and homogeneization

Let � : Rn → Sn be the map given by

� : x 7→ 1√
1 + ‖x‖2

(
1
x

)
. (4.1)

One can see that � is the map induced by the central projection of {1}×Rn
onto the sphere Sn and that this map induces a diffeomorphism between Rn
and the upper half of Sn.

Given f ∈ Pqn,d, we observe that

fh(�(x)) =
f(x)

(1 + ‖x‖2)d/2
, (4.2)

and so, by the chain rule,

D�(x)f
hDx� =

Dxf

(1 + ‖x‖2)d/2
− d · f(x)xT

(1 + ‖x‖2)d/2+1
(4.3)

where Dyf
h : TyRn+1 ∼= Rn+1 → Tf h(y)Rq∼=Rq, Dxf : TxRn ∼= Rn → Tf(x)Rq ∼=

Rq and Dx� : TxRn → T�(x)Sn = �(x)⊥ are respectively the tangent maps

of fh, f and �.
It is important to note that � deforms the metric. For each x ∈ Rn, we

can see that the singular values of Dx� are

σ1 (Dx�) = · · · = σn−1 (Dx�) =
1√

1 + ‖x‖2
, σn (Dx�) =

1

1 + ‖x‖2
,

(4.4)
and so, in particular,

‖Dx�‖ =
1√

1 + ‖x‖2
. (4.5)

With the above, we next prove a version of Proposition 4.3 for Pqn,d.
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Proposition 4.4 Let f ∈ Pqn,d be a polynomial map. Then the map

F : x 7→ f(x)

‖f‖(1 + ‖x‖2)(d−1)/2

is (1 +
√
d)-Lipschitz and, for all x,

∥∥F(x)
∥∥ ≤√1 + ‖x‖2.

Proof For the Lipschitz property, it is enough to bound the norm of the derivative
of the map by 1 +

√
d. Due to (4.2),

F(x) =
√

1 + ‖x‖2 fh(�(x))

‖f‖ (4.6)

and so, by the chain rule,

DxF =
fh(�(x))

‖f‖
xT√

1 + ‖x‖2
+
√

1 + ‖x‖2
D�(x)f Dx�

‖f‖ .

Now, by the triangle inequality,

‖DxF‖ ≤ ‖f
h(�(x))‖
‖f‖

‖x‖√
1 + ‖x‖2

+
√

1 + ‖x‖2
‖D�(x)f Dx�‖

‖f‖ .

On the one hand,

‖fh(�(x))‖
‖f‖ ≤ 1,

by Proposition 4.3(1). On the other hand,

‖D�(x)f Dx�‖ =
∥∥∥D�(x)f|T�(x)Sn Dx�

∥∥∥
≤
∥∥∥D�(x)f|T�(x)Sn

∥∥∥ ‖Dx�‖ ≤ √
d‖f‖√

1 + ‖x‖2
,

by Proposition 4.3(2) and (4.5). Hence

‖DxF‖ ≤ ‖x‖√
1 + ‖x‖2

+
√
d ≤ 1 +

√
d

as we wanted to show. The claim about
∥∥F(x)

∥∥ follows from Proposition 4.3(1)
applied to the expression (4.6) for F. �

4.3 Interval approximations

Recall that our interval approximations, given in Proposition 2.1, rely on the

functions f̂ and ∂̂f given, respectively, in (2.4) and (2.5). The following lemma
will give us the justification of our interval approximations, and with it a proof
of Proposition 2.1.

Lemma 4.5 Let f ∈ Pn,d. Then:

1. The map f̂ given in (2.4) is (1 +
√
d)-Lipschitz and for all x ∈ Rn, it

satisfies
∣∣∣f̂(x)

∣∣∣ ≤√1 + ‖x‖2.



20 On the Complexity of the Plantinga-Vegter Algorithm

2. The map ∂̂f given in (2.5) is (1 +
√
d− 1)-Lipschitz and for all x ∈ Rn,

it satisfies ‖∂̂f(x)‖ ≤
√

1 + ‖x‖2.

Proof of Proposition 2.1 It is a straightforward consequence of the Lipschitz prop-
erties in Lemma 4.5. �

Proof of Lemma 4.5 (1) Apply Proposition 4.4 with f = f , then f̂ = F and both
claims follow.

(2) Apply Proposition 4.4 with f = f , then ∂̂f =
‖∂f(X)‖
d‖f‖ F and the claims follow

since
‖∂f(X)‖
d‖f‖ ≤ 1 by Proposition 4.3 (3). �

Once we have shown that our interval approximations are so, we show
Theorem 2.3 which reduces the interval condition Cf (B) to the condition
C�f (B) at a point.

Lemma 4.6 Let x ∈ Rn and s ∈ [0, 1/
√

2]. Then for all v, w ∈ B(x, s‖x‖), we have
〈v, w〉 > ‖v‖‖w‖(1− 2s2) ≥ 0.

Proof of Theorem 2.3 By the standard `2-`∞ inequality—which states that ‖x‖ ≤√
n‖x‖∞ for x ∈ Rn—, interval approximations of Proposition 2.1 satisfy that for

all B ∈ �Rn

dist ((hf)(m(B)),�[hf ](B)) ≤
(
1 +
√
d
)√
nw(B)/2 (4.7)

and
dist

(
(h̃∂f)(m(B)),�[h̃∂f ](B)

)
≤
(
1 +
√
d− 1

)
nw(B)/2 (4.8)

where dist is the usual Euclidean distance.
When the inequality on f̂(m(B)) in C�f (B) is satisfied, then (4.7) guaran-

tees that 0 /∈ �[hf ](B). Similarly, when the inequality on ∂̂f(m(B)) in C�f (B)

is satisfied, then (4.8) and Lemma 4.6 (with s = 1/
√

2) guarantee that 0 /∈
〈�[h̃∂f ](B),�[h̃∂f ](B)〉. Hence C�f (B) implies Cf (B). �

Proof of Lemma 4.6 Let s = cos θ, so that θ ∈ [0, π/4], c =
√

1− s2 and Kc := {u ∈
Rn | 〈x, u〉 ≥ ‖x‖‖u‖c} the convex cone of those vectors u whose angle x̂ u with x, is
at most θ.

Given v, w ∈ Kc, we have, by the triangle inequality, that ∠(v w) ≤ ∠(v x) +
∠(xw) ≤ 2θ ≤ π/2 (here ∠ denotes angle). Thus

cos ∠(v w) ≥ cos (∠(v x) + ∠(xw)) ≥ cos 2θ = 1− 2s2 ≥ 0.

And so, it is enough to show that B(x, s‖x‖) ⊆ Kc or, equivalently, that
dist(x, ∂Kc) ≤ s‖x‖.

Now, dist(x, ∂Kc) = min {‖x− u‖ | u ∈ Kc, 〈x, u〉 = ‖x‖‖u‖c} and this mini-
mum equals the distance of x to a line having an angle θ with x, which is ‖x‖s. �
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5 Condition number

As other numerical algorithms in computational geometry, the Plantinga-
Vegter algorithm has a cost which significantly varies with inputs of the same
size, even if the coefficients are rational and inputs have the same bit-size. One
wants to explain this variation in terms of geometric properties of the input.
Condition numbers allow for such an explanation.

Definition 5.1 [3, 13, 18] Given f ∈ Hn,d, f 6= 0, the local condition number of f
at y ∈ Sn is

κ(f, y) :=
‖f‖√

f(y)2 + 1
d‖Dyf|TySn‖2

.

Given f ∈ Pn,d, the local affine condition number of f at x ∈ Rn is

κaff(f, x) := κ(fh,�(x)).

