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The Z2-genus of Kuratowski minors∗

Radoslav Fulek† Jan Kynčl‡

Abstract

A drawing of a graph on a surface is independently even if every pair of non-
adjacent edges in the drawing crosses an even number of times. The Z2-genus of
a graph G is the minimum g such that G has an independently even drawing on
the orientable surface of genus g. An unpublished result by Robertson and Seymour
implies that for every t, every graph of sufficiently large genus contains as a minor
a projective t × t grid or one of the following so-called t-Kuratowski graphs: K3,t,
or t copies of K5 or K3,3 sharing at most two common vertices. We show that the
Z2-genus of graphs in these families is unbounded in t; in fact, equal to their genus.
Together, this implies that the genus of a graph is bounded from above by a function
of its Z2-genus, solving a problem posed by Schaefer and Štefankovič, and giving an
approximate version of the Hanani–Tutte theorem on orientable surfaces. We also
obtain an analogous result for Euler genus and Euler Z2-genus of graphs.

1 Introduction

The genus g(G) of a graph G is the minimum g such that G has an embedding on the
orientable surface Mg of genus g. We say that two edges in a graph are independent
(also nonadjacent) if they do not share a vertex. The Z2-genus g0(G) of a graph G is the
minimum g such that G has a drawing onMg with every pair of independent edges crossing
an even number of times. Clearly, every graph G satisfies g0(G) ≤ g(G).

The Hanani–Tutte theorem [16, 39] states that g0(G) = 0 implies g(G) = 0. The
theorem is usually stated in the following form, with the optional adjective “strong”.

Theorem 1 (The (strong) Hanani–Tutte theorem [16, 39]). A graph is planar if it can be
drawn in the plane so that no pair of independent edges crosses an odd number of times.
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Theorem 1 gives an interesting algebraic characterization of planar graphs that can be
used to construct a simple polynomial algorithm for planarity testing [34, Section 1.4.2].

Pelsmajer, Schaefer and Stasi [27] extended the strong Hanani–Tutte theorem to the
projective plane, using the list of minimal forbidden minors. Colin de Verdière et al. [9]
recently provided an alternative proof, which does not rely on the list of forbidden minors.

Theorem 2 (The (strong) Hanani–Tutte theorem on the projective plane [9, 27]). If a
graph G has a drawing on the projective plane such that every pair of independent edges
crosses an even number of times, then G has an embedding on the projective plane.

Whether the strong Hanani–Tutte theorem can be extended to some other surface than
the plane or the projective plane has been an open problem. Schaefer and Štefankovič [35]
conjectured that g0(G) = g(G) for every graph G and showed that a minimal counterex-
ample to the extension of the strong Hanani–Tutte theorem on any surface must be 2-
connected. Recently, we have found a counterexample on the orientable surface of genus
4 [14].

Theorem 3 ([14]). There is a graph G with g(G) = 5 and g0(G) ≤ 4. Consequently, for
every positive integer k there is a graph G with g(G) = 5k and g0(G) ≤ 4k.

The Euler genus eg(G) of G is the minimum g such that G has an embedding on a
surface of Euler genus g. The Euler Z2-genus eg0(G) of G is the minimum g such that G
has an independently even drawing on a surface of Euler genus g.

Schaefer and Štefankovič [35] conjectured that eg0(G) = eg(G) for every graph G; this
is still an open question. They also posed the following natural “approximate” questions.

Problem 1 ([35]). Is there a function f such that g(G) ≤ f(g0(G)) for every graph G? Is
there a function f such that eg(G) ≤ f(eg0(G)) for every graph G?

We give a positive answer to Problem 1 for several families of graphs, which we con-
jectured to be “unavoidable” as minors in graphs of large genus. Recently we have found
that a similar Ramsey-type statement by Robertson and Seymour, which we formulate as
Conjecture 5, is a folklore unpublished result in the graph-minors community. Together,
these results would imply a positive solution to Problem 1 for all graphs.

In particular, Robertson and Seymour conjectured that every graph of a sufficiently
large Euler genus contains as a minor one of the following t-Kuratowski graphs : K3,t, or t
copies of K5 or K3,3 sharing at most two common vertices. To obtain a similar statement
for graphs of large genus, we need to add the projective t × t grid (or t-wall) to the list
of unavoidable minors. We show that the Z2-genus of graphs in these families is equal to
their genus.

Our main technical tool is the intersection form over Z2, counting the parity of crossings
between cycles on a given surface, and the fact that the rank of the intersection form is
equal to the Euler genus of the surface.

We state the results in detail in Sections 3 and 4 after giving necessary definitions in
Section 2.
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A positive answer to Problem 1 would also have the following applications: it would
give a linear upper bound on the number of edges of a graph with an independently even
drawing on a fixed orientable surface, and thus imply a generalization of the crossing lemma
on orientable surfaces for several notions of the crossing number, including the pair-crossing
number [21].

2 Preliminaries

2.1 Graphs on surfaces

We refer to the monograph by Mohar and Thomassen [26] for a detailed introduction into
surfaces and graph embeddings. By a surface we mean a connected compact 2-dimensional
topological manifold. Every surface is either orientable (has two sides) or nonorientable
(has only one side). Every orientable surface S is obtained from the sphere by attaching
g ≥ 0 handles, and this number g is called the genus of S. Similarly, every nonorientable
surface S is obtained from the sphere by attaching g ≥ 1 crosscaps, and this number g
is called the (nonorientable) genus of S. The simplest orientable surfaces are the sphere
(with genus 0) and the torus (with genus 1). The simplest nonorientable surfaces are
the projective plane (with genus 1) and the Klein bottle (with genus 2). We denote the
orientable surface of genus g by Mg, and the nonorientable surface of genus g by Ng.

Let G = (V,E) be a graph with no multiple edges and no loops, and let S be a surface.
A drawing of G on S is a representation of G where every vertex is represented by a unique
point in S and every edge e joining vertices u and v is represented by a simple curve in
S joining the two points that represent u and v. If it leads to no confusion, we do not
distinguish between a vertex or an edge and its representation in the drawing and we use
the words “vertex” and “edge” in both contexts. We require that in a drawing no edge
passes through a vertex, no two edges touch, every edge has only finitely many intersection
points with other edges and no three edges cross at the same inner point. In particular,
every common point of two edges is either their common endpoint or a crossing.

A drawing of G on S is an embedding if no two edges cross. A face of an embedding of
G on S is a connected component of the topological space obtained from S by removing
all the edges and vertices of G. A 2-cell embedding is an embedding whose each face is
homeomorphic to an open disc. The facewidth (also called representativity) fw(E) of an
embedding E on a surface S of positive genus is the smallest nonnegative integer k such
that there is a closed noncontractible curve in S intersecting E in k vertices.

The rotation of a vertex v in a drawing of G on an orientable surface is the clockwise
cyclic order of the edges incident to v. We will represent the rotation of v by the cyclic
order of the other endpoints of the edges incident to v. The rotation system of a drawing
is the set of rotations of all vertices.

