
MONOTONE PATHS ON CROSS-POLYTOPES

ALEXANDER E. BLACK AND JESÚS A. DE LOERA

Abstract. In the early 1990’s, Billera and Sturmfels introduced the monotone path polytope (MPP),
a special case of the general theory of fiber polytopes that associates a polytope to a pair (P, ϕ) of
a polytope P and linear functional ϕ. In that same paper, they showed that MPPs of simplices and
hyper-cubes are combinatorial cubes and permutahedra respectively. Their work has lead to many
developments in combinatorics. Here we investigate the monotone paths for generic orientations of
cross-polytopes. We show the face lattice of its MPP is isomorphic to the lattice of intervals in the sign
poset from oriented matroid theory. We look at its f -vector, its realizations, and facets.

1. Introduction

In their seminal paper [5], Billera and Sturmfels developed a construction that, given a projection of
polytopes, associates a new polytope to that projection called the fiber polytope (see the books [10, 23]
for an introduction). Fiber polytopes have rich combinatorial structure as demonstrated by the fact
that associahedra, permutahedra, cyclohedra, and other combinatorial polytopes are all fiber polytopes
of canonical projections [4, 8, 10, 14, 19, 20]. Fiber polytopes are of great importance beyond algebraic
and geometric combinatorics too (see for example the connections to algebraic geometry in [13, 18, 22]
and recently to theoretical physics through total positivity in [2, 12]).

Fiber polytopes extract complicated combinatorial structure even from one-dimensional projections.
The fiber polytopes of one-dimensional projections are called monotone path polytopes (MPPs), since
they are each the convex hull of all average values of monotone paths on the polytope. The MPPs of
simplices for generic linear functionals are combinatorial hyper-cubes, and the MPPs of hyper-cubes for
generic linear functionals are always permutahedra [5]. Few examples of MPPs or fiber polytopes in
general beyond these special cases are known, which makes studying them difficult. In this note, we
develop a new, natural class of examples in depth: the MPPs of cross-polytopes for generic orientation.

To compute the combinatorial type of monotone path polytopes, it suffices to understand the poset
of cellular strings or Baues poset (see [19]). Cellular strings generalize monotone paths in the sense
that monotone paths are increasing sequences of edges, and cellular strings are increasing sequences of
faces. The face lattice of a MPP of �n is isomorphic to the poset of coherent cellular strings contained
within the Baues poset. Coherence is a geometric restriction that we will make precise in Section 2; it
intuitively means that there is a projection of the polytope to a polygon built using the linear functional
that takes the cells in the string to the lower edges of that polygon. For any hyper-cube, simplex, and
any edge generic orientation, all cellular strings are coherent as stated in [5]. The cellular strings of the
simplex correspond to intervals [A,B] in the poset of subsets of [n− 2], where A is the set of endpoints
of the string, and B is the set of all vertices that appear anywhere in the string. However, for general
polytopes, not all monotone paths are coherent, and the characterization of the coherent paths often
leads to interesting combinatorics such as in the cases discussed in [3, 11, 17].

In this paper, we study the monotone paths and the cellular strings of the standard n-dimensional
cross-polytope �n given by the convex hull of the 2n vectors e1,−e1, e2,−e2, . . . , en,−en. As a polyhedron,
�n is given by the 2n inequalities of the form ±x1 ± x2 · · · ± xd ≤ 1 for all possible sign choices. Cross-
polytopes are famous simplicial polytopes polar to cubes, and a subset of vertices of the cross-polytope
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2 A. BLACK AND J.A. DE LOERA

is a face if and only if it does not contain pairs of antipodes. In what follows, P∆ denotes the polar dual
of a polytope P . With these facts in mind, we may state our main result:

Theorem 1.1. For the standard cross-polytope �n and for any generic linear functional ϕ such that
ϕ(ei) = ai for all i ∈ [n],

(a) If 0 < a1 < a2 < · · · < an, the set of vertices of MPPϕ(�n) is precisely:{(
1− aik + ai1

2an

)
en +

k∑
i=1

(
aik−1

+ aik+1

2an

)
eik :

− n = i0 < · · · < ik+1 = n and ia 6= −ib for all a, b ∈ [k]

}
.

