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Abstract
In their seminal work, Danzer (1956, 1986) and Stachó (1981) established that every set of pairwise
intersecting disks in the plane can be stabbed by four points. However, both these proofs are
non-constructive, at least in the sense that they do not seem to imply an efficient algorithm for
finding the stabbing points, given such a set of disks D. Recently, Har-Peled et al. (2018) presented a
relatively simple linear-time algorithm for finding five points that stab D. We present an alternative
proof (and the first in English) to the assertion that four points are sufficient to stab D. Moreover,
our proof is constructive and provides a simple linear-time algorithm for finding the stabbing points.
As a warmup, we present a nearly-trivial liner-time algorithm with an elementary proof for finding
five points that stab D.
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1 Introduction

Let D be a set of pairwise intersecting disks in the plane. We say that a set S of points in
the plane stabs D, if every disk in D is stabbed by a point of S, i.e., every disk in D contains
a point of S. The problem of stabbing disks with as few points as possible has attracted the
attention of mathematicians for the past century.

The famous Helly’s theorem states that if every three disks in D have a nonempty
intersection, then all disks in D have a nonempty intersection [6, 7, 9]. Thus, any point in
this intersection stabs D. The problem becomes more interesting if D contains triplets of
disks with an empty intersection. In this case, Danzer (1986) [2] and Stachó (1981) [11] have
shown that D can be stabbed by four points. Danzer’s proof uses some ideas from his first
(unpublished) proof from 1956, and Stachó’s proof uses similar arguments to those in his
construction of five stabbing points from 1965 [10]. If the disks in D are unit disks, then
three points suffice to stab D [4].

As noted in the recent paper by Har-Peled et al. [5], Danzer’s proof is fairly involved,
and there seems to be no obvious way to turn it into an efficient algorithm. The construction
of Stachó is apparently more comprehensible, but does not seem to lead to an efficient
algorithm for generating the stabbing points. Consequently, several teams of researchers
have put significant and continuous effort in obtaining an efficient algorithm for generating
the stabbing points, alas without success. Har-Peled et al. [5] presented a simple linear-time
algorithm for finding a set of five stabbing points, and left the problem of efficiently finding
a set of four stabbing points as an open problem.

In this paper, we present a new proof (and the first in English) to the claim that four
points are sufficient to stab D. Moreover, our proof is constructive and provides a linear-time
algorithm for finding the stabbing points. Even though the algorithm itself is quite simple,
the proof is rather involved; it is based on a careful case analysis, which is perhaps not
as elegant as one would hope for, however, coming up with the right set of cases is highly
non-trivial. Moreover, we use a small set of elementary geometric observations to resolve all
the cases. As a warmup, we present a nearly-trivial linear-time algorithm for stabbing D by
five points. It’s proof is elementary, and it serves as an introduction to our proof technique
for the four point case.

As for lower bounds, Grünbaum gave an example of 21 pairwise intersecting disks that
cannot be stabbed by three points [3]. Danzer reduced the number of disks to ten [2], however,
according to [5], this bound is hard to verify. Har-Peled et al. gave a simple construction
that uses 13 disks [5]. It would be interesting to find a simple construction for ten disks.
Since every set of eight disks can be stabbed by three points [10], it remains open to verify
whether or not every set of 9 disks can be stabbed by three points.

2 The Setup and Preliminaries

We denote by x(p) and y(p) the x and y coordinates of a point p in the plane. We denote by
r(d) the radius of a disk d in the plane.

