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—— Abstract

A geometric graph G = (P, E) is a set of points in the plane and edges between pairs of points,
where the weight of an edge is equal to the Euclidean distance between its two endpoints. In
local routing we find a path through G from a source vertex s to a destination vertex ¢, using only
knowledge of the current vertex, its incident edges, and the locations of s and . We present an
algorithm for local routing on the Delaunay triangulation, and show that it finds a path between
a source vertex s and a target vertex ¢ that is not longer than 3.56]st|, improving the previous
bound of 5.9]st|.
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1 Introduction

A Euclidean geometric graph G = (P, E) is a set P of points embedded in the plane, and a
set E of edges, where each e € E is a pair of points (u,v) in P, and the weight of e is the
Euclidean distance |uv|.

A local routing algorithm A is an algorithm that routes a packet through the geometric
graph G from a source vertex s to a target vertex ¢ using only knowledge of the locations of
s and t, as well as the location of the current vertex and its adjacent vertices. Let P(s,t) be
the path found in G from s to t using A. The routing ratio of A for any two points s and ¢
in the geometric graph G is the ratio of the length of P(s,t) to the Euclidean distance from
s to t. An algorithm A has a routing ratio ¢ for a class of geometric graphs G, if, for any two
vertices s and t in G € G, |P(s,t)| < c-|st].

A graph G = (P, FE) is a c-spanner if for any pair of points 4 and v in P the shortest path
in G is not longer than cluv|. The value ¢ is referred to as the stretch factor or spanning
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ratio of G. The stretch factor of G is thus a lower bound on the routing ratio of G for any
routing algorithm A, and the routing ratio is an upper bound on the spanning ratio of G.
Geometric spanners are described in detail in the book by Narasimhan and Smid [12].

A notable geometric graph is the Delaunay triangulation. Given a set P of points in the
plane, we construct the Delaunay triangulation of P as follows. For each triple (p,q,r) of
points in P, let C' be the circle through p, ¢, and r. If there are no points of P in the interior
of C', then we connect p, g, and r by edges to form a triangle. In this paper we assume that
P is in general position: no 3 points are colinar and no 4 points are cocircular.

The Delaunay triangulation was first proven to be a spanner by Dobkin et al. [10], who
showed an upper bound of 5.08 on the spanning ratio. This was subsequently improved to
2.42 by Keil and Gutwin [11], and then to 1.998 by Xia [13]. Xia and Zhang proved later
that there exist Delaunay triangulations with spanning ratio greater than 1.59 [14].

Bose and Morin [6] explored some of the theoretical limitations of routing, and provided
some of the first deterministic routing algorithms with constant routing ratio on the Delaunay
triangulation. They denoted the spanning ratio found by Dobkin et al. [10] as cqps =~ 5.08.
They showed that it is possible to locally route on the Delaunay triangulation with a routing
ratio of 9 - cgrs =~ 45.749. Bose et al. [4] further improved this bound to &~ 15.479. Then,
Bonichon et al. [2] showed that we can locally route on the Delaunay triangulation with a
routing ratio of at most 5.9. In the same paper it was shown that the routing ratio of any
deterministic local algorithm is at least 1.70 for the Delaunay triangulation.

Efforts to evaluate the spanning ratio and routing ratio have been made for Delaunay
triangulations defined on other metrics. We can define these metrics by taking a convex
shape and translating and scaling it until it intersects three vertices but contains no points of
P in its interior. When we use a circle we obtain the Lo, or classical Delaunay triangulation.
When the metric is not specified (as in the rest of this paper), then we are referring to the
Lo-Delaunay triangulation. The Li-Delaunay triangulation uses an axis aligned square, while
the Lo-Delaunay triangulation uses a square tipped at 45 degrees. By rotating the point set
45 degrees, it is easy to show that the L; and L., triangulations are equivalent. Bonichon et
al. [3] showed that the L; and L., Delaunay triangulations are \/4 + 2v/2 ~ 2.61-spanners,
and they showed that this bound is tight. On this triangulation, Chew [7] proposed a routing
algorithm with routing ratio v/10. Moreover, the routing ratio of any deterministic local
algorithm is at least 2.70 for this class of graph [1]. The TD-Delaunay triangulation is
constructed using an equilateral triangle. Chew [8] showed that they are 2-spanners. Bose et
al. [5] proposed a routing algorithm of routing ratio \/5/73 =~ 2.89 and they show that this
ratio is the best possible. Recently Dennis, Perkovic and Duru [9] showed that the stretch
factor of Hexagon-Delaunay triangulation is 2 and this is tight.