(b) There is an explicit polyhedral realization of MPPϕ(�n). If 0 < a1 < a2 < · · · < an, then
MPPϕ(�n) is given by

{x ∈ Rn : ϕ(x) = 0 and ϕi,ε(x) ≥ −ai − an, ε : [n− 1]→ {±1}, k ∈ [n− 1]},

where we define ϕi,ε on the basis F1 ∪ F2 ∪ {en} by

ϕi,ε(ek) =


−ak − an if k ∈ F1

ai+an
an−ai (ak − an) if k ∈ F2

0 if k = n

for F1 = {k : ε(k)k ≤ i} and F2 = {k : ε(k)k ≥ i}.
(c) We haveMPPϕ(�n) is combinatorially equivalent to the cubical complex formed by gluing together

all unit cubes of dimension ≤ n− 2 with vertices contained in {±1, 0}n−1 \ {0}. The face lattice
of MPPϕ(�n) is isomorphic to the lattice of intervals in the sign poset {0,+,−}n−1 \{0} ordered
under inclusion.

(d) Furthermore, MPPϕ(�n) is combinatorially equivalent to (Cn−1 + �n−1)∆, where Cn = [−1, 1]n

is the n-dimensional regular cube.
(e) The f -vector of MPPϕ(�n) is given by

fm(MPPϕ(�n)) =

n−m−1∑
k=1

(
n− 1

k,m, n− k −m− 1

)
2k+m.

Hence, MPPϕ(�n) has precisely 3n−1−1 vertices. In particular, they correspond to a sign vector
in {0,+,−}n−1 \ 0.

(f) Two vertices in MPPϕ(�n) are adjacent if and only if their corresponding vectors are distance
1 from one another in the Taxi Cab metric. As a result, diam(MPPϕ(�n)) = 2(n − 1) = (n −
1)diam(�n).

(g) The total number of monotone paths in �n is precisely 22n−1−2
3 . Not all paths are coherent. The

diameter of the entire flip graph of �n is 2(n − 1), and the longest flip distance to the nearest
coherent path is n− 2.

The combinatorial types of these MPPs correspond exactly to the poset of intervals of the sign poset
from oriented matroid theory as one would find in Chapter 7 of [23]. For this reason, we call polytopes of
this combinatorial type signohedra. One may view this result as a type B analog to the case of simplices.
Namely, the MPPs of simplices are cubes. The face lattice of a cube corresponds to the lattice of intervals
of subsets of [n]. The type B analog of the simplex is the cross-polytope, and the type B analog of subsets
of [n] is the sign poset. Then we may view the signohedron as a type B cube.
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Furthermore, via a functorial lemma proven in [5], projections take MPPs to MPPs. The projections
of the cross-polytopes are precisely the centrally symmetric polytopes or equivalently the set of polyhedral
unit balls in Rd. Thus, Theorem 1.1 yields the following corollary:

Corollary 1.2. Let P be a centrally symmetric polytope with 2n vertices ±v1, . . . ,±vn and linear func-
tional ` such that 0 < `(v1) < · · · < `(vn). Let ai = `(vi). Then we have the following:

MPP`(P ) = conv

({(
1− aik + ai1

2an

)
(vn) +

k∑
i=1

(
aik−1

+ aik+1

2an

)
vik :

− n = i0 < · · · < ik+1 = n and ia 6= −ib for all a, b ∈ [k]

})
.

Note that a similar projection result may be found for all polytopes from projections of simplices and
for all zonotopes from projections of cubes. The case for projections of cross-polytopes is more interesting
in the sense that some monotone paths are incoherent, and no projection of an incoherent path may be
coherent. Our result thus tells us that the longest coherent monotone path on a centrally symmetric
polytope with 2n is vertices is at most n. Therefore, there cannot exist a centrally symmetric equivalent
to the Goldfarb cube from [1] in which a coherent monotone path uses all of the vertices of the polytope.

Understanding the structure of monotone paths on centrally symmetric polytopes could yield insight
into the polynomial Hirsch conjecture (see [16]). That conjecture asks for a polynomial bound on the
lengths of paths on polytopes in terms of the number of facets and dimension. This conjecture is of
fundamental interest in applications due to its relationship to the run-time of the simplex method for
linear programming. The same question for shortest coherent monotone paths also remains open and is
connected to the study of the shadow vertex pivot rule studied in depth in [7] and more recently in [9].

2. Background

Throughout this paper, we rely on a familiarity with convex polytopes at the level of [23]. A compre-
hensive reference for the structure of MPPs may be found in [19], but this section will be sufficient to
understand our results.

Definition 2.1. A monotone path polytope (MPP) of a polytope P and orientation induced by a linear
functional ` : P → R is the fiber polytope induced by the map ` : P → `(P ). In particular, the monotone
path polytope is given by

MPP`(P ) = conv

({∫
`(P )

s(x)dx : s is a section of `

})
.

