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Abstract

In 1976 Simmons conjectured that every coloring of a 2-dimensional sphere of radius strictly greater than 1/2 in three

colors has a pair of monochromatic points at the distance 1 apart. We prove this conjecture.

1 Introduction

A coloring of a given set M is a map from M to the set of colors. A coloring of a subset M of a metric space is proper if no
pair of monochromatic points lie at distance 1 apart. The minimum number of colors that admits a proper coloring of M
is called the chromatic number of M ; we denote it by χ(M). In the case of M ⊂ R

n, the distance typically comes from the
induced Euclidean metric on M .

A slightly different point of view is to consider a unit distance graph G(M): the points of M are the vertices of G(M)
and edges connect points at unit distance apart. By definition, χ(M) = χ(G(M)). The de Bruijn–Erdős theorem states that
if χ(M) is finite then there is a finite subgraph H of G(M) such that χ(H) = χ(G(M)).

Denote by S2(r) the two-dimensional sphere of radius r in R
3 centered at the origin. Let χ(S2(r)) be the chromatic

number of S2(r) with respect to the Euclidean metric. Obviously if r < 1/2 and r = 1/2 then the chromatic number is equal
to 1 and 2, respectively. Note that for any r > 1

2 there is r1 < r such that S1(r1) contains an odd cycle. Since S1(r1) ⊂ S2(r),
we obtain that χ(S2(r)) > 3. G. Simmons [15] proved that

χ(S2(r)) > 4 for r >

√
3

3
.

In the proof, Simmons constructs certain subgraphs of G(S2(r)) that contain triangles. Obviously, for smaller values of the
radius G(S2(r)) is triangle-free, and so other ideas are needed.

Then L. Lovász [10] generalized the odd cycle construction to an arbitrary dimension, showing that for every n > 3 there
exists a family of strongly self-dual polytopes inscribed in Sn−1(r) whose graphs of diameters have chromatic number n+ 1
and that r can be arbitrarily close to 1

2 . In our notation this result can be formulated as follows:

Theorem 1 (Lovász, [10]). For every n > 2 there exists a monotonically decreasing sequence r
(n)
k , k = 1, 2, . . . , such that

lim
k→∞

r
(n)
k =

1

2
and χ

(

Sn−1
(

r
(n)
k

))

> n+ 1.

Since Sn−1(r1) ⊂ Sn(r) for r1 6 r, we get the following inequality.

Corollary 1.

χ(Sn−1(r)) > n for r >
1

2
.

Some sources state that the chromatic number of a two-dimensional sphere S2(r) is known only for r 6 1
2 and for r =

√
2
2

[5, 11]. But it should be clarified that the equality χ(S2(r)) = n + 1 = 4 is true for r ∈ {r(3)k } ∩
(

1
2 ,

√
3−

√
3

2

]

. Explicit

formulas for algebraic numbers r
(3)
k , if such exist, seem to be too complicated, but it is not difficult to compute r

(3)
k for a given

k with an arbitrary precision by approximately solving a certain optimization problem. For example, the first non-trivial
construction in the case of a two-dimensional sphere corresponds to a unit distance embedding of the Grötzsch graph at
r = 0.54003829...

It is worth noting that chromatic numbers in high dimensions were studied using algebraic, topological and combinatorial
methods. A.M. Raigorodskii [14] showed that for every fixed r > 1/2 the chromatic number of an n-dimensional sphere
grows exponentially with n. O. Kostina [7] refined asymptotic lower bounds. R. Prosanov [12] gave a new asymptotic upper
bound. The paper of A. Kupavskii [9] contains several results on the number of different colors on a sphere of given radius
in every proper coloring of Rn.

