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ABSTRACT. The notion of discrete conformality proposed by Luo [1] and Bobenko-Pinkall-
Springborn [2] on triangle meshes has rich mathematical theories and wide applications. Gu et
al. [3][4] proved that the discrete uniformizations approximate the continuous uniformization
for closed surfaces of genus ≥ 1, given that the approximating triangle meshes are reasonably
good. In this paper, we generalize this result to the remaining case of genus zero surfaces, by
reducing it to planar cases via stereographic projections.
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1. INTRODUCTION

This work is a continuation of [4], which studies the convergence of discrete uniformizations
to the continuous uniformization for closed surfaces of genus greater than zero. The notion
of discrete conformality and discrete uniformization discussed here, which is called vertex
scaling, were introduced by Luo [1] and Bobenko-Pinkall-Springborn [2]. Gu-Luo-Wu [3]
first proved the convergence of discrete uniformizations for the unit disk and tori.

In this paper, we prove the convergence result for surfaces of genus zero. Specifically, for a
reasonable geodesic triangulation T on a Riemannian surface (M, g), the discrete uniformiza-
tion of its induced polyhedral metric approximates the uniformization for (M, g) by an error in

1

ar
X

iv
:2

11
0.

08
20

8v
1 

 [
m

at
h.

G
T

] 
 1

5 
O

ct
 2

02
1



2 YANWEN LUO, TIANQI WU, AND XIAOPING ZHU

the order of the maximal edge length of edges in T . There has been extensive study about the
convergence of discrete conformality since Rodin-Sullivan’s seminal work [5] on the conver-
gence of circle packings. Other convergence results about the vertex scaling can also be found
in [6][7][8].

1.1. Set up and the main theorem. Suppose M is a compact orientable surface, possibly
with boundary, and T is a triangulation of M , which is always assumed to be a simplicial
complex such that its one-skeleton is a 4-vertex-connected graph. Denote V (T ), E(T ), F (T )
as the sets of vertices, edges, and triangles of T respectively. Further denote int(T ) as the set
of interior vertices of T , and bdy(T ) as the set of boundary vertices of T . If M is equipped
with a smooth Riemannian metric g, T is a geodesic triangulation if any edge in T is a shortest
geodesic arc in (M, g).

An admissible edge length function l ∈ RE(T )
>0 of T satisfies the triangle inequality lij+ ljk >

lik for any triangle 4ijk ∈ F (T ). For a geodesic triangulation T on a Riemannian surface
(M, g), we can naturally define an edge length function l using the geodesic lengths of the
edges. Given an admissible edge length function l, we can construct a piecewise Euclidean
triangle mesh (T, l)E by isometrically gluing the Euclidean triangles with the edge lengths
defined by l along pairs of edges. Similarly, a spherical triangle mesh (T, l)S can be constructed
by replacing Euclidean triangles with spherical triangles of the same edge lengths, provided
that lij + ljk + lki < π for any triangle4ijk in F (T ). For given (T, l)E or (T, l)S , we often use
θijk to denote the inner angle at i in the triangle4ijk. We also define the discrete curvature Ki

at a vertex i ∈ V (T ) as

Ki =

{
2π −

∑
jk∈E:ijk∈F θ

i
jk, if i ∈ int(T ),

π −
∑

jk∈E:ijk∈F θ
i
jk, if i ∈ bdy(T ).

A Euclidean (resp. spherical) triangle mesh is globally flat (resp. globally spherical) if and
only if Ki = 0 for any i ∈ int(T ).

Definition 1.1. Given a triangulation T , a discrete conformal factor u is a real-valued function
on V (T ). For the Euclidean case, (T, l)E and (T, l′)E are called discrete conformal if for some
discrete conformal factor u,

(1) l′ij = e
1
2

(ui+uj)lij

for any ij ∈ E(T ). For the spherical case, (T, l)S and (T, l′)S are discrete conformal if for
some discrete conformal factor u,

(2) sin
l′ij
2

= e
1
2

(ui+uj) sin
lij
2

for any ij ∈ E(T ).

We denote l′ = u ∗ l if equation (1) holds, and l′ = u ∗s l if equation (2) holds. Given
a triangle mesh (T, l)E (resp. (T, l)S), let θijk(u) and Ki(u) denote the corresponding inner
angle at i in triangle 4ijk and the discrete curvature at i respectively in (T, u ∗ l)E (resp.
(T, u ∗s l)S). If (T, l)S is a topological sphere, u is called a discrete uniformization factor for
(T, l)S , if (T, u ∗s l)S is isometric to the unit sphere, which is equivalent to that the discrete
curvature K(u) := [Ki(u)]i∈V is zero. A triangle mesh (T, l)E (resp. (T, l)S) is called strictly
Delaunay if for any edge ij in T, two adjacent triangles4ijk,4ijk′ containing ij satisfies

(3) θkij + θk
′

ij < θijk + θijk′ + θjik + θjik′ .
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We quantify the regularity of a triangle mesh as follows.

Definition 1.2. A triangle mesh (T, l)E (resp. (T, l)S) is called ε-regular if
(a) any inner angle θijk ≥ ε, and
(b) for any adjacent triangles4ijk and4ijk′, θkij + θk

′
ij ≤ π − ε.

Condition (a) requires that any triangle is away from degenerating, and condition (b) requires
the triangle mesh to be uniformly strictly Delaunay. Let |x| = maxi∈I |xi| denote the maximal
norm of a vector x ∈ RI in a finite dimensional vector space. Let Ĉ be the standard Riemann
sphere, which can be identified with the unit sphere S2 in R3 by the stereographic projection.
The main theorem of the paper is

Theorem 1.3. Suppose (M, g) is a closed smooth Riemannian surface of genus zero with
three marked points X, Y, Z, and ū ∈ C∞(M) is the unique uniformization conformal factor
such that (M, e2ūg) is isometric to the unit sphere S2 ∼= Ĉ through map φ, where φ(Z) = 0,
φ(Y ) = 1, φ(X) =∞. Assume T is a geodesic triangulation of (M, g), and l ∈ RE(T )

>0 denotes
its edge length in (M, g). Then for any ε > 0, there exists δ = δ(M, g,X, Y, Z, ε) > 0 such
that if (T, l)S is ε-regular and |l| ≤ δ, then

(a) there exists a unique discrete conformal factor u on V (T ), such that (T, u ∗s l)S is
strictly Delaunay and isometric to the unit sphere through a map ψ such that ψ(Z) = 0,
ψ(Y ) = 1, and ψ(X) =∞, and

(b) |u− ū|V (T )| ≤ C|l| for some constant C = C(M, g,X, Y, Z, ε) > 0.