Furthermore, Billera and Sturmfels showed in the same paper that the integrals of the sections of
monotone paths generate the monotone path polytope. This observation yields a finite generating set for
that infinite space. From this result, we obtain a method to compute monotone path polytopes.

Theorem (Restatement of Theorem 5.3 from [5]). For a linear functional ϕ and polytope P with vertices
ordered by the linear functional p1, p2, . . . , pn, let M be the set of subsets S of [n] such that {ps : s ∈ S}
is a monotone path. Then we have

MPPϕ(P ) = conv


|S|∑
j=2

ϕ(pij − pij−1)

2ϕ(pn − p1)
(pij−1

+ pij ) : ij ∈ S, S ∈M


 .

The monotone paths that give rise to vertices in the resulting monotone path polytope are called
coherent. Faces of the monotone path polytope correspond to coherent cellular strings, a generalization
of coherent paths.
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−e3 e3

e2

−e2

(0, 0)

Figure 1. The left figure shows an example of an incoherent path on the octahedron.
The obstruction is pictured in the right, since the path contains −e3,−e2, e2, and e3.

Definition 2.2 (Page 13 of [19]). Fix a d−polytope P and orientation ` ∈ (Rd)∗. A cellular string is a
sequence of faces F1, F2, . . . , Fn that satisfies the following:

(i) vmin ∈ F1 and vmax ∈ Fn, where vmin and vmax are minimal and maximal vertices respectively
with respect to `.

(ii) ` is non-constant on any Fi.
(iii) For each i, the `−maximizing face of Fi is the `−minimizing face of Fi+1.

A cellular string is called coherent if there exists some linear functional `′ ∈ (Rd)∗ such that
⋃n
i=1 Fi is

the union of all points x ∈ `(P ) of the `′−minimal points in the fibers `−1(x). More concretely, a cellular
string is coherent if there is a projection of the whole polytope taking the cellular string to the lower
edges of a polygon such that the composition of this projection to the polygon and the map casting a
shadow from the polygon given by `.

Using the tools we know about fiber polytopes, we may completely describe the face lattice of monotone
path polytopes by identifying each face with a coherent cellular string. As an immediate consequence of
Theorem 2.1 in [5], the face lattice of a monotone path polytope is equivalent to the lattice of coherent
cellular strings with the partial order induced by the refinement of subdivisions.

We will use this connection to give a complete description of the MPPs of cross-polytopes up to
combinatorial equivalence. Applying this result, the coherent monotone paths may be mapped to the
lower vertices of some two dimensional projection. Knowing this property yields a simple geometric
obstruction to coherence captured by Figure 1. Namely, for any polytope P , any coherent monotone
path v1, v2, . . . , vn on P must satisfy

conv(vi, vj) ∩ conv(

j−1⋃
k=i+1

vk) = ∅,

since the ordered lower vertices of a polygon must satisfy this condition. From this observation, we obtain
a general result for coherent monotone paths on centrally symmetric polytopes. Namely, a coherent
monotone path on a centrally symmetric polytope cannot contain a pair of antipodes other than its min
and max, because convex hulls of distinct pairs of antipodes must intersect as in Figure 1.

This intuitive geometric obstruction for any centrally symmetric polytope turns out to be the only
obstruction to coherence of monotone paths on the cross-polytopes. We will generalize this observation
to cellular strings in the next section. The last general fact we require is the following functorial lemma
from [5] that allows for the computation of the monotone path polytope of a projection of a polytope.

Lemma (Lemma 2.3 from [5]). Let P θ−→ Q
ϕ−→ R be a sequence of surjective affine maps of polytopes.

Then Σ(Q,R) = θ(Σ(P,R)), where Σ(A,B) denotes the fiber polytope for a projection from A to B for
polytopes A and B. In particular, when ϕ is a linear functional, we find thatMPPϕ(Q) = θ(MPPϕ◦θ(P )).
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This lemma allows for the computation of monotone path polytopes of any centrally symmetric poly-
tope as the projection of a signohedron and makes Corollary 1.2 immediate from the proof of Theorem
1.1(a).

3. Signohedra: Monotone Paths on Cross-Polytopes

In this section, we completely describe signohedra and equivalently the monotone path polytopes on
cross-polytopes via the proof of Theorem 1.1. To start studying the MPPs of cross-polytopes for a generic
orientation, we must clarify what constitutes a generic orientation. Using this notion of generic, we will
fix an ordering of the vertices of the cross-polytope that will be used for all remaining computations of
the MPP.

Lemma 3.1. Generically, a monotone path polytope of �n is affinely equivalent to one obtained from a
linear functional with distinct positive values for each ei.