A lot of results on colorings of 2-dimensional spheres were obtained by Simmons [15]. Recent discovery of a 5-chromatic
unit distance subgraph of the Euclidean plane [2] spurred interest to the topic and in particular to the chromatic number of
a 2-dimensional sphere.
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Among the other results, in [18] the authors constructed several 5-chromatic subgraphs of 2-dimensional spheres, which
lead to the bounds

χ(S2(r1)) > 5 where r1 = cos
3π

10
=

√

5−
√
5

2
√
2

= 0.58778 . . . ;

χ(S2(r2)) > 5 where r2 = cos
π

10
=

√

5 +
√
5

2
√
2

= 0.95105 . . . .

The paper [16] contains a family of proper colorings of S2(r) spheres in 7 colors, provided r is large enough.
The following statement was formulated by Simmons as a conjecture [15]. The proof of Simmons’ conjecture is the main

result of the present paper.

Theorem 2. For every r > 1
2 we have

χ(S2(r)) > 4.

We note that for 1
2 < r 6

√
3−

√
3

2 = 0.563 . . . a proper 4-coloring of S2(r) can be obtained from a partition of the sphere
into four equal spherical triangles [15]. It implies the following corollary.

Corollary 2. χ(S2(r)) = 4 for 1
2 < r 6

√
3−

√
3

2 = 0.563 . . . .

Structure of the paper. Section 2 contains the proof of Theorem 2. In Section 3 we summarize the results and discuss
some further questions.

2 Proof of Theorem 2

Recall that for r >

√
3
3 the statement was proved in [15].

Here is the sketch of the proof. Fix r ∈
(

1
2 ,

√
3
3

)

. The proof consists of two steps. Suppose that there is a proper

3-coloring of the sphere S2(r). In the first step we use the Borsuk–Ulam theorem to show that every color is dense in the
sphere. Consider a graph Gk with vertices x1, . . . x2k+1, y1, . . . , y2k+1 and edges {(yi, yi+1), (xi, yi) : 1 6 i 6 2k + 1} (where
indices are modulo 2k + 1). We provide an explicit representation of Gk as a unit distance subgraph of the sphere. The
second step is to show that this embedding is stable under small perturbations of xi. Then one can move every xi at a red
point, which forces the odd cycle on vertices yi to be colored in the remaining two colors. The contradiction proves the
theorem.

Note that the idea of attaching an odd cycle to a finite set A in order to exclude the possibility of A to be monochromatic
was used in a series of papers devoted to the existence of planar unit distance graphs with chromatic number 4 and arbitrarily
large girth [4, 17, 19]. The key twist in step 2 is to find the required embedding of Gk implicitly, i.e. the corresponding A is
not a constructive set. Similar ideas were used by the authors in [6].

2.1 Step 1. Each color is a dense set

All the distances are considered in the metrics induced from Euclidean space R
3, the distance between x and y is denoted

by ‖x− y‖.
Fix r ∈

(

1
2 ,

√
3
3

)

and consider S2(r). Suppose that there is a proper coloring of S2(r) in three colors. Consider the

unit distance graph G = G(S2(r)). Then neighborhood of a vertex in G forms a circle of diameter d =
√
4r2−1
r and radius

ρ =
√
4r2 − 1 in the induced metric, centered at the opposite point of the sphere. Vice versa, any circle of such radius is

a graph-neighborhood of some vertex, and hence contains points of at most two colors. We need the following technical
statement.

Lemma 1. Let D ⊂ S2(r) × S2(r) be a set of pairs (x, y) such that 0 < ‖x− y‖ < d. Then

• for every (x, y) ∈ D there are two circles of radius ρ containing x and y. One may denote their centers by cr and cl in
such a way that the triple of radius-vectors (x, y, cr) is right-handed and the triple (x, y, cl) is left-handed.

• The functions cr(x, y) and cl(x, y) from D to S2(r) are continuous.

In what follows, we will call a circle passing through the points x, y with center c right-handed if the triple (x, y, c) is
right-handed, and left-handed otherwise.

