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Abstract
The computational complexity of the MaxCut problem restricted to interval graphs has been
open since the 80’s, being one of the problems proposed by Johnson in his Ongoing Guide to
NP-completeness, and has been settled as NP-complete only recently by Adhikary, Bose, Mukherjee
and Roy. On the other hand, many flawed proofs of polynomiality for MaxCut on the more
restrictive class of unit/proper interval graphs (or graphs with interval count 1) have been presented
along the years, and the classification of the problem is still unknown. In this paper, we present the
first NP-completeness proof for MaxCut when restricted to interval graphs with bounded interval
count, namely graphs with interval count 4.

1 Introduction

A cut is a partition of the vertex set of a graph into two disjoint parts and the maximum cut problem
(denoted MaxCut for short) aims to determine a cut with the maximum number of edges for which
each endpoint is in a distinct part. The decision problem MaxCut is known to be NP-complete
since the seventies [18], and only recently its restriction to interval graphs has been announced to
be hard [1], settling a long-standing open problem that appeared in a summary table in the 1985
column of the Ongoing Guide to NP-completeness by David S. Johnson [20]. We refer the reader
to a revised version of Johnson’s summary table in [15], where one can also find a parameterized
complexity version of the said table.

An interval model is a family of closed intervals of the real line. A graph is an interval graph if
there exists an interval model, for which each interval corresponds to a vertex of the graph, such that
distinct vertices are adjacent in the graph if and only if the corresponding intervals intersect. Ronald
L. Graham proposed in the 80’s the study of the interval count of an interval graph as the smallest
number of interval lengths used by an interval model of the graph. Interval graphs having interval
count 1 are called unit interval graphs (these are also called proper interval graphs, or indifference
graphs). Understanding the interval count, besides being an interesting and challenging problem by
itself, can be also of value for the investigation of problems that are hard for general interval graphs,
and easy for unit interval graphs (e.g. geodetic number [9, 16], optimal linear arrangement [10,19],
sum coloring [23,24]). The positive results for unit interval graphs usually take advantage of the
fact that a representation for these graphs can be found in linear time [11, 14]. Surprisingly, the
recognition of interval graphs with interval count k is open, even for k = 2 [7]. Nevertheless, another
generalization of unit interval graphs has been recently introduced which might be more promising
in this aspect. These graphs are called k-nested interval graphs, for which an efficient recognition
algorithm has firstly appeared in [8]. Recently, a linear time algorithm has been devised in [21].

In the same way that MaxCut on interval graphs has evaded being solved for so long, the
community has been puzzled by the restriction to unit interval graphs. Indeed, two attempts at
solving it in polynomial time were proposed in [4, 6] just to be disproved closely after [3, 22]. In
this paper, we give the first classification that bounds the interval count, namely, we prove that
MaxCut is NP-complete when restricted to interval graphs of interval count 4. This also implies
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NP-completeness for the newly generalized class of 4-nested graphs, and opens the search for a
full polynomial/NP-complete dichotomy classification in terms of the interval count. It can still
happen that the problem is hard even on graphs of interval count 1. We contribute towards filling
the complexity gap between interval and unit interval graphs. We have communicated the result at
the MFCS 2021 conference [13], and previous versions of the full proof appeared in the ArXiv [12].
The present paper contains the improved and much shorter full proof.

Next, we establish basic definitions and notation. Section 2 describes our reduction and Section 3
discusses the interval count of the interval graph constructed in [1].

1.1 Preliminaries
In this work, all graphs considered are simple. For missing definitions and notation of graph theory,
we refer to [5]. For a comprehensive study of interval graphs, we refer to [17].

Let G be a graph. Let X and Y be two disjoint subsets of V (G). We let EG(X, Y ) be the set of
edges of G with an endpoint in X and the other endpoint in Y . A cut of G is a partition of V (G)
into two parts A, B ⊆ V (G), denoted by [A, B]; the edge set EG(A, B) is called the cut-set of G

associated with [A, B]. The size of a cut-set is defined as its cardinality. The size of a cut is the size
of its associated cut-set. For each two vertices u, v ∈ V (G), we say that u and v are in a same part
of [A, B] if either {u, v} ⊆ A or {u, v} ⊆ B; otherwise, we say that u and v are in opposite parts of
[A, B]. Denote by mc(G) the maximum size of a cut-set of G. The MaxCut problem has as input a
graph G and a positive integer k, and it asks whether mc(G) ≥ k.

Let I ⊆ R be a closed interval of the real line. We let ℓ(I) and r(I) denote respectively the
minimum and maximum points of I, which we call the left and the right endpoints of I, respectively.
For every non-empty collection of intervals H, we define the left endpoint of H as ℓ(H) = minI∈H ℓ(I)
and the right endpoint of H as r(H) = maxI∈H r(I). We denote a closed interval I by [ℓ(I), r(I)].
Distinction from the cut notation will be clear from the context. For every two intersecting intervals
I and I ′, we say that I covers I ′ if ℓ(I) ≤ ℓ(I ′) and r(I) ≥ r(I ′), that I intersects I ′ to the left
if ℓ(I) < ℓ(I ′) < r(I) < r(I ′), and that I intersects I ′ to the right if ℓ(I ′) < ℓ(I) < r(I) < r(I).
We say that an interval I precedes an interval I ′ if r(I) < ℓ(I ′); and more generally, we say that a
collection of intervals H occurs to the left of a collection H′ if every interval in H precedes every
interval in H′. The length of an interval I is defined as |I| = r(I) − ℓ(I).

An interval model is a finite multiset M of intervals. The interval count of an interval model
M, denoted by ic(M), is defined as the number of distinct lengths of the intervals in M. Let G

be a graph and M be an interval model. An M-representation of G is a bijection ϕ : V (G) → M
such that, for every two distinct vertices u, v ∈ V (G), we have that uv ∈ E(G) if and only if
ϕ(u) ∩ ϕ(v) ̸= ∅. If such an M-representation exists, we say that M is an interval model of G. We
note that a graph may have either no interval model or arbitrarily many distinct interval models.
A graph is called an interval graph if it has an interval model. The interval count of an interval
graph G, denoted by ic(G), is defined as ic(G) = min{ic(M) : M is an interval model of G}. An
interval graph is called a unit interval graph if its interval count is equal to 1.

Note that, for every interval model M, there exists a unique (up to isomorphism) graph that
admits an M-representation. Thus, for every interval model M = {I1, . . . , In}, we let GM be the
graph with vertex set V (GM) = {1, . . . , n} and edge set E(GM) = {ij : Ii, Ij ∈ M, Ii∩Ij ≠ ∅, i ̸= j}.
Since GM is uniquely determined (up to isomorphism) from M, in what follows we may make an
abuse of language and use graph terminologies to describe properties related to the intervals in M.
Two intervals Ii, Ij ∈ M are said to be true twins in GM if they have the same closed neighborhood
in GM.

2 Our reduction

The following theorem is the main contribution of this work:

▶ Theorem 1. MaxCut is NP-complete on interval graphs of interval count 4.
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This result is a stronger version of that of Adhikary et al. [1]. To prove Theorem 1, we present a
polynomial-time reduction from MaxCut on cubic graphs, which is known to be NP-complete [2].
Since our proof is based on that of Adhikary et al., we start by presenting some important properties
of their key gadget.

2.1 Grained gadget
The interval graph constructed in the reduction of [1] is strongly based on two types of gadgets,
called V-gadgets and E-gadgets. In fact, these gadgets have the same structure except for the number
of intervals of certain kinds contained in each of them. In this subsection, we present a generalization
of such gadgets, rewriting their key properties to suit our purposes. In order to discuss the interval
count of the reduction of [1], we describe it in detail in Section 3.

Let x and y be two positive integers. An (x, y)-grained gadget (see Figure 1 to follow) is an
interval model H formed by 2y long intervals, y of which called left long and y called right long
intervals, together with 2x pairwise disjoint short intervals, x of which called left short and x of
which called right short. The y left long intervals all have the same right endpoint, which also is
the left endpoint of each of the y right long intervals. The x left (resp. right) short intervals are all
pairwise disjoint and intersect each left (resp. right) long interval, but intersect no right (resp. left)
long interval. We write LS(H), LL(H), RS(H) and RL(H) to denote the left short, left long, right
short and right long intervals of H, respectively. And we omit H when it is clear from the context.