The Euler characteristic of a surface S of genus g, denoted by χ(S), is defined as
χ(S) = 2− 2g if S is orientable, and χ(S) = 2− g if S is nonorientable. Equivalently, if v,
e and f denote the numbers of vertices, edges and faces, respectively, of a 2-cell embedding
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of a graph on S, then χ(S) = v− e+ f . The Euler genus eg(S) of S is defined as 2−χ(S).
In other words, the Euler genus of S is equal to the genus of S if S is nonorientable, and
to twice the genus of S if S is orientable. This implies the following inequalities for the
different notions of genus of a graph G, defined in the introduction:

eg(G) ≤ 2g(G) and eg0(G) ≤ 2g0(G). (1)

An edge in a drawing is even if it crosses every other edge an even number of times. A
drawing of a graph is even if all its edges are even. A drawing of a graph is independently
even if every pair of independent edges in the drawing crosses an even number of times.
In the literature, the notion of Z2-embedding is used to denote both an even drawing [6]
and an independently even drawing [35].

The embedding scheme of a drawing D on a surface S consists of the rotation system
and a signature +1 or −1 assigned to every edge, representing the parity of the number
of crosscaps the edge is passing through. If S is orientable, the embedding scheme can
be given just by the rotation system. The following weak analogue of the Hanani–Tutte
theorem was proved by Cairns and Nikolayevsky [6] for orientable surfaces and then ex-
tended by Pelsmajer, Schaefer and Štefankovič [28] to nonorientable surfaces. Loebl and
Masbaum [22, Theorem 5] obtained an alternative proof for orientable surfaces.

Theorem 4 (The weak Hanani–Tutte theorem on surfaces [6, Lemma 3], [28, Theorem
3.2]). If a graph G has an even drawing D on a surface S, then G has an embedding on S
that preserves the embedding scheme of D.

A simple closed curve γ in a surface S is 1-sided if it has a small neighborhood homeo-
morphic to the Möbius strip, and 2-sided if it has a small neighborhood homeomorphic to
the cylinder. We say that γ is separating in S if the complement S \γ has two components,
and nonseparating if S \ γ is connected. Note that on an orientable surface every simple
closed curve is 2-sided, and every 1-sided simple closed curve (on a nonorientable surface)
is nonseparating.

2.2 Special graphs

2.2.1 Projective grids and walls

For a positive integer n we denote the set {1, . . . , n} by [n]. Let r, s ≥ 3. The projective
r × s grid is the graph with vertex set [r]× [s] and edge set

{{(i, j), (i′, j′)}; |i− i′|+ |j − j′| = 1} ∪ {{(i, 1), (r + 1− i, s)}; i ∈ [r]}.

In other words, the projective r × s grid is obtained from the planar r × (s + 1) grid by
identifying pairs of opposite vertices and edges in its leftmost and rightmost column. See
Figure 1, left. The projective t × t grid has an embedding on the projective plane with
facewidth t. By a result of Robertson and Vitray [33], [26, p. 171], the embedding is unique
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Figure 1: Left: a projective 5× 5 grid. Right: a projective 5-wall.

if t ≥ 4. Hence, for t ≥ 4 the genus of the projective t× t grid is equal to ⌊t/2⌋ by a result
of Fiedler, Huneke, Richter and Robertson [12], [26, Theorem 5.8.1].

Since grids have vertices of degree 4, it is more convenient for us to consider their
subgraphs of maximum degree 3, called walls. For an odd t ≥ 3, a projective t-wall is
obtained from the projective t×(2t−1) grid by removing edges {(i, 2j), (i+1, 2j)} for i odd
and 1 ≤ j ≤ t−1, and edges {(i, 2j−1), (i+1, 2j−1)} for i even and 1 ≤ j ≤ t. Similarly,
for an even t ≥ 4, a projective t-wall is obtained from the projective t×2t grid by removing
edges {(i, 2j), (i+1, 2j)} for i odd and 1 ≤ j ≤ t, and edges {(i, 2j− 1), (i+1, 2j− 1)} for
i even and 1 ≤ j ≤ t. The projective t-wall has maximum degree 3 and can be embedded
on the projective plane as a “twisted wall” with inner faces bounded by 6-cycles forming
the “bricks”, and with the “outer” face bounded by a (4t−2)-cycle for t odd and a 4t-cycle
for t even. See Figure 1, right. This embedding has facewidth t and so again, for t ≥ 4 the
projective t-wall has genus ⌊t/2⌋. It is easy to see that the projective 3-wall has genus 1
since it contains a subdivision of K3,3 and embeds on the torus.

2.2.2 Kuratowski graphs

A graph is called a t-Kuratowski graph [36] if it is one of the following:

a) K3,t,

b) a disjoint union of t copies of K5,

c) a disjoint union of t copies of K3,3,

d) a graph obtained from t copies of K5 by identifying one vertex from each copy to a
single common vertex,

e) a graph obtained from t copies of K3,3 by identifying one vertex from each copy to a
single common vertex,

f) a graph obtained from t copies of K5 by identifying a pair of vertices from each copy
to a common pair of vertices,

g) a graph obtained from t copies of K3,3 by identifying a pair of adjacent vertices from
each copy to a common pair of vertices,

5



a) b) c) d) e)

f) g) h)

Figure 2: The eight 3-Kuratowski graphs.

h) a graph obtained from t copies of K3,3 by identifying a pair of nonadjacent vertices
from each copy to a common pair of vertices.

See Figure 2 for an illustration.
The genus of each of the t-Kuratowski graphs is known precisely. The genus of K3,t

is ⌈(t − 2)/4⌉ [4, 30], [26, Theorem 4.4.7], [15, Theorem 4.5.3], which coincides with the
lower bound from Euler’s formula. The genus of t copies of K5 or K3,3 sharing at most
one vertex is t by the additivity of genus over blocks and connected components [1], [26,
Theorem 4.4.2], [15, Theorem 3.5.3]. Finally, from a general formula by Decker, Glover and
Huneke [10] it follows that the genus of t copies of K5 or K3,3 sharing a pair of adjacent or
nonadjacent vertices is ⌈t/2⌉ if t > 1: cases f) and g) follow from their proof of Corollary
0.2, case h) follows from their Corollary 2.4 after realizing that µ(K3,3) = 3 if x, y are
nonadjacent in K3,3.

The Euler genus of each of the t-Kuratowski graphs is also known precisely. The Euler
genus of K3,t is ⌈(t− 2)/2⌉ [4, 31]. The Euler genus of t copies of K5 or K3,3 sharing one
vertex is t by the additivity of Euler genus over blocks [37, Corollary 2], [24, Theorem
1], [26, Theorem 4.4.3]. The additivity of Euler genus over connected components follows
almost trivially: every embedding of a disconnected graph with components G1, G2 on
a surface can be turned into an embedding of a connected graph on the same surface by
adding an edge joining G1 with G2. Miller [24, Theorem 1] proved that Euler genus is
also additive over edge-amalgamations, which implies that the Euler genus of t copies of
K5 or K3,3 sharing a pair of adjacent vertices it t. Miller [24, Theorem 27] also proved a
superadditivity of the Euler genus over 2-amalgamations. Richter [29, Theorem 1] proved a
precise formula for the Euler genus of 2-amalgamations with respect to a pair of nonadjacent
vertices. Since the graph obtained from K3,3 by adding one edge has an embedding in the
projective plane, Miller’s [24] and Richter’s [29] results also imply that the Euler genus of
t copies of K3,3 sharing a pair of nonadjacent vertices is t.
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3 Ramsey-type results

The following Ramsey-type statement for graphs of large Euler genus is a folklore unpub-
lished result.