5.1 What does κaff measure?

The nearer the hypersurface VR(f) is to having a singularity at x ∈ Rn, the
smaller are the boxes drawn by the Plantinga-Vegter algorithm around x.
Instead of controlling how near x is of being a singularity of f , we perform a
Copernican turn and we control instead how near f is of having a singularity
at x. This is precisely what κaff(f, x) does.

Theorem 5.2 (Condition Number Theorem) Let x ∈ Rn and

Σx := {g ∈ Pn,d | g(x) = 0, Dxg = 0} (5.1)

be the set of polynomials in Pn,d that have a singularity at x. Then for every f ∈ Pn,d,

‖f‖
κaff(f, x)

= dist(f,Σx)

where dist is the distance induced by the Weyl norm on Pn,d.

Proof This is a reformulation of [3, Theorem 4.4] (cf. [2, Proposition 19.6]). �

Theorem 5.2 provides a geometric interpretation of the local condition num-
ber, and a corresponding “intrinsic” complexity parameter as desired by Burr,
Gao and Tsigaridas in [11, 8]. The next result is an essential tool for our prob-
abilistic analyses. Note that, in the case under consideration, Σx is a linear
subspace of codimension n+ 1 inside Pn,d.

Corollary 5.3 Let x ∈ Rn and let Rx : Pn,d → Σ⊥x be the orthogonal projection
onto the orthogonal complement of the linear subspace Σx. Then

κaff(f, x) =
‖f‖
‖Rxf‖

.
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Proof We have that dist(f,Σx) = ‖Rxf‖ since Σx is a linear subspace. Hence
Theorem 5.2 finishes the proof. �

5.2 Regularity inequality

After doing our Copernican turn, we can control how near is f ∈ Pn,d of having
a singularity at x ∈ Rn. The regularity inequality [7, Proposition 3.6] (cf. [37,
Proposition 1§23]) allows us to recover how near is x of being a singularity of
f . More precisely, the regularity inequality gives lower bounds for the value of
the function or its derivative in terms of the condition number.

Proposition 5.4 (Regularity inequality) Let f ∈ Pn,d and x ∈ Rn. Then either∣∣∣f̂(x)
∣∣∣ > 1

2
√

2d κaff(f, x)
or
∥∥∥∂̂f(x)

∥∥∥ > 1

2
√

2d κaff(f, x)
.

Proof Without loss of generality assume that ‖f‖ = 1. Let y := �(x), g := fh and
assume that the first inequality does not hold. Then, by (4.2),

|g(y)| ≤ 1

2
√

2d κ(g, y)
√

1 + ‖x‖2
.

Now,

1√
2κ(g, y)

≤ max

{
|g(y)|, 1√

d
‖∂yg|TySn‖

}
=

1√
d
‖∂yg|TySn‖,

since |g(y)| < 1√
2κ(g,y)

. Thus, by (4.3) and (4.5), we get

1√
2κ(g, y)

≤

∥∥∥∥∥ Dxf

(1 + ‖x‖2)d/2
− df(x)xT

(1 + ‖x‖2)d/2+1

∥∥∥∥∥
(

1 + ‖x‖2√
d

)
.

We divide by
√
d and use the triangle inequality to obtain

1√
2d κ(g, y)

≤ ‖Dxf‖
d(1 + ‖x‖2)d/2−1

+
|f(x)|

(1 + ‖x‖2)(d−1)/2

‖x‖√
1 + ‖x‖2

=
∥∥∥∂̂f(x)

∥∥∥+
∣∣∣f̂(x)

∣∣∣ ‖x‖√
1 + ‖x‖2

.

By our assumption and ‖x‖ <
√

1 + ‖x‖2, the above inequality implies

1√
2d κ(g, y)

<
∥∥∥∂̂f(x)

∥∥∥+
1

2
√

2d κaff(f, x)
,

from where the desired inequality follows. �

6 Complexity Analysis of the Interval version

We analyze the complexity of PV-Interval in terms of the number of arith-
metic operations the algorithm performs. This task reduces to estimating the
number of boxes in the final subdivision produced by the algorithm. At the
interval level, this is so, because each iteration of the algorithm takes the same
number of arithmetic operations and the number of iterations is bounded by
twice the number of final cubes. This was the underlying strategy in [11].
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6.1 Local size bound framework

The original analysis in [11] was based on the notion of local size bound.

Definition 6.1 A local size bound for C : �Rn → {True, False} is a function
b : Rn → [0,∞) such that for all x ∈ Rn,

b(x) ≤ inf{vol(B) | x ∈ B ∈ �Rn and C(B) False}.

The idea behind the local size bound is that it gives us the size from
which every box containing x satisfies C. In our case, we will apply this to the
condition C�f introduced in Theorem 2.3.

The following result, based on the notion of continuous amortization
developed by Burr, Krahmer and Yap [12, 9] is proven in [11, Proposition 5.2].

Theorem 6.2 [12, 9, 11] The number of boxes in the final subdivision S returned
by PV-Interval on input (f, a) is at most

max

{
1,

∫
[−a,a]n

2n

b(x)
dx

}
where b is a local size bound for C�f (of Theorem 2.3). Moreover, the bound is finite
if and only if the algorithm terminates. �

To effectively use Theorem 6.2 we need explicit constructions for the local
size bound.

6.2 Condition-based local size bound and complexity

The following result expresses a local size bound for C�f in terms of the local
condition number κaff(f, x).

Theorem 6.3 The map

x 7→ 1/
(

25/2dnκaff(f, x)
)n

is a local size bound for C�f (of Theorem 2.3).

Proof Let x ∈ Rn. Since x ∈ B, ‖x −m(B)‖ ≤
√
nw(B)/2. Hence, by Lemma 4.5

and the regularity inequality (Proposition 5.4), either∣∣∣f̂(m(B))
∣∣∣ ≥ 1

2
√

2d κaff(f, x)
− (1 +

√
d)
√
nw(B)/2

or ∥∥∥∂̂f(m(B))
∥∥∥ ≥ 1

2
√

2d κaff(f, x)
− (1 +

√
d− 1)

√
nw(B)/2.



24 On the Complexity of the Plantinga-Vegter Algorithm

This means that C�f (B) is true if either

2
√

2d (1 +
√
d)
√
nκaff(f, x)w(B) < 1

or
2
√

2d (1 +
√
d− 1)nκaff(f, x)w(B) < 1.

Hence we get that C�f (B) is true when both conditions are satisfied and the inequality

1 +
√
d ≤ 2

√
d finishes the proof. �

Using the results above, we get the following theorem exhibiting a
condition-based complexity analysis of Algorithm 1.

Theorem 6.4 The number of boxes in the final subdivision S of PV-Interval on
input (f, a) is at most

dn max{1, an}2n logn+ 9
2n Ex∈[−a,a]n

(
κaff(f, x)n

)
.

The number of arithmetic operations performed by PV-Interval on input (f, a) is
at most

O
(
dn+1 max{1, an}2n logn+ 9

2nN Ex∈[−a,a]n
(
κaff(f, x)n

))
.

Proof The first statement follows from Theorems 6.2 and 6.3 combined with the fact
that

∫
[−a,a]n κaff(f, x)n dx equals (2a)n Ex∈[−a,a]n (κaff(f, x)n). The latter follows

from the fact that one performs O(dN) arithmetic operations to test C�f and that
the number of boxes that the algorithm generates is at most two times the number
of final boxes. �

The above condition-based complexity estimate will become the main
tool to prove Theorem 3.6 in Section 8 where we will study the quantity
Ex∈[−a,a]n (κaff(f, x)n) for random f.

In the literature on numerical algorithms in real algebraic geometry [3, 7,
6, 15, 16, 17, 18], it is customary the use the following global condition number

κaff(f) := max
x∈[−a,a]n

κaff(f, x).