Note that, if H is an (x, y)-grained gadget, then GH is a split graph such that LS ∪ RS is an
independent set of size 2x, LL∪RL is a clique of size 2y, and, for every vertex u ∈ LS, NGH (u) = LL
and, for every vertex u ∈ RS, NGH (u) = RL. Moreover, the intervals in LL are true twins in GH;
similarly, the intervals in RL are true twins in GH.

Figure 1 General structure of an (x, y)-grained gadget.

Let M be an interval model containing an (x, y)-grained gadget H. We say that an interval of
M \ H intersects H if it intersects at least one interval of H. Otherwise, we say that the interval
does not intersect H. The possible types of intersections between an interval I ∈ M \ H and H
in our construction are depicted in Figure 2, with the used nomenclature. More specifically, the
intersection between I and H is a cover intersection if I intersects all the intervals of H (Figure 2(a)),
a weak intersection to the left (right) if I intersects exactly the left (right) long intervals of H
(Figure 2(b–c)), and a strong intersection to the left (right) if I intersects exactly the left (right)
long and short intervals of H (Figure 2(d–e)). We say that M respects the structure of H if, for
every interval I ∈ M \ H, we have that I either does not intersect H, or the intersection between I

and H is of one of the types described above.
The advantage of this gadget is that, by manipulating the values of x and y, we can ensure that,

in a maximum cut, the left long and right short intervals are placed in the same part, opposite to
the part containing the left short and right long intervals, as proved in Lemma 3, presented shortly.
Note that if M is an interval model containing a grained gadget H and M respects the structure of
H, then every left (resp. right) short interval of H intersects exactly the same set of intervals in M.
The following remark will be useful throughout the text.

▶ Remark 2. Let [A, B] be a maximum cut of a graph G. For any vertex u ∈ V (G), if more than
half of the neighbours of u are in one part of [A, B], say A, then u ̸∈ A, or in other words u ∈ B.
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(a) Cover intersection (b) Weak intersection to the left (c) Weak intersection to the right

(d) Strong intersection to the left (e) Strong intersection to the right

Figure 2 Interval I ∈ M \ H (a) covering H, (b-c) weakly intersecting H to the left and to the
right, and (d-e) strongly intersecting H to the left and to the right.

Proof. Suppose that u ∈ A, and let [A′, B′] be the cut of G such that A′ = A\{u} and B′ = B ∪{u}.
Note that, if e ∈ EG(A, B) \ EG(A′, B′), then e is incident to u. Thus, since u has more than half of
its neighbours in A, the size of [A′, B′] is strictly greater than the size of [A, B], contradicting the
maximality of [A, B]. ◀

▶ Lemma 3. Let x and y be positive integers and M an interval model containing an (x, y)-grained
gadget H. Suppose that M respects the structure of H. Let [A, B] be a maximum cut of GM. Also,
let t be the number of intervals in M \ H intersecting H, ℓ be the number of intervals in M \ LS
intersecting the left short intervals of H, and r be the number of intervals in M \ RS intersecting
the right short intervals of H. If ℓ and r are odd, y > t(x/y − 1) and x > t + 2y, then the following
hold:
1. LS(H) ⊆ A and LL(H) ⊆ B, or vice versa;
2. RS(H) ⊆ A and RL(H) ⊆ B, or vice versa; and
3. LL(H) ⊆ A and RL(H) ⊆ B, or vice versa.

Proof. First, we prove that all the left short intervals are in the same part of [A, B]. Denote by N
the set of intervals in M \ LS that intersect the left short intervals.

Suppose, without loss of generality, that B contains more than half of the intervals in N (it
must occur for either A or B since ℓ is odd). Consider any u ∈ LS. Then N is the set of neighbours
of u, and since more than half of the intervals of N are in B, it follows that u ∈ A. This shows that
LS ⊆ A. Thus all the left short intervals are in the same part of [A, B]. Because r is also odd, a
similar argument shows that all the right short intervals are in the same part of [A, B].

Now consider the left long intervals and suppose, without loss of generality, that all the left short
intervals are contained in A. Observe that the number of intervals in M \ LS intersecting a left long
interval is less than t + 2y < x. Thus every left long interval has more than half of its neighbours
from LS, which are all in one part of [A, B]. It now follows that every left long interval is in the
part of [A, B] opposite to that of the left short intervals, namely B. An analogous argument holds
for the right long intervals. This proves Claims (1) and (2) in the statement of the lemma.

Finally, let L denote the set of long intervals of H and suppose by contradiction that L ⊆ A. Let
T be the set of intervals in M \ H that intersect H; then t = |T |. Let tA = |T ∩ A| and tB = |T ∩ B|.
Now by switching the intervals in RL to B and RS to A, we gain at least y2 + ytA + xtB cut-edges
and lose at most xtA + ytB cut-edges. Since y > t(x/y − 1), we have y2 > t(x − y) = xt − yt or in
other words, y2 > xtA + xtB − ytA − ytB . So we get y2 + ytA + xtB > xtA + ytB + 2tB(x − y). As
x > y, we can conclude that y2 + ytA + xtB > xtA + ytB , which means that we have more cut-edges
in the new cut than in the cut [A, B], a contradiction. ◀
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We say that (H, M) is well-valued if the conditions of Lemma 3 are satisfied. Moreover, we
say that the constructed model M is well-valued if all its grained gadgets H are well-valued with
respect to the model M. Finally, we say that H is A-partitioned by [A, B] if LS(H) ∪ RL(H) ⊆ A

and RS(H) ∪ LL(H) ⊆ B. Define B-partitioned analogously.

2.2 Reduction graph
In this subsection, we formally present our construction. We will make a reduction from MaxCut
on cubic graphs. So, let G be a cubic graph on n vertices and m edges. Intuitively, we consider an
ordering of the edges of G, and we divide the real line into m regions, with the j-th region holding
the information about whether the j-th edge is in the cut-set. For this, each vertex u will be related
to a subset of intervals traversing all the m regions, bringing the information about which part of
the cut contains u. Let πV = (v1, . . . , vn) be an ordering of V (G), πE = (e1, . . . , em) be an ordering
of E(G), and G = (G, πV , πE).

Figure 3 General structure of a region of an (n, m)-escalator. The shaded rectangles represent
the (p, q)-grained gadgets Hj

i .

We first describe the gadgets related to the vertices. Please refer to Figure 3 to follow the
construction. The values of p, q used next will be defined later. An (n, m)-escalator is an interval
model D formed by m+1 (p, q)-grained gadgets for each vi, denoted by H1

i , . . . , Hm+1
i , together with

2m link intervals, denoted by L1
i , . . . , L2m

i , such that L2j−1
i and L2j

i weakly intersect Hj
i to the right

and weakly intersect Hj+1
i to the left. Additionally, all the grained gadgets are mutually disjoint.

More specifically, given j ∈ {1, . . . , m + 1} and i, i′ ∈ {1, . . . , n} with i < i′, the grained gadget Hj
i

occurs to the left of Hj
i′ , and the grained gadget Hj

n occurs to the left of Hj+1
1 for j ∈ {1, . . . , m}.

Left short intervals

Figure 4 General structure of the constructed interval model M(G) highlighting the intersections
between the intervals of the (n, m)-escalator D, the intervals of the (p′, q′)-grained gadget Ej , and
the intervals C1

j , C2
j , C3

j , C4
j .

Now, we add the gadgets related to the edges. Please refer to Figure 4 to follow the construction.
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The values of p′, q′ used next will be defined later. For each edge ej = vivi′ ∈ E(G), with i < i′,
create a (p′, q′)-grained gadget Ej and intervals C1

j , C2
j , C3

j , C4
j in such a way that Ej is entirely

contained in the j-th region (i.e., in the open interval between the right endpoint of Hj
n and the left

endpoint of Hj+1
1 ), C1

j and C2
j weakly intersect Hj

i to the right and weakly intersect Ej to the left,
and C3

j and C4
j weakly intersect Hj

i′ to the right and strongly intersect Ej to the left. We call the
intervals in {Ci

j | i ∈ {1, . . . , 4}, j ∈ {1, . . . , m}} intervals of type C. Denote the constructed model
by M(G) (or simply by M when G is clear from the context), which defines the reduction graph
GM(G).

The following straightforward lemma will be useful in the next section.

▶ Lemma 4. Let G be a graph, πV = (v1, . . . , vn) and πE = (e1, . . . , em) be orderings of V (G) and
E(G), respectively, and M be the model constructed as before. The following holds for every grained
gadget H:

M respects the structure of H;
The number of intervals covering H is even; and
The number of intervals strongly intersecting H to the left is either zero or two, and the number
of intervals strongly intersecting H to the right is always zero.

