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Abstract

Let K and L be two convex bodies in Rn, n ≥ 2, with L ⊂ intK. We say that
L is an equichordal body for K if every chord of K tangent to L has length equal
to a given fixed value λ. In [1], J. Barker and D. Larman proved that if L is a
ball, then K is a ball concentric with L. In this paper we prove, derived from the
proof of Theorem 1, that there exist an infinite number of closed curves, different
from circles, which possess an equichordal convex body. If the dimension of the
space is more than or equal to 3, then only Euclidean balls possess an equichordal
convex body. We also prove some results about isoptic curves and give relations
between isoptic curves and convex rotors in the plane.

1 Introduction

Let K be a convex body in the plane, i.e., a compact and convex set with non-empty
interior, and let P be a convex polygon. It is said that K is a rotor in P if for every
rotation ρ, there is a translate of P that contains to ρ(K) and all sides of P are tangent
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to K. There are many results about rotors in regular polygons, see for instance [6], and
for the particular case of rotors in equilateral triangles see [21]. The case of rotors in
squares is well-known, indeed, bodies of constant width are a very important topic in
Convex Geometry and have many interesting properties and applications in mechanisms
(see the quite nice book [13]).

Another topic, apparently not related to rotors, is the Equichordal Problem. Let x be
a point in the interior of a convex body K, we say that x is an equichordal point if
every chord of K through x have the same length. The famous Equichordal Problem,
due to W. Blaschke, W. Rothe, and R. Weitzenböck [2], asks about the existence of a
convex body with two equichordal points. There are many false proofs about the non
existence of such a body, however, M. Rychlik finally gave a complete proof about the
non existence of a body with two equichordal points in [16]. It is worth mentioning
that there are many convex bodies, different from the disc, which have exactly one
equichordal point. Here we are interested in a generalization of the notion of equichordal
point in the following way: Let K and L be two convex bodies in Rn, n ≥ 2, with
L ⊂ intK. We say that L is an equichordal body for K if every chord of K tangent to
L have length equal to a given fixed value λ. In [1], J. Barker and D. Larman proved
that if K is a convex body that possesses an equichordal ball then it is also a ball.
However, we wonder if there exist convex bodies different from balls which possess an
equichordal convex body in its interior. It seems that bodies which float in equilibrium
in every position provide examples of such bodies in the plane (see for instance [20]),
however, it is not clear if the considered bodies K are convex or not.

In sections 3 and 4 of this paper we study convex bodies L for which the chords of
one of its isoptic curves (defined in the following section), that are tangent to L have
length equal to a constant number λ. Moreover, these bodies L are examples of rotors
in regular polygons and if we fix the convex body L and the circumscribed polygon is
rotated, while maintained circumscribed to K, its vertices describe the isoptic curve of
L. In section 6 we also prove that in dimension 3 or higher, only Euclidean balls (or
simply balls) possess and equichordal convex body in its interior.

2 Preliminary concepts

We give first some definitions and notation. Let K be a given planar convex body;
for every real number t we denote by `(t) the support line of K with outward normal
vector u(t) = (cos t, sin t). The function p : R −→ R, defined as p(t) = maxx∈K〈u(t), x〉,
is known by the name of support function of K. When the origin O is contained in
K, p(t) is nothing else than the distance from O to the support line `(t). The distance
between the support lines `(t) and `(t + π) is called the width of K in direction u(t)
and it is denoted by w(t), in other words, w(t) = p(t) + p(t + π). If w(t) is constant,
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independently of t, we say that K is a body of constant width. For any α ∈ (0, π),
the α-isoptic Kα of K is defined as the locus of points at which two tangent lines to
K intersect at an angle α. Using the support function, ∂K is parameterized (see for
instance [19]) by

γ(t) = p(t)u(t) + p′(t)u′(t), for t ∈ [0, 2π]. (1)

The isoptic curve Kα can be parameterized by the same angle by the formula (see [4]
or [10])

γα(t) = p(t)u(t) +

ï
p(t) cotα +

1

sinα
p(t+ π − α)

ò
u′(t). (2)

By Cauchy’s formula, the perimeter of K can be obtained by (see [19])

L(K) =

∫ 2π

0

p(t)dt. (3)

For any t ∈ R we define (see Fig. 1)

a(t) = |γα(t)− γ(t)|, (4)

b(t) = |γα(t)− γ(t+ π − α)|, (5)

c(t) = |γα(t)− γα(t+ π − α)| = b(t) + a(t+ π − α), (6)

q(t) = |γ(t)− γ(t+ π − α)|, (7)