Let Cred, Cblue, Cgreen be the sets of red, blue and green points, respectively. A chromaticity of a point x is the number
of sets Cred, Cblue, Cgreen containing x (as usual, T stands for the closure of a set T ). A set T ⊂ S2(r) is called dense if
T = S2(r). Let Bρ(x) denote the set of points y ∈ S2(r) such that ‖x− y‖ < ρ, i.e. an open ball of radius ρ and diameter d.

Lemma 2. If some open ball of diameter d contains points of all three colors then each of Cred, Cblue, Cgreen is dense in
the sphere.
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Proof. Consider points x ∈ Cred, y ∈ Cblue and z ∈ Cgreen inside a ball K0 of diameter d. Then one can continuously move
K0 to a ball K containing two points (say, x and y) on the boundary; at the first such moment the point z lies inside K.
The circle ∂K contains blue and red points and so it is colored in blue and red only. Hence, it contains a point u lying in
the closures of Cred and Cblue; without loss of generality, assume that point u is red. A red-green circle (right-handed, see
Lemma 1) of diameter d containing z and u and a blue-green circle (left-handed) with the diameter d containing z and blue
point u′ in a small neighborhood of u intersect in a green point v. Note that if u = u′ then v = u = u′. Hence, due to the
continuity of circles in Lemma 1, v may be arbitrarily close to u with a proper choice of u′ (see Fig. 1). It implies that the
chromaticity of u is three.

z

v

∂K

u

u′

Figure 1: Finding a point with chromaticity 3 in Lemma 2

Since u has chromaticity 3, a small neighborhood of u contains a point a 6= u with the chromaticity at least 2. Suppose
that a has chromaticity 2 (say, a does not lie in Cgreen) and ‖a− u‖ < d. Consider a green point b in a small neighborhood
of u. Consider a red point e and a blue point f in a small neighborhood of a. Then the right-handed circle containing b
and e is red-green and the left-handed circle containing b and f is blue-green, so they intersect in a green point g. Since the
neighborhoods can be chosen arbitrarily small, g can be arbitrarily close to a. Hence a has chromaticity 3, a contradiction.

Thus we have shown that if a point with the chromaticity 3 and a point with the chromaticity at least 2 lie at a distance
smaller than d, then they both have chromaticity 3.

c L

x1 x2

y1

u1 v1

Figure 2: Propagation of 3-chromaticity along a circle in Lemma 2

Now let x1 and x2 be points of chromaticity 3 such that ‖x1−x2‖ < d. We claim that any point on a circle L of diameter
d containing x1 and x2 has chromaticity three. By the previous argument it is enough to show that the chromaticity is
at least 2. Without loss of generality, a triple (x1, x2, c) is left-handed, where c is the center of L on the sphere. Arguing
indirectly, assume that a point y1 ∈ L has a small red neighborhood Uy1

. Choose a blue point u1 in a small neighborhood of
x1 and a green point v1 in a small neighborhood of x2 (see Fig. 2). By Lemma 1 the left-handed circle of diameter d passing
through blue point u1, green point v1 is close to L so it intersects red set Uy1

; this contradiction shows that every point on
L has chromaticity 3.

Let q be an arbitrary point of S2(r). Consider a path q0, q1 . . . qt = q such that q0 ∈ L and ‖qi+1−qi‖ < ρ for 0 6 i 6 t−1.
A circle L1 of diameter d that passes through q1 and q0 intersects L in two points, so by the previous argument every point (in
particular, q1) of L1 has chromaticity 3. By induction, a circle Li+1 of diameter d that passes through qi+1 and qi intersects
Li in two points, so every point in Li+1 (in particular qi+1) has chromaticity 3. So q = qt also has chromaticity 3. Since
q ∈ S2(r) was arbitrary, every point of S2(r) has chromaticity 3.