Observe that Lemma 4 implies that, in order for the values ℓ and r in Lemma 3 to be odd, it
suffices to choose odd values for q and q′.

2.3 Proof of Theorem 1: Maximum cut of the reduction graph
Consider a cubic graph G on n vertices and m = 3n/2 edges, and let πV = (v1, . . . , vn) be an
ordering of V (G), πE = (e1, . . . , em) be an ordering of E(G) and G = (G, πV , πE). We now prove
that mc(G) ≥ k if and only if mc(GM(G)) ≥ f(G, k), where f is a polynomial-time computable
function defined at the end of this subsection. As it is usually the case in this kind of reduction,
given a cut of G, constructing an appropriate cut of the reduction graph GM(G) is an easy task.
On the other hand, constructing an appropriate cut [X, Y ] of G, from a given a cut [A, B] of the
reduction graph GM(G), requires that the intervals in M(G) behave in a way with respect to [A, B]
so that [X, Y ] can be inferred, a task achieved by appropriately manipulating the values of p, q, p′, q′,
as done in Lemma 3. We start by giving conditions on these values that ensure that the partitioning
of the edge gadget related to an edge ej = vivi′ , with i < i′, depends solely on the partitioning of
Hj

i′ .

▶ Lemma 5. Let G be a cubic graph, πV = (v1, . . . , vn) and πE = (e1, . . . , em) be orderings of V (G)
and E(G), respectively, and M(G) be the model constructed as before, where G = (G, πV , πE). Also,
let [A, B] be a maximum cut of GM(G), and consider ej = vivi′ , i < i′. If M(G) is well-valued, and
q > 4n + p′ + q′ + 3, then
1. If Hj

i is A-partitioned by [A, B], then {C1
j , C2

j } ⊆ B; otherwise, {C1
j , C2

j } ⊆ A; and
2. If Hj

i′ is A-partitioned by [A, B], then {C3
j , C4

j } ⊆ B and Ej is A-partitioned by [A, B]; otherwise,
{C3

j , C4
j } ⊆ A and Ej is B-partitioned by [A, B].

Proof. Denote M(G) by M for simplicity. Since M is well-valued, by Lemma 3, we may assume
that Hj

i is A-partitioned by [A, B], i.e., that LS ∪ RL ⊆ A and LL ∪ RS ⊆ B. We make the
arguments for C1

j and it will be clear that they also hold for C2
j . Observe first that all the grained

gadgets covered by C1
j have a balanced number of intervals in A and in B. More formally, from the

intervals within the gadgets Hj
ℓ , i + 1 ≤ ℓ ≤ n, which are all the grained gadgets covered by C1

j ,
there are exactly (n − i)(p + q) intervals in A, and (n − i)(p + q) intervals in B. Additionally, there
are at most 2(n − i) link intervals intersecting C1

j to the left (these are the link intervals related to
vi′′ for i′′ > i in the (j − 1)-th region, if j > 1), exactly 2(n − i) link intervals intersecting C1

j to the
right (these are the link intervals related to vi′′ for i′′ > i in the j-th region), and exactly 2i link
intervals covering C1

j (these are the link intervals related to vi′′ for i′′ ≤ i in the j-th region). This
is a total of at most 2(n − i) + 2(n − i) + 2i = 4n − 2i < 4n link intervals. Adding finally C2

j , C3
j , C4

j
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and the q′ right long intervals of Ej , we get that the number of neighbors of C1
j that might be in B

is at most (n − i)(p + q) + 4n + q′ + 3, while the number of neighbors of C1
j that are in A is at least

(n − i)(p + q) + q. Since q > 4n + p′ + q′ + 3 ≥ 4n + q′ + 3, we can conclude that there are more
neighbours of C1

j in A than in B. From Remark 2, it follows that C1
j ∈ B.

Observe that a similar argument can be applied to C3
j , C4

j , except that we gain also p′ new
edges from the left short intervals of Ej . That is, supposing Hj

i′ is A-partitioned by [A, B], then the
number of neighbors of C3

j that might be in B is at most (n − i′)(p + q) + 4n + p′ + q′ + 3, while the
number of neighbors of C3

j that are in A is at least (n − i′)(p + q) + q. It follows again by Remark 2
that C3

j , C4
j are in B, since q > 4n + p′ + q′ + 3.

Finally, suppose that Hj
i′ is A-partitioned by [A, B], in which case, from the previous paragraph,

we get that {C3
j , C4

j } ⊆ B. Suppose that Ej is B-partitioned. Then consider the cut [A′, B′] obtained
by switching the intervals of Ej of side; formally, in which every interval I ∈ M \ Ej is in A′ if
and only if I ∈ A and every interval I ∈ Ej is in A′ if and only if I ∈ B. Clearly, the number of
cut-edges having both endpoints in Ej is the same in both the cuts [A, B] and [A′, B′]. Since |A ∩ Ej |
= |B ∩ Ej | = |A′ ∩ Ej | = |B′ ∩ Ej |, and every interval other than C1

j , C2
j , C3

j and C4
j that intersects

the gadget Ej has a cover intersection with it, the number of cut-edges in [A, B] differ from that of
[A′, B′] only by the number of cut-edges between C1

j , C2
j , C3

j , C4
j and Ej . Since C3

j , C4
j ∈ B, the 2p′

edges between these two intervals and the intervals in LS(Ej) are cut-edges in [A′, B′] but not in
[A, B]. Meanwhile, the edges between C1

j , C2
j , C3

j , C4
j and Ej that are cut-edges in [A, B] but not in

[A′, B′] must be from among the 4q′ edges between C1
j , C2

j , C3
j , C4

j and LL(Ej). Thus [A′, B′] has at
least 2p′ − 4q′ edges more than [A, B]. Since M is well-valued, we have 2p′ > 4q′, implying that
[A′, B′] is a cut of size larger than [A, B], which is a contradiction. ◀

After ensuring that each grained gadget behaves well individually, we also need to ensure that
H1

i can be used to decide in which part of [X, Y ] we should put vi, and for this it is necessary that
all gadgets related to vi agree with one another. In other words, for each vi, we want that the
behaviour of the first gadget H1

i influence the behaviour of the subsequent gadgets H2
i , . . . , Hm+1

i ,
as well as the behaviour of the gadgets related to edges incident to vi. Given vi ∈ V (G) and a cut
[A, B] of GM(G), we say that the gadgets of vi alternate in [A, B] if, for every j ∈ {1, . . . , m}, we
get that Hj

i is A-partitioned if and only if Hj+1
i is B-partitioned, while L2j−1

i , L2j
i are opposite to

the right long intervals of Hj
i . Also, we say that [A, B] is alternating partitioned if the gadgets of

vi alternate in [A, B], for every vi ∈ V (G). We add a further condition on the values of p, q, p′, q′

in order to ensure that every maximum cut is alternating partitioned. After this, we use the good
behaviour of the constructed model in order to relate the sizes of the maximum cuts in G and in
GM(G).

▶ Lemma 6. Let G be a cubic graph, πV = (v1, . . . , vn) and πE = (e1, . . . , em) be orderings of
V (G) and E(G), respectively, and M(G) be the model constructed as before, where G = (G, πV , πE).
Also, let [A, B] be a maximum cut of GM(G). If M(G) is well-valued, q > 4n + p′ + q′ + 3, and
q > 3(2n2 + 2n + q′ + 2), then [A, B] is alternating partitioned.

Proof. By hypothesis, the conditions of Lemmas 3 and 5 are satisfied. Thus, we can suppose that
the obtained properties of those lemmas hold. Denote M(G) by M for simplicity, and let Mi be
the family of all the intervals related to vertex vi; more specifically, it contains every interval in
some grained gadget Hj

i , j ∈ {1, . . . , m + 1}, every link interval Lj
i , j ∈ {1, . . . , 2m}, every interval

of type C that intersects Hj
i to the right (this happens if ej has vi as endpoint), and every interval

in Ej for ej incident to vi. In what follows, we count the number fi of edges of the cut incident to
some interval in Mi and argue that, if the gadgets of vi do not alternate in [A, B], then we can
obtain a bigger cut by switching the side of some intervals, thus getting a contradiction.

Denote by Mi the set of intervals M \ Mi, and by Λ the set of all link intervals.
In what follows, there are some values that must be added to fi but remain the same in every

maximum cut of GM(G), independently of how Mi is partitioned; we call these values irrelevant
and do not add them to fi. For instance, recall that every (x, y)-grained gadget has exactly x + y

intervals in A and x + y in B. Thus, because of Lemmas 3 and 5, the number of edges of the cut
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between grained gadgets and intervals that cover them is irrelevant. In what follows, we count the
other possible edges.