Remark 1.4. The uniqueness part of the theorem is already known as a consequence of Spring-
born’s Theorem 10.5 in [9], which is equivalent to Rivin’s earlier result on hyperbolic polyhe-
dral realization in [10].

1.2. An equivalent formulation. Springborn [11][9] and Bobenko et al. [2] proposed an an-
other notion of discrete uniformization, which is for Euclidean triangle meshes that are home-
omorphic to a sphere. We adapt their definitions as follows.

Let P be the set of the compact convex polyhedral surfaces P , satisfying that
(a) P is the boundary of the convex hull of a finite subset of S2, and
(b) 0 is strictly inside P , and
(c) each face of P is a triangle.
Given P ∈ P , denote V (P ) as the set of its vertices, and TP as the natural triangulation of

P where each triangle is a face of P , and lP ∈ RE(TP ) as the edge length of TP on P . For
a Euclidean triangle mesh (T, l)E , which is a topological sphere, we say that u is a discrete
uniformization factor of (T, l)E if (T, u ∗ l)E is isometric to some P ∈ P , through a map ϕ
such that ϕ(T ) = TP .

We call a geodesic triangulation of the unit sphere strictly Delaunay if the circumference
circle of each triangle contains no other vertex. It is well-known that this spherical empty
circle condition is equivalent to the condition that if for any edge ij in T, two adjacent triangles
4ijk,4ijk′ containing ij satisfies

(4) θkij + θk
′

ij < θijk + θijk′ + θjik + θjik′ .

If we consider this geodesic triangulation as a sphercial triangle mesh (T, l)S where l(e) is the
geodesic arc length of edge e, then the above condition is just condition (3).

The central projection p : (x, y, z) 7→ (x, y, z)/
√
x2 + y2 + z2 naturally gives rise to a

bijection between P and the set of strictly Delaunay triangulations of the unit sphere. Here
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we always assume that a triangulation of S2 is a geodesic triangulation and each triangle is a
proper subset of a hemisphere. For a vector x ∈ RI , we denote sinx as the vector in RI such
that (sinx)i = sin(xi).

Proposition 1.5. Let P 7→ p(TP ) be a bijection from P to the set of strictly Delaunay triangu-
lations of S2. Further we have that lP = 2 sin l

2
where l denotes the geodesic edge lengths of

p(TP ) on S2.

Proof. Given P ∈ P , for any triangle 4ijk, other vertices are on one side of the plane 4ijk
lies in by the convexity of P . Therefore other vertices lies outside the circumference circle of
spherical triangle p(4ijk). So p(TP ) is a strictly Delaunay triangulation of S2. See Figure 1
for illustrations.

If T is a strictly Delaunay triangulation of S2, we construct a polyhedral surface P as the
union of all flat triangles 4ijk where i, j, k are the three vertices of a triangle in T . Then p|P
is a homeomorphism from P to S2. Since T satisfies the empty circle property, we conclude
that the dihedral angle on any edge ij ∈ E(T ) is less than π by the similar argument in the
above paragraph. So P is a convex polyhedral surface (See Lemma 6.1 in [12] for example).

Since all the vertices of P is on the unit sphere, therefore P satisfies the condition (a) of
set P . It is not hard to see that P satisfies condition (b) and (c). The condition lP = 2 sin l

2
follows easily from the construction of P . �

FIGURE 1. Equivalence between local Delaunay condition and local convexity.

As a consequence, we obtain an equivalence between the two notions of discrete uniformiza-
tions.

Corollary 1.6. Assume T is topologically a sphere, then u is a discrete uniformization factor
of (T, 2 sin l

2
)E if and only if u is a discrete uniformization factor of (T, l)S and (T, u ∗s l)S is

strictly Delaunay.

By such an equivalence, we can reformulate our main theorem as follows.

Theorem 1.7. Suppose (M, g) is a closed smooth Riemannian surface of genus zero with three
marked points X, Y, Z, and ū ∈ C∞(M) is the unique uniformization conformal factor such
that (M, e2ūg) is isometric to the unit sphere S2 ∼= Ĉ through map φ, and φ(Z) = 0, φ(Y ) = 1,
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φ(X) = ∞. Assume T is a geodesic triangulation of (M, g), and l ∈ RE(T )
>0 denotes its edge

length in (M, g). Then for any ε > 0, there exists δ = δ(M, g,X, Y, Z, ε) > 0 such that if
(T, l)S is ε-regular and |l| ≤ δ, then

(a) there exists a unique discrete conformal factor u on V (T ), such that (T, u ∗ (2 sin l
2
))E

is isometric to some P ∈ P through a map ψ such that ψ(Z) = 0, ψ(Y ) = 1, and
ψ(X) =∞, and

(b) |u− ū|V (T )| ≤ C|l| for some constant C = C(M, g,X, Y, Z, ε) > 0.

We will prove this new version of our main theorem. By the stereographic projection, we
can consider triangulations of a flat polygon, instead of the polyhedrons inscribed in the unit
sphere. To obtain a satisfactory flat triangle mesh, we adapt the idea in [4] and construct a
discrete curvature flow on the triangle mesh. The estimate in part (b) essentially follows from
a discrete elliptic estimate on the flow.

1.3. Organization of the paper. In Section 2, we will introduce the discrete calculus on
graphs and the key discrete elliptic estimate. In Section 3 we will discuss the stereographic pro-
jection and the one-to-one correspondence between the convex polyhedral surfaces inscribed
in the unit sphere and the the Delaunay triangulations of convex polygons. In Section 4, we
will introduce some useful and elementary estimates about triangulations. The proof of the
main theorem 1.7 will be given in Section 5.

1.4. Acknowledgement. The work is supported in part by NSF 1719582, NSF 1760471, NSF
1760527, NSF DMS 1737876, and NSF 1811878.

2. DISCRETE CALCULUS ON GRAPHS

Assume G = (V,E) is an undirected connected simple graph, on which we will frequently
consider vectors in RV , RE and RE

A. Here RE and RE
A are both vector spaces of dimension |E|

such that
(a) a vector x in RE is represented symmetrically, i.e., xij = xji, and
(b) a vector x in RE

A is represented anti-symmetrically, i.e., xij = −xji.
A vector x in RE

A is also called a flow on G. An edge weight η on G is a vector in RE . Given
an edge weight η and a vector x ∈ RV , its gradient ∇x = ∇ηx is a flow in RE

A defined as

(∇x)ij = ηij(xj − xi).

Given a flow x ∈ RE
A, its divergence div(x) is a vector in RV defined as

div(x)i =
∑
j∼i

xij.

Given an edge weight η, the associated Laplacian ∆ = ∆η : RV → RV is defined as ∆x =
∆ηx = div(∇ηx), i.e.,

(∆x)i =
∑
j∼i

(∇x)ij =
∑
j∼i

ηij(xj − xi).