λ(t) = |γα(t+ π − α)− γα(t− π + α)|. (8)

We also define d(t) to be the distance between the points obtained by projecting the
origin O onto the support lines of K at γ(t) and γ(t+ π − α).
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Figure 1: Parameters of the isoptic curve

By some tedious but simple calculations we can express the lengths of all these chords
in terms of the support function of K:

a(t) =
1

sinα
[p(t+ π − α) + p(t) cosα− p′(t) sinα], (9)

b(t) =
1

sinα
[p(t+ π − α) cosα + p′(t+ π − α) sinα + p(t)], (10)

c(t) =
1

sinα
[2p(t+ π − α) cosα + p(t) + p(t− 2α)], (11)

d(t) =
»
p2(t) + p2(t+ π − α) + 2p(t)p(t+ π − α) cosα. (12)

Finally, the support function of a convex body is a periodic function, with period 2π,
and it is also absolutely continuous, so we can consider its expansion in terms of the
Fourier series (see [6]), i.e.,

p(t) = a0 +
∞∑
n=1

(an cosnt+ bn sinnt) . (13)
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The first and second derivatives of p are expressed as

p′(t) = −
∞∑
n=1

(nan sinnt− nbn cosnt) , (14)

p′′(t) = −n2

∞∑
n=1

(an cosnt+ bn sinnt) . (15)

3 Some results about isoptic curves in the plane

Our first result about isoptic chords is the following.

Theorem 1. Let K be a strictly convex body in the plane with differentiable boundary
and let α ∈ (0, π) be a fixed angle such that α

π
is an irrational number. Suppose c(t) = c0,

for every t ∈ [0, 2π], for a positive number c0. Then K is a disc.

Proof. Since c(t) = c0 we have by (11) that

c(t) =
1

sinα
[2p(t+ π − α) cosα + p(t) + p(t− 2α)] = c0,

it follows that
2p′(t+ π − α) cosα + p′(t) + p′(t− 2α) = 0. (16)

If we substitute the Fourier coefficients of p(t) in the differential equation (16), by (14)
we have

2 cosα
∞∑
n=1

(nbn cosn(t+ π − α)− nan sinn(t+ π − α))

+
∞∑
n=1

(nbn cosnt− nan sinnt)

+
∞∑
n=1

(nbn cosn(t− 2α)− nan sinn(t− 2α)) = 0.

Since this holds for every real number t, we must have that for every n

cosnt[−2nan sinn(π − α) cosα + nan sin 2nα + 2nbn cosn(π − α) cosα

+ nbn + nbn cos 2nα] + sinnt[−2nan cosn(π − α) cosα− nan − nan cos 2nα

− 2nbn sinn(π − α) cosα + nbn sin 2nα] = 0.

The coefficients of cosnt and sinnt must be both equal to 0, hence we have thatï
−2 sinn(π − α) cosα + sin 2nα 2 cosn(π − α) cosα + 1 + cos 2nα
−2 cosn(π − α) cosα− 1− cos 2nα −2 sinn(π − α) cosα + sin 2nα

ò ï
an
bn

ò
=

ï
0
0

ò
.
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The determinant of the matrix above is given by

(−2 sinn(π − α) cosα + sin 2nα)2 + (2 cosn(π − α) cosα + 1 + cos 2nα)2.

This determinant is zero only if

− 2 sinn(π − α) cosα + sin 2nα = 0 (17)

and
2 cosn(π − α) cosα + 1 + cos 2nα = 0. (18)

Since α ∈ (0, π), for every n ≥ 2 we have that none of (17) and (18) are satisfied if
α
π

is an irrational number. Hence, we have that the determinant is non zero and then
an = bn = 0 for every n ≥ 2. It follows that p(t) = a0 + a1 cos t + b1 sin t, i.e., p is the
support function of a disc (see for instance [19]). �

Remark 1. If α
π

is a rational number, then there exist convex bodies K different from
discs for which c(t) is constant. For instance: for the angles α1 = π

5
and α2 = 3π

5
let

K be the convex body whose support function is given by p(t) = 60 + cos 5t + sin 5t
(see Fig. 2). In this case the isoptic curves Kα1 and Kα2 have the property that its
chords tangent to K have constant values c1 and c2, respectively, with c1

c2
= 1

2−τ , where

τ = 1+
√
5

2
. Moreover, Kα1 is homothetic to Kα2 with ratio of homothety equal to − 1

2−τ .