Proof. The vertex generic linear functionals on the cross-polytope are precisely those with distinct nonzero
values of coefficients ai for each ei. Furthermore, they each map ei to ai, where up to a change in indices,
|a1| < |a2| < · · · < |an|. Then, by applying the reflection map taking ei 7→ −ei, we may assume that each
ai is positive. The cross-polytope �n has vertices ±ei, so under this map, the vertices are ordered such
that −ei < ei for all i ∈ [n] and ej < ek for all j < k in [n]. Hence, up to a permutation and reflection,
we always obtain the same vertex ordering. Since these symmetries are linear, by Lemma 2.3 from [5],
the affine isomorphism from the cross-polytope to itself induces an affine isomorphism of the monotone
path polytopes. �

For cubes and simplices, all monotone paths are coherent. This property makes understanding their
monotone path polytopes easier. For cross-polytopes with an orientation given by a generic linear func-
tional, the monotone paths need not all be coherent as noted in Section 2. The following theorem is the
primary technical fact from which all of our remaining work on the characterization follows.

Theorem 3.2. A cellular string on �n is coherent if and only if the set of vertices that appear in the
string only contains one pair of antipodes, namely the maximum and minimum pair.

Proof. For both directions, by Lemma 3.1, we may assume without loss of generality that the linear
functional ` : Rn → R given by `(ei) = ai satisfies 0 < ai < aj for all i, j ∈ [n] with i < j.

Suppose that a coherent cellular string contains −ei and ei as vertices in possibly distinct cells. Then,
by the definition of coherence, there exists a projection π : �n → R2 that takes −ei and ei to possibly
distinct lower edges of some polygon, where π = ` × ϕ for some linear functional ϕ : Rn → R. Since
π(−ei) and π(ei) lie on the lower edges, and −en and en are minimal and maximal respectively for ϕ,
π(ei) and π(−ei) must lie below the line segment from π(−en) to π(en). It follows that the slope from
π(−en) to π(−ei) must be less than the slope from π(−en) to π(en). Similarly, the slope from π(ei) to
π(en) must be greater than the slope from π(−en) to π(en). Thus, we must have

ϕ(en)− ϕ(ei)

an − ai
=
ϕ(−ei)− ϕ(−en)

−ai + an
<
ϕ(en)− ϕ(−en)

an + an
<
ϕ(en)− ϕ(ei)

an − ai
,

a contradiction.
Suppose instead we have a cellular string such that the set of vertices contained in some cell has

only one pair of antipodes. The vertices contained in the cellular string may be partitioned into the
subsets of positive and negative basis vectors: S+ ⊆ {e1, e2, . . . , en} and S− ⊆ {−e1,−e2, . . . ,−en}. Let
S0 = {ei : −ei, ei /∈ S+ ∪ S−}, the set of ei such that ±ei does not appear in the path. Then, by our
assumption that the path only contains a single pair of antipodes −en and en, we must have

S+ ∩ −S− = {en}.
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It follows that (S+ ∪−S− ∪S0) \ {−en} = {e1, e2, . . . , en} and is, in particular, linearly independent. Let
F1 < F2 < · · · < Fk denote the sequence of faces in the cellular string. Let e−i = −ei and a−i = −ai
for i ∈ ±[n]. To prove coherence, we must choose ϕ : Rn → R such that π = ` × ϕ takes endpoints of
the cellular string to lower vertices of π(�n) and vertices of cells to the interior of the edge between the
endpoints. We will construct such a choice of ϕ inductively first on the endpoints of the string and then
interpolate to find the value on the interior points.

By linear independence, we may define ϕ however we choose for each vertex that appears in the cellular
string. Let ebj and ecj denote the minimal and maximal vertices of Fj . Define ϕ(en) = 0. Define ϕ(ec1)

to be −(ac1 + an). Then the slope from (−an, ϕ(−en)) to (ac1 , ϕ(ac1)) will be precisely −1. Define ϕ
inductively so that the slope from (abj , ϕ(ebj )) to (acj , ϕ(ecj )) is −1

j for all 1 ≤ j < k. For each remaining
vertex v in each Fj , define ϕ so that π(v) lies on the line segment from π(ebj ) to π(ecj ). Such a choice is
always possible by linear independence. Finally, define ϕ to be 0 for all vertices in S0.