The Laplacian is a linear transformation on RV , and could be identified as a symmetric |V |×|V |
matrix.
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2.1. Isoperimetric conditions and a discrete elliptic estimate. Analogous to the isoperimet-
ric condition on a Riemannian surface, we introduce the notion of C-isoperimetric conditions
for a graph G = (V,E) with a positive vector l ∈ RE

>0. Given V0 ⊂ V , we denote

∂V0 = {ij ∈ E : i ∈ V0, and j /∈ V0}

(See Figure 2 below), and define the l-perimeter of V0 and the l-area of V0 as

|∂V0|l =
∑
ij∈∂V0

lij, and |V0|l =
∑

ij∈E:i,j∈V0

l2ij.

Given a constant C > 0, such a pair (G, l) is called C-isoperimetric if for any V0 ⊂ V ,

min{|V0|l, |V |l − |V0|l} ≤ C|∂V0|2l .

FIGURE 2. The C-isoperimetric condition on graphs.

We will see in Section 4 that a uniform C-isoperimetric condition is satisfied by ε− regular
triangle meshes approximating a closed smooth surface. The following discrete elliptic esti-
mate is a key tool to prove our theorem of convergence, and is reformulated from the second
conclusion of Lemma 2.3 in [4].

Lemma 2.1. Given a constant C > 0 and a C-isoperimetric pair (G, l), consider the equation

(5) (D −∆η)u = div(x) + y

on G where
(i) η ∈ RE is an edge weight such that for any ij ∈ E

ηij ≥
1

C
,

and
(ii) x ∈ RE

A is a flow such that for any ij ∈ E

|xij| ≤ Cl2ij,

and
(iii) D ∈ RV×V is a nonzero nonnegative diagonal matrix, and
(iv) y ∈ RV satisfies that for any i ∈ V

|yi| ≤ C ·Dii|l| · |V |
1
2
l .
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Then the solution u ∈ RV of equation (5) satisfies that

|u| ≤ C ′|l| · |V |
1
2
l .

for some constant C ′ = C ′(C) > 0.

2.2. The differential of the discrete curvature. There is an explicit formula for the infinites-
imal changes of the discrete curvature, as the mesh deforms in its discrete conformal class.

Proposition 2.2 (Proposition 4.1.6 in [2]). Given a triangle mesh (T, l)E , if u ∗ l is an ad-
missible edge length, denote θijk(u) as the inner angle at i in triangle 4ijk in (T, u ∗ l)E ,
and K(u) ∈ RV as the discrete curvature in (T, u ∗ l)E . We also define the cotangent weight
η ∈ RE as

ηij(u) =
1

2
cot θkij(u) +

1

2
cot θk

′

ij (u)

if4ijk,4ijk′ ∈ F (T ) sharing edge ij, and

ηij(u) =
1

2
cot θkij

if4ijk ∈ F (T ) and ij is a boundary edge of T . Then we have

∂K

∂u
(u) = −∆η(u).

3. STEREOGRAPHIC PROJECTIONS OF TRIANGLE MESHES

We will use the stereographic projection to connect convex polyhedral surfaces inscribed in
the unit spheres with triangulations of planar convex polygons. Denote N as the north pole
(0, 0, 1) of the unit sphere S2. The stereographic projection pN is a map from R3\{z = 1} to
the xy-plane, which is identified as R2 or C. The map pN is defined as

pN(x, y, z) =
x

1− z
+ i

y

1− z
.

It is well known that the restriction of pN on S2\{N} is a conformal diffeomorphism to R2,
and maps any circle to a circle or a straight line. Given a convex polyhedral surface P in P
such that N is a vertex of P , denote T̊P as the subtriangulation of TP with the open 1-star
neighborhood of N in TP being removed. In this case, P̊ denotes the carrier of T̊P and is a
topological closed disk. We use | · |2 to denote the standard l2-norm.

Lemma 3.1. (a) Assume P ∈ P and P contains N as a vertex, then pN is injective on P̊ , and
Q = pN(P̊ ) is a convex polygon, and TQ = pN(T̊P ) is a geodesic triangulation of Q. Further,
if we naturally identify T̊P and TQ, and denote lP (resp. lQ) as its edge length on P (resp. Q),
then

(6) lQ = w ∗ lP where wi = log
2

|i−N |22
= log

|pN(i)|22 + 1

2
, ∀i ∈ V (T̊P ).

(b) Assume Q is a convex polygon in R2, and TQ is a strictly Delaunay triangulation of Q such
that 0 is an interior vertex and Ki > 0 for any boundary vertex i in V (TQ). Then there exists
a convex polyhedral surface P ∈ P such that N ∈ P and pN(P̊ ) = Q and pN(T̊P ) = TQ.
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Proof. (a) Let us first prove the injectivity by contradiction. Suppose x, y are two different
points on P̊ such that pN(x) = pN(y). Then N, x, y are co-linear and pairwise different.
Without loss of generality, assume y is between x and N . Then it is not difficult to show that
the line segment xN ⊂ P . Suppose4ijk is a face of P containing the line segment xN . Then
N has to be one of the vertex of4ijk, and x, y are contained in the edge in4ijk opposite to
N . But this implies that N, x, y are not co-linear, which leads to a contradiction.

So Q is a polygon, and TQ is a geodesic triangulation of Q. Any inner angle of the polygon
Q is less than π, since the dihedral angle on any edge Ni ∈ E(TP ) is less than π. Equation (6)
can be proved by a standard computation.

(b) We will first construct a polyhedron P and then show that it is satisfactory. The set of
vertices of P is given by VP = (pN |S2)−1(V (TQ)) ∪ {N}, and the set of faces of P is given
by a set of flat triangles in R3 with vertices in VP . The 4ijk is a triangle in P if and only if
pN(4ijk) is a triangle in TQ, or {i, j, k} = {N, x, y} where pN(xy) is a boundary edge of TQ.

It is ordinary to verify that the union P of such triangles is a topological sphere, and these
flat triangles naturally give a triangulation TP of P . It remains to show that P ∈ P , or indeed
that any dihedral angle in TP is less than π.

Assume ij is an edge in TP . If i = N , the dihedral angle at ij is less than π because the
discrete curvature at pN(j) in TQ is greater than 0. If pN(ij) is a boundary edge in TQ, assume
4ijk ∈ F (TP ) and k 6= N , and then the dihedral angle at ij is less than π because pN(k) and
0 are in the same half plane divided by pN(ij). Now we can assume that pN(ij) is an inner
edge in TQ, and pN(4ijk), pN(4ijk′) are two triangles in TQ. Since TQ is strictly Delaunay,
pN(k′) is strictly outside of the circumcircle of pN(4ijk). Since pN |S2 preserves circles, k′ is
strictly outside of the spherical circumcircle of {i, j, k} on S2. So the dihedral angle at ij is
less than π. �

In the following lemma we prove that the stereogarphic projection preserves the ε-regularity.