Figure 2: A convex body with two isoptics with corresponding values of c(t) both of
constant value for the angles α1 = π

5
and α2 = 3π

5
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However, if we impose the additional condition that q(t) is also constant, then K must
be a disc.

Theorem 2. Let K be a strictly convex body in the plane with differentiable boundary
∂K, and let α ∈ (0, π) be a fixed angle. Suppose c(t) = c0, and q(t) = q0, for every
t ∈ [0, 2π], and for two positive numbers c0 and q0. Then K is a disc.

Proof. By some simple calculations we have that |γ′α(t)| = q(t)
sinα

(see for instance [4]).
Since c(t) = c0 is also constant, we have

d

dt
(|γα(t+ π − α)− γα(t)|2) =

d

dt
(〈γα(t+ π − α)− γα(t), γα(t+ π − α)− γα(t)〉) = 0,

hence

〈γα(t+ π − α)− γα(t), γ′α(t+ π − α)〉 = 〈γα(t+ π − α)− γα(t), γ′α(t)〉.

It follows that
c0 · |γ′α(t+ π − α)| cos β1 = c0 · |γ′α(t)| cos β2,

which implies that β1 = β2, where β1 is the angle between the vectors γα(t+π−α)−γα(t)
and γ′α(t + π − α), and β2 is the angle between the vectors γα(t + π − α) − γα(t) and
γ′α(t). It follows that the angle between the chord [γα(t+π−α), γα(t)] and the tangent
lines at γα(t) and γα(t + π − α), are equal (see Fig. 3). Similarly, we obtain that
the angles between the chord [γα(t − π + α), γα(t)] and the tangent lines at γα(t) and
γα(t − π + α), are equal. Since the length of the tangent vector γ′α(t) is constant for
every t, and all the triangles 4γα(t− π + α)γα(t)γα(t+ π − α) are congruent, we also
have that the angles between the chord [γα(t− π + α), γα(t + π − α)] and the tangent
lines at γα(t + π − α) and γα(t − π + α), are equal. By elementary geometry we have
that the circle circumscribed to 4γα(t − π + α)γα(t)γα(t + π − α) and the body Kα,
share the tangent lines at the points γα(t − π + α), γα(t), and γα(t + π − α); under
this condition it was proved in Lemma 3.3 in [8] that Kα must be a disc. Now we use
Theorem 2 (b) in [9] and conclude that K is a disc. �
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Figure 3: The angle between the chord [γα(t+ π − α), γα(t)] and the tangent lines are
equal

Let h(t) denote the length of the segment from γα(t) to the projection of O into the
support line of K at γ(t). It is easy to show that

h(t) =
1

sinα
[p(t) cosα + p(t+ π − α)]. (19)

Figure 4: The value of h(t) is constant
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We have the following result.

Theorem 3. Let K be a strictly convex body in the plane with differentiable boundary
and let α ∈ (0, π) be a fixed angle. Suppose h(t) = h0, for every t ∈ [0, 2π], for a
positive number h0. Then K is a disc.

Proof. By (19) we have that

p′(t) cosα + p′(t+ π − α) = 0. (20)

Using the expansion in Fourier series for p′(t) (see equation (14)) we have that

∞∑
n=1

(nbn cosnt cosα− nan sinnt cosα+ nbn cosn(t+ π−α)− nan sinn(t+ π−α)) = 0.

Using trigonometric identities and simplifying we conclude that for all n and for all
t ∈ [0, 2π] we must have

0 = [−n sinn(π − α)an + (n cosα + n cosn(π − α))bn] cosnt

+ [(−n cosα− n cosn(π − α))an − n sinn(π − α)bn] sinnt.

This yields to the system of equationsï
−n sinn(π − α) n cosα + n cosn(π − α)

−n cosα− n cosn(π − α) −n sinn(π − α)

ò ï
an
bn

ò
=

ï
0
0

ò
.

Notice that the determinant of the matrix above is given by

n2 sin2 n(π − α) + n2(cosα + cosn(π − α))2.

