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EMBEDDING DIVISOR AND SEMI-PRIME

TESTABILITY IN f-VECTORS OF POLYTOPES

ERAN NEVO

Abstract. We obtain computational hardness results for f -vectors
of polytopes by exhibiting reductions of the problems DIVISOR
and SEMI-PRIME TESTABILITY to problems on f -vectors of
polytopes. Further, we show that the corresponding problems for
f -vectors of simplicial polytopes are polytime solvable. The regime
where we prove this computational difference (conditioned on stan-
dard conjectures on the density of primes and on P 6= NP ) is when
the dimension d tends to infinity and the number of facets is linear
in d.

1. Introduction

The f -vector (f0(P ), f1(P ), . . . , fd−1(P )) of a d-polytope P records
the number of faces P has: fi(P ) faces in dimension i. The f -vectors
of polytopes of dimension at most 3 were characterized by Steinitz,
and the conditions, which are linear equalities and inequalities on the
entries of the f -vector, are then easy to check; see e.g. [7, Sec.10.3]. In
contrast, the f -vectors of d-polytopes for d ≥ 4 are not well understood;
see e.g. [7, Sec.10.4] and the fatness parameter [17] for d = 4, while
the case d > 4 is even less understood. The set of f -vectors of the
important subfamily of simplicial polytopes is characterized by the
g-theorem, conjectured by McMullen [9] and proved by Stanley [14]
and Billera-Lee [3]. While this well-understood set may be regarded as
complicated from some viewpoints (e.g. it is not a semi-algebraic set of
lattice points, for any d ≥ 6, see [13]), yet deciding membership in it is
computationally easy, see [10, Thm.1.4]. The analogous computational
problem for the set of f -vectors of d-polytopes is unsolved, see [10,
Problem 1.5], and we conjecture it to be NP-hard. It is known to be
decidable in time double exponential in the input size.

We exhibit two variants of the above membership problem and show
that they are computationally hard for f -vectors of polytopes (given
standard conjectures in complexity theory), but are efficiently solvable
for f -vectors of simplicial polytopes.

Problem 1.1. (Fiber Count) Given d, a subset of integers S ⊆ [0, d−
1], and values fi for all i ∈ S, let fc = fc(d, (fi)i∈S) be the number of
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f -vectors of d-polytopes with the given values for the S-coordinates.
What is the computational complexity:

(i) of computing fc as a function of the input size N?
(ii) of deciding whether fc = 1?

The problem of computing the number of divisors of a given inte-
ger, or even of deciding if a given integer is the product of exactly two
primes (Semiprime Testability), is believed to be as hard as FACTOR-
ING, namely, as factoring the integer into a product of primes; see e.g.
Terry Tao’s answer at MathOverflow [12]. From a structural result of
McMullen on d-polytopes with d+ 2 facets [8], specialized to the case
f0 = 2d+ 1 (see also [11]), we conclude:

Lemma 1.2. (i) The number of f -vectors of d-polytopes with f0 =

2d + 1 and fd−1 = d + 2 equals ⌈D(d)
2

⌉, where D(d) is the number of
divisors of d in the interval [2, d− 1].

(ii) In particular, fc(d, f0 = 2d+ 1, fd−1 = d+ 2) = 1 iff d is a either
a semiprime or equals p3 for some prime p.

As a corollary, we can reduce Semiprime Testability to a decision
problem on fiber count, namely Problem 1.1(ii). Here the bit length of
the input is O(log d), while the full f -vector clearly has bit length of
size Ω(d) (in fact Ω(d log d)). Nevertheless, the corresponding problem
for f -vectors of simplicial polytopes can be solved efficiently:

Let fcs = fcs(d, (fi)i∈S) be the number of f -vectors of simplicial d-
polytopes with the given values for the S-coordinates.

Theorem 1.3. Given as input positive integers d, a, b of total bit length
O(log d), and b of order O(d):

(i) It can be decided in polylog(d)-time whether fcs(d, f0 = a, fd−1 =
b) = 1.

(ii) Deciding whether fc(d, f0 = a, fd−1 = b) = 1 is at least as hard
as Semiprime Testability for d.