It remains to show that π then satisfies the properties from Definition 2.2. Observe that, since
ϕ(−en) = −ϕ(en) = 0 and the slope between consecutive endpoints of the string is negative, ϕ is
negative for each endpoint of the cellular string other than −en and en. Thus, by interpolating, ϕ must
be negative for each vertex on the interior of a cell. For vertices ei not in the string, there are two cases.
If −ei is in the string, then ϕ(ei) = −ϕ(−ei) ≥ 0. Otherwise, ei ∈ S0, so ϕ(ei) = 0 ≥ 0. Hence, all
vertices v not contained in some cell of the string must satisfy ϕ(v) ≥ 0. Since ϕ(−en) = ϕ(en) = 0, it
follows that all vertices not in the string lie on or above the line segment from π(−en) to π(en).

Thus, the lower vertices of the polygon must be some subset of the vertices contained in the string. By
construction, we defined the Fi to each be mapped to an edge and so that the slope of each edge increases
as i increases. These edges yield a path from π(−en) to π(en). Since the slope is increasing, this path is
the graph of a piece-wise linear convex function that lies below the line segment from π(−en) to π(en).
It follows then that the convex hull of the path has vertices {π(ei) : ei is an endpoint of the string}.
Furthermore, by construction once again, any vertex in a cell of the cellular string is mapped to the
interior of the edge between the endpoints of that string. Hence, the projections of each Fi are precisely
the lower edges of the polygon meaning that the cellular string must be coherent by definition. �

Interpreted for cellular strings corresponding to monotone paths, we established what was suggested
in Section 2. Namely, a monotone path on �n is coherent if and only if the only antipodes it contains are
the maximum and minimum pair. Note the assumption that the linear functional is generic is necessary
here.

Proposition 3.3. For a cross-polytope and the orientation ` =
∑n
i=1 e

T
i , the monotone path polytope is

given by ∆d−1 −∆d−1.

Proof. In [5], they show that the fiber polytope is given by the minkowski sum of fibers of barycenters
of the subdivision induced by the projection. In this case, the subdivision induced by the projection is
trivial, so the monotone path polytope is given by `−1(0). In that case, we are taking a slice of the Cayley
sum of ∆d−1 and −∆d−1, so from either explicit computation or the Cayley trick as in [15], we find that
the resulting MPP is ∆d−1 −∆d−1. �

All monotone paths are given by single edges, so it is immediate that they are all coherent unlike in
the generic case. As an immediate corollary of this:

Corollary 3.4. All monotone paths being coherent for one orientation does not imply that all monotone
paths are coherent for all orientations. Furthermore, a polytope may not have all paths coherent for any
generic orientation but still have some orientation for which all monotone paths are coherent.
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−xn

xi1

xi2
xi3

xi4 xi5

xn

−xi5 −xi4 −xi3
−xi2

xi1

xs1 xs2 −xs2−xs1xs3 −xs3

Figure 2. The proof of Theorem 3.2 may be visualized. Namely, the red xij in the
image represent the endpoints of each cell in the string. Via linear independence, we
may impose that the slopes between these vertices are increasing and that they all lie
below the line between −xn and xn. Furthermore, we may impose that all vertices
in each cell are mapped to the interior of an edge via linear interpolation and linear
independence. Then their antipodes, the blue −xij , must lie above that line from −xn
to xn. For the remaining vertices, the green xsi , we may again, by linear independence,
place them all on the line between −xn and xn, which forces their antipodes to also lie
on that line.

As stated in Section 2, by Theorem 2.1 of [5], the coherent paths correspond exactly to the vertices of
the monotone path polytope. From this result, we may immediately compute the number of vertices.

Corollary 3.5. For a generic linear functional ϕ, MPPϕ(�n) has precisely 3n−1− 1 vertices. In partic-
ular, they correspond to elements of {−1, 1, 0}n−1 \ {0}.

Proof. Recall that any two non-antipodal points of the cross-polytope are connected by an edge. It follows
then that the coherent monotone paths consists of choices ei,−ei or neither to include in our sequence of
points. That gives 3n−1 possible choices. Since we have to include at least 1 element between −en and
en, we obtain that �n has precisely 3n−1 − 1 coherent monotone paths. Since the vertices of MPPϕ(�n)

correspond to coherent monotone paths, MPPϕ(�n) has precisely 3n−1 − 1 vertices. �

We may strengthen this result to find explicit vertices via computing the average value of each coherent
monotone path.

Proof of Theorem 1.1(a). Use the characterization of coherent monotone paths in Theorem 3.2 in com-
bination with Theorem 5.3 from [5], and the result is immediate. �

At this point, we may prove Corollary 1.2.

Proof of Corollary 1.2. Apply Lemma 2.3 from [5] as stated in Section 2 to the result of Theorem 1.1(a).
�

While more involved, we may similarly provide an explicit facets based description of the polytope
from our proof of Theorem 3.2.