The quantity Ex∈[−a,a]n (κaff(f, x)n) in Theorem 6.4 is an average quantity,
whereas the condition number κaff(f) is a global supremum. The average
quantity has finite expectation (over f), whereas the global supremum does
not admit a bounded first moment. This shows that a condition-based preci-
sion control combined with adaptive complexity techniques such as continuous
amortization may lead to substantial improvements in computational real
algebraic geometry.
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6.3 Interlude: Complexity of the interval version of [11]

In [11], Burr, Gao and Tsigaridas gave an interval version of PV-Abstract
different from PV-Interval based in the BGT interval approximation which
relies on Taylor series. We provide a condition-based and probabilistic com-
plexity analysis of this algorithm, although only for the interval version, on
which we only bound the number of cubes and not the number of arithmetic
operations.

We recall that Burr, Gao and Tsigaridas [11] showed that

C(f, x) := min

{
2n−1d/ ln

(
1 + 22−2n

)
+
√
n/2

dist(x, VC(f))
,

22n(d− 1)/ ln
(
1 + 22−4n

)
+
√
n/2

dist((x, x), VC(gf ))

}

where gf is the polynomial 〈Df(X), ∂f(Y )〉, is a local size bound for the
condition that their interval version of PV-Abstract checks.

Theorem 6.5 [11] The map
x 7→ 1/C(f, x)n

is a local size bound function for the condition that the BGT interval version of PV-
Abstract checks. �

Looking at the definition of C(f, x) in [11] one can see that 1/C measures
how near is x of being a singular zero of f . This is similar to 1/κaff which,
by Theorem 5.2, measures how near is f of having x as a singular zero. The
following result relates these two quantities.

Theorem 6.6 Let d > 1 and f ∈ Pn,d. Then, for all x ∈ Rn,

C(f, x) ≤ 23nd2κaff(f, x).

Proof Note that Lemma 4.5 holds over the complex numbers as well. Due to this
and the fact that VC(f) = VC(f̂), we have that∣∣∣f̂(x)

∣∣∣ ≤ (1 +
√
d) dist(x, VC(f)).

Now, if
√

2(1+
√
d− 1) dist((y1, y2), (x, x)) < ‖∂̂f(x)‖, then

√
2(1+

√
d− 1)‖yi−

x‖ < ‖∂̂f(x)‖. Thus, by Lemma 4.5,
√

2
∥∥∥∂̂f(yi)− ∂̂f(x)

∥∥∥ < ∥∥∥∂̂f(x)
∥∥∥ and so, by

Lemma 4.6, 0 6= 〈∂̂f(y1), ∂̂f(y2)〉. Hence∥∥∥∂̂f(x)
∥∥∥ ≤ √2(1 +

√
d− 1) dist(x, VC(gf )).
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The bound now follows from Proposition 5.4, together with 23(n−1)d+
√
n ≤ 23n−2d

and

min

{
2n−1d

ln (1 + 22−2n)
+

√
n

2
,

22n(d− 1)

ln (1 + 22−4n)
+

√
n

2

}
≤ 23n−4d+

√
n

2
.

The latter follows from

1

ln (1 + 22−2n)
≤ 22n−3 and

1

ln (1 + 22−4n)
≤ 24n−3, (6.1)

which are deduced from first-order approximations of the natural logarithm. �

Theorems 6.5 and 6.6 combine to give an analog of Theorem 6.3 for the
BGT interval version of PV-Abstract. Also, [11, Theorem 5.1] provides an
analog of Theorem 6.2 in this setting. We can therefore proceed to derive the
following result, a BGT version of Theorem 6.4, in the same manner that the
latter is derived from Theorems 6.2 and 6.3.

Corollary 6.7 The number of boxes in the final subdivision S of the BGT interval
version of Algorithm PV-Abstract on input (f, a) is at most

d2n max{1, an}23n2+2n Ex∈[−a,a]n
(
κaff(f, x)n

)
. �

Remark 6.8 The main difference between C(f, x) and κ(f, x) is that C(f, x) is a
non-linear quantity and is hard to compute and to analyze, while the local condition
number κ(f, x)—as indicated in Corollary 5.3—is a linear quantity, easier to compute
and analyze.

We finish this interlude giving a form of Theorem 3.6 for the BGT version
of PV-Abstract (which, obviously, deals only with number of boxes, not
with number of arithmetic operations). It is proved as Theorem 3.6 (see §8.2
and §8.3) with Corollary 6.7 taking the role of Theorem 6.2.

Theorem 6.9

(A) Let f ∈ Pn,d be a dobro random polynomial with parameters K and ρ. The
expected number of boxes in the final subdivision S of the BGT interval
version of PV-Abstract on input (f, a) is at most

dn
2

N
n+1
2 max{1, an}23n2+n logn+7n+ 15

2 (Kρ)n+1.

(S) Let f ∈ Pn,d, σ > 0, and g ∈ Pn,d a dobro random polynomial with parame-
ters K ≥ 1 and ρ . Then the expected number of boxes of the final subdivision
F of the BGT interval version of PV-Abstract on input (qσ, a) where
qσ = f + σ‖f‖g is at most

dn
2

N
n+1
2 max{1, an}23n2+n logn+7n+ 15

2 (Kρ)n+1

(
1 +

1

σ

)n+1

. �
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7 Error and complexity analysis of the effective
version

We next work on the framework of floating-point numbers introduced in §2.3.
For an arithmetic expression φ and a point x ∈ R, we will denote by fl(φ(x)) ∈
F the value obtained when evaluating φ at r(x) ∈ F using floating-point finite
precision. In general, our objective is to show that for such expressions φ in our
algorithm we have, for some other expression ψ(x) and some k ≥ 1 satisfying
ku < 1,

fl(φ(x)) = φ(x) + ψ(x)θk
where θk is any number δ ∈ R satisfying

|δ| ≤ ku

1− ku
.

This is the general strategy in [26, Chapter 3].

7.1 Finite-precision computations

We study the errors due to finite-precision in algorithm PV-Effective and
show its correctness. In all what follows, we use numerical algorithm to refer
to an algorithm meant to be implemented with finite precision and analyzed
in terms of error accumulation. This is common terminology.

The following two propositions bound the forward error in the computation

of |f̂(x) | and ‖∂̂f(x)‖. Because their proofs are a variation of well-known
results (e.g. [15, Thm. 6.10]) and are more tedious than enlightening, we defer
them to an appendix.

Proposition 7.1 There is a numerical algorithm which, with input f ∈ Pn,d and

x ∈ Rn, computes |f̂(x)|. This algorithm performs O(dN) arithmetic operations, and,

on input x ∈ Fn and f ∈ Pn,d∩F[X1, . . . , Xn], the computed value fl(|f̂(x)|) satisfies

fl(|f̂(x)|) = |f̂(x)|+
√

1 + ‖x‖θ32d log(n+1).

In particular, if the round-off unit satisfies

u ≤ 1

64d log(n+ 1)
,

then for x ∈ [−a, a]n ∩ Fn,

|fl(|f̂(x)|)− |f̂(x)|| ≤ 64
√

2d
√
n+ 1 log(n+ 1) max{1, a}u.

The above remains true for arbitrary f and x if we apply the algorithm to r(f) and
r(x).

Proposition 7.2 There is a numerical algorithm which, with input f ∈ Pn,d and

x ∈ Rn, computes ‖∂̂f(x)‖. It performs O(dN) arithmetic operations, and, on input

x ∈ Fn and f ∈ Pn,d ∩ F[X1, . . . , Xn], the computed value ‖∂̂f(x)‖ satisfies

fl(‖∂̂f(x)‖) = ‖∂̂f(x)‖+
√

1 + ‖x‖θ32d log(n+1).
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In particular, if the round-off unit satisfies

u ≤ 1

64d log(n+ 1)
,

then for x ∈ [−a, a]n ∩ Fn,

|fl(‖∂̂f(x)‖)− ‖∂̂f(x)‖| ≤ 64
√

2d
√
n+ 1 log(n+ 1) max{1, a}u.