The problem DIVISOR, asking whether given three integers L <
U < d, d has a divisor in the interval [L, U ], is believed to be NP-
complete, see e.g. Sudan’s survey [15]. In fact, it is NP-complete if
for any large enough real number x there exists a prime in the inter-
val [x, x+ polylog(x)], see e.g. Peter Shor and Boaz Barak answers at
StackExchange [4] to a question by Michaël Cadilhac. Cramér conjec-
ture [5, 6] implies that for any ǫ > 0 the interval [x, x+ (1+ ǫ) log2(x)]
suffices for x large enough. DIVISOR remains NP-complete if we re-
quire

√
d ∈ [L, U ] (under the assumption above on the existence of

primes in short intervals), by a reduction from a variant of SUBSET
SUM of real numbers where the target sum is approximately half the
sum of all input numbers.

Lemma 1.4. Given three integers L < U < d, with
√
d ∈ [L, U ],

denote M = M(L, U, d) = max(L + d
L
, U + d

U
). Then there exists a
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divisor x of d such that L ≤ x ≤ U iff there exists a d-polytope P
whose f -vector satisfies f0(P ) = 2d+ 1, fd−1(P ) = d + 2 and f1(P ) ∈
[d2 + d

2
(1 + d−M), d2 + d

2
(1 + d− 2

√
d)].

Again, we show that the corresponding problem for simplicial poly-
topes is polytime-solvable, despite the fact that the input is of size log-
arithmic in d, the number of coordinates in the f -vector. Combined,
it read as follows.

Theorem 1.5. Given as input positive integers d, a, b, L, U of total bit
length O(log d), such that L ≤ U and b is of order O(d), then:

(i) It can be decided in polylog(d)-time whether there exists a sim-
plicial d-polytope P whose f -vector satisfies f0(P ) = a, fd−1(P ) = b
and f1(P ) ∈ [L, U ].

(ii) Deciding whether there exists a d-polytope P whose f -vector sat-
isfies f0(P ) = a, fd−1(P ) = b and f1(P ) ∈ [L, U ] is at least as hard as
DIVISOR for d.

Let us remark that Sjöberg and Ziegler characterized the pairs (n,m)
such that there exists a d-polytope P with (f0(P ), fd−1(P )) = (n,m)
for even d in the regime n + m ≥

(

3d+1
⌊d/2⌋

)

(and they proved similar

but weaker results for d odd); however our interest is in the regime
m+n ∈ O(d) where the behaviour is different and not well understood.

Outline. Section 2 sets notation and collects the background results
we need on f -vectors of polytopes. In Section 3 we prove the compu-
tational hardness results above, for general polytopes, namely Theo-
rems 1.3(ii) and 1.5(ii). In Section 4 we prove the computational effi-
ciency results above, for simplicial polytopes, namely, Theorems 1.3(i)
and 1.5(i). Section 5 ends with open problems.

2. Preliminaries

For the basics on face enumeration and on polytopes needed here we
refer to e.g. the textbooks by Grünbaum [7] and Ziegler [16].

2.1. Faces of polytopes. A d-polytope is a polytope of dimension d.
Its faces of dimension k are called k-faces. Faces of dimension 0, 1, d−1
are called vertices, edges, facets, respectively. A polytope is simplicial
if all its proper faces are simplices.

Denote by fk(P ) the number of k-faces of a d-polytope P . The
f -vector of P is f(P ) = (1 = f−1(P ), f0(P ), f1(P ), . . . , fd−1(P )).

The following lower bound result of McMullen is crucial for our com-
putational hardness results: let

Φj(v, d) = min{fj(P ) : P is a d-polytope, f0(P ) = v}
Theorem 2.1. [8, Thm.2]

(1) Φd−1(d+ 1, d) = d+ 1, achieved by the d-simplex only.
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(2) If d + 2 ≤ v ≤ ⌊d(d+8)
4

⌋, then either (i) Φd−1(v, d) = d+ 2, and
a d-polytope that achieves this must be of the form T r,s,t := a
t-fold pyramid over the cartesian product of an r-simplex and
an s-simplex. Thus v = (r + 1)(s+ 1) + t, d = r + s+ t, t ≥ 0
and r, s ≥ 1 for some integers r, s, t in this case. (ii) Or else,
Φd−1(v, d) = d+ 3.