Conjecture 5 (Robertson–Seymour [2, 36], unpublished). There is a function g such that
for every t ≥ 3, every graph of Euler genus g(t) contains a t-Kuratowski graph as a minor.

For 7-connected graphs, Conjecture 5 follows from the result of Böhme, Kawarabayashi,
Maharry and Mohar [2], stating that for every positive integer t, every sufficiently large 7-
connected graph contains K3,t as a minor. Böhme et al. [3] later generalized this to graphs
of larger connectivity and Ka,t minors for every fixed a > 3. Fröhlich and Müller [13] gave
an alternative proof of this generalized result.

Christian, Richter and Salazar [7] proved a similar statement for graph-like continua.
We obtain an analogous Ramsey-type statement for graphs of large genus as an almost

direct consequence of Conjecture 5.

Theorem 6. Conjecture 5 implies that there is a function h such that for every t ≥ 3,
every graph of genus h(t) contains, as a minor, a t-Kuratowski graph or the projective
t-wall.

We give a detailed proof of Theorem 6 in Section 5.

4 Our results

As our main result we complete a proof that the Z2-genus of each t-Kuratowski graph
and the projective t-wall grows to infinity with t; in fact, the Z2-genus of each of these
graphs is equal to their genus. Analogously, we also show that the Euler Z2-genus of each
t-Kuratowski graph is equal to its Euler genus. Schaefer and Štefankovič [35] proved this
for those t-Kuratowski graphs that consist of t copies of K5 or K3,3 sharing at most one
vertex. For the projective t-wall, the result follows directly from the weak Hanani–Tutte
theorem on orientable surfaces [6, Lemma 3]: indeed, all vertices of the projective t-wall
have degree at most 3, therefore pairs of adjacent edges crossing oddly in an independently
even drawing can be redrawn in a small neighborhood of their common vertex so that they
cross evenly; see Figure 3. Then the weak Hanani–Tutte theorem can be applied. Thus,
the remaining cases are t-Kuratowski graphs of type a), f), g) and h).

Theorem 7. For every t ≥ 3, the Z2-genus of each t-Kuratowski graph of type a), f), g)
and h) is equal to its genus, and also its Euler Z2-genus is equal to its Euler genus. In
particular,

a) g0(K3,t) ≥ ⌈(t− 2)/4⌉, eg0(K3,t) ≥ ⌈(t− 2)/2⌉, and

b) if G consists of t copies of K5 or K3,3 sharing a pair of adjacent or nonadjacent
vertices, then g0(G) ≥ ⌈t/2⌉ and eg0(G) ≥ t.
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Figure 3: Changing the parity of the number of crossings of a pair of edges incident to a
vertex of degree 3.

This implies, together with the result of Schaefer and Štefankovič [35], that for every t ≥ 3,
the Z2-genus of each t-Kuratowski graph and the projective t-wall is equal to its genus, and
the Euler Z2-genus of each t-Kuratowski graph is equal to its Euler genus.

Combining Theorem 7 with Theorem 6 we get the following implication.

Corollary 8. Conjecture 5 implies a positive answer to both parts of Problem 1.

5 Unavoidable minors of large genus

In this section we prove Theorem 6.

5.1 Tools and preparations

We will need the following classical result by Robertson and Seymour [32] about surface
minors. Surface minors are defined for embeddings analogously as minors for graphs, by
deleting and contracting edges on the underlying surface [26].

Theorem 9 ([32], [19, Theorem 3.5], [25, Theorem 5.2], [26, Theorem 5.9.2]). For every
surface S and every embedding H of a graph H on S there exists a constant w(H, S) such
that every embedding of a graph on S with facewidth at least w(H, S) contains H as a
surface minor.

Let Wt be an embedding of the projective t-wall on the projective plane; see Figure 1,
right. With a slight abuse of notation, for each nonorientable surface Ni with i ≥ 2, we
choose an embedding of the projective t-wall on Ni and denote it again byWt. Without loss
of generality, we will assume that w(Wt, Ni) is nondecreasing in i; otherwise we inductively
redefine w(Wt, Ni) as max{w(Wt, Nj); j ≤ i}. For all integers k′, i, k satisfying 0 ≤ 2k′ <
i ≤ k, let

w(k′, i, k, t) = i(i− 2k′) · (w(Wt, Ni) + 2k).

This function will be used as a “potential function” in the proof of Proposition 11.
We will also use the following simple statement about the “continuity” of facewidth

under the operation of removing all vertices of a face.

Proposition 10 ([26, Propositions 5.5.7 and 5.5.8]). Let E be an embedding of a graph on
a surface S with fw(E) ≥ 3. Let f be a face of E and let E ′ be the embedding obtained from
E by removing all vertices incident to f . Then fw(E ′) ≥ fw(E)− 2.
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5.2 Proof of Theorem 6

Let t ≥ 3 and let g be a sufficiently large integer, larger than g(t)/2 where g(t) is the
number from Conjecture 5. Let G be a graph of genus g. If the Euler genus of G is larger
than g(t), then G has a t-Kuratowski minor by Conjecture 5. For the rest of the proof
we thus assume that the Euler genus of G is at most k = g(t), and our goal is to find the
projective t-wall as a minor in G. Since 2g > k, this implies that G has an embedding E
on Nk.

The operation of gluing a pair of vertices u, v in a graph G creates a graph with
vertex set V (G) \ {u, v} ∪ {w}, where w /∈ V (G), and edge set E(G[V (G) \ {u, v}]) ∪
{{w, x}; {u, x} ∈ E(G)}} ∪ {{w, x}; {v, x} ∈ E(G)}. We emphasize that this gluing oper-
ation creates no loops or multiple edges. An inverse operation is called splitting a vertex ;
in general, this is not unique for a given graph and a vertex.

We show the following proposition by induction on i.

Proposition 11. Let i, k, t be positive integers with t ≥ 3 and i ≤ k. Let G be a graph
that has an embedding E on Ni, let F be a set of at most k− i faces in E , and let Z be the
set of all vertices of E incident to at least one face in F . Then at least one of the following
holds:

1) G− Z has a projective t-wall as a minor, or

2) there is an integer k′ satisfying 0 ≤ 2k′ < i such that G can be obtained from a graph
H of genus at most k′ by at most w(k′, i, k, t) consecutive operations of gluing a pair
of vertices (shortly gluings).

Proof. The main idea of the proof is to cut the surface recursively along “short” non-
contractible curves until we obtain an embedding of large facewidth on a nonorientable
surface, or until all the pieces are orientable.

We distinguish two cases according to the facewidth of E .
1) fw(E) ≥ w(Wt, Ni) + 2(k − i). By Proposition 10, the induced embedding E ′ of

G−Z in E has facewidth at least w(Wt, Ni). Thus, Wt is a surface minor of E ′ and so the
projective t-wall is a minor of G− Z.

2) fw(E) < w(Wt, Ni) + 2(k − i). In this case there is a noncontractible closed curve γ
on S intersecting E in less than w(Wt, Ni) + 2(k − i) points, all of which can be assumed
to be vertices. Let W be the set of the vertices in E ∩ γ. We have three cases according to
the type of γ: a) γ is 1-sided, b) γ is 2-sided but nonseparating in Ni, c) γ is 2-sided and
separates Ni into two components.