The above remains true for arbitrary f and x if we apply the algorithm to r(f) and
r(x).

We can now show the correctness of Algorithm PV-Effective. We will
denote by fl(B) the rounding r(B) of a box B given by

m(fl(B)) = m(B)(1 + θ1) and w(fl(B)) = w(B)(1 + θ1).

Similarly, we will write fl(f) to denote the rounding r(f) of f . The next
theorem shows that if the round-off unit is sufficiently small, then a floating-
point version of condition C�f (B) is good enough to check Cf (B).

Theorem 7.3 Let B ∈ �[−a, a]n. If

CFP
f :=

 fl
(
|f̂l(f)(m(fl(B)))|

)
> fl

(
4
√
d
√
n+ 1w(fl(B))

)
or

(
‖∂̂fl(f)(m(fl(B)))‖

)
> fl

(
6
√
d(n+ 1)w(fl(B))

)
and

u ≤ 1

128
√
dn

min{1, w(B)}
max{1, a} ,

then C�f (B) holds and, hence, so does Cf (B).

Corollary 7.4 Algorithm PV-Effective is correct. �

Proof of Theorem 7.3 Note that the conditions of Propositions 7.1 and 7.2 are
satisfied. Therefore, using our hypothesis on the magnitude of u, we have∣∣∣f̂(m(B))

∣∣∣ > fl
(∣∣∣f̂l(f)(m(fl(B)))

∣∣∣)−√d log(n+ 1) min{1, w(B)} (7.1)

and that∥∥∥∂̂f(m(B))
∥∥∥ > fl

(∥∥∥∂̂fl(f)(m(fl(B)))
∥∥∥)−√d log(n+ 1) min{1, w(B)}. (7.2)

By error analysis (Proposition A.1), we have that

fl
(

4
√
d
√
n+ 1w(fl(B))

)
= 4
√
d
√
n+ 1w(B)(1 + θ8) (7.3)

and
fl
(

4
√
d(n+ 1)w(fl(B))

)
= 6
√
d(n+ 1)w(B)(1 + θ8). (7.4)
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Hence, again by the bound on u, from (7.3) we get

fl
(

4
√
d
√
n+ 1w(fl(B))

)
> 4
√
d
√
n+ 1w(B)

(
1− 1

8
√
dn

min{1, w(B)}
max{1, a}

)
(7.5)

and from (7.4)

fl
(

4
√
d(n+ 1)w(fl(B))

)
> 6
√
d(n+ 1)w(B)

(
1− 1

8
√
dn

min{1, w(B)}
max{1, a}

)
(7.6)

Now, combining (7.1) and (7.5), we get∣∣∣f̂(m(B))
∣∣∣ > 2

√
d
√
n+ 1w(B) (7.7)

+2
√
d
√
n+ 1w(B)

(
1− 1

4
√
dn

min{1, w(B)}
max{1, a} − log(n+ 1)

2
√
n+ 1

min

{
1,

1

w(B)

})
and, combining (7.2) and (7.6),∥∥∥∂̂f(m(B))

∥∥∥ > 3
√
d(n+ 1)w(B) (7.8)

+3
√
d(n+ 1)w(B)

(
1− 1

6
√
dn

min{1, w(B)}
max{1, a} − log(n+ 1)

2(n+ 1)
min

{
1,

1

w(B)

})
Now, the term between parentheses in the right-hand side of (7.7) is positive since

1

4
√
dn

min{1, w(B)}
max{1, a} +

log(n+ 1)

2
√
n+ 1

min

{
1,

1

w(B)

}
≤ 1

4
√
dn

+
log(n+ 1)

2
√
n+ 1

≤ 1

4
+

1

2
< 1,

and so is the one in the right-hand side of (7.8) since

1

6
√
dn

min{1, w(B)}
max{1, a} +

log(n+ 1)

2(n+ 1)
min

{
1,

1

w(B)

}
≤ 1

6
√
dn

+
1

2
√
n+ 1

≤ 1

6
+

1

2
√

2
< 1.

Therefore our claim holds. �

7.2 Complexity of Algorithm PV-Effective

We now prove the analogous of Theorem 6.3 in the finite-precision setting. To
do so we have to slightly modify the sense of the term ‘local size bound’ to
take finite precision into account.

Definition 7.5 A local size bound for CFP
f is a function bFP

f : Rn → [0,∞) such
that for all x ∈ Rn,

bFP
f (x) ≤ inf

{
vol(B)

∣∣∣ x ∈ B ∈ �Rn , CFP
f (B) False

with u ≤ 1
128
√
dn

min{1,w(B)}
max{1,a}

}
.

The modifications takes into account that the condition CFP
f is checked

with sufficiently large precision, as indicated by Theorem 7.3. The theorem
below gives us the local size bound for finite precision.
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Theorem 7.6 The map

x 7→ 1/
(

26dnκaff(f, x)
)n

is a local size bound for CFP
f (of Theorem 7.3).

Proof The proof is similar to the one of Theorem 7.3. For now on, let B ∈ �Rn be
such that x ∈ B.

By Proposition 7.1 and 7.2 and the bound on u, we have that

fl
(∣∣∣f̂l(f)(m(fl(B)))

∣∣∣) > ∣∣∣f̂(m(B))
∣∣∣−√d log(n+ 1) min{1, w(B)}

and that

fl
(∥∥∥∂̂fl(f)(m(fl(B)))

∥∥∥) > ∥∥∥∂̂f(m(B))
∥∥∥−√d log(n+ 1) min{1, w(B)}.

By error analysis (Proposition A.1),

4
√
d
√
n+ 1w(B)

(
1 +

1

8
√
dn

min{1, w(B)}
max{1, a}

)
> fl

(
4
√
d
√
n+ 1w(fl(B))

)
and

6
√
d(n+ 1)w(B)

(
1 +

1

8
√
dn

min{1, w(B)}
max{1, a}

)
> fl

(
4
√
d(n+ 1)w(fl(B))

)
.

By the regularity inequality (Proposition 5.4) and Corollary 4.5, we know that
either

fl
(∣∣∣f̂l(f)(m(fl(B)))

∣∣∣)
>

1

2
√

2dκaff(f, x)
− (1 +

√
d)
√
n

2
w(B)−

√
d log(n+ 1) min{1, w(B)}

>
1

2
√

2dκaff(f, x)
− 2
√
dnw(B)

or

fl
(∥∥∥∂̂fl(f)(m(fl(B)))

∥∥∥)
>

1

2
√

2dκaff(f, x)
− (1 +

√
d− 1)

√
n

2
w(B)−

√
d log(n+ 1) min{1, w(B)}

>
1

2
√

2dκaff(f, x)
− 2
√
dnw(B).

Hence CFP
f (B) holds as long as

1

2
√

2dκaff(f, x)
− 2
√
dnw(B) > 6

√
d(n+ 1)w(B)

(
1 +

1

8
√
dn

min{1, w(B)}
max{1, a}

)
,

which is implied by
26d(n+ 1)κaff(f, x)w(B) < 1.

This means that CFP
f (B) is true when vol(B) < 1/

(
26dnκaff(f, x)

)n
, which is what

we wanted to show. �
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Using continuous amortization [12, 9] (we use the statement in [8,
Theorem 5]), we obtain the following condition-based complexity analysis
of PV-Effective.

Theorem 7.7 The number of boxes in the final subdivision S of PV-Effective on
input (f, a) is at most

dnan2n logn+8n Ex∈[−a,a]n
(
κaff(f, x)n

)
.