Lemma 3.2. Assume P ∈ P , and N ∈ P , and T = p(TP ) is a geodeisc triangulation of S2,
and Q = pN(P̊ ), and TQ = pN(T̊P ), and l (resp. lQ) denotes the edge length of T (resp. TQ)
on S2 (resp. Q). Then for any ε > 0, there exists constants ε′ = ε′(ε) > 0 and δ = δ(ε) > 0
such that if (T, l)S is ε-regular and |l| < δ, then (TQ, lQ)E is ε′-regular, and Ki ≥ ε′ for any
boundary vertex i in TQ.

Proof. Let θkij denote the inner angles in (T, l)S , and φkij denote the inner angles in (TQ, lQ)E .
We need to prove following three statements: (a) φkij are bounded below by ε′ > 0, and (b) TQ
is strictly Delaunay with angle sums φkij + φk

′
ij bounded above by π − ε′, and (c) Ki ≥ ε′ for

any boundary vertex i in TQ.
Consider a pair of triangles4ijk and4ijk′ in (T, l)S , and by assumption θkij + θk

′
ij ≤ π− ε.

Let Θij be the intersecting angle of the circumcircles of two triangles 4ijk and 4ijk′ on S2.
It is elementary to show that

Θij = θijk + θjik + θijk′ + θjik′ − (θkij + θk
′

ij ) > 2π − 2(θkij + θk
′

ij ) ≥ 2ε.

The stereographic projection preserves angles and circles, so the intersecting angle of the cir-
cumcircles of pN(4ijk) and pN(4ijk′) in TQ is also Θij , if N is not contained in 4ijk ∪
4ijk′. Then it is also ordinary to show that this intersecting angle is

Θij = φijk + φjik + φijk′ + φjik′ − (φkij + φk
′

ij ) = 2π − 2(φkij + φk
′

ij ).
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Therefore part (b) is true by

φkij + φk
′

ij = π − Θij

2
≤ π − ε.

If i = N , then the circumcircles of 4ijk and 4ijk′ are mapped to straight lines pN(jk) and
pN(jk′). So the angle between pN(jk) and pN(jk′), or the inner angle of the polygon Q at
pN(j), is equal to π −Θij ≤ π − 2ε. So part (c) is true.

FIGURE 3. Projection of angles under stereographic projection

Now we prove part (a). Assume 4ijk is a triangle in T not containing N , and C is the
circumcircle of4ijk on S2, and C ′ is the circle on S2 containing {j, k,N}. Then pN(C) is the
circumcircle of pN(4ijk) and pN(C ′) is the straight line pN(jk), and the intersecting angle of
them is equal to the intersecting angle of C and C ′. It is elementary to show that φijk is equal to
an intersecting angle of pN(C) and pN(C ′), i.e., an intersecting angle of C and C ′. See Figure
3 for illustration. We only need to show that the intersecting angle of C and C ′ are at least ε′

for some constant ε′(ε) > 0, when |l| < δ for some constant δ(ε) > 0.
Denote R as the spherical radius of the cirlce C. Since (T, l)S is ε-regular and |l| < δ, the

degree (valence) of any vertex in T is at most b2π/εc, and lij, lik, ljk are at least r1R for some
constant r1 = r1(ε). Further it is not difficult to show that there exists a constant r2(ε) > 0
such that the 1-star neighborhood of i in T contains the open spherical disk Ui centered at i
with radius r2R. So N /∈ Ui. We define Uj and Uk similarly.

Assume Ck is the circumcircle of the triangle in T that is adjacent to 4ijk along the edge
ij. Then the intersecting angle between C and Ck is Θij ≥ 2ε. Assume C ′k is the circle on
S2 such that i, j ∈ C ′k and the intersecting angle between C and C ′k is equal to 2ε. Denote Dk

(resp. D′k, D) as the open spherical disk bounded by Ck (resp. C ′k, C). Then D′k ⊂ D ∪ Dk

and has a diameter less than r3R for some constant r3(ε) > 0. Then N /∈ Dk and N /∈ D by
the convexity of P , and so N /∈ D′k. Define D′i and D′j similarly.

Without loss of generality, assume j′ is the opposite point of j on S2, and j′ 6= N . Denote X
as the tangent plane of S2 at j in R3, and p′ as the projection map centered at j′ and mapping
S2\{j′} to X . Since p′ preserves the angles and disks, p′(D), p′(D′i), p′(D′j), p′(D′k), p′(Ui),
p′(Uj), p′(Uk) are all disks on X , and the intersecting angle between p′(D) and p′(Di) (resp.
p(Dj), p′(Dk)) is 2ε, and we only need to show that the intersecting angle between p′(C) and
p′(C ′) is at least ε′ for some constant ε′(ε) > 0. The projection p′ is very close to an isometry
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near the point j, so if δ = δ(ε) > 0 is sufficiently small,

1

2
d(x, y) ≤ d(p′(x), p′(y)) ≤ 2d(x, y)

for any x, y ∈ D ∪ D′i ∪ D′j ∪ D′k ∪ Ui ∪ Uj ∪ Uk. Assume R′ is the radius of p′(D) and it
is not difficult to show that the radii of p′(Ui) and p′(Uj) and p′(Uk) are at least r2R

′/4, and
d(p′(a), p′(b)) ≥ r1R

′/4 for any two different vertices a, b in {i, j, k}.

FIGURE 4. Seven circles.

By a scaling, it suffices to prove the following claim. Assume4xyz is a triangle inscribed in
the unit circle S in the plane, and all the edge lengths are at least r1/4, and Cx is the circle such
that y, z ∈ Cx and x is not inside Cx and the intersecting angle between C and Cx is 2ε, and Cy
and Cz are defined similarly, and Ux is the open disk centered at x with radius r2/4, and Uy and
Uz are defined similarly, and N ′ is a point that is not strictly inside of the unit circle or Cx or
Cy or Cz or Ux or Uy or Uz, and CN ′ is the circle (or the straight line) passing through y, z,N ′,
then the intersecting angle θ between C and CN ′ is at least ε′ for some constant ε′(ε) > 0. See
Figure 4 for illustration.