In each case, we cut Ni along γ, obtaining a surface or a pair of surfaces with bound-
ary, and fill the boundary cycles with discs. The resulting surfaces may be orientable or
nonorientable. In case a) we obtain a surface S of Euler genus i− 1. In case b) we obtain
a surface S of Euler genus i − 2. In case c) we obtain a pair of surfaces S1 and S2 with
Euler genera i1 and i2, respectively, such that i1 + i2 = i and 1 ≤ i1, i2 ≤ i− 1.

While cutting the surface Ni along γ, we also obtain an embedding E ′ of a graph G′

on S or a pair of embeddings E ′
1 and E ′

2 of G
′
1 and G′

2 on S1 and S2, respectively, obtained
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from E by splitting each vertex in W into two copies, each copy keeping adjacent edges
only from one side of γ. We now consider each of the three cases separately.

In case a), the embedding E ′ has one new face f , containing the disc that was used to
fill a boundary cycle while creating S. On the other hand, the faces of E whose interior
intersects γ are no longer faces of E ′, as they were cut and merged into f . Let F ′ be
the union of {f} and the subset of faces in F that are still faces of E ′. Clearly, we have
|F ′| ≤ |F |+ 1 ≤ k − i+ 1 = k − eg(S).

If S is orientable, then G′ is a graph of genus at most eg(S)/2 = (i − 1)/2 and G can
be obtained from G′ by less than w(Wt, Ni) + 2(k − i) ≤ w((i− 1)/2, i, k, t) gluings.

If S is nonorientable, we apply induction to the embedding E ′ and the set of faces F ′.
Let Z ′ be the set of vertices of E ′ incident with at least one face in F ′. Observe that Z ′

contains all vertices in Z and also all new vertices created by splitting the vertices in W .
Hence, G′ − Z ′ is a subgraph of G− Z. Therefore, if case 1) of the proposition occurs, we
obtain a projective t-wall as a minor in both G′ − Z ′ and G− Z. In case 2) we obtain G′

from a graph H of genus k′ < (i − 1)/2 by at most w(k′, i − 1, k, t) gluings. Since G is
obtained from G′ by less than w(Wt, Ni) + 2(k − i) gluings, we can obtain G from H by
less than w(k′, i, k, t) gluings.

In case b), E ′ has two new faces f1 and f2. Let F
′ be the union of {f1, f2} and the subset

of faces in F that are still faces of E ′. Clearly, we have |F ′| ≤ |F |+2 ≤ k−i+2 = k−eg(S).
If S is orientable, then G′ is a graph of genus at most eg(S)/2 = (i − 2)/2 and G can

be obtained from G′ by less than w(Wt, Ni) + 2(k − i) ≤ w((i− 2)/2, i, k, t) gluings.
If S is nonorientable, we apply induction to E ′ and F ′ and proceed analogously as

in case a). If case 2) of the proposition occurs, we obtain G′ from a graph H of genus
k′ < (i− 2)/2 by at most w(k′, i− 2, k, t) gluings, and thus we can again obtain G from H
by less than w(k′, i, k, t) gluings.

In case c), E ′
1 has a new face f1 and E ′

2 has a new face f2. For l ∈ {1, 2} we define F ′
l

as the union of {fl} and the the subset of faces in F that are still faces of E ′
l . Again, for

each l ∈ {1, 2} we have |F ′
l | ≤ |F |+ 1 ≤ k − i+ 1 ≤ k − eg(Sl).

Notice that at least one of the surfaces S1, S2 is nonorientable, sinceNi is their connected
sum. Let l ∈ {1, 2}. If Sl is orientable, then G′

l is a graph of genus at most eg(Sl)/2 = il/2.
If Sl is nonorientable, we apply induction to E ′

l and F ′
l . Let Z

′
l be the set of vertices of E ′

l

incident with at least one face in F ′
l . Observe that Z ′

l contains all vertices in Z∩V (G′
l) and

all new vertices in G′
l created by splitting the vertices in W . Hence, G′

l −Z ′
l is a subgraph

of G− Z. Therefore, if case 1) of the proposition occurs, we obtain a projective t-wall as
a minor in both G′

l − Z ′
l and G − Z. In case 2) we obtain G′

l from a graph Hl of genus
k′
l < il/2 by at most w(k′

l, il, k, t) gluings.
If we have not obtained the projective t-wall as a minor in G − Z, then for each

l ∈ {1, 2}, the graph G′
l is obtained from a graph Hl of genus k′

l ≤ il/2 by at most
w(k′

l, il, k, t) gluings (where w(il/2, il, k, t) = 0), and k′
1 + k′

2 ≤ (i − 1)/2 since at least
one of S1, S2 is nonorientable. Let H be the disjoint union of H1 and H2. Then H is
a graph of genus at most k′ = k′

1 + k′
2 < i/2, and G can be obtained from H by less

than w(k′
1, i1, k, t) + w(k′

2, i2, k, t) + w(Wt, Ni) + 2(k − i) gluings. By the monotonicity of

10



w(Wt, Ni), we have

w(k′
1, i1, k, t) + w(k′

2, i2, k, t) + w(Wt, Ni) + 2(k − i)

≤ (i1(i1 − 2k′
1) + i2(i2 − 2k′

2) + 1) · (w(Wt, Ni) + 2k)

≤ (i(i− 2k′) + 1− i1(i2 − 2k′
2)− i2(i1 − 2k′

1)) · (w(Wt, Ni) + 2k)

≤ w(k′, i, k, t).

This finishes the proof of the proposition.

We apply Proposition 11 with i = k and F = ∅ = Z. If case 1) occurs, then G has
the projective t-wall as a minor. If case 2) occurs, then there is an integer k′ satisfying
0 ≤ 2k′ < k such that G can be obtained from a graph H of genus at most k′ by at most
w(k′, k, k, t) gluings. Since every gluing increases the genus of a graph by at most 1, we
conclude that the genus of G is at most k′+w(k′, k, k, t) ≤ k2 · (w(Wt, Nk)+2k). This will
be a contradiction if g > k2 · (w(Wt, Nk) + 2k). Therefore, in Theorem 6 it is sufficient to
take h(t) = g2(t) · (w(Wt, Ng(t)) + 2g(t)) where g(t) is the number from Conjecture 5.

6 Lower bounds on the Z2-genus and Euler Z2-genus

In this section we prove Theorem 7. By (1), the lower bounds on the Euler Z2-genus of
the t-Kuratowski graphs in Theorem 7 imply the lower bounds on their Z2-genus; thus it
will be sufficient to prove the lower bounds on their Euler Z2-genus.

The fact that the (Euler) Z2-genus of K3,t or the other t-Kuratowski graphs is un-
bounded when t goes to infinity is not obvious at first sight. The traditional lower bound
on the (Euler) genus of K3,t relies on Euler’s formula and the notion of a face. However,
there is no analogue of a “face” in an independently even drawing, and the rotations of
vertices no longer “matter”. We thus need different tools to compute the (Euler) Z2-genus.

6.1 Z2-homology of curves

We refer to Hatcher’s textbook [17] for an excellent general introduction to homology
theory. Unfortunately, except for the very short summary by Colin de Verdière [8, p. 14–
15], we were unable to find a compact treatment of the homology theory for curves on
surfaces in the literature, thus we sketch here the main aspects that are most important
for us.