Let d∗ be the smallest disk (not necessarily in D) that intersects every disk in D. We
find a set of four points that stab D ∪ {d∗}. Thus, without loss of generality, we assume that
d∗ is in D. By scaling and translating the scene, we may assume that r(d∗) = 1 and that c∗,
d∗’s center, is at the origin (0, 0). Let D− be the set of all disks in D that do not contain
c∗. For a disk d ∈ D−, let δ(d) = |cc∗| − r(d), where c is the center of d; see Figure 2 for an
illustration. We denote by D−≤k, the set of all disks in D− whose radius is at most k.
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Our choice of d∗ ensures that it is tangent to three disks, say d1, d2, d3, of D. Let x1, x2, x3
be the points of tangency of d∗ with d1, d2, d3, respectively. Our choice of d∗ also ensures
that c∗ is in the triangle 4x1x2x3. For each i ∈ {1, 2, 3}, we denote by `i the tangent line to
d∗ at xi, by `′i the reflection of `i with respect to c∗, and by hi the closed halfplane defined
by `i that contains di. See Figure 1.

`1

`′1

d∗
c∗

x2 x3

x1

`2

`3 `′2

`′3

h2

Figure 1 Setup and notation.

Base setting: Let ∆ be the triangle formed by the intersection points of `1, `2, and `3.
After rotating the scene and relabeling the disks d1, d2, d3, we may assume that x1 = (0,−1),
the line `2 has positive slope, the line `3 has negative slope, and the largest angle of ∆ is at
the intersection of `2 and `3, as depicted in Figure 1.

Alternative setting: Here we assume without loss of generality that the center of d′ is
on the positive x-axis, where d′ is a disk in D−≤k with maximum δ(d′), for some value of k.
Later, whenever we use this setting, we specify the appropriate value of k.

3 Stabbing by Five Points

In this section we present a very simple linear-time algorithm for stabbing pairwise intersecting
disks with five points. Its proof is similar in spirit to the proof of the much more involved
stabbing by four points algorithm, thus it also serves as an introduction to the proof of the
latter algorithm. In this section we assume the base setting.

Let S = {(0, 0), (2, 0), (−2, 0), (0, 2), (0,−2)}. Then, S is the set of corners plus center of
the square of edge length 2

√
2, whose center is at the origin and whose corners lie on the

axes. We claim that S stabs D.
Indeed, let d ∈ D be a disk and let c denote its center. We prove that d is stabbed by one

of the points in S. Assume first that c lies in the second quadrant (i.e., in the north-west
quadrant). We distinguish between two cases.
Case 1. If −2 ≤ x(c) ≤ 0, then since d intersects d1 it must also intersect `1, and by
Observation 3, d is stabbed by (0, 0) or (−2, 0). To see this, let (−2, 0), (0, 0), and the x-axis
play the roles of a, b, and ` in Observation 3, respectively. Moreover, let the closed halfplane
below `1 and the unit disk centered at (−1, 0) play the roles of η and δ, respectively, and let
d (whose radius is clearly at least 1) play the role of ε.
Case 2. If x(c) < −2, then c lies above the line ` that passes through the points (−2, 0) and
(0, 2). Let V be the strip that is defined by the lines perpendicular to ` through (−2, 0) and
through (0, 2), respectively. If c is outside V , then by Observation 2, d is stabbed by (−2, 0)
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or (0, 2). To see this, let (−2, 0), (0, 2), `, and d∗ and d play the roles of a, b, `, and η and ε
in Observation 2, respectively. Hence, assume that c is in V (and above `).

We show that d is stabbed by one of the points (−2, 0) and (0, 2). Assume to the contrary
that d avoids both (−2, 0) and (0, 2). Let d′ be the disk tangent to d∗ and whose boundary
passes through (−2, 0) and (0, 2). Let c′ = (−x, x) be the center of d′. Then, we have

1. −x < −2, x ≥ 0;
2. (−x− 0)2 + (x− 2)2 = r(d′)2;
3. (−x− 0)2 + (x− 0)2 = (r(d′) + 1)2.

Solving these equations, we get that x = 3
2 + 3

2
√

2 and r(d′) = 1
2 + 3√

2 . We show below that
r(d) ≥ r(d′) and apply Observation 3 to conclude that d is necessarily stabbed by (−2, 0) or
(0, 2) — contradiction. To apply Observation 3, we let (−2, 0), (0, 2), `, d∗ and d′ play the
roles of a, b, `, η and δ, respectively.