If the above claim is not true, for some ε > 0, one can pick a sequence (xn, yn, zn, N
′
n) ∈

(R2)4 such that the resulted intersecting angle θn goes to 0. By picking a subsequence, we may
assume xn → x ∈ S and yn → y ∈ S and zn → z ∈ S and N ′n → N ′ ∈ R2 ∪ {∞}, and then
by the continuity (x, y, z,N ′) satisfies the conditions in the claim, and the resulted intersecting
angle is θ = 0. This means that N ′ is on the unit circle. However this is impossible because by
the continuity

N ′ /∈ Dx ∪Dy ∪Dz ∪ Ux ∪ Uy ∪ Uz ⊃ S

where Dx (resp. Dy, Dz) is the open disk bounded by Cx (resp. Cy, Cz). �

4. ESTIMATES ON TRIANGULATIONS

In this section we will introduce some elementary estimates on triangles, and properties of
triangulations on a Rimannian surface.
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4.1. Elementary error estimates on triangles. Denote |4ABC| (resp. |4A′B′C ′|) as the
area of4ABC (resp. 4A′B′C ′). We have the following estimate on the change of the angles
and area of a Euclidean triangle.

Lemma 4.1 (Lemma 3.5 in [4]). Given a Euclidean triangle 4ABC with edge lengths a, b,
and c, if all the angles in4ABC are at least ε > 0, and δ < ε2/48, and

|a′ − a| ≤ δa, |b′ − b| ≤ δa, |c′ − c| ≤ δc,

then a′, b′, c′ form a Euclidean triangle with opposite inner angles A′, B′, C ′ respectively such
that

|A′ − A| ≤ 24

ε
δ,

and ∣∣∣∣|4A′B′C ′| − |4ABC|∣∣∣∣ ≤ 576

ε2
δ · |4ABC|.

By the following lemma we show that the linear map between two Euclidean triangles is
close to isometry if their corresponding edge lengths are close.

Lemma 4.2. Assume4ABC (4A′B′C ′) is a Euclidean triangle with edge lengths a, b, c (resp.
a′, b′, c′), and all the angles in4ABC are at least ε > 0, and δ < ε2/576, and

|a′ − a| ≤ δa, |b′ − b| ≤ δa, |c′ − c| ≤ δc,

and λ1, λ2 are the two singular values of the unique linear map sending 4ABC to 4A′B′C ′
preserving the correspondence of the vertices. Then

1− 104

ε4
δ ≤ λi ≤ 1 +

104

ε4
δ, i = 1, 2.

Proof. By Lemma 4.1, |A − A′|, |B − B′|, |C − C ′| are all less or equal to 24δ/ε < ε/2, and
thus A′, B′, C ′ are all at least ε/2. Then again by Lemma 4.1 it is easy to show that

a′2 ≤ 2|4A′B′C ′|
sin2(ε/2)

≤ 64|4ABC|
ε2

.

It is well known that

λ1λ2 =
|4A′B′C ′|
|4ABC|

and thus by Lemma 4.1

(7) |λ1λ2 − 1| < 576

ε2
δ.

In [13] we can find the formula

λ2
1 + λ2

2 =
a′2 cotA+ b′2 cotB + c′2 cotC

2|4ABC|
.

Applying this formula to the special case4A′B′C ′ = 4ABC, we get

2 =
a′2 cotA′ + b′2 cotB′ + c′2 cotC ′

2|4A′B′C ′|
,

, which implies

(8) λ2
1 + λ2

2 − 2λ1λ2 =
a′2(cotA− cotA′) + b′2(cotB − cotB′) + c′2(cotC − cotC ′)

2|4ABC|
.
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Denote f(x) = cotx, then f ′(x) = −1/ sin2 x and f ′′(x) = 2 cosx/ sin3 x. By Taylor’s
expansion, there exists ξA between A and A′ such that

a′2(cotA− cotA′) = a′2[f ′(A′)(A− A′) +
1

2
f ′′(ξA)(A− A′)2]

= − a′2

sin2A′
(A− A′) +

a′2

2
f ′′(ξA)(A− A′)2 = −(2R)2(A− A′) +

a′2

2
f ′′(ξA)(A− A′)2

where R is the radius of the cicumcircle of4A′B′C ′, and∣∣∣∣a′22
f ′′(ξA)(A− A′)2

∣∣∣∣ ≤ 64|4ABC|
ε2

· 2

sin3(ε/2)
·
(

24δ

ε

)2

≤ |4ABC| · 106 · δ2

ε7
.

Combining the similar computation for B and C, we get that the right hand side of equation
(8) is less or equal to 3× 106δ2/ε7, and thus |λ1 − λ2| ≤

√
3× 106δ2/ε7 ≤ 104δ/ε4. Then by

equation (7) and the fact that 104δ/ε4 ≥ 576δ/ε2, it is easy to prove that

1− 104

ε4
δ ≤ λi ≤ 1 +

104

ε4
δ.

�

We also need the following lemma to compare the angle differences between spherical and
Euclidean triangles of the same edge lengths.

Lemma 4.3 (Special case of Lemma 5.3 in [4]). Assume 4ABC (resp. 4A′B′C ′) is a Eu-
clidean (resp. spherical) triangle with the edge lengths a, b, c, and diam(4A′B′C ′) < π/3.
Then

|A′ − A| ≤ 2(a+ b+ c)2.

4.2. Geodesic triangulations of surfaces. The following cubic estimate quantifies the error
between the discrete conformal change and the smooth conformal change.

Lemma 4.4 (Lemma 4.3 in [4]). Suppose (M, g) is a closed Riemannian surface, and u ∈
C∞(M) is a conformal factor. Then there exists C = C(M, g, u) > 0 such that for any
x, y ∈M ,

|de2ug(x, y)− e
1
2

(u(x)+u(y))dg(x, y)| ≤ Cdg(x, y)3.

The following lemma shows that a smooth conformal change will preserve the existence of
the geodesic triangulation, and its ε-regularity.

Lemma 4.5 (Part (a) of Lemma 4.4 in [4]). Suppose (M, g) is a closed Riemannian surface,
and T is a geodesic triangulation of (M, g). Let l ∈ RE(T ) denote the geodesic lengths of the
edges of T , and assume (T, l)E is ε-regular. Given a conformal factor u ∈ C∞(M), there exits
a constant δ = δ(M, g, u, ε) such that if |l| ≤ δ then there exists a geodesic triangulation T ′

in (M, e2ug) such that T ′ is homotopic to T relative to V (T ) = V (T ′). Further (T ′, l̄)E is
(ε/2)-regular, where l̄ ∈ RE(T ′) denotes the geodesic lengths of the edges of T ′ in (M, e2ug).

The following lemma shows that an ε-regular geodesic triangulation of a closed surface
satisfies the C-isoperimetric condition if the edge lengths are sufficiently small.