First, consider j ∈ {1, . . . , m}; we want to count the maximum number of edges of the cut
incident to L2j

i (which holds analogously for L2j−1
i ). Denote by ℓj

A the number of intervals in
Mi ∩ Λ ∩ A that intersect L2j

i ; define ℓj
B similarly. Observe that ℓj

A + ℓj
B < 4n since it includes at

most 2(n − i) link intervals in the j-th region, plus at most 2(n − i) link intervals of the (j − 1)-th
region, and at most 2(i − 1) link intervals of the (j + 1)-th region. Additionally, let aj be equal to 1 if
L2j

i is opposite to the right long intervals of Hj
i , and 0 otherwise; similarly, let bj be equal to 1 if L2j

i

is opposite to the left long intervals of Hj+1
i , and 0 otherwise. Because L2j

i might also be opposite
to C1

j , . . . , C4
j and it is possible that the edge between L2j

i and L2j−1
i is also a cut edge, observe that

the relevant number of edges of the cut incident to L2j
i is at most q(aj + bj) + ℓj

A + ℓj
B + 5. Note

that L2j
i covers the gadgets Ej and also every Hj′

i′ with which it has an intersection except Hj
i and

Hj+1
i , and hence the number of cut-edges between L2j

i and intervals in these gadgets is irrelevant.
Now, let ej be an edge incident to vi and let vi′ be the other endpoint of ej (here i′ might

be smaller than i). We apply Lemma 5 in order to count the edges incident to Ej ∪ {C1
j , . . . , C4

j };
observe that all these intervals are in Mi. First observe that, since Ej is always partitioned according
to C3

j , C4
j , we have an irrelevant value of 2p′, namely the edges between C3

j , C4
j and the left short

intervals of Ej . Now, suppose, without loss of generality, that {C1
j , C2

j } ⊆ A. If {C3
j , C4

j } ⊆ A, then
there are no relevant edges to be added; otherwise, we get 2q′ + 4 edges, those between C1

j , C2
j

and C3
j , C4

j , and between C1
j , C2

j and the left long intervals of Ej . Finally, observe that the edges
between {C1

j , . . . , C4
j } and Hj

i are irrelevant because of Lemma 5 and the fact that C1
j , C2

j cover
Hj

i′ (where ej is the edge vivi′ ), and that the edges between {C1
j , . . . , C4

j } and the link intervals
have been counted previously. Note that the number of cut edges between two intervals in Ej and
the number of cut edges between intervals in Ej and link intervals are both irrelevant. Note also
that every gadget Hj

i , for each j ∈ {1, 2, . . . , m + 1}, is covered by every interval from Mi that it
intersects, and hence the number of cut edges between vertices in Hj

i and vertices in Mi is irrelevant.
Also, the number of cut edges between vertices in Hj

i is irrelevant, and the cut edges having one
endpoint in Hj

i and other endpoint in Mi \ Hj
i have already been counted.

In order to put everything together, let ej1 , ej2 , ej3 be all the edges incident to vi, and for
each h ∈ {1, 2, 3}, write ejh = vivih (note that here i is not necessarily smaller than ih). For each
h ∈ {1, 2, 3}, let ch be equal to 1 if Hj

i and Hj
ih

are partitioned differently, and 0 otherwise. We
then get that:

fi ≤ 2
m∑

j=1

(q(aj + bj) + ℓj
A + ℓj

B + 5) +
3∑

h=1

ch(2q′ + 4). (1)

If L2j
i is on the same side as the right long intervals of Hj

i and the left long intervals of Hj+1
i ,

we can increase fi simply by switching the side of L2j
i . Indeed, in this case we would lose at most

max{ℓj
A, ℓj

B} + 5 < 4n + 5 edges, while gaining 2q, a positive exchange since 2q > 8n > 4n + 5
considering n > 1. Observe that this implies aj + bj ≥ 1. Note also that this type of argument can
be always applied, and that it can be applied also for L2j−1

i . Hence, whenever in what follows we
switch side of the intervals in some vertex gadget, we can suppose that this property still holds, i.e.
that L2j

i and L2j−1
i are always opposite to the left long intervals of Hj

i .
Consider now j to be minimum such that Hj

i and Hj+1
i are partitioned in the same way, say

they are both A-partitioned. Note that this implies that aj + bj = 1, since the right long intervals
of Hj

i are in A, while the left long intervals of Hj+1
i are in B. We want to switch sides of Hj+1

i ,
but in order to ensure an increase in the size of the cut, we need to also switch subsequent grained
gadgets in case they were alternating. For this, let j′ > j be minimum such that Hj′+1

i and Hj′

i

are either both A-partitioned or both B-partitioned; if it does not exist, let j′ = m + 1. For each
h ∈ {j + 1, . . . , j′}, we switch sides of Hh

i , and put L2h−1
i , L2h

i in the side opposite to the right long
intervals of Hh

i . Also switch the intervals of type C and intervals in edge gadgets appropriately; i.e.,
in a way that Lemma 5 continues to hold. We prove that we gain at least 2q edges, while losing at
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most 8m(n + 1) + 6(q′ + 2) = 6(2n2 + 2n + q′ + 2) cut edges (recall that m = 3n/2); the result thus
follows since q > 3(2n2 + 2n + q′ + 2).

Observe that, by previous arguments, we have that, for every h ∈ {j, . . . , j′}, the link intervals
L2h−1

i , L2h
i are in B if and only if Hh

i is A-partitioned. In particular, since Hj
i is A-partitioned,

L2j−1
i and L2j

i are in B. Additionally, because of the switch we now know that the left long
intervals of Hj+1

i are in A. This implies that we gain at least 2q edges. Now, we count our losses.
Concerning intervals L2j−1

i and L2j
i , we lose at most 2(ℓj

B + 4) ≤ 8n + 8 cut edges, namely the edges
between these intervals and link intervals or intervals of type C. As for the intervals L2h−1

i , L2h
i for

h ∈ {j + 1, . . . , j′}, by the definition of j′ we know that we lose at most 2(max{ℓh
A, ℓh

B} + 4) ≤ 8n + 8
cut edges, while the number of edges of the cut between them and the vertex grained gadgets can only
increase. Hence, concerning the link intervals in Mi, in total we lose at most 8m(n + 1) = 12(n2 + n)
cut edges. Additionally, observe the upper bound given by (1) to see that, in the worst case scenario,
we have {j1, j2, j3} ⊆ {j + 1, . . . , j′} and all the values ch were previously equal to 1 and are now
equal to 0; this leads to a possible loss of at most 6(q′ + 2) edges, as we wanted to show. ◀

Now, if [A, B] is an alternating partitioned maximum cut of GM(G), and M(G) obeys the
conditions in the statement of Lemma 5, we let Φ(A, B) = [X, Y ] be the cut of G such that, for each
vertex vi ∈ V (G), we have vi ∈ X if and only if H1

i is A-partitioned by [A, B]. Note that [X, Y ] is
well-defined (i.e., Φ is a function). Additionally, given a cut [X, Y ] of G, there is a unique alternating
partitioned cut [A, B] of GM(G) obeying the conditions of Lemma 5, such that [X, Y ] = Φ(A, B)
(i.e., Φ is one-to-one and onto). Therefore, it remains to relate the sizes of these cut-sets. Basically
we can use the good behaviour of the maximum cuts in GM(G) to prove that the size of [A, B] grows
as a function of the size of Φ(A, B).

▶ Lemma 7. Suppose that all the conditions in Lemmas 3-6 hold, and that q′ ≥ 13n2. Let
Φ(A, B) = [X, Y ], and k be a positive integer. Then (below, G denotes GM(G))

|EG(X, Y )| ≥ k if and only if |EG(A, B)| ≥ γ + (2q′ + 4)k,

where γ is a well-defined polynomial-time computable function on G, πV , p, q, p′, q′ (i.e., does not
depend on [A, B]).

Proof. We use the same notation as before and count the number of edges in EG(A, B). We will
count the number of edges of the cut-set separately in the following groups:

among intervals of a vertex/edge grained-gadget;
between intervals of a vertex grained-gadget and link intervals;
between intervals of an edge grained-gadget and other intervals;
among intervals of type C;
among link intervals;
between link intervals and intervals of type C; and
between intervals of a vertex grained-gadget and intervals of type C.