We will use the Z2-homology of closed curves on surfaces. That is, for a given surface S,
we are interested in its first homology group with coefficients in Z2, denoted byH1(S;Z2). It
is well-known that for each g ≥ 0, the first homology group H1(Mg;Z2) of Mg is isomorphic
to Z

2g
2 [17, Example 2A.2. and Corollary 3A.6.(b)]. This fact was crucial in establishing

the weak Hanani–Tutte theorem on Mg [6, Lemma 3]. Similarly, for each g ≥ 1, the first
homology group H1(Ng;Z2) of Ng is isomorphic to Z

g
2 [17, Example 2.37 and Corollary

3A.6.(b)].
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To every closed curve γ in a surface S one can assign its homology class [γ] ∈ H1(S;Z2),
and this assignment is invariant under continuous deformation (homotopy). In particular,
the homology class of each contractible curve is 0. More generally, the homology class of
each separating curve in S is 0 as well. Moreover, if γ is obtained by a composition of γ1
and γ2, the homology classes satisfy [γ] = [γ1] + [γ2]. The assignment of homology classes
to closed curves is naturally extended to formal integer combinations of the closed curves,
called cycles, and so [γ] can be considered as a set of cycles. Since we are interested in
homology with coefficients in Z2, it is sufficient to consider cycles with coefficients in Z2,
which may also be regarded as finite sets of closed curves.

If γ1 and γ2 are cycles in S that cross in finitely many points and have no other points
in common, we denote by cr(γ1, γ2) the number of their common crossings. We use the
following well-known fact, which formalizes the intuition that by a continuous deformation
of a closed curve, we can change its number of crossings with another closed curve only by
an even number.

Fact 12. Let γ′
1 ∈ [γ1] and γ′

2 ∈ [γ2] be a pair of cycles in a surface S such that the
intersection numbers cr(γ1, γ2) and cr(γ′

1, γ
′
2) are defined and finite. Then

cr(γ′
1, γ

′
2) ≡ cr(γ1, γ2) (mod 2).

Fact 12 allows us to define a bilinear form

ΩS : H1(S;Z2)×H1(S;Z2) → Z2

such that
ΩS([γ1], [γ2]) = cr(γ1, γ2) mod 2

whenever cr(γ1, γ2) is defined and is finite. The form ΩS is called the intersection form on
S. See e.g. Hausmann [18, Section 5.3.3 and Corollary 5.4.13]. Clearly, ΩS is symmetric,
and for every 2-sided simple closed curve γ we have ΩS([γ], [γ]) = 0. This implies that for
every cycle γ in an orientable surface Mg we have ΩMg

([γ], [γ]) = 0, since all simple closed
curves in Mg are 2-sided, and every closed curve with finitely many self-intersections can
be decomposed into finitely many simple closed curves. On the other hand, if γ is a 1-sided
simple closed curve in Ng, then ΩNg

([γ], [γ]) = 1. The following fact can be verified by
choosing a “standard” basis of H1(S;Z2).

Fact 13. For every surface S, the intersection form ΩS is nondegenerate. In particular,
the rank of ΩMg

is 2g and the rank of ΩNg
is g. In each case, the rank of ΩS is equal to

the Euler genus of S.

In our proofs we need only the trivial inequality that the rank of ΩS is at most the rank
of H1(S;Z2), which equals the Euler genus of S.

We have the following simple observation about intersections of disjoint cycles in inde-
pendently even drawings.

Observation 14 ([35, Lemma 1]). Let D be an independently even drawing of a graph G
on a surface S. Let C1 and C2 be vertex-disjoint cycles in G, and let γ1 and γ2 be the
closed curves representing C1 and C2, respectively, in D. Then cr(γ1, γ2) ≡ 0 (mod 2),
which implies that ΩS([γ1], [γ2]) = 0.

12



e f

Figure 4: An embedding of K3,3 on the torus represented as a drawing D in the plane
with three crosscaps. The nonzero vectors assigned to the edges are yDe = (1, 1, 0) and
yDf = (0, 1, 1).

6.2 Combinatorial representation of the Z2-homology of draw-

ings

Schaefer and Štefankovič [35] used the following combinatorial representation of drawings
of graphs on Mg and Ng. First, every drawing of a graph on Mg can be considered as a
drawing on the nonorientable surface N2g+1, since Mg minus a point is homeomorphic to
an open subset of N2g+1. The surface Nh minus a point can be represented combinatorially
as the plane with h crosscaps. A crosscap at a point x is a combinatorial representation
of a Möbius strip whose boundary is identified with the boundary of a small circular hole
centered in x. Informally, the main “objective” of a crosscap is to allow a set of curves
intersect transversally at x without counting it as a crossing.

Every closed curve γ drawn in the plane with h crosscaps is assigned a vector yγ ∈
{0, 1}h such that (yγ)i = 1 if and only if γ passes an odd number of times through the ith
crosscap. When γ represents a 2-sided curve in a surface S, then yγ has an even number
of coordinates equal to 1. The vectors yγ represent the elements of the homology group
H1(S;Z2), and the value of the intersection form ΩS([γ], [γ

′]) is equal to the scalar product
y⊤γ yγ′ over Z2. Analogously, we assign a vector yDe (or simply ye) to every curve representing
an edge e in a drawing D of a graph in this model.

We use the following two lemmata by Schaefer and Štefankovič [35]. Here we consider
crosscap drawings, in which we allow self-intersections of edges and crossing of more than
two edges in the points representing the crosscaps.

Lemma 15 ([35, Lemma 5]). Let G be a graph that has an independently even drawing D
on a surface S and let F be a forest in G. Let h = 2g+ 1 if S = Mg and h = g if S = Ng.
Then G has a crosscap drawing E in the plane with h crosscaps, such that

1) every pair of independent edges has an even number of common crossings except those
at the crosscaps, and

2) every edge f of F passes through each crosscap an even number of times; that is,
yEf = 0.

Moreover, the drawing in S corresponding to E can be obtained from D by a sequence of
continuous deformations of edges and neighborhoods of vertices, so the homology classes of
all cycles are preserved between the two drawings.
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Lemma 16 ([35, Lemma 4]). Let G be a graph that has a crosscap drawing D in the plane
with finitely many crosscaps with every pair of independent edges having an even number
of common crossings except those at the crosscaps. Let d be the dimension of the vector
space generated by the set {yDe ; e ∈ E(G)}. Then G has an independently even drawing on
a surface of Euler genus d.

Lemma 15 and Lemma 16 imply the following corollary generalizing the strong Hanani–
Tutte theorem.

Corollary 17. Let G be a connected graph with an independently even drawing on a surface
S such that each cycle in the drawing is homologically zero (that is, the homology class of
the corresponding closed curve is 0). Then G is planar.

Proof. Let F be a spanning tree of G and let E be a crosscap drawing obtained from
Lemma 15. The cycle space of G is generated by the fundamental cycles with respect to F .
Every edge e ∈ E(G) \ E(F ) determines a unique fundamental cycle Ce ⊆ F ∪ {e}. Since
yEf = 0 for every edge f of F , the homology class of Ce in E is represented by yEe . Therefore,
under the assumption that the homology classes of all cycles are zero, we have yEe = 0 for
every edge e of G. Lemma 16 then implies that G has an independently even drawing in
the plane. Finally, G is planar by the strong Hanani–Tutte theorem (Theorem 1).