This determinant is never zero, for if sinn(π − α) = 0, then n(π − α) = kπ, for some
integer k. Nonetheless, in this case cosn(π − α) = (−1)k and since α ∈ (0, π), it is
impossible to have cosα + cosn(π − α) = 0. It follows that the only solutions for the
system of equations is an = bn = 0 for all n. Thus, the solutions of the differential
equation (20) are constant functions and K must be a disc centred at O. �

Theorem 4. Let K be a strictly convex body in the plane and let α ∈ (0, π) be a fixed
angle. Suppose λ(t) = λ0, for every t ∈ [0, 2π], for a positive number λ0, and K has
rotational symmetry of angle π − α or 2α. Then Kα is a circle.

Proof. The vector ν(t) = γα(t + π − α) − γα(t − π + α) can be expressed using the
parametrization given in (2) by

ν(t) = [2p(t+ π − α) cosα + p(t− 2α) + p(t)]u(t)

+
1

sinα
[p(t+ π − α) cos 2α− p(t− π + α) + p(t− 2α) cosα− p(t) cosα]u′(t).
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If K has rotational symmetry of angle π − α or 2α we have that

ν(t) = [2p(t+ π − α) cosα + 2p(t)]u(t)

+
1

sinα
[p(t+ π − α) cos 2α− p(t− π + α)]u′(t),

or equivalently

ν(t) = [2p(t+ π − α) cosα + 2p(t)]u(t) + [p(t+ π − α)(−2 sinα)]u′(t).

In this case |ν(t)|2 = λ2(t) can be easily calculated as

λ20 = 4[p2(t+ π − α) + p2(t) + 2p(t+ π − α)p(t) cosα],

hence
λ20
4

= p2(t+ π − α) + p2(t)− 2p(t+ π − α)p(t) cos(π − α) = d(t)2,

i.e., the value of d(t) = λ0
2
.

Figure 5: The value of d(t) is constant

Let x(t) and y(t) be the projections of O into the support lines of K at γ(t) and
γ(t + π − α), respectively (see Fig. 5). The quadrilateral Ox(t)γα(t)y(t) is cyclic, i.e.,

there exist a circle which passes through its four vertices, hence |γα(t) − O| = d(t)
sinα

=
λ0

2 sinα
. It follows that Kα is a circle centred at O. �
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4 Some comments about rotors in the plane

In this section we give some words about how the results obtained in this work are
related to rotors in polygons. Moreover, in all the examples shown below, if we fix the
convex body and the circumscribed polygon is rotated, while maintained circumscribed
to K, the vertices describe a isoptic of K.

When c(t) has constant value, using the Fourier series for the support function of p in
the proof of theorem 1 we arrived to the equations

−2 sinn(π − α) cosα + sin 2nα = 0

and
2 cosn(π − α) cosα + 1 + cos 2nα = 0.

If n is even, then
sinnα(cosnα + cosα) = 0

and
cosnα(cosnα + cosα) = 0.

Both of them are zero if cosnα+cosα = 0, or after some trigonometric transformations

cos
(nα + α

2

)
cos
(nα− α

2

)
= 0.

It follows that α =
Ä
2r+1
n+1

ä
π or α =

Ä
2r+1
n−1

ä
π, where r is any integer number. In this

case the determinant of the associated matrix is zero and we can choose the coefficients
an, bn, arbitrarily. For instance, for n = 4 we select α = π

3
, a0 = 30, a4 = 0, b4 = 1, and

for any other natural number n we have that an = bn = 0, i.e., the support function of
K is p(t) = 30+sin 4t (see Fig. 6). The body K in this example is centrally symmetric.

Figure 6: A centrally symmetric rotor in the equilateral triangle
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If n is odd, then
sinnα(cosnα− cosα) = 0

and
cosnα(cosnα− cosα) = 0.

Both of them are zero if cosnα−cosα = 0, or after some trigonometric transformations

sin
(nα + α

2

)
sin
(nα− α

2

)
= 0.

It follows that α =
Ä

2r
n+1

ä
π or α =

Ä
2r
n−1

ä
π, where r is any integer number. Notice

that we can obtain an example for any angle of the form α = s
q
π, where s and q are

integers such that 0 < s < q. We just use this case, since α = 2s
2q
π, we select r = s and

n = 2q + 1 or n = 2q − 1. For instance, for α = 2π
3
π = 4π

6
π, and then we select n = 7.

In Fig. 7 we show the body K with its isoptic K2π/3, with the property that c(t) has a
constant value. The support function for this example is p(t) = 80 + cos 7t. The body
in this example has constant width.