2.2. Face numbers of simplicial polytopes. Assume that the d-
polytope P is simplicial. Then the f -vector and h-vector of P deter-
mine each other by a polynomial equation in the ring Z[x]:

d
∑

i=0

fi−1x
d−i =

d
∑

i=0

hi(x+ 1)d−i.

Define the g-vector g(P ) = (g0, . . . , g⌊d/2⌋) by setting g0 = 1 and gi =
hi − hi−1 for 1 ≤ i ≤ d/2. The celebrated g-theorem [3, 14] asserts:

Theorem 2.2. (g-theorem) f = (1, f0, . . . , fd−1) is the f -vector of a
simplicial d-polytope iff

(i) the corresponding h-vector satisfies Dehn-Sommerville relations:
hi = hd−i for all 0 ≤ i ≤ ⌊d/2⌋; and

(ii) the corresponding g-vector is an M-sequence, namely 0 ≤ gi for
all 1 ≤ i ≤ d/2 and it satisfies Macaulay inequalities g<i>

i ≥ gi+1 for
all 1 ≤ i ≤ ⌊d/2⌋ − 1.

3. Reductions

Here we prove our computational hardness results, Theorems 1.3(ii)
and 1.5(ii), via Lemmas 1.2 and 1.4 resp.

As observed in [11], plugging v = 2d+ 1 into Theorem 2.1 gives the
following, as then d = sr.

Corollary 3.1. (1) If d is a prime then Φd−1(2d+ 1, d) = d+ 3.
(2) If d is the product of exactly two primes, or equals a prime

cubed, then Φd−1(2d+ 1, d) = d+ 2, achieved by a unique min-
imizer polytope.

(3) If d is the product of more than two primes, and not a prime
cubed, then Φd−1(2d+1, d) = d+2, and is achieved by ⌈D

2
⌉ > 1

minimizer polytopes, where D is the number of divisors of d in
the interval [2, d−1]. Each of these minimizers have a different
number of edges, hence a different f -vector.

The only part of Corollary 3.1 that is not immediate from Theo-
rem 2.1 is the claim on the different f1 in part (3). However, a routine
computation gives that

f1(T
r,s,t) = d2 +

d(t+ 1)

2



EMBEDDING DIVISOR AND SEMI-PRIME TESTABILITY IN f -VECTORS OF POLYTOPES5

in this case (which is indeed an integer!), hence fixing f1 determines t
which in turn determines r and s as rs = d and r + s = d− t.

Lemma 1.2 immediately follows. Theorem 1.3(ii) follows by plugging
a = 2d+1 and b = d+2, and recalling that deciding if a given d equals
a prime cubed is polytime solvable: first one checks if d1/3 is an integer
in O((log d)1+ǫ)-time (for any fixed ǫ > 0), see e.g. [2], and if the answer
is Yes, then one checks primality of d1/3 in O(polylog(d))-time by [1].

To prove Lemma 1.4 we use again the expression for f1(T
r,s,t): recall

we assume that
√
d ∈ [L, U ]. Note that the function x 7→ x + d

x
has a

unique extremal point for x ≥ 0, which is a local minimum, at x =
√
d.

Thus, there exists a divisor r of d with L ≤ r ≤ U iff there exists T r,s,t

with d− t = r+s = r+ d
r
∈ [2

√
d,M ] for M = M(d, L, U) := max{L+

d
L
, U + d

U
}, equivalently with t ∈ [d−M, d−2

√
d]. This happens, using

Corollary 3.1, iff there exists a d-polytope P with f0(P ) = 2d + 1,

fd−1(P ) = d+2 and f1(P ) ∈ [d2 + d
2
(1 + d−M), d2 + d

2
(1 + d− 2

√
d)];

as claimed.
As before, Theorem 1.5(ii) follows from the case a = 2d + 1 and

b = d+ 2.

4. Efficient computations for simplicial polytopes

Here we prove our computational efficiency results, Theorems 1.3(i)
and 1.5(i) using the g-theorem.