Corollary 17 can be further strengthened using Lemma 15 as follows.

Lemma 18. Let G be a connected graph with an independently even drawing D on a surface
S. Let F be a spanning tree of G. If G is nonplanar, then there are independent edges
e, f ∈ E(G) \ E(F ) such that the closed curves γe and γf representing the fundamental
cycles of e and f , respectively, satisfy ΩS([γe], [γf ]) = 1.

Proof. Let E be a crosscap drawing of G from Lemma 15. By the strong Hanani–Tutte
theorem, there are two independent edges e and f in G that cross an odd number of times
in E . Moreover, conditions 1) and 2) of Lemma 15 imply that none of the edges e and f
is in F and so e and f cross an odd number of times in the crosscaps. This means that
y⊤e yf = 1, which is equivalent to ΩS([γe], [γf ]) = 1.

6.3 Proof of Theorem 7a)

We will show three lower bounds on g0(K3,t) and eg0(K3,t), in the order of increasing
strength and complexity of their proof. The reader interested in the strongest lower bounds
can skip Proposition 19 and Proposition 20.

We will adopt the following notation for the vertices of K3,t. The vertices of degree t
forming one part of the bipartition are denoted by a, b, c, and the remaining vertices by
u0, u1, . . . , ut−1. Let U = {u0, u1, . . . , ut−1}. For each i ∈ [t− 1], let Ci be the cycle auibu0

and C ′
i the cycle auicu0.

The first lower bound follows from Ramsey’s theorem and the weak Hanani–Tutte
theorem on surfaces.
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Figure 5: Flipping the neighborhood of a vertex changes the parity of the number of
crossings between any pair of incident edges.

Proposition 19. We have 2g0(K3,t) ≥ eg0(K3,t) ≥ Ω(log log log t).

Proof. Let t ≥ 3, g ≥ 0 and let D be an independently even drawing of K3,t on a surface
S of Euler genus g. Construct an auxiliary graph GU with vertex set U such that uiuj

is an edge of GU if and only if the edges aui and auj of K3,t cross an odd number times
in D. By Ramsey’s theorem (see e.g. Diestel [11, Section 9.1] or Matoušek–Nešetřil [23,
Theorem 11.2.1]) applied to GU , there is a subset Ua ⊆ U of size Ω(log t) such that all the
edges between a and Ua cross each other an odd number of times, or all the edges between
a and Ua cross each other an even number of times. Repeating the same argument with
vertices b and c, we find a subset Ub ⊆ Ua of size Ω(log log t), and a subset Uc ⊆ Ub of
size Ω(log log log t) such that the number of crossings of each pair of edges between b and
Ub has the same parity, and the number of crossings of each pair of edges between c and
Uc has the same parity. If the parity is odd for some of the vertices a, b, c, we modify
the drawing locally around this vertex by introducing one more crossing for each pair of
incident edges; see Figure 5 or [6, Fig. 4]. Finally, as each vertex u of Uc has degree 3, we
modify the drawing locally around u so that again, every pair of the three edges incident
to u crosses an even number of times; see Figure 3. After these modifications we obtain
an even drawing of the complete bipartite graph induced by {a, b, c} ∪ Uc. By the weak
Hanani–Tutte theorem for surfaces (Theorem 4), the graph K3,|Uc| has an embedding on S
and so g ≥ ⌊(|Uc| − 2)/2⌋. It follows that g ≥ Ω(log log log t).

The second lower bound is based on the pigeonhole principle and Corollary 17 from the
previous subsection.

Proposition 20. We have 2g0(K3,t) ≥ eg0(K3,t) ≥ Ω(log t).

Proof. Let D be an independently even drawing of K3,t on a surface S of Euler genus g.
By the pigeonhole principle, there is a subset Ib ⊆ [t − 1] of size at least (t − 1)/2g such
that all the cycles Ci with i ∈ Ib have the same homology class in D. Analogously, there
is a subset Ic ⊆ Ib of size at least |Ib|/2

g such that all the cycles C ′
i with i ∈ Ic have

the same homology class in D. Suppose that t ≥ 2 · 4g + 2. Then |Ib| ≥ 2 · 2g + 1 and
|Ic| ≥ 3. Let i, j, k ∈ Ic be three distinct integers. We now consider the subgraph H
of K3,t induced by the vertices a, b, c, ui, uj, uk, isomorphic to K3,3, and show that all its
cycles are homologically zero. Indeed, the cycle space of H is generated by the four cycles
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Figure 6: The curves γ1, γ
′
2, γ

′
1, γ2 after deformation in the neighborhood of their common

edge au0.

auibuj, auibuk, auicuj and auicuk, and each of them is the sum (mod 2) of two cycles of
the same homology class: auibuj = Ci + Cj, auibuk = Ci + Ck, auicuj = C ′

i + C ′
j and

auicuk = C ′
i + C ′

k. Corollary 17 now implies that H is planar, but this is a contradiction.
Therefore t ≤ 2 · 4g + 1.

To prove the lower bound in Theorem 7a), we use the same general idea as in the
previous proof. However, we will need the following more precise lemma about drawings of
K3,3, strengthening Corollary 17 and Lemma 18. We also replace the pigeonhole principle
with an argument from linear algebra.

Lemma 21. Let D be an independently even drawing of K3,3 on a surface S. For i ∈ {1, 2},
let γi and γ′

i be the closed curves representing the cycles Ci and C ′
i, respectively, in D. The

intersection numbers of their homology classes satisfy

ΩS([γ1], [γ
′
2]) + ΩS([γ

′
1], [γ2]) = 1.

Lemma 21 is a consequence of Corollary 27. Here we include a direct proof using a
different method.

Proof. Since the maximum degree of K3,3 is 3, we may assume that the drawing D is
even: if some adjacent edges cross oddly, we may modify the drawing locally around their
common vertex so that they cross evenly (see Figure 3), without changing the values of
the intersection form.

Cairns and Nikolayevsky [6, Lemma 1] formulated a special case of an identity express-
ing the intersection form ΩS as the sum of a “combinatorial” crossing number of cycles
and the number of crossings of their edges. We use an analogous identity for the drawing
D, and also include its derivation to make the proof self-contained.

The cycles C1 and C ′
2 share only the vertices a and u0 and the edge au0, and the same

is true for the cycles C ′
1 and C2. Let O be a small neighborhood of the curve representing

the edge au0 in D. Deform the curves γ1, γ2, γ
′
1, γ

′
2 within O so that they cross each other

at most once in O; see Figure 6. Assume without loss of generality that the rotation of a
in D is (u0, u1, u2), the rotation of u0 in D is (a, b, c), and that the signature of the edge
au0 is positive if S is not orientable. Then the curves obtained by deforming γ1 and γ′

2

cross exactly once in O, and the curves obtained by deforming γ′
1 and γ2 do not intersect in

O. All the other crossings between these closed curves coincide with the crossings between
edges in D. Since D is an even drawing, the value of the intersection form is determined
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by the parity of the number of crossings inside O. In particular, we have ΩS([γ1], [γ
′
2]) = 1

and ΩS([γ
′
1], [γ2]) = 0.

Proposition 22. We have g0(K3,t) ≥ ⌈(t− 2)/4⌉ and eg0(K3,t) ≥ ⌈(t− 2)/2⌉.