Figure 7: A rotor with constant width in the regular hexagon

The example shown in Fig. 8 has coefficients different from zero for n = 4 and n = 5,
consequently, the body K obtained is neither of constant width or centrally symmetric.
The support function of K is p(t) = 70 + sin 4t+ cos 5t.
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Figure 8: A rotor in the equilateral triangle, which is neither of constant width nor
centrally symmetric

Finally, we give an example of a rotor in the square. The support function is p(t) =
60 + cos 5t.

Figure 9: A rotor for the square
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5 An inequality about the length of some special

chords

The following inequality and characterization of the disc, in terms of the length q(t),
was proved in [7].

Theorem JY. Let K be a strictly convex body in the plane with minimal width ω0. For
any fixed α ∈ (0, π) there exists at least one value of the parameter t, t(α) ∈ [0, 2π], such
that q(t(α)) ≥ ω0 cos α

2
. Moreover, if there is not such a chord with length exceeding

ω0 cos α
2
, then K is a disc.

Here we prove the following similar result.

Theorem 5. Let K be a convex body in the plane with minimal width ω0. For any
fixed α ∈ (0, π) there exists at least one value of the parameter t, t(α) ∈ [0, 2π], such
that λ(t(α)) ≥ 2ω0 cos α

2
. Moreover, if there is not such a chord with length exceeding

2ω0 cos α
2

, then K is a convex body of constant width ω0.

Proof. The mean value of the chords of Kα that are tangent to K is

c(t) =
1

2π sinα

∫ 2π

0

[2p(t+ π − α) cosα + p(t) + p(t− 2α)]dt,

=
1

2π sinα
[2L(K) cosα + 2L(K)], (using Cauchy’s formula (3))

=
cot α

2

π
L(K).

Indeed, by the same argument, the mean value of c(t) + c(t− π + α) is

c(t) + c(t− π + α) =
2 cot α

2

π
L(K).

Let t ∈ [0, 2π] be any number and consider the triangle with sides of length c(t),
c(t− π + α), λ(t), and angle α, as shown in Fig. 10. By Problem C4 in the book by I.
Niven [15], we have that the minimum of λ(t), among all triangles with a fixed angle α
and the sum c(t) + c(t− π + α) = c0, for a constant number c0, is obtained if and only
if c(t) = c(t− π + α) = c0/2. It follows that for every t ∈ [0, 2π] it holds that

λ(t) ≥ [c(t) + c(t− π + α)] sin
α

2
,

with equality if and only if c(t) = c(t − π + α). Let t0 ∈ [0, 2π] be such that c(t0) +
c(t0 − π + α) = c(t) + c(t− π + α), we have that

λ(t0) ≥ [c(t0) + c(t0 − π + α)] sin
α

2
=

2 cos α
2

π
L(K). (21)
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Figure 10: The minimum of λ(t) is when c(t) = c(t− π + α)

Using Cauchy’s formula for the perimeter of K we can also prove that L(K) ≥ πω0,
with equality if and only K is a body of constant width ω0. Hence λ(t0) ≥ 2ω0 cos α

2
.

Now, if there is no chord with λ(t) > 2ω0 cos α
2
, then λ(t0) = 2ω0 cos α

2
, which by (21)

implies that L(K) = πω0, i.e., K must be a body of constant width ω0 (see Fig. 11). �

Figure 11: A convex body with λ(t) = 2ω0 cos α
2

for every t

6 Some results in higher dimensions

The following lemma is needed for some of the subsequent results.

Lemma 1. Let K,L ⊂ Rn, n ≥ 3, be convex bodies with L ⊂ intK, such that every
(n − 1)-dimensional section of K tangent to L is an (n − 1)-dimensional ball, then K

15



is a ball. If additionally, the centre of every tangent ball is at the point of contact with
L, then K and L are concentric balls.

Proof. There are several ways to prove this lemma. Here we give the following proof.
First note that if all the 3-dimensional sections of a convex body through a given point
in its interior are 3-dimensional balls, then it is an n-dimensional ball. We consider
any point in the interior of L for such a point and since the hypothesis of the theorem
is inheritated to every 3-dimensional section, we have that it is sufficient to prove the
theorem in the 3-dimensional case.