Table 1 Spanning and Routing Ratios of Delaunay Triangulations. Tight results are shown in
bold.

Graph Spanning Ratio Routing Ratio

T D-Delaunay 2 [8] 5/v/3 ~ 2.89 [5]
L1 and Loo-Delaunay /4 + 2v2 ~ 2.61 [3] /10 ~ 3.16 [7]
Hezxagon-Delaunay 2 [9]

Ly-Delaunay 1.998 [13] 3.56 (this paper)

In this paper we present a local routing algorithm, called MizedChordAre, for the Lo-
Delaunay triangulation, with a routing ratio of 3.56. This improves the current best routing
ratio of 5.9 [1]. Table 1 shows our result in the context of spanning and routing ratios of
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other Delaunay triangulations.

In Section 2 we define a local algorithm that achieves this routing ratio. In Section 3 we
prove the result for a special case, called balanced configurations. In Section 4 we extend the
technique presented in Section 3 to prove the main result in the general case. In Section 5
we present our conclusions and our ideas for future directions for this line of research.

2 The MixedChordArc Algorithm

Let P be a finite set of points in the plane, and let DT'(P) be the Delaunay triangulation of
P. We want to route a packet between two vertices of P along edges of DT'(P) using only
local knowledge and knowledge of our start and destination vertices.

Let s and ¢ be the start and terminal vertices respectively, and assume, without loss
of generality, that s and t are on the z-axis with s to the left of t. Our general position
assumption ensures that no other vertex lies on st. Consider two triangles T and T" whose
interior is cut by st. We say that T is to the left of 77, and T” is to the right of T, if, by
following st starting at s we intersect T' before T'. If uv is the edge shared by T and T”,
then our general position assumption ensures that u and v are on opposite sides of st.

Let C be a circle that intersects st. We denote by ¢t the rightmost point of C' on st.

Let u and v be two points on C. We denote by Ac(u,v) the clockwise arc of C' from u to
v, and by B¢ (u,v) the counter-clockwise arc of C from u to v. We denote the length of a
continuous curve S by |5].

Let p # t be the vertex representing the current location of the packet. We assume s to
be above st, and we assume ¢ to be on the opposite side of st from the current vertex. Let T'
be the rightmost triangle with p as a vertex whose interior is cut by st. Let a # p be the
vertex of T that is above st, and let b # p be the vertex of T' that is below st. Let C be the
circumcircle of T'.

Here is the algorithm MixedChordArc. First assume that p = s. If |Ac(s,te)] <
|Bc(s,te)|, set p = a, otherwise set p = b. See Fig. 1la. If p # s, we repeat the following
until p = t¢.

1. If p is above st:

a. If |[Ac(p, tc)] < |pb|l + |Be(b, to)|, set p=a
b. Else set p = 0.

2. If p is below st:

a. If |Be(p,tc)| < |pal + |Ac(a,tc)], set p=1b
b. Else set p = a.

Note that assuming that ¢ is on the opposite side of st from p ensures that when ¢ is a
neighbour of the current vertex, the algorithm will forward the packet directly to ¢.

The possible choices are illustrated in Fig. 1. Let P(s,t) = (s = po,p1,...,pn = t) be
the sequence of vertices produced by the algorithm. In this paper we prove the following
theorem.