It remains to show that r(d) ≥ r(d′). Consider the disk d′′, the smallest disk with center
in V (to the left of the line x = −2) that avoids both (−2, 0) and (0, 2) and is tangent to
`1. Clearly, r(d) ≥ r(d′′), but as the calculation below shows r(d′′) = 2 +

√
2 ≥ r(d′), so

r(d) ≥ r(d′).
Indeed, let c′′ = (a, b) be the center of d′′. Observe that the boundary of d′′ must pass

through (−2, , 0), since, otherwise, we can shrink d′′, by moving c′′ slightly to the right and
down. Moreover, c′′ must lie on V ’s boundary, i.e., on the line y = −x− 2, since otherwise
we can shrink d′′ by moving c′′ slightly to the left and down. Thus, we have

1. −a < −2, b ≥ 0;
2. b = −a− 2;
3. (a+ 2)2 + (b− 0)2 = r(d′′)2;
4. b+ 1 = r(d′′).

Solving these equations, we get that a = −3−
√

2, b = 1 +
√

2, and r(d′′) = 2 +
√

2. This
completes the proof under the assumption that c is in the second quadrant.

Assume now that c lies in the third quadrant. Let p = (1, 0) and q = (0, 1) and let `p be
the vertical line through p and let `q = `′1 be the horizontal line through q. If d is intersected
by `q or by `p, then, by either reflecting the scene with respect to the x-axis or by rotating it
clockwise about the origin, we get the previous case where c lies in the second quadrant. We
thus assume that neither `q nor `p intersect d. We show below that d is stabbed by (0, 0).

Since d intersects the disk d3, it intersects `3. Consider the line through c that is
perpendicular to `3, and let y be its intersection point with `3. Then r(d) ≥ |cy|. Now, since
both `q and `p do not intersect d, we have that the segment cy intersects c∗p or c∗q. Assume,
w.l.o.g., that cy intersects c∗p and denote the intersection point by p′. Clearly, |cp′| ≥ |cc∗|
(as cp′ is the largest edge in the triangle ∆cc∗p′), and therefore r(d) > |cp′| ≥ |cc∗|, so d is
stabbed by c∗ = (0, 0).

Finally, the cases where c lies in the first or in the fourth quadrant are analogous to the
two cases considered above.

The analysis of the algorithm’s running time is similar to that of the stabbing by four
points algorithm, which can be found in Section 4.3.

4 Stabbing by Four points — The Algorithm

Find the disk d∗, add it to D, and compute the set D−. Let dmin denote the smallest disk in
D−, and let rmin denote its radius. We show how to compute a set S of four points that
stabs D.
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4.1 Outline and Intuition
The algorithm distinguishes between three main cases, depending on the value of rmin. In
the first two cases we use the base setting, while in the third case we use both settings.

In the first case all the disks in D− are large, specially their radius is at least 4. (Recall
that the radius of d∗ is 1). This is the easiest case, since it is relatively easy to show that
the constraint that every disk in D− must intersect each of the disks d1, d2, d3, implies that
every disk in D− is stabbed by one of the points (−4, 1), (4, 1), (0,−3).

In the second case there are small disks in D−, i.e., disks with radius smaller than 2.
Among the small disks, let d be the disk whose boundary is the farthest from c∗ and let c be
its center. Then, we know that all the disks in D− intersect the disk of radius δ(d) and center
c∗. We use this fact, together with information on the (acute) angle α between the segment
cc∗ and the x-axis to determine the set S. Specifically, assume without loss of generality that
x(c) ≥ 0. If α is small, then c (which is either above or below the x-axis) is relatively close
to the x-axis, and we find a set of four points that stabs D. If, on the other hand, α is large,
then we have two symmetric sub-cases, depending on whether c is above or below the x-axis.