Lemma 4.6 (Part (b) of Lemma 4.4 in [4]). Suppose (M, g) is a closed Riemannian surface,
and T is a geodesic triangulation of (M, g) with geodesic length l such that (T, l)E is ε-regular.
Then there exists a constant δ = δ(M, g, ε) such that if |l| < δ, (T, l) is C-isoperimetric for
some constant C = C(M, g, ε) > 0.
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However, what we really need is the following modified version of Lemma 4.6.

Lemma 4.7. Suppose (M, g) is a closed Riemannian surface, and T is a geodesic triangulation
of (M, g) with geodesic length l such that (T, l)E is ε-regular. Assume v ∈ V and star(v) ⊂ V

contains v and its neighbors in T , and let V̂ = V − star(v) and G = (V̂ , Ê) be the subgraph
of (V (T ), E(T )) generated by V̂ . Then there exists a constant δ = δ(M, g, ε) such that if
|l| < δ, (T̂ , l|Ê) is C-isoperimetric for some constant C = C(M, g, ε) > 0.

Proof. By Lemma 4.6, we can find constants δ(M, g, ε) > 0 and C(M, g, ε) > 0 such that
(T, l) is C-isoperimetric if |l| < δ. Now assume B = {i ∈ V̂ : ∃j ∈ V − V̂ s.t. ij ∈ E} is the
set of boundary vertices of G in T , and V0 ⊂ V̂ , and ∂̂V0 (resp. ∂V ) is the boundary of V0 in
G (resp. T ). We consider the following three cases:

Case 1: V0 ∩ B = ∅. Then |∂̂V0|l = |∂V0|l and |V |l − |V0|l ≥ |V̂ |l − |V0|l. Since (T, l) is
C-isoperimetric, we have

C|∂̂V0|2l ≥ min{|V0|l, |V̂ |l − |V0|l}.

Case 2: B ⊂ V0. In this case, ∂̂V0 = ∂(V0 ∪ star(v)). Since (T, l) is C-isoperimetric, we
have

C|∂̂V0|2l = C|∂(V0 ∪ star(v))|2l ≥ min{|V0 ∪ star(v)|l, |V |l − |V0 ∪ star(v)|l}

Clearly, |V0 ∪ star(v)|l ≥ |V0|l, and |V |l − |V0 ∪ star(v)|l = |V̂ |l − |V0|l. Then

C|∂̂V0|2l ≥ min{|V0|l, |V̂ |l − |V0|l}.
Case 3: V0 ∩ B 6= ∅ and B 6⊂ V0. It is not difficult to show that B is connected in V since

the 1-skeleton of T is 4-vertex-connected, so there is an edge ij ∈ ∂̂V0 such that i ∈ B ∩ V0

and j ∈ B − V0. By the ε-regularity, the degree of each vertex in T is bounded by b2π/εc
if δ(M, g, ε) is sufficiently small, and the ratio of the two edge lengths in a triangle of T is at
least sin ε. So there is a constant C1(M, g, ε) > 0 such that

C1lij ≥
∑

xy∈E(T )−Ê

lxy ≥ |∂V0|l − |∂̂V0|l.

Then
C(1 + C1)2|∂̂V0|2l ≥ C|∂V0|2l ≥ min{|V0|l, |V̂ |l − |V0|l}.

�

5. PROOF OF THE MAIN THEOREM 1.7

Assume ε > 0 is a fixed constant and (T, l)S is ε-regular and |l| < δ where

δ = δ(M, g,X, Y, Z, ε) > 0

is a sufficiently small constant to be determined. By Lemma 4.3 we may assume that (T, l)E
is (ε/2)-regular. By Lemma 4.5, we may assume that there exists a geodesic triangulation T ′

of (M, e2ūg) such that T ′ is homotopic to T relative to V (T ) = V (T ′). Denote l̄ ∈ RE(T ) ∼=
RE(T ′) as the geodesic edge length of T ′ in (M, e2ūg), and then (T, l̄)S is isometric to the unit
sphere (M, e2ūg) and has zero discrete curvatures. Again by Lemma 4.5 we may assume that
(T, l̄)E is (ε/4)-regular. Then by Lemma 4.3 we may assume (T, l̄)S is (ε/5)-regular, and
thus is strictly Delaunay, and then by Proposition 1.5 p(TP ) = φ(T ′) where P ∈ P is the
boundary of the convex hull of φ(V (T )). By Lemma 3.1, Q = pN(P̊ ) is a convex polygon,
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and TQ = pN(T̊P ) is a geodesic triangulation of Q. Denote lQ ∈ RE(TQ) as the edge lengths in
Q, and then by Lemma 3.2 there exists a constant ε′(M, g,X, Y, Z, ε) > 0 such that (TQ, lQ)E
is ε′-regular and Ki ≥ ε′ for any boundary vertex in (TQ, lQ)E . The combinatorial structures
of T , T ′, TP and p(TP ) = φ(T ′) are naturally identified. We also identify the combinatorial
structures of T̊P and TQ and just denote it as T̊ . Denote lP = 2 sin(l̄/2) ∈ RE(T ) as the edge
length of TP on P , and then by equation (6) on T̊ we have

lQ = w ∗ lP where wi = log
2

|φ(i)−N |22
= log

|pN(φ(i))|22 + 1

2
, ∀i ∈ V (T̊ ).

Denote l′P = ū ∗ 2 sin(l/2) ∈ RE(T ) and l′Q = w ∗ l′P = (ū + w) ∗ 2 sin(l/2) ∈ RE(T̊ ), and
K(u) ∈ RV (T̊ ) as the discrete curvature in (T̊ , u ∗ 2 sin(l/2))E .

In the following proof, for simplicity we will use the notation a = O(b) to represent that if
δ(M, g,X, Y, Z, ε) is sufficiently small, then |a| ≤ Cb for some constantC(M, g,X, Y, Z, ε) >
0. We summarize the remaining part of the proof in three steps:

(a) Estimate the curvature K(ū+ w) of (T̊ , l′Q)E for interior vertices.
(b) Construct a flow u(t) : [0, 1] → RV (T̊ ), starting from u(0) = ū + w, such that u(t)

linearly eliminates the discrete curvature K(u) for interior vertices, i.e.,

Ki(u(t)) = (1− t)Ki(ū+ w)

for any interior vertex i of T̊ . Furthermore, we will also show that |u′(t)| = O(|l|), and
(T̊ , u(1) ∗ 2 sin(l/2))E is isometric to a convex polygon in the plane.

(c) After a proper normalization, which is a small perturbation, we use the inverse of the
stereographic projection to construct the desired polyhedral surface P ∈ P .

5.1. Step 1: The estimate of curvatures. By Lemma 4.4,

|l̄ij − (ū ∗ l)ij| = O(l3ij).