Suppose that the condition of Lemma 2 does not hold, i.e.

every open ball of diameter d contains points of at most two colors . (⋆)

Consider a continuous function

f : S2(r) → R
2, f(x) = (dist(x,Cred), dist(x,Cblue)),

3



where dist(·) stands for the distance between a point and a set in R
3. By the Borsuk–Ulam theorem there exists x∗ ∈ S2(r)

such that f(x∗) = f(−x∗). We have to deal with three cases.

−x∗

x∗

z

−z

y1

ρ

d

0

1

S2(r)

Bρ(x
∗)

Bρ(−x∗)

Figure 3: Case 1

Case 1: f(x∗) = (0, 0). Without loss of generality, the point x∗ is blue. One may pick a red point z, which is arbitrarily
close to x∗. If ‖x − z‖ < ρ, then the intersection of circles of unit Euclidean radius with centers x∗ and z consists of two
green points y1, y2 belonging to the circle of radius ρ centered at −x∗. Hence, one can cover a small neighborhood of −x∗

and y1 by a ball of diameter d. Every neighborhood of −x∗ contains red and blue points; point y1 is green (see Fig. 3). We
have a contradiction with assumption (⋆).

Case 2: f(x∗) = (a, b), a, b > 0. Then both points x∗,−x∗ are green. We may swap blue and green colors to reduce the
situation to the next case with the same x∗.

Case 3: f(x∗) = (a, 0), a > 0. We claim that a > ρ. Assume the contrary, i.e. x∗ ∈ Cblue and for every η > 0 there is
a red point z = zη such that ‖x∗ − z‖ 6 ρ + η. Note that if x∗ is green, then it contradicts (⋆), so x∗ is blue. There are

distinct points y1, y2 ∈ Bρ(−x∗) such that ‖x∗ − y1‖ = ‖x∗ − y2‖ = ‖z − y1‖ = ‖z − y2‖ = 1. Since x∗ is blue and z is red

y1, y2 ∈ Cgreen. Recall that f(−x∗) = f(x∗), so there is a point z′ ∈ Cred ∩Bρ(−x∗). Let y′ ∈ {y1, y2} be such that z′, −x∗

and y′ do not lie on a great circle of S2(r). Then for a small enough η the neighborhoods of −x∗, y′ and z′ can be covered
by a ball of diameter d. This is a contradiction with (⋆).

So the set Bρ(x∗) ∪Bρ(−x∗) is colored with blue and green.

Lemma 3. The bipartite subgraph of S2(r) with parts Bρ(x∗) and Bρ(−x∗) is connected.

Proof. Any point x ∈ Bρ(x∗) has a common neighbor with x∗ since the corresponding unit circles intersect. So Bρ(x∗)

belong to the same connected component; the same holds for Bρ(−x∗). There is an edge between Bρ(x∗) and Bρ(−x∗), and
so the subgraph is connected.

By Lemma 3, one can color Bρ(x∗) ∪ Bρ(−x∗) in two colors in the unique way (up to symmetry): the first part is blue
and the second one is green. Then the distance from x∗ and −x∗ to Cblue is zero and nonzero simultaneously.

This contradiction implies that each color is dense in the sphere.

2.2 Step 2. Stability of embedding

In this section we will need the implicit function theorem [8] in the following weakened formulation.

Theorem 3. Let F : R
2s → R

s be a continuously differentiable function,

F = F (X,Y ) = F (x1, . . . , xs; y1, . . . , ys),

and at some point X = a, Y = b the following conditions are satisfied

F (a, b) = 0, det

(

∂F (X,Y )

∂Y

)

X=a,Y=b

6= 0.

Then there exists η > 0 such that the system of equations F (X,Y ) = 0 is solvable in Y for any X satisfying the condition
‖X − a‖ < η.
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Recall that Gk is an odd cycle of length m = 2k + 1 with an extra pendant (leaf) vertex attached to each vertex of the
cycle. In particular, Gk has 2m vertices and 2m edges.