First, we compute the number of edges of the cut-set within a given (x, y)-grained gadget. By
Lemma 3, we get that this is exactly y2 + 2xy. Since there are (m + 1)n (p, q)-grained gadgets (the
ones related to the vertices), and m (p′, q′)-grained gadgets (the edge ones), we get a total of:

β1 = n(m + 1)(q2 + 2pq) + m((q′)2 + 2p′q′).

Now, we count the number of edges of the cut-set between a given vertex grained gadget H = Hj
i

and link intervals; again, denote the set of link intervals by Λ. If an interval I covers H, then there
are exactly p + q edges between I and H, since there are these many intervals of H in each of A and
B. And if I intersects H either to the left or to the right, then there are exactly q edges between I

and H, since M is alternating partitioned (i.e., I is opposite to the corresponding long intervals of
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H). It remains to count how many of each type of intervals there are. If j ∈ {2, . . . , m}, then there
are exactly 2n − 2 intervals covering H, as well as 2 intervals intersecting H to the left, and 2 to the
right; this gives a total of (2n − 2)(p + q) + 4q = 2n(p + q) + 2(q − p) edges between H and Λ. If
j = 1, then there are 2(i − 1) intervals covering H, and 2 intervals intersecting H to the right, thus
giving a total of 2(i − 1)(p + q) + 2q. Finally, if j = m + 1, then there are 2(n − i) intervals covering
H, and 2 intervals intersecting H to the left, giving a total of 2(n − i)(p + q) + 2q. Summing up, we
get:

β2 =
∑m

j=2

∑n

i=1[2n(p + q) + 2(q − p)]+∑n

i=1[2(i − 1)(p + q) + 2q + 2(n − i)(p + q) + 2q]
= 2(m − 1)n[n(p + q) + (q − p)] + 2n[(n − 1)(p + q) + 2q]
= 2n[(m − 1)n(p + q) + (m − 1)(q − p) + (n − 1)(p + q) + 2q]
= 2mn[n(p + q) + q − p].

We count now the number of edges of the cut-set between a given edge gadget Ej and an interval I

intersecting it, and among intervals of type C. As before, if I covers Ej , then there are exactly
(p′ + q′) edges between I and Ej in the cut. If I strongly intersects Ej to the left, then I ∈ {C3

j , C4
j }

and by Lemma 5 we get that this amounts to p′. Finally, if I weakly intersects Ej to the left, then
this amounts to q′, if ej is in the cut-set, or to 0, otherwise. As for the number of edges between
intervals of type C, by Lemma 5 one can see that this is equal to 4|EG(X, Y )|. Summing up, we get:

2nm(p′ + q′) + 2p′m + (2q′ + 4)|EG(X, Y )|.

Denote the value 2nm(p′ + q′) + 2p′m by β3, and note that this is independent of [A, B].
Let us now count the number of edges of the cut-set among link intervals. For this, denote by

Lj the set of link intervals in the j-th region, i.e., Lj = {L2j
i , L2j−1

i | i ∈ {1, . . . , n}}. Also, denote
by V j

A the set of indices i ∈ {1, . . . , n} such that {L2j−1
i , L2j

i } ⊆ A; define V j
B analogously and let

a = |V j
A| and b = |V j

B |. We count the number of edges of the cut between intervals of Lj , for every
j ∈ {1, . . . , m}, and between intervals of Lj and intervals of Lj+1, for every j ∈ {1, . . . , m − 1}, and
then we sum up. So consider a region j ∈ {1, . . . , m}, and observe that, because [A, B] is alternating
partitioned, we get that either j is odd and V j

A contains exactly the indices of the vertices within Y ,
while V j

B contains the indices of the vertices within X, or j is even and the reverse occurs. More
formally: if j is odd, then V j

A = {i ∈ {1, . . . , n} | vi ∈ Y } and V j
B = {i ∈ {1, . . . , n} | vi ∈ X}; and

if j is even, then V j
A = {i ∈ {1, . . . , n} | vi ∈ X} and V j

B = {i ∈ {1, . . . , n} | vi ∈ Y }. In either
case, since for each index in V j

A (resp. V j
B), there is a pair of intervals in Lj ∩ A (resp. Lj ∩ B),

we get that the number of edges of the cut between intervals of Lj is equal to 4|X||Y | = 4ab.
Now, suppose j ∈ {1, . . . , m − 1}; we count the edges of the cut between Lj and Lj+1. Again
because [A, B] is alternating partitioned, we know that if V j

A = {i1, . . . , ia}, then V j+1
B = V j

A, while
V j+1

A = V j
B = {1, . . . , n} \ V j

A. Supposing i1 < · · · < ia, this implies that there are exactly 4 edges
between {L2j+1

ia′ , L2j+2
ia′ } and {L2j−1

ia′′ , L2j
ia′′ } for each a′, a′′ ∈ {1, . . . , a} with a′ < a′′. Summing up

we get that there are 4
∑a

a′=1(a − a′) = 4 a(a−1)
2 = 2a(a − 1) edges between Lj ∩ A and Lj+1 ∩ B.

Analogously we can conclude that there are 2b(b−1) edges between Lj ∩B and Lj+1 ∩A. Summing up
with the previous 4ab, for every j ∈ {1, . . . , m−1}, we get 2a2−2a+2b2−2b+4ab = 2[(a+b)2−(a+b)]
edges of the cut incident to Lj minus the number of edges of the cut between Lj and Lj−1, as these
get counted in Lj−1. Recall that a + b = |X| + |Y | = n to see that this gives us 2n(n − 1) edges.
Finally, summing up for all j ∈ {1, . . . , m − 1} and summing also the edges between link intervals in
Lm, we get that the number of edges of the cut incident to link intervals is equal to:

m−1∑
j=1

2n(n − 1) + 4|X||Y | = n(n − 1)(3n − 2) + 4|X||Y |

Observe that 4(n − 1) ≤ 4|X||Y | ≤ n2, and denote the value n(n − 1)(3n − 2) by β4.
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Now, observe that it remains to count the number of edges of the cut-set between link intervals
and intervals of type C, and between intervals of type C and vertex grained gadgets. We start with
the latter. Given an edge ej = vivi′ , with i < i′, there are exactly n − i vertex grained gadgets
covered by C1

j , C2
j , and n − i′ vertex grained gadgets covered by C3

j , C4
j . Together with the q edges

between each of these intervals of type C and the corresponding vertex gadgets (namely, Hj
i and

Hj
i′ ), we get a total of 2(n − i)(p + q) + 2(n − i′)(p + q) + 4q. Even though we cannot give a precise

value below, observe that this value can be exactly computed during the construction. The upper
bound is given just to make it explicit that this is a polynomial function. Also, below, for ej = vivi′ ,
the value ℓj denotes i and rj denotes i′.

β5 =
∑m

j=1[2(n − rj)(p + q) + 2(n − ℓj)(p + q) + 4q]
=

∑m

j=1[4n(p + q) − 2(rj + ℓj)(p + q) + 4q]
≤ 4m[n(p + q) + q].

Finally, we count the number of edges of the cut between link intervals and intervals of type
C. This is the only part of the counting that will not be exact. Again, consider an edge ej = vivi′ ,
and first consider the interval C1

j ; we will see that the arguments hold for C2
j , and that analogous

arguments hold for C3
j , C4

j . Observe that C1
j intersects exactly the following link intervals: L2j−1

i′′

and L2j
i′′ for every i′′ ∈ {1, . . . , n}; and L2j−2

i′′ and L2j−3
i′′ for every i′′ ∈ {i + 1, . . . , n}. This is a total

of less than 4n link intervals. Because an analogous argument can be applied to C2
j , C3

j , C4
j , we get

a total of 16n possible edges in the cut-set, for each value of j, totalling 16nm = 24n2.
Let β =

∑5
i=1 βi, and γ = β+4(n−1). We now prove that |EG(X, Y )| ≥ k if and only if |EG(A, B)| ≥

γ + (2q′ + 4)k. We have proved that:

γ︷ ︸︸ ︷
β + 4(n − 1) +(2q′ + 4)|EG(X, Y )| ≤ |EG(A, B)|

≤ β + 25n2 + (2q′ + 4)|EG(X, Y )|.