Proof. Let D be an independently even drawing of K3,t on a surface S of Euler genus g.
For every i ∈ [t − 1], let γi and γ′

i be the closed curves representing the cycles Ci and C ′
i,

respectively, in D. For every i, j ∈ [t − 1], i < j, we apply Lemma 21 to the drawing of
K3,3 induced by the vertices a, b, c, u0, ui, uj in D. Let A be the (t − 1) × (t − 1) matrix
with entries

Ai,j = ΩS([γi], [γ
′
j]).

Lemma 21 implies that Ai,j + Aj,i = 1 whenever i 6= j; in other words, A is the sum of a
tournament matrix and a diagonal matrix. This implies that A + A⊤, with the addition
mod 2, is a matrix with zeros on the diagonal and 1-entries elsewhere. De Caen [5] shows,
by a simple argument, that the rank of A over Z2 is at least (t− 2)/2. Hence, the rank of
ΩS is at least (t− 2)/2, which implies g ≥ (t− 2)/2 by Fact 13.

6.4 Proof of Theorem 7b)

Before proving Theorem 7b) we first show an asymptotic Ω(log t) lower bound on the
(Euler) Z2-genus for a more general class of graphs that includes the t-Kuratowski graphs
of types f), g) and h).

The definition of gluing a pair of vertices from Subsection 5.2 can be extended in a
straightforward way to gluing an arbitrary finite set of vertices. Let H be a 2-connected
graph and let x, y be two nonadjacent vertices of H . Let t be a positive integer. The
2-amalgamation of t copies of H (with respect to x and y), denoted by ∐x,ytH , is the
graph obtained from t disjoint copies of H by gluing all t copies of x into a single vertex
and gluing all t copies of y into a single vertex. The two vertices obtained by gluing are
again denoted by x and y.

An xy-wing is a 2-connected graph H with two nonadjacent vertices x and y such
that the subgraph H − x − y is connected, and the graph obtained from H by adding
the edge xy is nonplanar. Clearly, the graphs K5 − e and K3,3 − e, where e = xy, are
xy-wings, and similarly K3,3, with nonadjacent vertices x and y, is an xy-wing. The t-
Kuratowski graphs of types f) and g) are obtained from ∐x,yt(K5 − e) and ∐x,yt(K3,3 − e),
respectively, by adding the edge xy, whereas the t-Kuratowski graph of type h) is exactly
the 2-amalgamation ∐x,yt(K3,3). See Figure 7 for an illustration of 2-amalgamations of two
xy-wings.

Let H be an xy-wing. We will use the following notation. Let w be a vertex of H
adjacent to y and let F ′ be a spanning tree of H − x − y. Let F be a spanning tree of
H − y extending F ′. In the 2-amalgamation ∐x,ytH we distinguish the ith copy of H , its
vertices, edges, and subgraphs, by the superscript i ∈ {0, 1, . . . , t − 1}. In particular, for
every i ∈ {0, 1, . . . , t− 1}, H i is an induced subgraph of ∐x,ytH , F i is a spanning tree of
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Figure 7: 2-amalgamations of two Kuratowski xy-wings. The spanning tree T is drawn
bold.

H i − y and x is a leaf of F i. For a given t, let

T = yw0 +
t−1
⋃

i=0

Fi

be a spanning tree of ∐x,ytH . For every edge e ∈ E(∐x,ytH) \ E(T ), let Ce be the
fundamental cycle of e with respect to T ; that is, the unique cycle in T + e.

Enumerate the edges of E(H) \ E(F ) incident to x as e1, . . . , ek, the edges of E(H) \
E(F )\{yw} incident to y as f1, . . . , fl, and the edges of E(H−x−y)\E(F ) as g1, . . . , gm.
Let h be the edge yw. Thus, for every i ∈ [t− 1], we have E(H i) \ E(T ) = {ei1, . . . , e

i
k} ∪

{f i
1, . . . , f

i
l } ∪ {gi1, . . . , g

i
m} ∪ {hi}.

If C and C ′ are cycles in ∐x,ytH , we denote by C + C ′ the element of the cycle space
of ∐x,ytH obtained by adding C and C ′ mod 2. We also regard C + C ′ as a subgraph of
∐x,ytH with no isolated vertices. Note that if C and C ′ are fundamental cycles sharing at
least one edge then C + C ′ is again a cycle.

Observation 23. Let i ∈ [t− 1]. Refer to Figure 8.

a) For every j ∈ [k], the cycle Cei
j
is a subgraph of H i − y.

b) For every j ∈ [l], the cycle Cf i
j
+ Chi is a subgraph of H i − x.

c) For every j ∈ [m], the cycle Cgi
j
is a subgraph of H i − x− y.

The cycles Cei
j
with j ∈ [k], Cf i

j
+ Chi with j ∈ [l], and Cgi

j
with j ∈ [m] generate the

cycle space of H i; in particular, they are the fundamental cycles of H i with respect to the
spanning tree F i + ywi.

Corollary 24. Let i, i′ ∈ [t− 1] be distinct indices. Then the following pairs of cycles are
vertex-disjoint, for all possible pairs of indices j, j′:

a) Cei
j
and C

f i′

j′
+ Chi′ ,

b) Cf i
j
+ Chi and C

gi
′

j′
,
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Figure 8: Examples of cycles Cei
1

, Cf i
1

+ Chi and Cgi
1

in an amalgamation of Kuratowski
xy-wings.

c) Cei
j
and C

gi
′

j′
,

d) Cgi
j
and Cgi

′

j′
.

Our first lower bound on the (Euler) Z2-genus of 2-amalgamations of xy-wings is similar
to Proposition 20, and combines the pigeonhole principle and Lemma 18.

Proposition 25. Let H be an xy-wing. Then 2g0(∐x,ytH) ≥ eg0(∐x,ytH) ≥ Ω(log t).

Proof. Let D be an independently even drawing of ∐x,ytH on a surface S of Euler genus
g. For every i ∈ [t − 1] and e ∈ E(H) \ E(F ), let γ(ei) be the closed curve representing
Cei in D.

The homology class [γ(ei)] has one of 2g possible values in H1(S;Z2). Thus, if t ≥
2g(k+l+m+1) + 2, then there are distinct indices i, i′ ∈ [t − 1] such that for every e ∈
E(H) \ E(F ) we have [γ(ei)] = [γ(ei

′

)]. Using this, we can compute the intersection form
for certain pairs of cycles by replacing them with vertex-disjoint pairs; this gives the left
equality in each of the following formulas. The right equality follows from Corollary 24
and Observation 14. In particular, for all possible pairs of indices j, j′, we have

ΩS([γ(e
i
j)], [γ(f

i
j′)] + [γ(hi)]) = ΩS([γ(e

i
j)], [γ(f

i′

j′)] + [γ(hi′)]) = 0, (2)

ΩS([γ(f
i
j)] + [γ(hi)], [γ(gij′)]) = ΩS([γ(f

i
j)] + [γ(hi)], [γ(gi

′

j′)]) = 0, (3)

ΩS([γ(e
i
j)], [γ(g

i
j′)]) = ΩS([γ(e

i
j)], [γ(g

i′

j′)]) = 0, (4)

ΩS([γ(g
i
j)], [γ(g

i
j′)]) = ΩS([γ(g

i
j)], [γ(g

i′

j′)]) = 0. (5)

Let H i,i′ be the union of the graph H i with the unique xy-path P i′ in F i′ + ywi′; see
Figure 9. Since H is an xy-wing, the graph H i,i′ is nonplanar. The graph F i,i′ = F i ∪ P i′

is a spanning tree of H i,i′, and E(H i,i′) \ E(F i,i′) = E(H i) \ E(T ).
The fundamental cycle C ′

hi of hi in H i,i′ with respect to F i,i′ is equal to Chi + Chi′ .
Since [γ(hi)] = [γ(hi′)], the cycle C ′

hi is homologically zero.
For every j ∈ [k], the fundamental cycle of eij in H i,i′ with respect to F i,i′ is Cei

j
and

its homology class in D is [γ(eij)].
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Figure 9: An example of the graph H i,i′. Its spanning tree F i,i′ is drawn bold.