» Theorem 1. The MizedChordArc Algorithm finds a path P{s,t) from s to t whose length

|P(s,t)| is not more than p|st|, where u = 1/ﬁn(1) < 3.56.

22:3
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C ]
C a p a,
!
b
b
(a) From p = s, the blue arc (b) From p, the blue path is (c) From p, the blue path is
is shorter than the red arc, so shorter than the red path, so shorter than the red path, so
we forward to a. we forward to a. we forward to a.

Figure 1 Illustrating one step of the algorithm.

In some cases, the path produced by our algorithm is a balanced configuration. In such
cases, the analysis of the length of P(s,t) is much easier. In Section 3 we define what a
balanced configuration is, and analyze the length of P(s,t) for this specific case. Then, in
Section 4, we analyze the length of P(s,t) for the general case.

3 Bounding |P(s,t)| in a Balanced Configuration

Let us consider a path P(s,t) of vertices such that py = s,p, =t and p;_1p; is an edge of
the rightmost triangle T; of p;_; that has a non-empty intersection with st. Let a; and b;
be the other two vertices of T;, where a; is above st, and b; is below st. Thus p; = a; or
p; = b;. Let s = pg = ag = bg and let t = p,, = a,, = b,. Let C; be the circumcircle of T}, let
r; be its radius and let ¢; be its center. Let Cj be the circle centered at s with radius ro = 0.
Let T = (Ty, T3, ...,T,), and let C = (Cy, C4, ..., Cy) be the sequence of circles starting at
Cy, followed by the circumcircles of 7. Note that the vertex of T; that is on the opposite
side of st to p;—; may not be at the intersection of C;_; and C;. Thus we define a second
intersection point of C;_; and C; as follows (p;—1 being one intersection point). If p;_; is
above st, then ¢; is the lowest intersection of C; and C;_;1 (where "lowest" is defined by the
point having the least y-coordinate). If p;_; is below st, let ¢; be the highest intersection
of C;_1 and C; (where "highest" is defined by the point having the greatest y-coordinate).
Note that it is possible to have C;_; and C; intersect in two points, and still have ¢; = p;_1.
See circle Cy in Fig. 2. Observe that if T; and T;_; share an edge, then g; is the vertex of T;
on the opposite side of st from p;_;1. See circles C1,Csy, Cs, and C5 in Fig. 2. To simplify the
notation, we write ¢; instead of t¢,, and we write A;(u,v) and B;(u, v) instead of A, (u,v)
and Bg, (u, v), respectively.

We say that a pair of consecutive circles C;_1 and C; is balanced if |A;(pi—1,t;)| =
|pi—1qi| + |Bi(qi, ti)| when p;_q is above st, and if |B;(p;—1,t;)| = |pi—14i| + [Ai(q, t;)| when
pi—1 is below st. A path P(s,t) on a point set P is a balanced configuration when C;_; and
C; are balanced for all 1 <i < n.

3.1 Analysis Technique

» Lemma 2. Let C;_1 and C; be arbitrary circles of C, where 1 <i <mn. Then
1. |pi—1bi| + |Bi(bi, ti)| < |pic1qi| + |Bi(qi, ti)| when p;—1 is above st, and
2. |pi—rail + [Ai(ai, ti)| < |pi—1ail + [Ai(gis ti)| when p; 1 is below st.

Proof. By the triangle inequality we have |p;—1b;| < |pi—1¢i| + |Bi(¢i, bi)], from which 1
follows. Case 2 is symmetric. |



Bonichon et al.

P1,a1
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D3, a3, 44 t\4\
l b57p57

ts,t

40, Po
to,S

b1,b2,b3,q1,q2, g3

as

Figure 2 Sequence of circles in a balanced configuration and the path in blue. The dotted circles
are circumcircles of triangles intersected by st but not in 7.