Let x be any point in ∂K and let ` be any line supporting K at x. Consider the two
support planes of L which share the line `, to say H1 and H2. Let H be any other
support plane of L through the point x. By hypothesis H ∩K is a disc which intersects
each one of the circles H1 ∩ ∂K and H2 ∩ ∂K at two points. The circle H ∩ ∂K
passes through three points of the set (H1 ∩ ∂K) ∪ (H2 ∩ ∂K), and since there is a
unique sphere which contains the two circles H1 ∩ ∂K and H2 ∩ ∂K, it holds that this
sphere contains H ∩ ∂K. Since H is any support plane of L through x, we have that
Rx = {H ∩ ∂K : H is a support plane of L through x} is a closed subset of a sphere.
Let y ∈ ∂K be any point such that Ry ∩ Rx 6= ∅, then Ry ∪ Rx is contained in the
same sphere. Continuing in this way, since K is a compact set, we can prove that ∂K
is a sphere.

Now, let H be any hyperplane supporting L at a point z and suppose the centre of
the (n − 1)-dimensional ball H ∩ K is z. The line orthogonal to H through z passes
through the centre of the ball K, this implies that indeed H is the tangent plane of L
through z, i.e., ∂K is a differentiable surface. We have that all the normal lines of ∂L
passes through the centre of K, this implies (see for instance [18]) that ∂L is a sphere
with centre at the centre of K. We conclude that K and L are concentric balls. �

Let β = π − α. In [5], J. W. Green proved that K is a Euclidean disc if Kα is a circle
and any of the following conditions hold: β is an irrational multiple of π, or β = 2m

n
π,

with 2m and n relatively prime integer numbers. On the other side, M.S. Klamkin
conjectured [11] and J. Nitsche proved [14] that two different values α1, α2, such that
Kα1 and Kα2 are circles, are enough to prove that K is a Euclidean disc. A similar
result was proved by Á. Kurusa and T. Ódor in [12] in Rn, n ≥ 3, where the isoptic
surface is defined using the solid angle under which is seen a convex body K. They
proved that if two isoptic surfaces of a given convex body are concentric spheres, then
it is a ball. The following is a variant of this kind of results.

Theorem 6. Let K ⊂ R3 be a strictly convex body contained in the interior of a sphere
S. Suppose that for every 2-dimensional plane H, with H ∩K 6= ∅, it holds that H ∩S
is a isoptic curve of H ∩K. Then K is a ball concentric with S.
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Proof. We first observe the following: If for some angle α ∈ (0, π) the α-isoptic curve
of a planar body M is a circle S, then its centre x belongs to M . Suppose this is not
the case. Let y ∈ M be the point which is closest to x. Let z ∈ S be the point where
the ray −→xy intersects to S and let z′ be the point in S such that [z, z′] is a diameter. Let
` be the line through x which is orthogonal to [z, z′]. The central projection of M into
the line ` is a segment [a, b] that contains the centre x. The angle formed by the lines
z′a and z′b contains M , however, at least one of the lines z′a or z′b does not intersect
M . Since the angles ]azb and ]az′b are equal, we obtain that the angles under which
M is seen from the points z and z′ are not equal. This contradicts that S is the isoptic
curve of angle α of M . Hence, we have that x belongs to M .

Figure 12: The centre x belong to M

Now let q ∈ ∂K be any arbitrary point and let Hq be a plane supporting K at q. By
hypothesis we have that Hq ∩ S is a circle; we are going to prove that its centre is q.
Consider a sequence of planes {Hr} parallel to Hq in such a way that the sequence
converges to Hq. Let xr be the centre of the circle Hr ∩ S, for every natural number
r. By the comment above, we have that xr ∈ Hr ∩ K, for every r ∈ N, and since
Hr ∩ K −→ Hq ∩ K = q we have that xr −→ q when r −→ ∞. In other words, the
centre of Hq ∩S is q. Now we apply Lemma 1 and conclude that K is a ball concentric
with S. �

The following result shows that in dimension 3 or higher, only Euclidean balls have an
equichordal convex body.

Theorem 7. Let K ⊂ Rn, n ≥ 3, be a strictly convex body which possesses an equi-
chordal convex body L in its interior. Then K and L are concentric balls.

Proof. Suppose the length of the chords of K tangent to L is λ. First we prove that
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L is strictly convex, i.e., L has not segments in its boundary. Suppose to the contrary
that there is a segment [a, b] ⊂ ∂L and consider any 2-dimensional plane H supporting
L at [a, b]. By hypothesis, every chord of H ∩K through a has length λ, and the same
happens for every chord through b. This implies that H∩K has two equichordal points,
but as were proved by M. R. Rychlik [16] this is not possible.