In the third case there are no small disks in D−, but there are disks of medium size, i.e.,
of radius between 2 and 4. This is the most difficult case, and we split it into four sub-cases.
If there exists a disk d ∈ D− whose boundary is relatively far from c∗, then, if there exists
such a disk which is not too large, then we are in sub-case 1, and otherwise we are in sub-case
2, provided there exists such a disk which is not huge. If we did not land in one of theses
two sub-cases, we proceed to check whether there exists a not too large disk d ∈ D− whose
boundary is close but not extremely close to c∗. If there exists such a disk, then we are in
sub-case 3 and otherwise we are in sub-case 4. Our partition into sub-cases is not unique,
in the sense that some of the values that we specify to distinguish between the cases are
somewhat arbitrary, but we strongly believe that some similar partition into sub-cases is
necessary.

The proof of correctness is essentially based on a small set of elementary geometric
observations (see Section 6), and it is similar in spirit to the proof of the stabbing by five
points algorithm. The ingenuity of the proof is reflected in the creative ways in which the
settings to which these observations can be applied are defined.

4.2 The Algorithm
We consider three cases, depending on the value of rmin.

rmin ≥ 4: Assuming the base setting, set S = {(0, 0), (−4, 1), (4, 1), (0,−3)}.
rmin ≤ 2: Assuming the base setting, let d ∈ D−≤2 be the disk with maximum δ(d) and let
c be its center. We may assume that x(c) ≥ 0, since this can be guaranteed by a suitable
reflection and relabeling. Let α be the convex angle between the segment cc∗ and the
x-axis; see Figure 2. Depending on α and the y-coordinate of c, do

1. α ≤ 17◦: Set S = {(−0.5, 0), (0,−1.7), (0, 1.7), (1.5, 0)}.
2. α > 17◦ and y(c) > 0: Set S =

{
(−0.5, 0) , (0.5,−2.5), (−0.5, 1.83),

(
1
2 + 2

√
6

5 , 1
5

)}
.

3. α > 17◦ and y(c) < 0: Set S =
{

(−0.5, 0), (0.5, 2.5), (−0.5,−1.83),
(

1
2 + 2

√
6

5 ,− 1
5

)}
.

2 < rmin < 4: This case involves four sub-cases. In the first three sub-cases, we assume
the alternative setting, while in the fourth we assume the base setting. Thus, in the first
three sub-cases we pick a specific disk d′ and assume that its center is on the positive
x-axis. (This can be guaranteed by a suitable rotation.)
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1. If there exists a disk d ∈ D−≤5 with δ(d) ≥ 0.5, then let d′ be such a disk with
maximum δ(d′) and set S = {(0, 0), (2, 0), (0.4, 2), (0.4,−2)}.

2. Else, if there exists a disk d ∈ D−≤20 with δ(d) ≥ 0.5, then let d′ be such a disk with
maximum δ(d′) and set S = {(0, 0), (2, 0), (−0.15, 2.7), (−0.15,−2.7)}.

3. Else, if there exists a disk d ∈ D−≤5 with δ(d) ≥ 0.11, then let d′ be such a disk with
maximum δ(d′) and set S = {(0, 0), (2, 0), (−0.15, 1.75), (−0.15,−1.75)}.

4. Otherwise, set S = {(0, 0), (2.5, 1), (−2.5, 1), (0,−1.52)}, assuming the base setting.

This is the end of our algorithm and the computation of S. We claim that S stabs D. In
Section 4.3 we establish the linear bound on the algorithm’s running time, and in Section 5
we prove its correctness.

α
c∗

d∗

d

`1

x
c

δ(d)

Figure 2 Illustration of δ(d) and the angle α.