Notice the fact that |x− 2 sin(x/2)| ≤ 10x3 if |x| < 0.01, so

|(lP )ij − (l′P )ij| = O(l3ij),

and

(9)

∣∣∣∣∣(l′Q)ij − (lQ)ij

(lQ)ij

∣∣∣∣∣ =

∣∣∣∣∣(l′P )ij − (lP )ij
(lP )ij

∣∣∣∣∣ = O(l2ij).

Given a triangle 4ijk ∈ F (T̊ ), denote θijk(u) (resp. θ̄ijk) as the inner angle at i in 4ijk
in (T̊ , u ∗ 2 sin(l/2))E (resp. (T̊ , lQ)E), and Ki(u) as the discrete curvature at i in 4ijk in
(T̊ , u ∗ 2 sin(l/2))E .

Since (T̊ , lQ)E is ε′-regular, by equation (9) and Lemma 4.1,

αijk := θ̄ijk − θijk(ū+ w) = O(l2ij).

So for sufficiently small δ(M, g, ε), we have

|αijk| ≤
ε′

4
.
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Then (T̊ , l′Q)E is (ε′/2)-regular. Since (T̊ , lQ)E is globally flat, for any i ∈ int(T̊ ),∑
ijk∈F

θ̄ijk = 2π.

So

Ki(ū+ w) = 2π −
∑
ijk∈F

θijk(ū+ w) =
∑
ijk∈F

(θ̄ijk − θijk(ū+ w)) =
∑
ijk∈F

αijk if i ∈ int(T̊ ).

Set x ∈ RE(T̊ )
A be such that if ij is an interior edge of T̊

xij =
αijk − α

j
ik

3
+
αijk′ − α

j
ik′

3
,

where4ijk and4ijk′ are adjacent triangles in T̊ , and if ij is a boundary edge of T̊

xij =
αijk − α

j
ik

3
,

where4ijk is a triangle in T̊ . Then

(10) xij = O(l2ij),

and it is straightforward to verify that for any i ∈ int(T̊ )

div(x)i =
∑
j:j∼i

xij =
∑
ijk∈F

αijk = Ki(ū+ w)

using αijk + αjik + αkij = 0.

5.2. Step 2: The construction of the flow. Consider the sets defined by

Ω̃ = {u ∈ RV (T̊ ) : (T̊ , u ∗ 2 sin
l

2
)E satisfies the triangle inequality and is strictly Delaunay},

and

Ω = {u ∈ Ω̃ : (T̊ , u ∗ 2 sin
l

2
)E is

ε′

4
-regular, |u− (ū+ w)| ≤ 1}.

Notice that Ω̃ is an open domain in RV (T̊ ) and Ω is a compact subset of Ω̃. By the construction,
(ū + w) is in the interior of Ω, since (T̊ , l′Q)E is (ε′/2)-regular. Given u ∈ Ω̃ and an interior
edge ij in T̊ , denote

ηij(u) =
1

2
(cot θkij(u) + cot θk

′

ij (u))

where4ijk and4ijk′ are adjacent triangles in T̊ . Then for u ∈ Ω,

(11) 2ηij(u) = cot θkij(u)+cot θk
′

ij (u) =
sin(θkij(u) + θk

′
ij (u))

sin θkij(u) sin θk
′
ij (u)

≥ sin(θkij(u)+θk
′

ij (u)) ≥ sin
ε′

4

for any interior edge ij in T̊ .
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Consider the following system of differential equations on Ω̃,
∂Ki

∂u

du

dt
= −Ki(ū+ w) = −div(x)i, i ∈ int(T̊ ),(12)

dui
dt

= (log 2− 2 log(2 sin
liX
2

)− ūX)− (ūi + wi), i ∈ bdy(T̊ ),

u(0) = ū+ w,

where ūX is the value of ū at the marked point X sent to the north pole, and liX is the length of
the edge iX given by l. We want to show that the solution u(t) exists on [0, 1], then it is easy
to see that Ki(u(1)) = 0 for an interior vertex i of T̊ , and

ui(1) = log 2− 2 log(2 sin
liX
2

)− ūX

for a boundary vertex i of T̊ .
For a boundary vertex i of T̊ , ui(t) can be easily solved as

ui(t) = t(log 2− 2 log(2 sin
liX
2

)− ūX) + (1− t)(ūi + wi),

and
dui
dt

=(log 2− 2 log(2 sin
liX
2

)− ūX)− (ūi + wi)

= log 2− 2 log(2 sin
liX
2

)− ūX − ūi − log
2

(lP )2
iX

=− 2 log(2 sin
liX
2

)− ūX − ūi + 2 log (lP )iX

=− 2 log(l′P )iX + 2 log(lP )iX

=O(l2iX).

Now let us focus on solving ui(t) for all the interior vertices of T̊ . Let V̂ be the set of
interior vertices of T̊ , and G = (V̂ , Ê) be the subgraph of (V (T̊ ), E(T̊ )) generated by V̂ . It
is easy to show that G is nonempty and connected. Let û ∈ RV̂ and x̂ ∈ RÊ

A and η̂ ∈ RÊ be
the restrictions of u and x and η respectively on G = (V̂ , Ê), and ∆̂ = ∆η̂ be the associated
discrete Laplacian on G. Then by Proposition 2.2 it is straightforward to verify that Equation
(12) can be rewritten as

(13) (D − ∆̂)
dû

dt
= −div(x̂) + y,

where
(a) D ∈ RV̂×V̂ is a nonzero diagonal matrix and

Dii =
∑

j∼i:j /∈V̂

ηij ≥ 0,

and
(b)

yi =
∑

j∼i:j /∈V̂

ηij
duj
dt
−

∑
j∼i:j /∈V̂

xij.
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For u ∈ Ω̃, it is easy to show that (D − ∆̂) is positive definite, by the fact that G is connected,
ηij > 0 for any ij ∈ Ê, and D is nonzero and non-negative. So equation (13) locally has a
unique solution in Ω̃.

Assume the maximum existing open interval for the solution û(t) ∈ Ω is [0, T0) where
0 < T0 ≤ +∞. For t ∈ [0, T0), we have

dû

dt
(t) = O(|l| · |V̂ |1/2l )

by Lemma 2.1, and Lemma 4.7, and equation (11) and (10), and the fact that

yi =
∑

j∼i:j /∈V̂

(ηij
duj
dt
− xij) = O

 ∑
j∼i:j /∈V̂

(ηijl
2
jX + l2ij)

 = O(Dii|l|2) = O(Dii|l| · |V̂ |1/2l ).