For the rest of this section, we assume that P(s, ) is a balanced configuration. Consider
the case when p;_; is above st (the case when p;_; is below st is symmetric). If ¢; = b; then
|A;(pi—1,t:)| = |pi—1bi| +|Bi(bi, t;)], and the algorithm proceeds to a;. If ¢; # b;, observe that

|pi—1bi| < |pi—14i| + |Bi(gi, bi)| by the triangle inequality (see circles Cy and C5 in Fig. 2).

Thus we have |p;—1b;| + |Bi(bi, t:)| < |pi—1¢i| + |Bi(qi, t:)| = |Ai(pi—1,t:)|, and the algorithm
proceeds to b;. Thus a balanced configuration allows for steps that cross st and steps that do
not cross st. It also allows us to use |A;(pi—1,%;)| as an upper bound on |p;—1b;| + |B; (b, t:)]
in the case where p;_1p; crosses st.

Let 2(v) and y(v) be the z and y-coordinates of a point v, respectively. Let s; be a point
on st such that z(s;) = z(t;) — 2r;. We define the following potential function that we use to
bound the length of P(s,t).

» Definition 3. If p,_; is above st, then
P(Ci1,C) = |Ai(pi1,ti)| — |Aic1(Pic1ti—1)| — Alsi—isi| — (0 — A)|ti—1ti].
Otherwise, if p;_1 is below st, then

O(Ci—1,Cy) = |Bi(pi—1,ti)| — |Bici(pic1ti—1)| — Alsi—isi| — (0 — A)[ti—itsl,

where \ = (1';;5’?1()1) —7/2— 1) /27042 and p = 1/#11(1) < 3.56 .

See Fig. 2 and 3 for a complete example and an illustration of the potential functions. See
Fig. 4 for an illustration of ®(C;_1,C;). Three lemmas are used to prove Theorem 1 for
balanced configurations. The proof of Lemma 4 is found in Section 3.3 while the proof of
Lemma 5 is in Section 3.2.

» Lemma 4. Given a pair of balanced circles C;_1 and Cj,
®(Ci—1,C;) <0.

» Lemma 5. For any balanced configuration P(s,t), > i |si—1s:| < |st|.

22:5
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D2
/4 c
b1 4
S, 80, _ b t p3 - ta DPs,
51,10 [52\83 i3 /AN S5
S4
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CQ 3 D4
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Cs

Figure 3 Illustrating the non-zero potential functions D;,1 < i < 4 of a balanced configuration.

» Lemma 6. For any C, z(t;—1) < z(t;) for all1 <i<n, and > ., [t;—1t;] < |st].

Proof. We prove that z(t;—1) < z(t;), that is, ¢; is right of ¢;_1 for all 1 < ¢ < n, by
contradiction. Assume that x(t;—1) > z(¢;). If ¢; is to the same side of st as p;_1, then
C;_1 must contain the vertex of T; on the opposite side of st. If g; is on the opposite side of
st as p;_1, then C;_1 contains the vertex of T; on the same side of st as p;_1. Both cases
contradict the construction of a Delaunay triangulation. This, together with the fact that
to = s and t,, =t implies the second part of the lemma. |

» Lemma 7. For 1 <i<nmn, if pj_1 is above st, then

1. a. |A;(pi—1,ti)| > |picapi| + [ Ai(pis ti)| if pi is above st, and
b. |A;(pi—1,t:)| > |pi—1pil + |Bi(pi, t:)| if pi is below st
otherwise p;_1 is below st and

2. a. |Bi(pi—1,ti)| > |pi—ipi| + |Bi(pi, ts)| if pi is below st, and
b. |B;(pi—1,t:)| > |pi—1pi| + |Ai(pi, ti)| if pi is above st.