If |EG(X, Y )| ≥ k, then by the first inequality we have that |EG(A, B)| ≥ β +4(n−1)+(2q′ +4)k. On
the other hand, if |EG(A, B)| ≥ β + 4(n − 1) + (2q′ + 4)k, then by the second inequality we have that
|EG(X, Y )| ≥ k − 25n2−4(n−1)

2q′+4 ≥ k − 26n2

2q′+4 . Since q′ ≥ 13n2, we get that |EG(X, Y )| > k − 1. ◀

To finish the proof that the reduction works, we simply need to choose appropriate values for
p, q, p′, q′. Recall all necessary conditions:

For each (x, y)-grained gadget H in M, let t be the number of intervals in M \ H intersecting H,
ℓ be the number of intervals in M \ LS intersecting the left short intervals, and r be the number
of intervals in M \ RS intersecting the right short intervals. Then we want that ℓ and r are
both odd, and that y > t(x/y − 1) and x > t + 2y (from Lemma 3);
q > 4n + p′ + q′ + 3 (from Lemma 5);
q > 3(2n2 + 2n + q′ + 2) (from Lemma 6); and
q′ ≥ 13n2 (from Lemma 7).

By Lemma 4, we know that in order for the values r, ℓ in the first item to be odd, it suffices
to choose q, q′ to be odd. Observe that n ≥ 4 since G is a cubic graph. For a given edge gadget
Ej , we know that there are exactly 2n + 4 intervals in M \ Ej intersecting it, namely the link
intervals and intervals of type C in the j-th region. We could just choose q′ ∈ {13n2, 13n2 + 1}
such that q′ is odd and p′ = 26n2 + 2n + 7. In this case, we have p′ > t + 2q′ and q′ ≥ 13n2 >

( 26n2+2n+7
13n2 − 1)(2n + 4) ≥ ( p′

q′ − 1)t, since for edge gadgets t = 2n + 4. Similarly, we choose
q ∈ {42n2 + 3n + 10, 42n2 + 3n + 11} such that q is odd and p = 84n2 + 8n + 29. We now have
p > t + 2q and q ≥ 42n2 + 3n + 10 > ( 84n2+8n+29

42n2+3n+10 − 1)(2n + 6) ≥ ( p
q

− 1)t, since for vertex gadgets
t ≤ 2n + 6.

To finish the proof of Theorem 1, it remains to prove that the interval count of our reduction
graph is exactly four, which is done in the next subsection.
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2.4 Proof of Theorem 1: Bounding the interval count
Consider a cubic graph G on n vertices and m = 3n/2 edges, and orderings πV , πE of the vertex set
and edge set of G. Denote the triple (G, πV , πE) by G. First, we want to prove that the interval
count of our constructed interval model M(G) is at most 4. But observe that the construction of
M(G) is actually not unique, since the intervals are not uniquely defined; e.g., given such a model,
one can obtain a model satisfying the same properties simply by adding ϵ > 0 to all points defining
the intervals. In what follows, we provide a construction of a uniquely defined interval model related
to G that satisfies the desired conditions and has interval count 4.

Consider our constructed interval model M(G), and for each j ∈ {1, . . . , m}, denote by Sj the set
of intervals related to the j-th region, i.e., Sj = Ej ∪

⋃4
ℓ=1 Cℓ

j ∪
⋃n

i=1(Hj
i ∪ {L2j

i ∪ L2j−1
i }). We show

how to accommodate S1 within the closed interval [0, 6n − 2] in such a way that the same pattern
can be adopted in the subsequent regions of M(G) too, each time starting at multiples of 4n. More
specifically, letting t = 4n, we will accommodate Sj within [t · (j − 1), 6n − 2 + t · (j − 1)]. Assume
e1 = vivi′ , with i < i′. Below, we describe exactly which closed interval of the line corresponds to
each interval I ∈ S1.

For each i ∈ {1, . . . , n}, the left long intervals of H1
i are equal to [2i − 2, 2i − 3

2 ] and the left short
intervals are any choice of p distinct points within the open interval (2i − 2, 2i − 3

2 ), whereas the
right long intervals of H1

i are equal to [2i − 3
2 , 2i − 1] and the right short intervals are any choice

of p distinct points within the open interval (2i − 3
2 , 2i − 1). Note that open intervals are used to

locate the closed intervals of length zero, but that the short intervals themselves are not open.
C1

1 and C2
1 are equal to [2i − 1, 2i + 2n − 2].

C3
1 and C4

1 are equal to [2i′ − 1, 2i′ + 2n − 2].
The left long intervals of E1 are equal to [2n, 4n − 1].
The left short intervals of E1 are any choice of p′ distinct points in the open interval (2i + 2n −
2, 2i′ + 2n − 2). Again, the open interval is used just to locate the closed intervals of length zero.
The right long intervals of E1 are equal to [4n − 1, 4n − 1

2 ] and the right short intervals are any
choice of p′ distinct points within the corresponding open interval.
For each i ∈ {1, . . . , n}, intervals L1

i , L2
i are equal to [2i − 1, 4n + 2(i − 1)].

Figure 5 The closed intervals in S1 ∪
⋃4

i=1 H2
i of a graph on 4 vertices. We consider e1 to be

equal to v3v4. Each colour represents a different interval size. The short intervals are represented by
the dots located inside the open (red) intervals. Vertical lines mark the endpoints of the intervals in
S1 ∪

⋃4
i=1 H2

i , while the green vertical line marks the beginning of the intervals in S2.

The suitable chosen lengths of the above defined closed intervals are (see Figure 5, where we
denote by Λ the set of link intervals):
1. 0: short intervals of all grained gadgets (dots in Figure 5);
2. 1/2: left long and right long intervals of each H1

i , and right long intervals of E1 (red intervals in
Figure 5);

3. 2n − 1: intervals C1
1 , . . . , C4

1 , and left long intervals of E1 (blue intervals in Figure 5);
4. 4n − 1: intervals L1

i and L2
i , for every i ∈ [n] (orange intervals in Figure 5).
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Now, let M′(G) be the interval model where each Sj is defined exactly as S1, except that
we shift all the intervals to the right in a way that point 0 now coincides with point t · (j − 1).
More formally, an interval I in Sj corresponding to the copy of an interval [ℓ, r] in S1 is defined as
[ℓ + t · (j − 1), r + t · (j − 1)]. Also, we assign the intervals in the (m + 1)-th grained gadgets to be at
the end of this model, using the same sizes of intervals as above; i.e., Hm+1

i is within the interval
[2i − 2 + t · m, 2i − 1 + t · m].

We have shown above that M′(G) has interval count 4. The following lemma shows that the
above chosen intervals satisfy the properties imposed in Subsections 2.1 and 2.2 on our constructed
interval model M(G).

▶ Lemma 8. Let G be a cubic graph. Then, there exists an interval model M(G) with interval
count 4 for G = (G, πV , πE), for every ordering πV and πE of the vertex set and edge set of G,
respectively.

Proof. Denote M(G) by M. We need to prove that M satisfies the conditions of our construction,
namely:
1. For every j ∈ {1, . . . , m} and i ∈ {1, . . . , n}, link intervals L2j

i , L2j−1
i weakly intersect Hj

i to the
right and weakly intersects Hj+1

i to the left;
2. For every j ∈ {1, . . . , m} and i, i′ ∈ {1, . . . , n}, i < i′, the grained gadget Hj

i occurs strictly to
the left of Hj

i′ ;
3. For every j ∈ {1, . . . , m}, grained gadget Ej occurs strictly between the right endpoint of Hj

n

and the left endpoint of Hj+1
1 ; and

4. For every ej = vivi′ ∈ E(G), i < i′, intervals C1
j , C2

j weakly intersect Hj
i to the right and Ej to

the left, while C3
j , C4

j weakly intersect Hj
i′ to the right and strongly intersect Ej to the left.