Proof of Theorem 1.1(b). To find the facet defining relations for the MPP, we follow the method outlined
by Ziegler in Section 9.1 of [23]. Namely, the facet defining inequalities are obtained from the linear
functional that yields the polygon whose lower vertices correspond to maximal coherent subdivisions.
That is, for such a linear functional ϕ, the inequality is given by ϕ(x) ≥ ϕ(v), where v is the vertex
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Figure 3. A plot of (C3 + �3)∆ made using [21]. By Theorem 1.1(c), any MPP of �4

for a generic orientation is combinatorially equivalent to the pictured polytope.

that is minimized by ϕ on the polygon corresponding to the maximal coherent cellular string. From the
combinatorial characterization in Theorem 1.1(b), the facets correspond precisely to the maximal intervals
in the sign poset. Maximal intervals are obtained from starting with a choice of a separating vertex ei
and choosing a maximal length monotone path through ei. In the notation from the proof of Theorem
3.2, these are precisely the subdivisions corresponding F1 < F2 such that ±F1∪±F2 = {k : k ∈ ±[n−1]},
where we remove en from F2 and −en from F1 and identify each ei with i. To obtain a lifting functional,
by following the proof of Theorem 3.2, we define

ϕ(en) = 0 and ϕ(ei) = −ai − an.

Then for the remaining vertices in F1 we linearly interpolate between 0 and−ai−an. For the vertices in F2,
we provide a similar interpolation. In particular, ϕ(ek) = −ak−an if k ∈ F1 and ϕ(ek) = ai+an

an−ai (ak−an)

if k ∈ F2

ϕ(ek) =


−ak − an if k ∈ F1

ai+an
an−ai (ak − an) if k ∈ F2

0 if k = n

.

We denote any functional of this form as ϕi,ε, where i ∈ ±[n − 1] is the choice of the splitting vertex,
and ε : [n − 1] → ±1 denotes the sign sequence of the vertices. Then F1 = {k : ε(k)k ≤ i} and
F2 = {k : ε(k)k ≥ i}, which yields the result. �

Thus, now we have an explicit description of our polytope in terms of both vertices and facets. We may
take this description a step further and use our characterization of coherent cellular strings to obtain a
complete characterization of the face lattice of the MPP of �n in terms of the sign poset on {+,−, 0}n−1\0.

Proof of Theorem 1.1(c). By Theorem 2.1 of [5], the face lattice of the monotone path polytope corre-
sponds to the poset of coherent cellular strings under refinement. Note that a coherent cellular string is
uniquely determined by two pieces of data: its endpoints and the vertices included in the cells between
each endpoint. These two pieces of data may be interpreted as two monotone paths, the one with vertices
given by the set of endpoints, E, of the cellular string and the on given by V , the set of vertices that
appear anywhere in the cellular string. Clearly E ⊆ V , which translates via the bijection to V and E

being comparable. Furthermore, the vertices contained in the cellular string correspond exactly to all
monotone paths with a set of vertices S such that E ⊆ S ⊆ V . Hence, the partial order of inclusion of
faces via this bijection is equivalent to the partial order given by inclusion of intervals.
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Note that each interval I = [a, b] in {0,−1, 1}n−1 \ {0} is Boolean. Furthermore, conv([a, b]) is
isomorphic to conv([a, b] − a) = conv([0, b − a]), where 0 is adjoined in the natural way to the partial
order. Let k be the length of the interval. Then b − a will have precisely k nonzero entries of either 0’s
or 1′s. Let A be the linear map defined by A(ei) = σ(i)ei, where σ(i) denotes the sign of ei in b− a. Let
S = {i ∈ [n − 1] : σ(i) 6= 0}. Then A([0, b − a]) =

[
0,
∑
s∈S es

]
. By construction, A is then an isometry

taking conv(I) to the unit cube.
Hence, each interval corresponds to a unit cube of dimension ≤ n − 2 with vertices contained in

{±1, 0}n−1 \ {0}. The converse is similar, since each unit cube has vertices corresponding to an interval
in the poset {+,−, 0}n−1 \ {0} �

The next step is to show that this combinatorial type has a nice representative given by (Cn−1+�n−1)∆.

Proof of Theorem 1.1(d). Note that the vertices of Cn + �n are obtained precisely by adding the unique
maximal vertices on each for a linear functional. Let ` be a linear functional. Then the max on �n is the
vertex corresponding to the coordinate of maximum absolute value together with the corresponding sign,
and the max on Cn returns the subset with 1’s for positive elements and −1’s for negative elements. The
element of maximum absolute value could either be positive or negative.