Proof. Case 1a is because |A;(p;—1,pi)| > |pi—1pi|, and Case 1b is because if p; is below st,
then the algorithm chose to cross st, which implies 1b. Case 2 is symmetric. |

Theorem 1 follows from Lemmas 4, 5, 6, and 7:

Proof. We first analyze the case when p;_; is above st. Recall that in this case, ®(C;_1,C;)
is defined as

Q(Ci—1,C;) = |Ai(pi1, ti)| — |Aic1(Pic1tiz1)| — Alsi—asi| — (e — A)|ti—1ts].

If p; is above st (same side of st as p;—1), then |A;(p;—1,t:)| > |pi—1pi| + | Ai(pi, ti)| by
Lemma 7. In this case, let D; = A;(p;, t;). If p; is below st, then | A;(pi—1,t:)| > |pi—1pi| +
|B;(pi, t;)| by Lemma 7. In this case, let D; = B;(p;, t;). In both cases we have | A;(p;—1,t;)| >
[pi—1pi| + [Dil.

Let ®'(C;-1,C;) be the function defined by

Q' (Ci—1,Ci) = pi—1pi| + 1Di| = [Dica| — Alsi—isi| — (u— N)[ti—1ti].
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Si—1

Figure 4 Illustrating the function ®(C;_1,C;): blue minus green is charged to red to obtain an
upper bound on the routing ratio.

Observe that @/(Ci—la Ci) § (I)(Ci—la Cl) By Lemma 4, @(Ci_l, Ci) § O, thus @I(Ci_l, Cl) S
0. When p;_; is below st, a symmetric proof again shows us that ®'(C;_1,C;) < 0. Recall
that po = to = s, and p,, = ¢, = ¢, which means |Dy| = |D,,| = 0. Therefore we have

n

Z(I)/(Ci—la C;) <0

i=1

from which we get:

(Ipic1pil + [Di = [Dical) < )} (Alsicasil + (u = A)lti-1ti])
=1 =1
[P(s,t)| = [Do| + [Dn| < (A+ i — A)[st] (1)
[P (s, )] < plst].
The right hand side of (1) is due to Lemmas 5 and 6. <

Lemma 5 is discussed in the next section. Lemma 4 is discussed in Section 3.3.

3.2 Proof of Lemma 5

Lemma 5 uses the following supporting result:

» Lemma 8. Let C;—1 and C; be balanced. Let s;_1 be the point on st where x(s;—1) =
x(ti—1) — 2ri—1 and let s; be the point on st where x(s;) = x(t;) — 2r;. Then x(s;—1) < x(s;).

Proof. See Fig. 5. Let u;_1 be the point on C;_; that is diametrically opposed to ¢;_; and
let u; be the point on C; that is diametrically opposed to t;. We will show the case when
pi—1 is above st; the case when it is below st is symmetric. Since C;_1 and C; are balanced,
we have that |A;(pi—1,t:)| = |pi—1a¢i| + |Bi(q:, t:)| which implies that |A;(p;i—1,t)| < 7r;
and |B;(g;, t;)| < mr;. Since |A;(ug, t;)| = |Bi(us, ti)| = mrs, u; is not on the open interval
A;(pi—1,t;) or B;(g;,t;), which implies that either u; is on the arc of C; between p;_; and
¢; that does not contain t;, or u; = p;_1 = ¢;. Lemma 6 implies that ¢; is not inside C;_1,
which implies that u; must be on or inside C;_1. Let O; be the circle centered at t; with
radius |t;u;| = 2r;. Thus O; and C; are tangent at u;, and O; intersects st at s;. Let O;_1
be the circle centered at ¢;_; with radius 2r;_;. Thus O;_; and C;_; are tangent at u;_1,
and O;_; intersects st at s;_;. We prove the lemma by contradiction, thus assume that

22:7
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Figure 5 O; must intersect O;—1 if C;_1 and C; are path balanced, which implies that z(s;—1) <
x(8s).