The number of arithmetic operations performed by PV-Effective on input (f, a) is
at most

O
(
dn+1an2n logn+8nN Ex∈[−a,a]n

(
κaff(f, x)n

))
.

Furthermore, the bit-cost of PV-Effective on input (f, a) is at most

O
(
dn+1an2n logn+8nN log2(dna)Ex∈[−a,a]n

(
κaff(f, x)n log2 κaff(f, x)

))
under the assumptions that floating-point arithmetic is done using standard arith-
metic and that the cost of operating with the exponents is negligible.

Proof The first two claims follow from Theorems 7.6 and 6.2. For the third claim,
we recall the following variant of Theorem 6.2 that can be found in [8, Theorem 5].
Let S be the final subdivision output by PV-Interval and h : (0,∞) → (0,∞) a
continuous map. Then∑

B∈S
h (w(B)) ≤ max

{
h(2a),

∫
[−a,a]n

2n

bFP
f (x)

h

(
bFP
f (x)

1
n

2

)
dx

}
.

Applying Theorem 7.6, we get that
∑
B∈S h (w(B)) is bounded by

max

{
h(2a), 2n logn+7ndn

∫
[−a,a]n

κaff(f, x)nh
(

25dnκaff(f, x)
)

dx

}
.

Now, we note that testing CFP
f at each of the boxes along the way takes at most

O(dN) arithmetic operations and that the number of boxes that the algorithm deals
with is at most twice the number of final boxes. Because of this, the bit-cost of the
algorithm (ignoring the cost of operating with exponents) in floating-point arithmetic
is

O

dN ∑
B∈S

m2
B

 .

This is so, because each arithmetic operation takes O(m2) bit-time and mB is the
largest precision needed to test CFP

f in any box that is an ancestor of B. Hence, by
Theorem 7.3 and the relation of mB to u, taking

h(w(B)) = O
(

max

{
log2 29

√
dna, log2 29

√
dn

a

w(B)

})
gives the final bound. �

The above condition-based complexity estimate will become the complexity
estimates in Theorem 3.7 in the coming Section 8.
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8 Probabilistic analyses

In this section, we prove Theorems 3.6 and 3.7 stated in Section 3 using
Theorems 6.3 and 7.6 and their corollaries respectively.

8.1 Some useful tools

The main tools we are going to use are a tail bound on the norm of a random
vector and a small ball type estimate to ensure norm of a random projection is
not too small. Following [37, 5§1], we will give explicit constants avoiding the
use of undefined absolute constants. This will require us to sketch some proofs.

Theorem 8.1 Let x ∈ RN be a random vector where each component xi is centered
and sub-Gaussian with Ψ2-norm K. Then for all t ≥ 5K

√
N ,

P (‖x‖ ≥ t) ≤ exp

(
− t2

(5K)2

)
. (8.1)

Sketch of proof We follow the ideas in [38, Theorems 2.6.3]. Note that ‖x‖ ≥ t is

equivalent to es
2‖x‖2 ≥ es

2t2 . By Markov’s inequality and independence,

P (‖x‖ ≥ t) ≤ e−s
2t2Ees

2‖x‖2 =

N∏
i=1

Ees
2x2i .

By assumption, for each i,

Ees
2lx2i =

∞∑
l=0

s2lEx2li
l!

≤
∞∑
l=1

s2lK2l(2l)l

l!
≤
∞∑
l=0

(
2eK2sl

)l
,

since l! ≥ (l/e)l. Thus, taking s2 = 1/(4eK2), we get

P (‖x‖ ≥ t) = 2Ne−t
2/(4eK2).

The claim is now trivial assuming t ≥
√

8e ln(2)K
√
N . �

Theorem 8.2 [33, Corollary 1.4] Let x ∈ RN be a random vector where each com-
ponent xi has the anti-concentration property with constant ρ and P : RN → RN an
orthogonal projection onto a k-dimensional linear subspace of RN . Then for all ε > 0,

P
(
‖P x‖ ≤

√
kε
)
≤ (3ρε)k .

Sketch of proof Note that by assumption, each xi has probability density (with re-
spect to the Lebesgue measure) bounded by ρ/2. Then, by [28, Theorem 1.1.], P x has

probability density (with respect to the Lebesgue measure) bounded by
(
ρ/
√

2
)k

.
Thus

P
(
‖P x‖ ≤

√
kε
)
≤ ωk

(√
kρ√
2

)k
where ωk is the volume of the k-dimensional Euclidean ball.

Now, ωkk
k
2 ≤ (2e)

k
2 π

k
2 , from where the claim follows. �
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8.2 Average Complexity Analysis

The following theorem is the main technical result from which the average
complexity bound will follow.

Theorem 8.3 Let f ∈ Pn,d be a dobro random polynomial with parameters K and
ρ. For all x ∈ Rn and t ≥ e,

P (κaff(f, x) ≥ t) ≤ 2

(
N

n+ 1

)n+1
2

(15Kρ)n+1 ln(t)
n+1
2

tn+1
.

Remark 8.4 By [22, (1)], we have Kρ ≥ 1
4 for a dobro random polynomial f with

parameters K and ρ. This fact will be used without mention in the bounds below.

Proof of Theorem 8.3 By Corollary 5.3, we have that κaff(f, x) = ‖f‖/‖Rxf‖ with Rx
an orthogonal projection onto the (n+ 1)-dimensional linear subspace Σ⊥x .

By the union bound, for all u, t > 0,

P (κaff(f, x) ≥ t) ≤ P (‖f‖ ≥ u) + P (‖Rxf‖ ≤ u/t) . (8.2)

We apply now Theorems 8.1 to the first term and 8.2 to the second. Thus for u >
5K
√
N and t > 0,

P(κaff(f, x) ≥ t) ≤ exp(−u2/(5K)2) +

(
3uρ

t
√
n+ 1

)n+1

.

We set u = 5K
√
N ln(t), so we get

P (κaff(f, x) ≥ t) ≤ t−N +

(
15Kρ

√
N√

n+ 1

)n+1
ln(t)

n+1
2

tn+1

for t ≥ e. The inequality n+ 1 ≤ N and Remark 8.4 finish the proof. �

Theorem 8.3 immediately gives probabilistic bounds for the expressions
Ex∈[−a,a]n (κaff(f, x)n) and Ex∈[−a,a]n

(
κaff(f, x)n log2 κaff(f, x)

)
for a random f.

The two corollaries below, together with Theorems 6.3 and 7.6, give us the
proof of the part (A) of Theorems 3.6 and 3.7.

Theorem 8.5 Let f ∈ Pn,d be a dobro random polynomial with parameters K and
ρ and α ∈ [1, n+ 1). Then

EfEx∈[−a,a]n
(
κaff(f, x)α

)
≤ 4

α
√
n+ 1

n+ 1− α

(
N

n+ 1− α

)n+1
2

(25Kρ)n+1.

Corollary 8.6 Let f ∈ Pn,d be a dobro random polynomial with parameters K and
ρ. Then

EfEx∈[−a,a]n
(
κaff(f, x)n

)
≤ N

n+1
2 25n+ 3

2 logn+ 15
2 (Kρ)n+1.
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Corollary 8.7 Let f ∈ Pn,d be a dobro random polynomial with parameters K and
ρ. Then

EfEx∈[−a,a]n

(
κaff(f, x)n log2 κaff(f, x)

)
≤ N

n+1
2 26n+ 3

2 logn+12(Kρ)n+1.

Proof of Theorem 8.5 By the Fubini-Tonelli theorem,

EfEx∈[−a,a]n
(
κaff(f, x)α

)
= Ex∈[−a,a]αEf

(
κaff(f, x)n

)
so it is enough to have a uniform bound for

Ef

(
κaff(f, x)α

)
=

∫ ∞
1

P
(
κaff(f, x)α ≥ t

)
dt.