The resulting polytope has vertices {Bd
(

2e1 +
∑d
i=2 ei

)
}, where Bd is the set of signed permutation

matrices. Let S ∈ {+,−, 0}n \ {0}. Then S induces a partitions of [n] into S+ ∪ S− ∪ S0, and there is a
naturally associated linear functional ϕS given by

∑
i∈S+

eTi −
∑
j∈S−

eTj . The vertices maximized by ϕS
are precisely

{sign(k)ek : k ∈ S+ ∪ S−}+ {
∑
a∈A

ε(a)ea : A ∈ S0, ε : A→ {±1}}+
∑

k∈S+∪S−

sign(k)ek.

These vectors span the affine hyperplane given by∑
i∈S+

xi −
∑
j∈S−

xj = |S+|+ |S−|+ 1.

Thus, each sign vector ϕS corresponds to a facet of the resulting polytope. Let ϕ be a linear functional.
Then any vertex maximized by that linear functional would also be maximized by the linear functional
with the same sign pattern. Hence, the sign vectors induce all of the facets of Cn + �n, which gives us a
polyhedral formulation of this polytope.

Namely, for any partition S+ ∪ S− ∪ S0 of n, we must have

1

|S+|+ |S−|+ 1

∑
i∈S+

xi −
∑
j∈S−

xj

 ≤ 1.

These are precisely the relations given by maximizing the sign functionals. Observe that if a sign vector
contains 0’s, then any choice of ±ei for i ∈ S0 is allowable for a vertex in that facet. Furthermore, if
two facets have distinct positive sets or negative sets, then they cannot intersect, since that imposes the
sign of ei for any vertex in the set. It follows that two facets intersect if and only if their corresponding
sign vectors are comparable. In particular, m-dimensional faces correspond exactly to intervals of sign
vectors in the poset of length n −m. It follows then that the face lattice of this polytope is isomorphic
to the lattice of intervals of the sign poset under reverse inclusion. Hence, we have (Cn−1 + �n−1)∆ and
MPPϕ(�n) are combinatorially equivalent. �

An advantage of this representation is that we may read off each vertex for a sign vector as

1

|S+|+ |S−|+ 1

∑
i∈S+

ei −
∑
j∈S−

ej

 .
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One may appeal to the theory of anti-prisms for an alternative proof of Theorem 1.1(d). Namely, for
perfectly centered polytopes, Björner showed in [6] that the lattice of intervals in the face lattice of a
polytope P under inclusion is isomorphic to the face lattice of (P + P∆)∆. Alongside this result from
the characterization of the face lattice, we also now have a combinatorial framework for calculating the
f -vector.

Proof of Theorem 1.1(e). From Theorem 1.1(b), faces correspond exactly to elements of the poset of
intervals in the sign poset. Namely, they are identified precisely by pairs of elements of comparable
elements of the poset. An m-face corresponds to pairs of elements of distance m from each other. That
is one has k nonzero entries, and the other has k +m nonzero entries including the k nonzero entries of
the starting point. Thus, the faces correspond to flags of length two of subsets of n− 1 of subsets of size
k and k+m counted by

(
n−1

k,m,n−k−m−1

)
together with 2k+m choices of signs for each vertex contained in

the flag. Then we have that

fm(MPPπ(�n)) =

n−m−1∑
k=1

(
n− 1

k,m, n− k −m− 1

)
2k+m.

�

Again by Theorem 2.1 of [5], edges in the monotone path polytope correspond to refinements of
pairs of coherent monotone paths. Geometrically, we may interpret this refinement as two monotone
paths agreeing everywhere except on a single two dimensional face. In the sense of the flip graph, this
interpretation means that the two monotone paths differ by a polygonal flip. From this observation, we
obtain the following lemma.

Lemma 3.6. Two vertices in the MPP of �n are adjacent if and only if their corresponding vectors are
distance one from one another in the Taxi Cab metric.

Proof. Recall that �n is simplicial. It follows that a polygonal flip either deletes a vertex from a path or
adds a single, new vertex. Deleting or adding a vertex corresponds to changing a 1 or −1 to a 0 or a 0

to a 1 or −1 in the sequence bijection from Corollary 3.5. The connectivity of �n allows us to perform
this operation for any element of the sequence. Two sequences of 1’s, 0’s, and −1’s are at distance 1 in
the Taxi-cab metric if and only if they agree on all but one entry in which one is a 0 and the other is a
−1 or 1, which yields the result. �

Via explicit computation, we may then compute the diameter of the MPP of �n:

Proof of Theorem 1.1(f). By the triangle inequality,

sup
x,y∈Verts(MPP (δn))

|x− y|1 ≥ |
n−1∑
i=1

ei −
n∑
i=1

−ei|1 ≥ 2(n− 1).