By construction, we know that the right endpoint of Hj
i is equal to 2i − 1 + t(j − 1), which is

also equal to the left endpoints of L2j−1
i , L2j

i . Also, the left endpoint of Hj+1
i is equal to 2i − 2 + tj,

which is also equal to the right endpoints of L2j−1
i , L2j

i since t = 4n; hence Item 1 follows. As for
Item 2, just note that the right endpoint of Hj

i , which is equal to 2i − 1 + t(j − 1), is strictly smaller
than the left endpoint of Hj

i′ , which is equal to 2i′ − 2 + t(j − 1). Indeed, since i′ ≥ i + 1, we
get 2i′ − 2 ≥ 2(i + 1) − 2 = 2i > 2i − 1. Now, observe that Ej is contained in the closed interval
[2n + t(j − 1), 4n − 1

2 + t(j − 1)], that the right endpoint of Hj
n is equal to 2n − 1 + t(j − 1), and the

left endpoint of Hj+1
1 is equal to tj = 4n + t(j − 1). Item 3 thus follows. Finally, as we have seen,

the right endpoint of Hj
i is equal to 2i − 1 + t(j − 1), which is equal to the left endpoints of C1

j , C2
j ;

hence these weakly intersect Hj
i to the right. Also, the left endpoint of Ej is equal to 2n + t(j − 1),

while the right endpoint of C1
j , C2

j is equal to 2(i − 1) + 2n + t(j − 1), and all the left short intervals
of Ej are contained in the open interval [2(i − 1) + 2n + t(j − 1), 2(i′ − 1) + 2n + t(j − 1)]. Therefore
we get that C1

j , C2
j weakly intersect Ej to the left. Analogously, the right endpoint of Hj

i′ is equal to
2i′ − 1 + t(j − 1), which is equal to the left endpoints of C3

j , C4
j ; hence they weakly intersect Hj

i′ to
the right. Finally, the right endpoint of C3

j , C4
j is equal to 2(i′ − 1) + 2n + t(j − 1), and all the left

short intervals of Ej are contained in the open interval [2(i−1)+2n+ t(j −1), 2(i′ −1)+2n+ t(j −1)].
Also, the left endpoint of the right long intervals of Ej is equal to 4n − 1 + t(j − 1), which is strictly
bigger than 2(i′ − 1) + 2n + t(j − 1) since i′ ≤ n. Therefore, C3

j , C4
j strongly intersect Ej to the left,

finishing the proof of Item 4. ◀

We have just shown that, for any orderings πV and πE , there exists a model M(G) of interval
count 4, where G = (G, πV , πE). On the other hand, we prove in the remainder of this section that
any graph isomorphic to GM(G) has interval count at least 4. For this, we show that all such graphs
contain as an induced subgraph a certain graph of interval count 4, which we denote by H4. Next,
we define the family {Hk}k≥2 and prove in a more general way that ic(Hk) = k for every k ≥ 2.

Let P5 = (u1, . . . , u5) be a path on 5 vertices. For every graph H ′, we let P5 ◦ H ′ be the graph
obtained from the disjoint union of P5 with H ′ by making u3, the central vertex of P5, adjacent to
every vertex of H ′. In other words, P5 ◦ H ′ is the graph with vertex set V (P5) ∪ V (H ′) and edge
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set E(P5) ∪ E(H ′) ∪ {u3v | v ∈ V (H ′)}. Then, for every k ≥ 2, we let Hk be the graph defined
recursively as follows (see Figure 6):

H2 = K1,3;
Hk = P5 ◦ Hk−1 for k > 2.

(a) H2 = K1,3 (b) H3 = P5 ◦ H2 (c) H4 = P5 ◦ H3 (d) Hk = P5 ◦ Hk−1

Figure 6 Graph Hk for k ≥ 2.

▶ Lemma 9. For every k ≥ 2, ic(Hk) = k.

Proof. The proof is by induction on k. Since H2 = K1,3 and ic(K1,3) = 2 c.f. [25], we obtain that
the lemma holds for k = 2. As inductive hypothesis, suppose that ic(Hk′ ) = k′ for some k′ ≥ 2. We
prove that ic(Hk′+1) = k′ + 1.

First, note that, if MP5 = {I1, . . . , I5} is an interval model of a P5, with interval Ii representing
vertex ui, then the precedence relation among the intervals of I1, . . . , I5 is either that of Figure 7
(i.e., I1 precedes I3, which precedes I5, and I2 precedes I4), or the reverse of the order presented
in the figure c.f. [25]. Let M be an interval model of Hk′+1. Since Hk′+1 contains a P5 as an
induced subgraph, assume without loss of generality that M ⊃ MP5 and that, with respect to M,
I1 precedes I3, I3 precedes I5, and I2 precedes I4. This implies that

ℓ(I3) ≤ r(I2) < ℓ(I4) ≤ r(I3). (2)

By construction, the only vertex of P5 which is adjacent to the vertices of Hk′ is its central vertex
u3. Consequently, if MHk′ ⊂ M is the interval model of Hk′ , then there cannot be any intersection
between MHk′ and MP5 \ {I3}, i.e., I ′ ∩ Ii = ∅ for each I ′ ∈ MHk′ and each i ∈ {1, . . . , 5}, with
i ̸= 3. Hence, it follows from (2) that

min{ℓ(I ′) | I ′ ∈ MHk′ } > r(I2) and max{r(I ′) | I ′ ∈ MHk′ } < ℓ(I4).

Figure 7 illustrates this fact. As a result, I3 ⊃ I ′ for every I ′ ∈ MHk′ . This, along with the

Figure 7 Interval model MHk′+1 of Hk′+1.

inductive hypothesis that ic(Hk′ ) = k′, implies that ic(Hk′+1) ≥ k′ + 1. On the other hand, it is
straightforward that ic(Hk′+1) ≤ k′ + 1 (for instance, consider the model illustrated in Figure 7).
Therefore, ic(Hk′+1) = k′ + 1. ◀

Now, we finally show that GM(G) contains an H4 as an induced subgraph. Since G is cubic,
there exists an edge ej = (vi, vi′ ) ∈ E(G) such that 1 < i < i′. Let (see Figure 4):

I1 (resp. I2) be a right short (resp. long) interval of Hj
1;

I3 be the link interval L2j−1
1 ;

I4 (resp. I5) be a left long (resp. short) interval of Hj+1
1 ;

I ′
1 (resp. I ′

2) be a right short (resp. long) interval of Hj
i ;

I ′
3 be the interval C1

j ;
I ′

4 (resp. I ′
5) be a left long (resp. short) interval of Ej ;
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J1, J2 and J3 be three left short intervals of Hj
i+1; and

J be a left long interval of Hj
i+1.

The interval graph related to the model comprised by such intervals is isomorphic to H4. More
specifically, observe first that J = {J, J1, J2, J3} models K1,3. Then, notice that P = {I1, . . . , I5}
and P ′ = {I ′

1, . . . , I ′
5} model paths on 5 vertices, in this order. Finally observe that I ′

3 is adjacent to
every I ∈ J , while there are no edges between J and P ′ \ {I ′

3}; hence, J ∪ P ′ is a model for H3.
Similarly, I3 is adjacent to every I ∈ J ∪ P ′, while there are no edges between J ∪ P ′ and P \ {I3};
hence J ∪ P ′ ∪ P is a model for H4. Therefore, GM(G) has an H4 as an induced subgraph, as we
wanted to prove.

3 The interval count of Adhikary et al.’s construction

We provided in Section 2 a reduction from the MaxCut problem having as input a cubic graph G

into that of MaxCut in an interval graph G′ having ic(G′) ≤ 4. Although our reduction requires
the choice of orderings πV and πE of respectively V (G) and E(G) in order to produce the resulting
interval model, we have established that we are able to construct an interval model with interval
count 4 regardless of the particular choices for πV and πE (Lemma 8). Our reduction was based on
that of [1], strengthened in order to control the interval count of the resulting model.

This section is dedicated to discuss the interval count of the original reduction [1]. Although
the interval count was not of concern in [1], in order to contrast the reduction found there with
the one presented in this work, we investigate how interval count varies in the original reduction
considering different vertex/edge orderings. First, we establish that the original reduction yields an
interval model corresponding to a graph G′ such that ic(G′) = O( 4

√
|V (G′)|). Second, we exhibit

an example of a cubic graph G for which a choice of πV and πE yields a model M′ with interval
count Ω( 4

√
|V (G′)|), proving that this bound is tight for some choices of πV and πE . For bridgeless

cubic graphs, we are able in Lemma 10 to decrease the upper bound by a constant factor, but to the
best of our knowledge O( 4

√
|V (G′)|) is the tightest upper bound. Before we go further analysing the

interval count of the original reduction, it is worthy to note that a tight bound on the interval count
of a general interval graph G as a function of its number of vertices n is still open. It is known that
ic(G) ≤ ⌊(n + 1)/2⌋ and that there is a family of graphs G for which ic(G) = (n − 1)/3 [7, 17]. That
is, the interval count of a graph can reach Θ(n).