Now, by Theorem 8.3, this is bounded by

eα + 2

(
N

α(n+ 1)

)n+1
2

(15Kρ)n+1
∫ ∞

1

ln(t)
n+1
2

t
n+1
α

dt.

After the change of variables t = e
α

n+1−α s the bound becomes

eα + 2
α

n+ 1− α

(
N

(n+ 1− α)(n+ 1)

)n+1
2

(15Kρ)n+1
∫ ∞

1
s
n+1
2 e−s ds

= eα + 2
α

n+ 1− α

(
N

(n+ 1− α)(n+ 1)

)n+1
2

Γ

(
n+ 3

2

)
(15Kρ)n+1,

where Γ is Euler’s Gamma function. We note that eα ≤ en+1 and that, by the
Stirling estimates,

Γ

(
n+ 3

2

)
≤
√

2π

(
n+ 3

2e

)n+2
2

≤
√

2π

(
n+ 1

e

)n+2
2

.

Combining all these inequalities, we obtain the desired upper bound. �

Proof of Corollary 8.6 We take α = n in Theorem 8.5. �

Proof of Corollary 8.7 Recall that log2 y ≤ 5
√
y for y ≥ 1. Hence

EfEx∈[−a,a]n

(
κaff(f, x)n log2 κaff(f, x)

)
≤ 25/2EfEx∈[−a,a]n

(
κaff(f, x)n+ 1

2

)
and the claim follows using Theorem 8.5 with α = n+ 1

2 . �

We can finally prove the average complexity bounds in our main theorems.

Proof of Theorem 3.6(A) The expected number of boxes we want to bound is
bounded by the expectation of the estimate for this quantity in Theorem 6.4 with
respect to a dobro random f ∈ Pn,d, that is,

dn max{1, an}2n logn+ 9
2n Ef∈Pn,dEx∈[−a,a]n

(
κaff(f, x)n

)
.

A bound for the inner double expectation is in Corollary 8.6.
The bound for the expected number of operations is similarly derived. �

Proof of Theorem 3.7(A) Similar to the proof above but using Corollaries 8.6 and 8.7
to get upper bounds for the two expectations (arithmetic cost and, also now, bit-
cost). �
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8.3 Smoothed Complexity Analysis

The tools used for our average complexity analysis yield also a smoothed com-
plexity analysis (see [35] or [2, §2.2.7]). We provide this analysis following the
lines of [21].

The main idea of smoothed complexity is to have a complexity measure in-
terpolating between worst-case complexity and average-case complexity. More
precisely, we are interested in the maximum —over f ∈ Pn,d— of the average
cost of the algorithm when the input polynomial has the form

qσ := f + σ‖f‖g (8.3)

with g ∈ Pn,d a dobro random polynomials with parameters K ≥ 1 and ρ, and
σ ∈ (0,∞). Notice that the perturbation σ‖f‖g of f is proportional to both σ
and ‖f‖.

The following lemma shows how Theorems 8.1 and 8.2 apply to this class
of random polynomials.

Lemma 8.8 Let qσ be as in (8.3). Then for t > 1 + σ
√
N

P (‖qσ‖ ≥ t‖f‖) ≤ exp

(
− (t− 1)2

(σ5K)2

)
and for every x ∈ Rn,

P (‖Rxqσ‖ ≤ ε) ≤
(
3ρε/

(
σ‖f‖

√
n+ 1

))n+1

where Rx is as in Corollary 5.3. �

Proof By the triangle inequality we have P(‖qσ‖ ≥ t‖f‖) ≤ P(‖g‖ ≥ (t−1)/σ). Then
we apply Theorem 8.1 which finishes the proof of the first claim. The second claim
is a direct consequence of Theorem 8.2. �

As in the average case, this leads to a tail bound.

Theorem 8.9 Let qσ be as in (8.3) and x ∈ Rn. Then for σ > 0 and t ≥ e,

P (κaff(qσ, x) ≥ t) ≤ 2

(
N

n+ 1

)n+1
2

(15Kρ)n+1 ln(t)
n+1
2

tn+1

(
1 +

1

σ

)n+1

.

Proof We proceed as in the proof of Theorem 8.3, but with Lemma 8.8 using u =
‖f‖(σ5K

√
N ln(t) + 1). This gives the desired bound arguing as in that proof after

noticing that
u ≤ ‖f‖(1 + σ)5K

√
N ln(t)

which holds since 5K
√
N ln(t) ≥ 1. �
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As in the average case, Theorem 8.9 yields probabilistic bounds for both
Ex∈[−a,a]n (κaff(f, x)n) and Ex∈[−a,a]n

(
κaff(f, x)n log2 κaff(f, x)

)
for random f. The

two corollaries below, together with Theorems 6.3 and 7.6, give us the proof
of the part (S) of Theorems 3.6 and 3.7.

Theorem 8.10 Let qσ be as in (8.3) and α ∈ [1, n+ 1). Then for all f ∈ Pn,d and
all σ > 0,

EqσEx∈[−a,a]n
(
κaff(qσ, x)

α)
≤ 4

α
√
n+ 1

n+ 1− α

(
N

n+ 1− α

)n+1
2

(25Kρ)n+1
(

1 +
1

σ

)n+1

.

Proof The proof is as that of Theorem 8.5, but using Theorem 8.9 instead of
Theorem 8.3. �

Corollary 8.11 Let qσ be as in (8.3). Then for all f ∈ Pn,d and all σ > 0,

EqσEx∈[−a,a]n
(
κaff(qσ, x)

n) ≤ N n+1
2 25n+ 3

2 logn+ 15
2 (Kρ)n+1

(
1 +

1

σ

)n+1

.

Corollary 8.12 Let qσ be as in (8.3). Then for all f ∈ Pn,d and all σ > 0,

EqσEx∈[−a,a]n

(
κaff(qσ, x)

n log2 κaff(qσ, x)
)

≤ N
n+1
2 26n+ 3

2 logn+12(Kρ)n+1
(

1 +
1

σ

)n+1

.

Proof of Corollaries 8.11 and 8.12 We do as in the proof of Corollaries 8.6 and 8.7
but using Theorem 8.10 instead of Theorem 8.5. �

We conclude showing how the smoothed complexity estimates follow.

Proof of Theorem 3.6(S) The proof is the same as that of Theorem 3.6(A), but using
Corollary 8.11 instead of Corollary 8.6. �

Proof of Theorem 3.7(S) The proof is the same as that of Theorem 3.6(A), but using
Corollaries 8.11 and 8.12 instead of Corollaries 8.6 and 8.7. �
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Appendix A Proofs of Propositions 7.1 and 7.2

We proceed by introducing a new error symbol which will make our manip-
ulations easier, then we recall some fundamental numerical algorithms for
computing inner product and monomials and we apply them to the computed
quantities during the execution of algorithm PV-Effective.

A.1 The arithmetic of error accumulation

To ease the technique of [26, Chapter 3], we will use the symbol θk allowing
any real number k ≥ 1 in the subindex. Note that this does not affect any of
the results.

As the symbol θk might be difficult to parse, let us explain in more detail
how it works. Let φ be some arithmetic expression. Whenever we write an
expression of the form

fl(φ(x)) = φ̃ (x, θt1 , . . . , θt`) (A1)

for some arithmetic expression φ̃ and for some real numbers t1, . . . , t` ≥ 1, we
will mean that, as long as max{t1, . . . , t`}u < 1/2, we have

fl(φ(x)) = φ̃ (x, τ1, . . . , τ`)

for some

τ1 ∈
[
− t1u

1− t1u
,

t1u

1− t1u

]
, . . . , τ` ∈

[
− t`u

1− t`u
,

t`u

1− t`u

]
.