Denote by y1, . . . , ym the points of S2(r) that correspond to the cycle vertices and by x1, . . . , xm the points of S2(r)
that correspond to the pendant vertices. For convenience, let us put X = (x1, . . . , xm) and Y = (y1, . . . , ym) the vectors of
dimension s = 3m containing all coordinates. Then the embedding of Gk can be given by the pair (X,Y ).

Lemma 4. Fix the radius r ∈
(

1
2 ,

√
3
3

)

. Then if k is large enough, there exists a unit distance embedding (X,Y ) of Gk into

S2(r) and a constant η > 0 such that for any X̃ satisfying ‖X̃−X‖ < η there exists Y such that (X̃, Ỹ ) is a “perturbed” unit
distance embedding of Gk.

In other words, for any sufficiently small perturbation of pendant vertices, it is possible to find the embedding of the
cycle vertices.

Proof. We provide the desired unit distance embedding explicitly. In what follows we slightly abuse the notation and write
xi and yi for a vertex of the graph, the corresponding point on S2(r), and its 3-dimensional vector representation. Consider
the system of equations defining the embedding Gk in S2(r):



















fi = ‖yi‖2 − r2 = 0, 1 6 i 6 m;

fi+m = ‖yi − yi+1‖2 − 1 = 0, 1 6 i 6 m− 1;

f2m = ‖ym − y1‖2 − 1 = 0;

fi+2m = ‖xi − yi‖2 − 1 = 0, 1 6 i 6 m.

(1)

Next, we will be interested in the family of embeddings, the k = 2 case of which is depicted on Fig. 4.

S2(r)

z = h

z = −h

y1

y2

y3

x1

x2

Figure 4: Unit distance embedding of Gk, the k = 2 case

Note that (1) allows xi to lie in R
3, not only S2(r), but the cycle y1, . . . , ym must lie on the sphere.

One can consider the function corresponding to the left-hand side of the system (1).

F = (f1, . . . , f3m) = F (x11, x12, x13, . . . , xm3; y11, . . . , ym3).

Suppose that the Jacobian matrix J =
(

∂F
∂Y

)

is nondegenerate,

det J = det

(

∂F

∂Y

)

6= 0,

then the statement of the lemma follows from Theorem 3. The rest of the proof is devoted to the calculation of this
determinant.
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The matrix J has the following form (recall that xi and yi are 1× 3 vectors):

J(X,Y ) = 2



















































y1 0 0 0 . . . 0
0 y2 0 0 . . . 0
0 0 y3 0 . . . 0
...

. . .

0 0 0 0 . . . ym
y1 − y2 y2 − y1 . . . 0 . . . 0

0 y2 − y3 y3 − y2 0 . . . 0
...

y1 − ym 0 . . . . . . 0 ym − y1
y1 − x1 0 . . . . . . 0 0

0 y2 − x2 0 . . . 0 0
...

...
...

0 . . . 0 . . . 0 ym − xm



















































.

Subtracting some rows from each other, we get

detJ = 23m det















































y1 0 0 0 . . . 0
0 y2 0 0 . . . 0
0 0 y3 0 . . . 0
...

. . .

0 0 0 0 . . . ym
y2 y1 . . . 0 . . . 0
0 y3 y2 0 . . . 0
...

. . .

ym . . . 0 . . . 0 y1
x1 0 0 0 . . . 0
...

. . .

0 0 0 0 . . . xm















































= 23m det



































y1 0 0 0 . . . 0
x1 0 0 0 . . . 0
y2 y1 0 . . . . . . 0
0 y2 0 0 . . . 0
0 x2 0 0 . . . 0
0 y3 y2 0 . . . 0
...

. . .

0 0 0 0 . . . ym
0 0 0 0 . . . xm

ym 0 0 . . . 0 y1



































=

= 23m (V1 . . . Vm + V ′
1 . . . V

′
m) ,

where

Vi = − det





yi
yi+1

xi



 , V ′
i = det





yi
yi+1

xi+1



 .