For every j ∈ [l], the fundamental cycle of f i
j in H i,i′ with respect to F i,i′ is Cf i

j
+ Chi′

and its homology class is [γ(f i
j′)] + [γ(hi′)] = [γ(f i

j′)] + [γ(hi)].

For every j ∈ [m], the fundamental cycle of gij in H i,i′ with respect to F i,i′ is Cgi
j
and

its homology class in D is [γ(gij)].

By (2)–(5), for every pair of independent edges in E(H i,i′) \ E(F i,i′), the homol-
ogy classes of their fundamental cycles are orthogonal with respect to ΩS. This is a
contradiction with Lemma 18 applied to H i,i′ and the spanning tree F i,i′. Therefore,
t ≤ 2g(k+l+m+1) + 1.

To prove the lower bound in Theorem 7b), we follow the idea of the previous proof and
again replace the pigeonhole principle with an argument from linear algebra. We will also
need the following stronger variant of the Hanani–Tutte theorem and Lemma 18 for the
graphs K5 and K3,3.

Lemma 26 (Kleitman [20]). In every drawing of K5 and K3,3 in the plane the total number
of pairs of independent edges crossing an odd number of times is odd.

Lemma 26 was also implicitly proved by Székely [38, Sections 7 and 8].

Corollary 27. Let G = K5 or G = K3,3. Let F be a forest in G. Let E be a crosscap
drawing of G from Lemma 15. Then there are an odd number of pairs of independent edges
e, f in E(G) \ E(F ) such that y⊤e yf = 1.

The following simple fact is a key ingredient in the proof of Lemma 26.

Observation 28. The graph obtained from each of K5 and K3,3 by removing an arbitrary
pair of adjacent vertices is a cycle; in particular, all of its vertices have an even degree.

An xy-wing H is called a Kuratowski xy-wing if H is one of the graphs K5 − e where
e = xy, K3,3 − e where e = xy, or K3,3; see Figure 7. Observation 28 implies the following
important property of Kuratowski xy-wings.

Observation 29. Let H be a Kuratowski xy-wing and let u be a vertex adjacent to x in H.
Then H−x−u is a cycle; in particular, y is incident to exactly two edges in H−x−u.

In the following key lemma we keep using the notation for the 2-amalgamation ∐x,ytH
established earlier in this subsection.
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Lemma 30. Let t ≥ 2, let H be a Kuratowski xy-wing and let D be an independently even
drawing of ∐x,ytH on a surface S. Then for every i ∈ [0, t−1] the graph H i has two cycles
C i

1 and C i
2 such that

• (C i
1 is a subgraph of H i − x and C i

2 is a subgraph of H i − y) or C i
2 is a subgraph of

H i − x− y, and

• the closed curves γi
1 and γi

2 representing C i
1 and C i

2, respectively, in D satisfy
ΩS([γ

i
1], [γ

i
2]) = 1.

Proof. For every i ∈ [t− 1], let H i,0 be the union of the graph H i with the unique xy-path
P 0 in F 0+yw0. The graph F i,0 = F i∪P 0 is a spanning tree ofH i,0, and E(H i,0)\E(F i,0) =
E(H i) \ E(T ).

Let E be a crosscap drawing of ∐x,ytH from Lemma 15. If H = K3,3, we apply
Corollary 27 to G = H i and F = F i. If H = K5 − e or H = K3,3 − e where e = xy,
we apply Corollary 27 to G = H i + e, F = F i + e, and the drawing of H i + e where e is
drawn along the path P 0 in E (with self-crossings removed if necessary). In each of the
three cases, we have an odd number of pairs of independent edges e, f in E(Hi) \ E(T )
such that y⊤e yf = 1. By Observation 29, for each j ∈ [k], there are exactly two edges
in E(H i) \ E(T ) incident with y and independent from eij ; see also Figure 7. Therefore,
considering all possible pairs of independent edges in E(Hi) \ E(T ), at least one of the
following alternatives occurs:

1) y⊤
hiygi

1

= 1,

2) y⊤
ei
j

(yf i
j′
+ yhi) = 1 for some j ∈ [k] and j′ ∈ [l].

In further arguments, we no longer use the fact that the pairs of edges involved in the
scalar products are independent.

To finish the proof of the lemma for i ∈ [t − 1], we use Observation 23. In particular,
in case 1) we choose C i

1 = Chi and C i
2 = Cgi

1

, and in case 2) we choose C i
1 = Cf i

j′
+Chi and

C i
2 = Cei

j
.

Finally, by exchanging the roles of H1 and H0 in ∐x,ytH in the proof, we also obtain
cycles C0

1 and C0
2 with the required properties.

We are now ready to finish the proof of Theorem 7b).

Proposition 31. Let t ≥ 2 and let H be a Kuratowski xy-wing. Then g0(∐x,ytH) ≥ ⌈t/2⌉
and eg0(∐x,ytH) ≥ t.

Proof. Let D be an independently even drawing of ∐x,ytH on a surface S of Euler genus
g. For every i ∈ [0, t− 1], let C i

1 and C i
2 be the cycles from Lemma 30 and let γi

1 and γi
2,

respectively, be the closed curves representing them in D.
Without loss of generality, we assume that there is an s ∈ [0, t− 1] such that

• for every i ∈ [0, s], C i
1 is a subgraph of H i − x and C i

2 is a subgraph of H i − y, and
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
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∗ ∗ 1 0
∗ ∗ 0 1









Figure 10: An example of the matrix A with t = 4 and s = 1. The entries marked with ∗
may be equal to 0 or 1; the remaining entries are determined uniquely.

• for every i ∈ [s + 1, t− 1], the cycle C i
2 is a subgraph of H i − x− y.

It follows that for distinct i, i′ ∈ [0, t−1], the cycles C i
1 and C i′

2 are vertex-disjoint whenever
i, i′ ∈ [0, s], i, i′ ∈ [s+ 1, t− 1], or i ≤ s < i′.

Let A be the t× t matrix with entries

Ai,i′ = ΩS([γ
i
1], [γ

i′

2 ]).

By Lemma 30, Observation 14 and the previous discussion, the matrix A has 1-entries on
the diagonal and 0-entries above the diagonal; see Figure 10. Thus, the rank of A over Z2

is t. Hence, the rank of ΩS is at least t, which implies g ≥ t using Fact 13.
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[2] T. Böhme, K. Kawarabayashi, J. Maharry and B. Mohar, K3,k-minors in large 7-
connected graphs, preprint available at http://preprinti.imfm.si/PDF/01051.pdf
(2008).
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