We note that in this notation we are allowing more freedom as we don’t require
t1, . . . , t` to be integers. Furthermore, and this will make it computationally as
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useful as Landau notation, we introduce the following additional, asymmetric,
notation.

Assume max{t1, . . . , t`, t′1, . . . , t′`′}u < 1/2 and x ∈ R. We write

φ̃ (x, θt1 , . . . , θt`) = φ̃′
(
x, θt′1 , . . . , θt′`′

)
(A2)

to mean that for every

τ1 ∈
[
− t1u

1− t1u
,

t1u

1− t1u

]
, . . . , τ` ∈

[
− t`u

1− t`u
,

t`u

1− t`u

]
,

there exist

τ ′1 ∈
[
− t′1u

1− t′1u
,

t′1u

1− t′1u

]
, . . . , τ ′`′ ∈

[
− t′`′u

1− t′`′u
,

t′`′u

1− t′`′u

]
—of course, depending on τ1, . . . , τ`— such that

φ̃ (x, τ1, . . . , τ`) = φ̃′ (x, τ ′1, . . . , τ
′
`′) .

This is consistent with notation (A1) in the sense that if both (A1) and (A2)
hold then fl(φ(x)) = φ̃′ (x, θt1 , . . . , θt`). This will allow us to mechanically
perform the finite precision analysis using the following rules.

Proposition A.1 For all s, s′ ≥ 1, the following holds for the error symbol:

(E1) If s ≤ s′, θs = θs′ .
(E2) θs + θs′ + θsθs′ = θs+s′ .

In particular, θs + θs′ = θs+s′ and (1 + θs)(1 + θs′) = 1 + θs+s′ .
(E3) (1 + θs)

−1 = 1 + θ2s.
(E4)

√
1 + θs = 1 + θs.

(E5) For all t ∈ R, tθs = |t|θs = θmax{1,|t|}s.
(E6) For all t, t′ ∈ R, tθs + t′θs′ = (|t|+ |t′|)θmax{s,y}.
(E7) For all t, t′ ∈ (0,∞), if t < t′, then tθs = t′θs.
(E8) |1 + θs| = 1 + θs

Proof This follows from [26, Lemmas 3.1 and 3.3] �

The definition and properties of θ follow the lines of classical error analysis,
as e.g., in [26, Chapter 3]. Our presentation may differ in minor details which
we have chosen for our own convenience. In all what follows, the round-off unit
u is always sufficiently small, so that the inequalities tu < 1/2 hold true for
the values of t at hand. As is customary in finite-precision analyses, we won’t
explicitly point to these bounds.
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A.2 Basic finite precision algorithms

The following two propositions show the nice properties of the numerical com-
putations that underlie the algorithm PV-Effective. Their statements refer
to three aspects: 1) the number of arithmetic operations performed, 2) error
estimates for a given input, and 3) error estimates for approximate inputs.
From these bounds we can obtain bit-complexity estimates, as floating-point
operations take O(|logu|2)-time (this being non-tight, one can obtain better
bounds using fast multiplication algorithms).

An algorithm computing inner products with sharper error bounds was
recently analyzed in [1] (see also [27] for a survey on another family of re-
cent improvements in this respect). For our purposes, however, the simpler
Proposition A.2 is sufficient.

Proposition A.2 There is a numerical algorithm which, with input x, y ∈ Rm,
computes 〈x, y〉. This algorithm satisfies the following:

1. It performs O(m) arithmetic operations.
2. On input x, y ∈ Fm, the computed value fl(〈x, y〉) satisfies

fl(〈x, y〉) = 〈x, y〉+ 〈|x|, |y|〉θlogm+2, (A3)

where |x| = (|x1|, . . . , |xn|).
3. Assume x̃, ỹ ∈ Fm and x, y ∈ Rm are such that, for all i,

x̃i = xi + tiθε and ỹi = yi + t′iθε′

for some t, t′ ∈ [0,∞)m and ε, ε′ ≥ 1. Then the computed value fl(〈x̃, ỹ〉)
satisfies

fl(〈x̃, ỹ〉) = 〈x, y〉
+ max{〈|x|, |y|〉, 〈|t|, |y|〉, 〈|x|, |t′|〉, 〈|t|, |t′|〉}θlogm+ε+ε′+2.

Proposition A.3 There is a numerical algorithm which, with input x ∈ Rm,
computes ‖x‖. This algorithm satisfies the following:

1. It performs O(m) arithmetic operations.
2. On input x ∈ Fm, the computed value fl(‖x‖) satisfies

fl(‖x‖) = ‖x‖(1 + θlogm+3). (A4)

3. Assume x̃ ∈ Fm and x ∈ Rm are such that, for all i,

x̃i = xi + tiθε
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for some t ∈ [0,∞)m and ε ≥ 1. Then the computed value fl(‖x̃‖〉) satisfies

fl(‖x̃‖) = ‖x‖+ max{‖x‖, ‖t‖}θlogm+ε+3.

Proposition A.4 There is a numerical algorithm which, with input x ∈ Rn and
α ∈ N, computes xα. This algorithm satisfies the following:

1. It performs O(log|α|) arithmetic operations.
2. On input x ∈ Fn, the computed value fl(xα) satisfies

fl(xα) =

{
xα(1 + θ|α|−1) if |α| > 1

xα, otherwise.

3. Assume that x̃ ∈ Fn and x ∈ Rn are such that, for all i,

x̃i = xi(1 + θε)

for some t ∈ [0,∞)m and ε ≥ 1. Then the computed value fl(x̃α) satisfies

fl(x̃α) =

{
xα(1 + θ|α|(1+ε)−1), if α 6= 0

1, otherwise.

Proof of Proposition A.2 The algorithm will first perform all the products xiyi and
them perform their sum by recursively dividing the sum into∑

i∈I
xiyi +

∑
i∈I{

xiyi

where I and its complement, I{ have size almost equal, differing in at most one.
(i) We initially perform m products and then m − 1 additions. Note that the

latter is independent of how we achieve the final sum, we sum as we do to minimize
the error.

(ii) We will prove using induction the stronger claim that for the above algorithm

fl(〈x, y〉) = 〈x, y〉+ 〈|x|, |y|〉θdlogme+1

where dxe is the minimum integer bigger or equal than x. Note that the claim is true
for m = 1 and m = 2.

By the recursive nature of the algorithm, we have that

fl

(
m∑
i=1

xiyi

)

= fl

∑
i∈I

xiyi

 +̃ fl

∑
i∈I{

xiyi


=

∑
i∈I

xiyi +

∑
i∈I
|xi||yi|

 θdlog|I|e+1
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+
∑
i∈I{

xiyi +

∑
i∈I{
|xi||yi|

 θdlog(n−|I|)e+1

 (1 + θ1) (Induction)

=

(
n∑
i=1

xiyi +

(
n∑
i=1

|xi||yi|

)
θlog max{|I|,n−|I|}+1

)
(1 + θ1) (E6)

=
(
〈x, y〉+ 〈|x|, |y|〉θdlog max{|I|,n−|I|}e+1

)
(1 + θ1)

Now, when |I| and n− |I| differ in at most one, we have that

dlog max{|I|, n− |I|}e+ 1 ≤ dlogne.

Thus

=
(
〈x, y〉+ 〈|x|, |y|〉θdlogne

)
(1 + θ1)

= 〈x, y〉+ 〈x, y〉θ1 + 〈|x|, |y|〉(θdlogne + θdlogneθ1)

= 〈x, y〉+ 〈|x|, |y|〉θ1 + 〈|x|, |y|〉(θdlogne + θdlogneθ1) 〈x, y〉 ≤ 〈|x|, |y|〉

= 〈x, y〉+ 〈|x|, |y|〉(θdlogne + θ1 + θdlogneθ1) (E1)

= 〈x, y〉+ 〈|x|, |y|〉θdlogne+1 (E2).