4.3 Running Time
All transformations, i.e., translations, rotations, and reflections, can be performed in O(|D|)
time. The smallest disk d∗ that intersects all disks in D, can be found in O(|D|) time, as it
is an LP-type problem; see [1, 8]. The smallest disk dmin that does not contain c∗, as well as
the disks d and d′ with maximum δ(d) and δ(d′), can be found in O(|D|) time. Given d∗,
dmin, d, and d′, the set S can be found in constant time. Therefore, the total running time
of the algorithm is O(|D|).

5 Correctness

In this section we prove the correctness of the algorithm, that is, we prove that the set S
computed by the algorithm stabs D. We prove this for the three cases (rmin ≥ 4, rmin ≤ 2,
and 2 < rmin < 4) separately in Subsections 5.1, 5.2, and 5.3. Recall the three disks, d1,
d2, and d3, that are tangent to d∗. Any disk d ∈ D that we consider in our proofs should
intersect these three disks. Finally, the elementary geometric observations to which we refer
in our proofs can be found in Section 6.

5.1 Proof of Case rmin ≥ 4
Recall that we are in the base setting, and S = {c∗ = (0, 0), (−4, 1), (4, 1), (0,−3)} as depicted
in Figure 3. We prove that each disk in D contains at least one point of S.

By the definition of D−, any disk in D \D− contains c∗ = (0, 0). Now consider any disk
d ∈ D− and let c denote its center. Since rmin ≥ 4, we have r(d) ≥ 4.
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`1

`′1

d∗ c∗

(0,−3)

(−4, 1) (4, 1)

Figure 3 Four stabbing points for the case where rmin ≥ 4.

1. If c lies below or on the line through (4, 1) and (0,−3), then by Observations 2 and 3, d
contains (4, 1) or (0,−3). To see this, let l be the line through a = (4, 1) and b = (0,−3),
and V be the strip defined by the lines perpendicular to l through a and b, respectively.
The role of the disk η in these observations is filled by the disk d∗, which is contained
in the lower part of V . If c (the center of d) lies outside V , then, by Observation 2, d
contains (4, 1) or (0,−3). Otherwise (c lies inside V ), consider the disk f of radius 4
centered at (4,−3) (which is in the upper part of V ), and notice that its boundary passes
through a and b and is tangent to d∗. Now, by Observation 3, where the role of the disk
δ is filled by the disk f , d contains (4, 1) or (0,−3), since r(d) ≥ r(f) = 4.

2. If c lies below or on the line through (−4, 1) and (0,−3), then by an argument similar to
the previous case, d contains (−4, 1) or (0,−3).

3. If c lies on or above the line through (−4, 1) and (4, 1) (i.e., the line `′1) and x(c) /∈ [−4, 4],
then, by Observation 2, d contains (−4, 1) or (4, 1), where the role of the disk η is filled
by the disk d∗.

4. If c lies on or above `′1 and x(c) ∈ [−4, 4], then we distinguish between two simple cases.
If y(c) ≤ 3, then it is easy to verify that d contains at least one of the points (−4, 1) and
(4, 1) (since c lies in the union of the disks of radius 4 around these points, as d ∈ D−).
If y(c) > 3, then, by Observation 4, d contains (−4, 1) or (4, 1). To see this, assume
w.l.o.g. that x(c) ∈ [0, 4], and let c∗ = (0, 0), (4, 1), and `1 play the roles of a, b, and l
in Observation 4, respectively. Then V is the vertical strip whose sides pass through a
and b, respectively. Moreover, let d′ be the disk with center in V whose boundary passes
through c∗ and (4, 1) and is tangent to `1 (see Figure 4); it is easy to verify that d′’s
center lies below the horizontal line y = 2. Then, d′ and d play the roles of δ and ε in
Observation 4, and according to the observation d contains c∗ or (4, 1). But since we are
assuming that c∗ /∈ d, we conclude that d contains (4, 1).

5. If c is in the triangle with corners (−4, 1), (4, 1), and (0,−3), then since rmin ≥ 4 it is
stabbed by at least one of the points in S.