Further

|V̂ |l ≤ |V |l =
∑
ij∈E

l2ij = O(
∑
ij∈E

l̄2ij) = O(
∑
ijk∈F

(l̄2ij + l̄2jk + l̄2ik))

=O(
∑
ijk∈F

Area(4ijk, l̄)S) = O(Area((T, l̄)S)) = O(Area(S2)) = O(1),

and thus (du/dt)(t) = O(|l|) for t ∈ [0, T0).
If T0 ≤ 1, combining Lemma 4.1, we have

|u(T0)− (ū+ w)| = O(|l|), and |θijk(u(T0))− θijk(ū+ w)| = O(|l|).

This implies that u(T0) ∈ int(Ω) if δ is sufficiently small, which contradicts to the maximality
of T0. Thus, T0 > 1 and u(1) is well-defined. Further we have that

(a) Ki(u(1)) = 0 for any interior vertex i of T̊ , and
(b) ui(1) = log 2− 2 log(2 sin liX

2
)− ūX for any boundary vertex i of T̊ , and

(c) u(1)− (ū+ w) = O(|l|), and
(d) (T̊ , u(1) ∗ 2 sin l

2
)E is strictly Delaunay, and

(e) Ki(u(1)) > 0 for any boundary vertex i in T̊ .

5.3. Step 3: The normalization and the inverse of the stereographic projection. We know
that (T̊ , u(1) ∗ 2 sin l

2
)E is isometric to a closed convex polygon in C. Let f be the piecewise

linear map from (T̊ , u(1) ∗ 2 sin l
2
)E to (T̊ , lQ)E that preserves the triangulation and is linear

on each triangle. From equation (9) and the fact that u(1)− (ū+ w) = O(|l|), we can deduce
that∣∣∣(u(1) ∗ 2 sin l

2
)ij − (lQ)ij

(lQ)ij

∣∣∣ =
∣∣∣(u(1) ∗ 2 sin l

2
)ij − ((ū+ w) ∗ 2 sin l

2
)ij

(lQ)ij

∣∣∣+O(|l|2) = O(|l|).

Then by Lemma 4.2, ‖Df‖2 and ‖Df−1‖2 are both (1 + C|l|)-Lipschitz for some constant
C(M, g,X, Y, Z, ε) > 0. So the distance dY Z between Y and Z in (T̊ , u(1) ∗ 2 sin(l/2))E lies
in [1− C|l|, 1 + C|l|]. So we can scale (T̊ , u(1) ∗ 2 sin(l/2))E by letting ũ = u(1)− log dY Z ,
and then (T̊ , ũ ∗ 2 sin(l/2))E is still isometric to a convex polygon and the distance between Y
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and Z is 1, and∣∣∣ ũ ∗ 2 sin l
2
− (lQ)ij

(lQ)ij

∣∣∣ =
∣∣∣ ũ ∗ 2 sin l

2
− u(1) ∗ 2 sin l

2

(lQ)ij

∣∣∣+O(|l|) = O(|l|).

Let g be the isometry from (T̊ , ũ ∗ 2 sin l
2
)E to a closed convex polygon Q1 in C such that

g(Z) = 0 and g(Y ) = 1. Then for any i ∈ V̊ , the above bi-Lipschitz property of f implies that∣∣∣∣log
|g(i)|2

|pN(φ(i))|2

∣∣∣∣ = O(|l|).

Now we are ready to project the points in the plane back to the sphere. Let

V1 = (pN |S2)−1(g(V (T̊ ))) ∪ {N}

and P1 be the convex hull of V1. Then by part (b) of Lemma 3.1, P1 ∈ P and pN(P̊1) = Q1

and pN(T̊P1) = g(T̊ ). Naturally identify the combinatorial structures of T and TP1 , and denote
lP1 ∈ RE(T ) as the edge length on P1. We will verify that

lP1 = u ∗ 2 sin
l

2

where uX = ūX + log dY Z and

ui = ũi − w′i, where w′i = log
|g(i)|2 + 1

2

if i ∈ V (T̊ ). If ij ∈ E(T̊ ),

(lP1)ij = (u ∗ 2 sin
l

2
)ij

by implementing Lemma 3.1 on lP1 and lQ1 . For edge iX ∈ E(T ), we have that

log(u ∗ 2 sin
l

2
)iX

= log(2 sin
liX
2

) +
1

2
(ūX + log dY Z + log 2− 2 log(2 sin

liX
2

)− ūX − log dY Z − w′i)

=
1

2
(log 2− w′i) =

1

2
log

4

|g(i)|2 + 1
=

1

2
log(lP1)

2
iX = log(lP1)iX .

So u is our desired discrete conformal factor. As we mentioned in Remark 1.4, such u is known
to be unique. It remains to show ui − ūi = O(|l|) for any i ∈ V . Notice that

|w′i − wi| =
∣∣∣ log

|g(i)|22 + 1

2
− log

|pN(φ(i))|22 + 1

2

∣∣∣ =
∣∣∣ log

|g(i)|22 + 1

|pN(φ(i)|22 + 1

∣∣∣ = O(|l|).

So restricted on V (T̊ ), we have that

u−ū = (ũ−w′)−ū = u(1)−log dY Z−w′−ū = (u(1)−ū−w)+(w−w′)−log dY Z = O(|l|).

On vertex X we have that uX − ūX = log dY Z = O(|l|).
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[11] Boris Springborn, Peter Schröder, and Ulrich Pinkall. Conformal equivalence of triangle meshes. ACM

Transactions on Graphics, 27(3):Art–No, 2008.
[12] Satyan L Devadoss and Joseph O’Rourke. Discrete and computational geometry. Princeton University Press,

2011.
[13] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and their conjugates. Experimental

mathematics, 2(1):15–36, 1993.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, PISCATAWAY, NJ, 08854
Email address: yl1594@math.rutgers.edu

CENTER OF MATHEMATICAL SCIENCES AND APPLICATIONS, HARVARD UNIVERSITY, CAMBRIDGE, MA
02138

Email address: tianqi@cmsa.fas.harvard.edu

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, PISCATAWAY, NJ, 08854
Email address: xz349@math.rutgers.edu


	1. Introduction
	1.1. Set up and the main theorem
	1.2. An equivalent formulation
	1.3. Organization of the paper
	1.4. Acknowledgement

	2. Discrete Calculus on Graphs
	2.1. Isoperimetric conditions and a discrete elliptic estimate
	2.2. The differential of the discrete curvature

	3. Stereographic Projections of Triangle Meshes
	4. Estimates on Triangulations
	4.1. Elementary error estimates on triangles
	4.2. Geodesic triangulations of surfaces

	5. Proof of the Main Theorem 1.7
	5.1. Step 1: The estimate of curvatures
	5.2. Step 2: The construction of the flow
	5.3. Step 3: The normalization and the inverse of the stereographic projection

	References