Since each step along an edge can change the distance by at most one, we have the diameter is at least
2(n−1). To see that it is at most 2(n−1) may be seen by taking two vectors and changing the coordinates
by ±1 until one vector equals the other. Each coordinate change represents a single step, and the path
requires at most 2(n − 1) coordinate changes. The only detail is avoiding the origin, and that is also
easy. �

Now that we understand the graph of MPP of �n, to obtain a more complete description of the
space of monotone paths, we will describe the flip graph. The flip graph has as its vertices the set of all
monotone paths on a polytope with edges given by polygon flips. We then enumerate its vertices and
compute its diameter.
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Proof of Theorem 1.1(g). A monotone path corresponds to a subsequence s1, s2, . . . , sm of

(−en−1,−en−2, . . . ,−e1, e1, e2, . . . , en−1)

such that sk + sk+1 6= 0, since all vertices are connected to all vertices other than their antipodes. There
are 22(n−1)−1 non-empty subsets of {ei : i ∈ {±1,±2, . . . ,±n−1}. Then 22(n−2) of those subsets include
−e1, e1, 22(n−3) include −e2, e2 but neither of −e1, e1, and in general 22(n−1−k) include −ek, ek but none
of ej , where |j| < |k|. Hence, one may easily verify via standard results for geometric series, the resulting
number of possible sequences is

22(n−1) − 1−
n−1∑
k=1

22(n−k−1) =
22n−1 − 2

3
.

For the diameter of the flip graph, since �n is simplicial, two monotone paths are adjacent if and only
if they differ by the addition or removal of a single vertex. A vertex may only be added or removed
if it does not introduce consecutive antipodal points. Note that, given these restrictions, the distance
between the path given by e1 and the path (−en−1,−en−2, . . . ,−e1, e2, e3, . . . , en) is at least 2(n−1). By
starting with removing all negative vertices starting with −en−1 and ending with −e1 and then adding e1

and removing e2 through en we achieve a sequence of flips going between these paths of length precisely
2(n− 1). Hence, the distance between those points is precisely 2(n− 1).

Let esi and etj be two different paths. Let s− and s+ denote the maximal negative element and
minimal positive element of s respectively. define t− and t+ similarly. If s− = t− and s+ = t+, we may
go from s to t by adding elements from t that are not in s to s and taking away elements from s that are
not in t. Such a path will have length at most 2(n− 2).

If s− < t− and s+ = t+, then we may add t− to s and follow the same strategy. This will result in a
sequence of moves of length at most 2(n − 2) + 1. A similar idea works for any of the possible cases in
which s− = t− or s+ = t+.

Suppose that s− < t− and s+ < t+. If t− 6= −s+, we may add t− to the list s−. Then we may follow
the same strategy for the remaining list keeping s+ and t−. Then, at the end, we remove s+. The result
must take fewer that 2(n − 2) + 2 ≤ 2(n − 1) moves. Suppose instead that s− < t− = −s+ < s+ < t+.
First modify all elements of s greater that s+ to agree with t. If t+ = −s−, remove t+. Otherwise, leave
it. In both cases, add t−, add t+ back and modify all elements < t− to agree with t. The result takes
≤ 2(n− 2)− 1 + 3 = 2(n− 1) moves, since e1 < t+.

The only remaining case is that s− < t− and s+ > t+. In that case, add t− and t+ to s and make the
required changes. The result takes fewer than 2(n− 2) + 2 moves. Hence, the diameter of the flip graph
is 2(n− 1).

The longest distance to the nearest coherent path for a monotone path may be computed similarly.
Start with a path s with s− and s+ defined as before. If s+ < −s−, remove all parts of antipodal pairs
after s+. Otherwise, remove all parts of antipodal pairs before s−. Since there are at most n−2 elements
before s− and s+, the distance to the nearest coherent path is at most n− 2. This bound is attained for
the path (−en−1,−en−2, . . . ,−e1, e2, e3, . . . , en−1). �

Thus, the total number of monotone paths grows at a rate of Θ(4n), which is exponentially faster than
growth rate of the number of coherent monotone paths, which grows at a rate of Θ(3n). That last proof
concludes our description of the structure of monotone paths on the cross-polytopes and our proof of
Theorem 1.1.
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