In the original reduction, given a cubic graph G, an interval graph G′ is defined through the
construction of one of its models M, described as follows:
1. let πV = (v1, v2, . . . , vn) and πE = (e1, e2, . . . , em) be arbitrary orderings of V (G) and E(G),

respectively;
2. for each vi ∈ V (G), ej ∈ E(G), let G(vi) and G(ej) denote respectively a (p, q)-grained gadget

and a (p′, q′)-grained gadget, where:
q = 200n3 + 1, p = 2q + 7n, and
q′ = 10n2 + 1, p′ = 2q′ + 7n;

3. for each vk ∈ V (G), insert G(vk) in M such that G(vi) is entirely to the left of G(vj) if and only
if i < j. For each ek ∈ E(G), insert G(ek) in M entirely to the right of G(vn) and such that
G(ei) is entirely to the left of G(ej) if and only if i < j;

4. for each ej = (vi, vi′ ) ∈ E(G), with i < i′, four intervals I1
i,j , I2

i,j , I1
i′,j , I2

i′,j are defined in M,
called link intervals, such that:

I1
i,j and I2

i,j (resp. I1
i′,j and I2

i′,j) are true twin intervals that weakly intersect G(vi) (resp.
G(vi′ )) to the right;
I1

i,j and I2
i,j (resp. I1

i′,j and I2
i′,j) weakly intersect (resp. strongly intersect) G(ej) to the left.

By construction, therefore, I1
i,j and I2

i,j (resp. I1
i′,j and I2

i′,j) cover all intervals in grained gadgets
associated to a vertex vℓ with ℓ > i (resp. ℓ > i′) or an edge eℓ with ℓ < j.

Note that the number of intervals in M is independent of what orderings we choose for the vertices
and edges of G and, therefore, so is the number of vertices of G′. Let n′ = |V (G′)|. Since G is cubic,
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m = 3n
2 . By construction,

n′ = n(2p + 2q) + m(2p′ + 2q′) + 4m = 1200n4 + 90n3 + 25n2 + 21n

and thus n = Θ( 4√n′). Since the set of intervals covered by any link interval depends on πV and πE ,
distinct sequences yield distinct resulting graphs G′ having distinct interval counts.

We show next that ic(G′) = O( 4√n′). Note that
the intervals of all gadgets G(vi) and G(ej) can use only two interval lengths (one for all short
intervals, another for all the long intervals);
for each ej = vivi′ ∈ E(G), with i < i′, both intervals I1

i,j and I2
i,j may be coincident in any

model, and therefore may have the same length. The same holds for both intervals I1
i′,j and I2

i′,j .
Therefore, ic(G′) ≤ 2m + 2 = 3n + 2 = Θ( 4√n′). Therefore, the NP-completeness result derived from
the original reduction in [1] can be strengthened to state that MaxCut is NP-complete for interval
graphs G having interval count O( 4

√
|V (G)|).

Second, we show that there is a resulting model M′ produced in the reduction, defined in terms
of particular orderings πV , πE for which ic(M′) = Ω( 4√n′). Consider the cubic graph G depicted in
Figure 8(a) which consists of an even cycle (v1, v2, . . . , vn) with the addition of the edges (vi, vi+ n

2
)

for all 1 ≤ i ≤ n/2. For the ordering πV = (vn, vn−1, . . . , v1) and any ordering πE of the edges
starting with the suborder (v1v2, v2v3, . . . , vnv1) (i.e. starting with the edges of the cycle), the
reduction yields a model M′ for which there is a chain I1

1,1 ⊂ I1
2,2 ⊂ · · · ⊂ I1

n,n of nested intervals
(see Figure 8(b)), which shows that ic(M′) ≥ n, and thus ic(M′) = Ω( 4√n′).

(a) (b)

Figure 8 (a) A cubic graph G, and (b) a chain of nested intervals in the model M′.

It can be argued from the proof of NP-completeness for MaxCut when restricted to cubic
graphs [2] that the constructed cubic graph may be assumed to have no bridges. This fact was not
used in the original reduction of [1]. In an attempt to obtain a model M having fewer lengths for
bridgeless cubic graphs, we have derived Lemma 10. Although the number of lengths in this new
upper bound has decreased by the constant factor of 4/9, it is still Θ(n) = Θ( 4√n′).

▶ Lemma 10. Let G be a cubic bridgeless graph with n = |V (G)|. There exist particular orderings
πV of V (G) and πE of E(G) such that:
1. there is a resulting model M produced in the original reduction of MaxCut such that ic(M) ≤

4n
3 + 3.

2. for all such resulting models M, we have that ic(M) ≥ 5 if G is not a Hamiltonian graph.

Proof. Let G be a cubic bridgeless graph with V (G) = {v1, v2, . . . , vn}. By Petersen’s theorem,
every cubic bridgeless graph contains a perfect matching, so G admits a perfect matching M . Let
H = G \ M . Therefore, H is 2-regular and, therefore, H consists of a disjoint union of cycles
C1, C2, . . . , Ck, for some k ≥ 1. For all 1 ≤ i ≤ k, let πi

V = vi
1, vi

2, . . . , vi
ki

be an ordering of the
vertices of Ci, with ki = |Ci|, such that (vi

j , vi
j+1) ∈ E(Ci) for all 1 ≤ j ≤ ki, where vi

ki+1 = vi
1.

Let πi
E be the ordering (vi

1, vi
2), (vi

2, vi
3), . . . , (vi

ki−1, vi
ki

), (vi
1, vi

ki
) for all 1 ≤ i ≤ k. Let πM be any

ordering of the edges of M such that (vi, vr) < (vj , vs) in πM only if vi < vj in πV . Finally, let πV

be the ordering of V (G) obtained from the concatenation of the orderings π1
V , π2

V , . . . , πk
V , and πE

be the ordering of E(G) obtained from the concatenation of the orderings π1
E , π2

E , . . . , πk
E , πM .

In order to prove (2.), assume G is not a Hamiltonian graph. Therefore k > 1. Observe that
there is the following chain of nested intervals I1 ⊂ I2 ⊂ I3 ⊂ I4 ⊂ I5, where



C. M. H. de Figueiredo et al. XX:17

I1 is the leftmost interval in RS(G(v2
3)),

I2 is an interval in RL(G(v2
3)),

I3 is a link interval corresponding to both G(v2
2) and G(v2

1v2
2),

I4 is a link interval corresponding to both G(v2
1) and G(v2

1v2
k2 ), and

I5 is a link interval corresponding to both G(v1
1) and G(e), where e is the edge of M incident to

v1
1 ,

since ℓ(I5) < ℓ(I4) < ℓ(I3) < ℓ(I2) < ℓ(I1) < r(I1) < r(I2) < r(I3) < r(I4) < r(I5). Thus, for all
such resulting models M, we have that ic(M) ≥ 5.

In order to prove (1.), we show that there exists an interval model M, produced by the original
reduction of MaxCut considering orderings πV and πE , such that ic(M) ≤ 4n

3 +3, where n = |V (G)|.
Let L1 be the set of all link intervals of the grained gadgets corresponding to edges of M , that is,
L1 = {I1

i,k, I2
i,k, I1

j,k, I2
j,k : ek = (i, j) ∈ M}. Moreover, let L2 be the set of all link intervals of the

grained gadgets corresponding to the edges (vi
1, vi

ki
) of Ci and the vertex vi

1 for all 1 ≤ i ≤ k, that
is, Note that |L2| = k ≤ n/3 and |L1| = 4 · |M | = 2n. Let L = L1 ∪ L2. Let M′ = M \ L. We claim
that ic(M′) ≤ 3. Since each pair of true twins I1

j,k, I2
j,k and I1

i,k, I2
i,k in L1 can have the same length

in M, it follows from this claim that ic(M) ≤ |L1| + |L2|
2 + ic(M′) ≤ n

3 + n + 3 = 4n
3 + 3, holding

the result. It remains to show that the claim indeed holds.
To prove the claim, let M′′ be the interval model obtained from M′ by removing all intervals

corresponding to the grained gadgets (or, in other words, by keeping only the intervals corresponding
to link intervals). It is easily seen that M′′ is a proper interval model, that is, no interval is properly
contained in another. Therefore, the interval graph corresponding to M′′ is a proper interval graph
and M′′ can be modified so that their intervals have all a single length. Since it is possible to bring
all grained gadgets back to M′′ using two more lengths, we have that ic(M′) ≤ 3, as claimed. ◀

As a concluding remark, we note that the interval count of the interval model M produced in
the original reduction is highly dependent on the assumed orderings of V (G) and E(G), and may
achieve ic(M) = Ω( 4√n′). The model M′ produced in our reduction enforces that ic(M′) = 4 which
is invariant for any such orderings. On the perspective of the recognition problem for interval graphs
with interval count k, with fixed k ≥ 2, for which very little is known, our NP-completeness result
on a class of bounded interval count graphs is also of interest.
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