x(8;) < x(s;—1). In the proof of Lemma 6, we showed that z(¢;) > x(¢t;—1). Therefore, it
must be that O;_; is in the interior of O;, and thus they do not intersect. Since w; is on or
inside C;_1, and O; intersects u;, O; must intersect C;_;. But C;_; is contained in O;_;
except for the point u;_1, and O;_; is contained in O;, and thus O; cannot intersect C;_1,
which is a contradiction. See Fig. 5. |

We can now prove Lemma 5:

Proof of Lemma 5. Follows from Lemma 8 and the fact that x(sg) = z(s) and z(sp) <
x(t). <

Ai(pi—1,ti)

Figure 6 Coordinate system for analyzing ®(C;—1,C;).
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3.3 Proof of Lemma 4

To show that ®(C;_1,C;) < 0 when C;_; and C; are balanced, we set up the following
coordinate system. We show the proof for the case when p;_; is above st; the case when
pi—1 is below st is symmetric. Let ¢;_; and ¢; lie along the z-axis, and let p;,_1 and g; lie
along the y-axis. See Fig. 6. Lemma 4 follows from the following two lemmas:

» Lemma 9. When C;_1 and C; are balanced, if y(t;—1) < 0, then ®(C;_1,C;) < 0.

» Lemma 10. When C;_1 and C; are balanced, if y(t;—1) > 0, then ®(C;_1,C;) < 0.

The main tool to prove these two lemmas is the following transformation, which is similar
to a transformation used by Xia [13].

» Transformation 11. Fix p;_; and g¢;, and translate ¢; to the left along the z-axis until
¢; = c¢i—1. Moreover keep C;_; unchanged and maintain C; as the circle with center ¢; with
pi—1 on its boundary.

Observe that, after we have completed Transformation 11, we have C; = C;_1 and thus
®(C;—1,C;) = 0. If we can show that ®(C;_1,C;) is increasing while z(c¢;) decreases, then it
must be that ®(C;_1, C;) < 0 before Transformation 11. Thus we wish to find the change in
®(C;-1,C;) with respect to the change in z(¢;) during Transformation 11. Formally:

» Lemma 12. If M < 0 during Transformation 11, then ®(C;_1,C;) < 0.
dx(c;)

Proof. At the end of Transformation 11 we have that ®(C;_1,C;) = 0. If W <0
then ®(C;_1,C;) is not decreasing during Transformation 11, and thus ®(C;—1,C;) < 0

before Transformation 11. <

The analysis of this function is similar to Xia’s approach [13]. To ensure that this
transformation is well-defined, we require ¢; to be below st. We observe that ®(C;_1, C;) is
maximized when st is on or above ¢;_1, and this assumption implies g; is below st (or on st,
in the case where p;_1 = ¢;). Full details of this analysis, the transformation analysis, and
the proofs for Lemmas 9 and 10 have been left out due to space constraints.

4 Bounding P(s,t) in the General Case

In Section 3, we proved Theorem 1 for the case when the path produced by our algorithm

results in a balanced configuration. In this section, we prove Theorem 1 for the general case.

Given a sequence C of circles that intersect st, no series of transformations were found that
could achieve a balanced configuration, while simultaneously providing a provable upper
bound on the length of |p;_1,p;|. However, we were able to find two sequences of circles to
substitute for C. To represent each C; in C, we have a potential circle CF’ and a bounding
circle CB. Like C;, both CF and CP have t; as their rightmost intersection with st. However,
C; intersects both p; and p;_1, while C’,;B is only required to intersect p;_1, and CiP is only
required to intersect p;. If we look at a bounding circle CZ and the previous potential
circle CF |, which intersect at p;_1, they are balanced, and we can thus apply the function
®(CL |, CB) to relate the lengths of the arcs of these circles to |st|. Finally, when analyzed
properly, they provide an upper bound on the length |p;p;_1].