By a direct computation, the number of facets is expressed in terms
of the g-vector as follows: for d = 2k even

fd−1 = (d+ 1) + (d− 1)g1 + (d− 3)g2 + . . .+ 3gk−1 + gk,

and for d = 2k + 1 odd

fd−1 = (d+ 1) + (d− 1)g1 + (d− 3)g2 + . . .+ 4gk−1 + 2gk.

Now, combined with the g-theorem, if fd−1(P ) = b ∈ O(d) then there
exists a constant C > 0 s.t. gi(P ) = 0 for all i > C and 0 ≤ gi(P ) ≤ C
for all 0 ≤ i ≤ ⌊d/2⌋; hence, there are only finitely many potential g-
vectors to check. In each of them the Macaulay inequalities g<i>

i ≥ gi+1

need to be checked only for i < C, so each such inequality is checked
in constant time. Altogether, in constant time all the g-vectors whose
fd−1 equals b are found.

In particular, one checks in constant time if there exists exactly one
such g-vector; this proves Theorem 1.3(i).

Now, for each g-vector which passed the test above we compute
f1 = g2 + dg1 +

(

d+1
2

)

in O(polylog(d))-time and then check whether
f1 ∈ [L, U ] in O(log(d))-time, proving Theorem 1.5(i).
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5. Concluding remarks

For fixed dimension we conjecture the following, which may be viewed
as an explanation why when d ≥ 4 the f -vectors of d-polytopes are
poorly understood.

Conjecture 5.1. Let d ≥ 4 be fixed. Then it is NP-hard to decide
if a given N-bit vector f = (1, f0, . . . , fd−1) of positive integers is the
f -vector of a d-polytope.

Regarding the computational efficiency results,

Problem 5.2. Can the assumption b ∈ O(d) in Theorems 1.3(i) and 1.5(i)
be dropped and the same conclusions there hold?

This means b is polynomial (rather than linear) in d, as the entire
input is of size O(log d).

Acknowledgements. I deeply thank Nathan Keller for pointing
me to [2] and [12], and to Guillermo Pineda Villavicencio for helpful
comments on an earlier version.
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[7] Branko Grünbaum. Convex polytopes, volume 221 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, second edition, 2003. Prepared and with
a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler.

[8] P. McMullen. The minimum number of facets of a convex polytope. J. London
Math. Soc. (2), 3:350–354, 1971.

[9] P. McMullen. The numbers of faces of simplicial polytopes. Israel Journal of
Mathematics, 9:559–570, 1971.

[10] Eran Nevo. Complexity yardsticks for f-vectors of polytopes and spheres. Disc.
Comput. Geom., online first 2019.

[11] Guillermo Pineda-Villavicencio, Julien Ugon, and David Yost. Lower bound
theorems for general polytopes. European J. Combin., 79:27–45, 2019.

[12] asked: . Rune and answered: T. Tao. How hard is it to compute
the number of prime factors of a given integer? Math Overflow,
https://mathoverflow.net/questions/3820/how-hard-is-it-to-compute-the-
number-of-prime-factors-of-a-given-integer/10062#10062, 2009.



EMBEDDING DIVISOR AND SEMI-PRIME TESTABILITY IN f -VECTORS OF POLYTOPES7

[13] Hannah Sjöberg and Günter M. Ziegler. Semi-algebraic sets of f-vectors.
arXiv.1711.01864, 2017.

[14] Richard P. Stanley. The number of faces of a simplicial convex polytope. Ad-
vances in Mathematics, 35(3):236–238, 1980.

[15] Madhu Sudan. The p vs. np problem. available at
http://people.csail.mit.edu/madhu/papers/2010/pnp.pdf, 2010.

[16] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1995.

[17] Günter M. Ziegler. Face numbers of 4-polytopes and 3-spheres. In Proceedings
of the International Congress of Mathematicians, Vol. III (Beijing, 2002),
pages 625–634. Higher Ed. Press, Beijing, 2002.


	1. Introduction
	2. Preliminaries
	2.1. Faces of polytopes
	2.2. Face numbers of simplicial polytopes

	3. Reductions
	4. Efficient computations for simplicial polytopes
	5. Concluding remarks
	References