Now we fix the following embedding (Fig. 4). Let vertices yi lie in the plane z = h (and form a regular m-gon), and
vertices xi lie in the plane z = −h (and also form a regular m-gon). Note that the radius of the circumcircle of the m-gon is
greater than 1/2, hence

h <

(

1

3
− 1

4

)1/2

=
1

2
√
3
<

1

2
. (2)

Denote by Um the rotation matrix by an angle 2π/m counterclockwise around z–axis. Then yi+1 = Umyi, xi+1 = Umxi.
Hence, all Vi coincide and all V ′

i also coincide; put V = Vi and V ′ = V ′
i . Hence

detJ = V m + (V ′)m.

We claim that

V + V ′ = det





y1
y2

x2 − x1



 6= 0.

Indeed, since y13 = y23 = h, x13 = x23 = −h, the equality

αy1 + βy2 + γ(x2 − x1) = 0

implies α = −β, i.e.
α(y1 − y2) = γ(x1 − x2). (3)

Recall that ‖y1 − y2‖ = ‖x1 − x2‖ = 1, so α = ±γ.
Since both sets of points X = {x1, . . . , xm}, Y = {y1, . . . , ym} form vertices of congruent regular m-gons, in the case

α = γ, we have x1 − x2 = y1 − y2 and the projections of xi and yi on the plane z = 0 coincide, i = 1, 2, . . . ,m, and taking
into account (2), we have

‖x1 − y1‖ = 2h < 1.
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In the case α = −γ, we have x1 − x2 = y2 − y1 and the sets X and Y are symmetric about the origin. Then x1x2y1y2 is
a rectangle, and

‖x1 − y1‖2 > ‖x1 − x2‖2 + 4h2 > 1.

In both cases we got a contradiction. Then the equation (3) does not hold and so V + V ′ 6= 0. Hence

detJ = Vm + (V ′)m 6= 0

as required.

3 Open questions

Does the chromatic number of S2(r) «almost» grow with r? Id est is the chromatic number monotonic except for
at most countable set of values r? Recall that the known results (see Table 1) allow for such possibility.

r Estimate for χ(r) = χ(S2(r)) Source
r < 1/2 χ(r) = 1
r = 1/2 χ(r) = 2

1
2 < r 6

√
3−

√
3

2 χ(r) = 4 Corollary 1

r >

√
3−

√
3

2 χ(r) > 4 Theorem 2

r =

√
5−

√
5

2
√
2

χ(r) > 5 [18]

r = 1√
2

χ(r) = 4 [15, 3]

r =

√
5+

√
5

2
√
2

χ(r) > 5 [18]

r 6
1√
3

χ(r) 6 5 [15, 11]

r 6
√
3/2 χ(r) 6 6 [11]

r > 12.44 χ(r) 6 7 [16]
r > 1/2 χ(r) 6 15 [1, 13]

Table 1: Lower and upper estimates for χ(S2(r)).

Is there a proper coloring of S2(r) in χ(S2(r)) colors such that every color is dense? It is interesting that all known
upper bounds are given by explicit colorings in which every color is a finite union of regions bounded by piecewise-continuous
curves.

What is the minimal number of vertices in a subgraph G of a sphere S2(r) with χ(G) = χ(S2(r))? By the
de Bruijn–Erdős theorem this number is finite. Note that the proof of Theorem 2 does not give any finite 4-chromatic unit
distance graph.

2
1 3

0

Figure 5: 4-coloring of the sphere. Here s0 → 0 as r → 1/2

Let us focus on the case r = 1/2 + ε, ε → 0. Then the sphere can be colored in 4 colors in the way shown in Figure 5.
Let us denote by s0 the area of the spherical cap of color 0. Observe that s0 = 4πε+ o(ε), and thus, via averaging, we have
the lower bound n4(r) > cε−1 for some c > 0, where n4(r) is the minimal number of vertices in a 4-chromatic unit distance
graph. Can this obvious bound be refined?
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