Formally, let CF be the circle centered at s = py with radius 7f’ = 0, and let CF
be the circle centered at ¢ with radius r} = 0. Assuming we have defined CF |, we will
define C2 and CF. 1If p;_; is above st, let CP be the circle through p;_; and t; for
which ‘ACiB (Pi—1,t:)| = |pi—1d}] + |BQB (¢, t:)|, where ¢} is the bottommost intersection

22:9
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(a) The sequence of triangles T intersected by st, along with their circumcircles C, and the path
P(s,t) found by the algorithm in bold.

AB D at B
B ] AP (po, )y~ 2ol
= 104
ER ‘ t4t
)7' - —
P

Z

(b) The complete set of bounding arcs and potential arcs used in the function ®(C{ ,, CF), used to

bound the routing ratio in the general case.

Figure 7 The initial circumcircles in 7a, and the construction of the potential circles and bounding
circles in the general case in 7b.

of Cﬁl and CZ.B. If p;_1 is below st, let CiB be the circle through p;_; and ¢; for which
[Bor (pi-1,ti)| = [pi—14;] + [Acs (g;, t:)|, where ¢; is the topmost intersection of CF | and
CE. That is, CF | and CP are balanced. Let r? be the radius of CZ. The potential circle
CF is the circle through p;, whose rightmost intersection with st is ¢;, and whose radius is
given by rf’ = min{r;, 7P} (with the exception of 7Y = 0). Let s’ be the point on st with

x(sP) = 2(t;) — 2rF, and let sP be the point on st with x(s?) = z(t;) — 2rB.

To simplify notation, for points u and v on C{’, instead of writing Aqr (u, v) and Ber (u, v)
to indicate clockwise and counter-clockwise arcs of C{ from u to v, rlespectively7 Wé write
AP (u,v) and BF (u,v). Likewise, for points u and v on CP, instead of writing A5 (u,v)
and Bos (u,v), we write AZ (u,v) and BE (u,v). '

See Figs. 7a and 7b for an example of the initial sequences 7 and C and the resulting
bounding and potential arcs that we are interested in.
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Since CF | and CP are balanced, ® can be extended to C ; and CP, and thus we have
O(C1,CF) = AP (pimr ti)| = |AT (i1, tima)| = MsiZys7| — pltioati]
when p;_; is above st and
®(CL,CP) = B (piev, ti)l = 1By (pio1, tio1)l = Aisiys7| = pltioati]

when p;_1 is below st. Lemma 4 tells us that ®(C¥ ;,CP) < 0. To prove Theorem 1 in the
general case, it is sufficient to prove the following two lemmas. Lemma 13 is a generalization
of Lemma 5, whereas Lemma 14 is a generalization of Lemma 7.

» Lemma 13. >0 |sP s8] < |st|.

Proof. Since CF | and CF are balanced, Lemma 8 tells us that z(sf ;) < :1:( B). We know
that z(sf) = z(t;) — 2rF and x(sP) = z(t;) — 2rP, thus the fact that 7 = min{r;, r?}
implies that z(sP) < :L'( P). Thus |5i715?\ < |si 17|, and it is sufficient to show that
S [sP sP| <|st|. The fact that z(sf ;) < a(s! ) implies that :L'( ) < z(sh), and CF
is the circle centered at s with radius 0, and thus s’ = s. Since z(sf’) < z(¢), this completes
the proof. |

Due to space constraints, we omit the proof of the following lemma.

» Lemma 14. For 1 <i <mn, if p;_1 is above st, then

1. a. |AB(pi_1,t)| = |picipil + | AL (pi, t:)| if pi is above st, and
b. |AB(pi—1,t:)| > |pi—1pil + |BE (pi, ti)| if pi is below st
otherwise p;_1 s below st and

2. a. |BE(pi—1,t:)| > |picipi| + 1B (pi, t:)| if pi is below st, and
b. |BE(pi—1,t:)| > |pi—ips| + |AF (pi, ts)| if ps is above st.

Theorem 1 follows from Lemmas 4, 6, 13, and 14.