(iii) Note that

〈x̃, ỹ〉 = 〈x, y〉+ 〈(tiθε), y〉+ 〈x, (t′iθε′)〉+ 〈(tiθε), (t′iθε′)〉

= 〈x, y〉+ 〈|t|, |y|〉θε + 〈|x|,
∣∣t′∣∣〉θε′ + 〈|t|,

∣∣t′∣∣〉θεθε′ (E6)

= 〈x, y〉+ max{〈|t|, |y|〉, 〈|x|,
∣∣t′∣∣〉, 〈|t|, ∣∣t′∣∣〉}(θε + θε′ + θεθε′) (E7)

= 〈x, y〉+ max{〈|t|, |y|〉, 〈|x|,
∣∣t′∣∣〉, 〈|t|, ∣∣t′∣∣〉}θε+ε′ (E2)

An analogous statement holds for 〈|x̃|, |ỹ|〉. Now, combining this and (ii), we get that

fl(〈x̃, ỹ〉)
= 〈x̃, ỹ〉+ 〈|x̃|, |ỹ|〉θlogm+2

= 〈x, y〉+ max{〈|t|, |y|〉, 〈|x|,
∣∣t′∣∣〉, 〈|t|, ∣∣t′∣∣〉}θε+ε′

+
(
〈|x|, |y|〉+ max{〈|t|, |y|〉, 〈|x|,

∣∣t′∣∣〉, 〈|t|, ∣∣t′∣∣〉}θε+ε′) θlogm+2

= 〈x, y〉+ max{〈|x|, |y|〉, 〈|t|, |y|〉, 〈|x|,
∣∣t′∣∣〉, 〈|t|, ∣∣t′∣∣〉}

·
(
θε+ε′ + θlogm+2 + θε+ε′θlogm+2

)
(E7)

= 〈x, y〉+ max{〈|x|, |y|〉, 〈|t|, |y|〉, 〈|x|,
∣∣t′∣∣〉, 〈|t|, ∣∣t′∣∣〉}θlogm+ε+ε′+2.

�

Proof of Proposition A.3 The proof is analogous to that of Proposition A.2. �

Proof of Proposition A.4 The proof is analogous to that of Proposition A.2, but we
have to take into account that errors accumulate additively since in each multiplica-
tion the errors of the computed quantities are added by (E2). �



42 On the Complexity of the Plantinga-Vegter Algorithm

A.3 The final proofs

The following lemma is useful.

Lemma A.5 There is a numerical algorithm which, with input f ∈ Pn,d, computes
the Weyl norm ‖f‖ of f . This algorithm performs O(N) arithmetic operations, and,
on input f ∈ Pn,d ∩ F[X1, . . . , Xn], the computed value fl(‖f‖) satisfies

fl(‖f‖) = ‖f‖(1 + θlogN+8).

Moreover, for general f ∈ Pn,d,

fl(‖r(f)‖) = ‖f‖(1 + θlogN+9).

Proof To compute the Weyl norm, we first compute the vector

((d
α

)−1/2
fα

)
and

then its norm. To compute the vector, we take the floating point approximation of(d
α

)
, we compute its square root and we divide fα by the computed square root.

Hence

fl

(d
α

)−1/2

fα

 =

(
d

α

)−1/2

fα
(1 + θ1)√

1 + θ1(1 + θ1

=

(
d

α

)−1/2

fα(1 + θ5) (Proposition A.1)

Now, the lemma follows from Proposition A.3. �

We can now give the proofs of Propositions 7.1 and 7.2.

Proof of Proposition 7.1 We first compute f(x) as 〈(fα), (xα))〉, where the xα are
computed one by one, and then divide the result by the computed ‖f‖‖(1, x)‖d−1 to

obtain f̂(x).
By Propositions A.2 and A.4 and (E7), we have that

fl(f(x)) = f(x) + ‖f‖‖(1, x)‖dθlogN+d+1,

since 〈(|fα|), (|xα|)〉 = g(|x|), where g =
∑
α|fα|X

α, is bounded by ‖f‖‖(1, x)‖d, by
Lemma 4.5.

Also, by Proposition A.3, Lemma A.5 and (E2), we have that

fl‖f‖‖(1, x)‖d−1 = ‖f‖‖(1, x)‖d−1(1 + θlogN+d log(n+1)+4d+2).

Now, N ≤ (n+ 1)d. Thus we have that

fl(f(x)) = f(x) + ‖f‖‖(1, x)‖dθ3d log(n+1)

and
fl(‖f‖‖(1, x)‖d−1) = ‖f‖‖(1, x)‖d−1(1 + θ8d log(n+1)).

Although, doing this we are not obtaining tight bounds, we have to recall that the
number of digits is proportional to the logarithm of what is inside θ·.

To finish, we only have to do the division. Thus

fl(f̂(x))
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= fl(f(x))/fl(‖f‖‖(1, x)‖d−1
)(1 + θ1)

= (f(x) + ‖f‖‖(1, x)‖dθ3d log(n+1))/
(
‖f‖‖(1, x)‖d−1

(1 + θ7d log(n+1))
)

(1 + θ1)

= (f̂(x) + ‖(1, x)‖θ3d log(n+1)(1 + θ8d log(n+1))
−1

(1 + θ1)

= (f̂(x) + ‖(1, x)‖θ3d log(n+1)(1 + θ16d log(n+1)+1)

= f̂(x) + f̂(x)θ10d log(n+1)+1

+ ‖(1, x)‖(θ3d log(n+1) + θ3d log(n+1)θ14d log(n+1)+1)

= f̂(x)

+ ‖(1, x)‖(θ16d log(n+1)+1 + θ3d log(n+1) + θ3d log(n+1)θ16d log(n+1)+1)

= f̂(x) + ‖(1, x)‖θ19d log(n+1)+1

= f̂(x) + ‖(1, x)‖θ20d log(n+1)

where the first equality follows from the way we compute f̂(x), the second one
from the above identities, the fourth one from (E3) and (E2), the sixth one from
Lemma 4.5 and (E7), the eighth one from (E2), and the last one from (E1).

The result for r(f) and r(x) follows similarly. �

Proof of Proposition 7.2 We compute each ∂jf(x) as we computed f(x). After that,

we compute ‖∂f(x)‖, d‖f‖‖(1, x)‖d−2 and their quotient.
By Propositions A.2 and A.4 and (E7), we have that

fl(∂jf(x)) = ∂jf(x) + ∂jg(|x|)θlogN+d+1,

where g =
∑
α|fα|X

α. Now, by Proposition A.3, we have that

fl(‖∂f(x)‖) = ‖∂f(x)‖+ max{‖∂f(x)‖, ∂g(|x|)‖}θlogN+logn+d+4.

However, by Lemma 4.5, both ‖∂f(x)‖ and ‖∂g(|x|)‖ are bounded by
d‖f‖‖(1, x)‖d−1. Thus, by (E7),

fl(‖∂f(x)‖) = ‖∂f(x)‖+ d‖f‖‖(1, x)‖d−1θlogN+logn+d+4.

Again, by Proposition A.3, Lemma A.5 and (E2), we have that

fl
(
d‖f‖‖(1, x)‖d−2

)
= d‖f‖‖(1, x)‖d−2(1 + θlogN+d log(n+1)+4d+2).

Now, as N ≤ (n+ 1)d, we have

fl(‖∂f(x)‖) = ‖∂f(x)‖+ d‖f‖‖(1, x)‖d−1θ7d log(n+1)

and
fl
(
d‖f‖‖(1, x)‖d−2

)
= d‖f‖‖(1, x)‖d−2(1 + θ8d log(n+1)).

Now, arguing as in Proposition 7.1, the desired statement follows. �
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