Now, let H be any 2-dimensional plane supporting L at a point x. We will prove that
the diameter of H ∩K is λ. Suppose this is not the case and there is a chord [a, b] of
H ∩K with |a− b| > λ. Clearly, [a, b] ∩ L = ∅. Consider a 2-dimensional plane Π that
contains to [a, b] and such that Π ∩ intL 6= ∅. Let c, d ∈ ∂(Π ∩ L) such that the lines
through c and d, respectively, that are parallel to [a, b] are support lines of Π∩L. Since
|a− b| > λ, we have that there exist a chord [e, f ] of Π∩K that is separated from Π∩L
by the chord [a, b] and |e− f | = λ. We have three chords of Π∩K parallel to [a, b] and
with length λ. This contradicts that K is strictly convex, then the diameter of H ∩K
must be λ.

Every chord of H ∩ K through x has length equal to λ, then every chord of H ∩ K
through x is a binormal of H ∩ K; it follows that H ∩ K is a disc centred at x (see
for instance [3]). Since this is true for every 2-dimensional plane H through x, we have
that any (n− 1)-dimensional section of K tangent to L at x is an (n− 1)-dimensional
sphere centred at x. This is also true for every x ∈ ∂L, so we apply Lemma 1 and
conclude that K and L are concentric balls. �

Corollary 1. Let K,L ⊂ Rn, n ≥ 3, be two convex bodies. Suppose that for every
hyperplane H that intersects to L it holds that H ∩L is an equichordal body of H ∩K.
Then K and L are concentric balls.

Proof. It is quite simple to prove that all the chords of K tangent to L have the same
length. The conclusion follows applying Theorem 7. �

Suppose now that K is a strictly convex body in R3. For z1, z2 ∈ ∂K, we will say
that the segment [z1, z2] is an α-chord of K, if there exist tangent planes at z1 and z2
meeting at an angle α. We present the following analogue to Theorem JY.

Theorem 8. Let K be a strictly convex body in R3 with boundary of class C1 and with
minimal width ω0. For any fixed α ∈ (0, π) there exists an α-chord of K with length at
least ω0 cos α

2
. Moreover, if there is not an α-chord with length exceeding ω0 cos α

2
, then

K is a ball.

Proof. Let u0 ∈ S2 be a direction such that the width of K in this direction has minimal
value ω0. Let υ ∈ S2 be a vector orthogonal to u0 and let’s denote the orthogonal
projection on the plane υ⊥ by πυ. Clearly, the minimum width of K ′ = πυ(K) is also
ω0 and every α-chord of K ′ is obtained as the projection of some α-chord of K. By
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Theorem JY there is an α-chord of K ′ with length at least ω0 cos α
2

and so there is an
α-chord of K with length larger than or equal to ω0 cos α

2
.

Suppose now that all the α-chords of K have length less than or equal to ω0 cos α
2
. Then

all the α-chords of πυ(K), for every υ ∈ S2, have length less than or equal to ω0 cos α
2
.

It follows from Theorem JY that πυ(K) is a disc. Since υ is an arbitrary direction, we
have that every 2-dimensional projection of K is a disc and therefore K is a ball. �

Theorem 9. Let K be a strictly convex body in R3 with boundary of class C1 and with
π
2
-chords of constant length λ, then K is a ball.

Proof. For any point z ∈ ∂K, let Hz denote the tangent plane of K at z and let
Az = {w ∈ ∂K : [z, w] is an π

2
-chord of K}. For each point w in Az, we have that Hw

intersects Hz with angle π
2
. Let z, z′ ∈ ∂K be two points such that [z, z′] is normal to

Hz and Hz′ . For every w ∈ Az, the triangle ∆zz′w is isosceles with sides [z, w] and
[z′, w] of equal length. Then Az is a circle centred at (z+z′)/2. Moreover, given any two
antipodal points z1 and z′1 of Az, the segment [z1, z

′
1] must be orthogonal to the planes

Hz1 and Hz′1
. By repeating the previous argument to each pair of antipodal points of

Az, we have that any section of K containing [z, z′] is a disc. This implies that K is a
ball. �
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[12] Á. Kurusa, and T. Ódor. Isoptic characterization of spheres, J. Geom. 106 (2015),
63− 73.

[13] H. Martini, L. Montejano, D. Oliveros. Bodies of Constant Width: An Introduction
to Convex Geometry with Applications, Birkhäuser, (2019).
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