Proof of Theorem 1. If p; is above st, let D = AP(p;, ;). If p; is below st, let DF =
Bf (pi,ti). Let ®'(C{,CF) = Ipi—apil + |DF| = D4 = Alsi”ysP| — (1 — A[ti—1ti|. Lem-
mas 14 and 4 imply that ®'(CL ,,CP) < &(CL,,CP) <0. Using ®'(CL ,,CP) we get:

11—

i=1
n n
S (Ipiapil + 1D~ IDE 1) < SOV 5B+ (1 — Nlts_1t4])
i=1 i=1
[P (s, )] = DG+ D] < (At = A)lst| (2)
[P (s, t)] < plst].
Line (2) follows from Lemmas 6 and 13. <

We give some insight into the selection of 7. Assume that p;_; is above st (when
pi—1 is below st the explanation is symmetric). The purpose of |AZ(p;_1,t;)| is to bound
Ipi—1pi| + |AF (ps, t;)|, as expressed in Lemma 14. This lemma is also the reason for selecting
the radius of C as rf = min{r;,72}. It would be simpler to let v/ = 72, since then we
would have s¥’ = sB. However, if we allow 7 > r;, it can happen that the arc |Aﬁ1(pi, tiv1)|
on the next bounding circle is not large enough to cover |p;pii1|+ [AL (pit1,tit1)]- See
Fig. 8. Thus Lemma 14 would not hold. To account for this, we ensure that C{ has radius

at most 7;.
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(a) Ci—1,Cy, and CF ;. (b) CP and its intersection () AP (pi—1,t:)| < |pi-1, pil+
Notice that v > ri_1. with CF ;. |AF (pi, )]

Figure 8 The reasoning behind rf = min{r;, TF}. In this diagram, v > r;, and we show why
it is detrimental to our analysis. Notice that |AZ (pi—1,%)| < [pi—1,pi| + | AL (pi, t:)]. Thus the arc
AB (pi_1,t:) of the bounding circle is not long enough to pay for |p;—1,pi| + |AF (p:,t:)] .

5 Conclusion and Future Work

Counsider the algorithm presented in Section 2, along with two variations. To keep the
algorithms simple, assume we are at a vertex p above st. Otherwise all assumptions are the
same as in Section 2.

A) BestChord: If |pa| + |Ac(a,tc)| < |pb| + | Ac(b, tc)| then p = a else p = b.
B) MixedChordArc: If |Ac(p,tc)| < |pb| + | Ac(b, tc)| then p = a else p = b.
C) MinArc: If |[Ac(p,tc)| < mr then p =a else p = b.

The algorithm presented in this paper is MixedChordArc. Following the techniques
used in [1] we are able to show that the routing ratio of MinArc is between 3.20 and 3.96.
Since the routing ratio of 3.56 of MizedChordArc is better, we do not present the details of
MinArc.

We suspect that BestChord is an improvement on MizedChordArc. It seems plausible
that we can modify the proofs presented in this paper to obtain the same upper bound
for BestChord as for MizedChordArc, but for now that remains unverified. Whether
or not BestChord is asymptotically superior to MizedChordArc, or whether they are
asymptotically the same is still unknown.

Although we have improved the upper bound of the routing ratio on the Ly-Delaunay
triangulation, it is not clear how tight our analysis is. The upper bound on the analysis is
where our potential function is the weakest. A more clever potential function could lower the
routing ratio using a comparable analysis. Or perhaps one of the algorithms above would
respond to a completely different style of analysis.

Furthermore, the lower bound on MizedChordArc is still the same as the lower bound
on routing on the Ly-Delaunay triangulation in general, which is approximately 1.70 [1]. So it
seems there is still much room for improvement. The question remains, what other algorithms
or analysis can we use to improve the routing ratio of the Delaunay triangulation? And given
that the upper and lower bounds on the spanning ratio of the Ly-Delaunay triangulation
are 1.998 [13] and 1.5932 [14] respectively, is there a separation of the spanning and routing
ratios of the Delaunay triangulation?
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