5.2 Proof of Case rmin ≤ 2

Recall that we are in the base setting, that d is the disk in D−≤2 with maximum δ(d),
that d’s center, c, has positive x-coordinate, and that α is the convex angle between the
segment cc∗ and the x-axis (see Figure 2). Depending on α and y(c), our algorithm sets
S = {pl, q−, q+, pr} as follows:
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`1

d∗ c∗

(0,−3)

(−4, 1) (4, 1)

d

`′1
c

Figure 4 Illustration of the case where c lies above `′1 and c(x) ∈ [−4, 4] (more precisely,
x(c) ∈ [0.4] and y(c) > 3).

1. α ≤ 17◦:

pl = (−0.5, 0), q− = (0,−1.7), q+ = (0, 1.7), pr = (1.5, 0).

2. α > 17◦ and y(c) > 0:

pl = (−0.5, 0), q− = (0.5,−2.5), q+ = (−0.5, 1.83), pr =
(

1
2 + 2

√
6

5 ,
1
5

)
.

3. α > 17◦ and y(c) < 0:

pl = (−0.5, 0), q+ = (0.5, 2.5), q− = (−0.5,−1.83), pr =
(

1
2 + 2

√
6

5 ,−1
5

)
.

We prove for each of the above cases that S stabs D.
Any disk e ∈ D intersects the line `1. To see this, if e is centered at a point in h1,

where h1 is the half plane defined by `1 that does not contain c∗, then since e must intersect
d∗ it intersects `1. If e is centered at a point not in h1, then since e must intersect d1 it
intersects `1. Moreover, if e’s center is with positive y-coordinate, then it also intersects `′1.
In Section A we prove the following claim.

B Claim 1. Any disk in D that is centered at a point of negative y-coordinate and is not
stabbed by q− nor pl intersects `′1.

Therefore, we may restrict our attention only to disks in D that intersect both `1 and `′1.
Consider the vertical strip V whose left and right boundaries are the vertical lines through
pl and pr, respectively.

B Claim 2. Any disk e ∈ D, with center in V , contains pl or pr.

Proof. We distinguish between two cases w.r.t. α and apply Observation 4 in these two
cases. In both cases, if the center of e is above the x-axis then `1 plays the role of ` (in
Observation 4), otherwise `′1 plays the role of `.

If α ≤ 17◦, then x(pr) = 3
2 and the claim follows from Observation 4 where d∗, e, pl, and

pr play the roles of δ, ε, a, and b, respectively.



P. Carmi, M. Katz, P. Morin XX:9

If α > 17◦ then x(pr) = 1
2 + 2

√
6

5 . Let d′ be the disk (not necessarily in D) of radius 1
that is centered at (0.5, 0). Observe that the points

(
1
2 + 2

√
6

5 , 1
5

)
and

(
1
2 + 2

√
6

5 ,− 1
5

)
lie on

the boundary of d′. The claim follows from Observation 4 where d′, e, pl, and pr play the
roles of δ, ε, a, and b, respectively. J

Let Q1, Q2, Q3, and Q4 be the four quadrants of the plane in counterclockwise order
around c∗ such that Q1 contains all points with positive x- and y-coordinates. We define
four disks dr+, dl+, dl−, and dr− as follows (see Figures 5 and 9):

dr+ is the disk, with center in Q1, with x- and y-coordinates more than 1, that is tangent
to `1, and has pr and q+ on its boundary.
dl+ is the disk, with center in Q2, that is tangent to `1, and has pl and q+ on its boundary.
dl− is the disk, with center in Q3, that is tangent to `′1, and has pl and q− on its boundary.
dr− is the disk, with center in Q4 with x-coordinate more than 1 and with y-coordinate
less than −1, that is tangent to `′1, and has pr and q+ on its boundary.

In Sections 5.2.1, 5.2.2 and 5.2.3 we prove the following two lemmas.

I Lemma 3. Point q+ lies above the mutual tangent of d∗ and d.

I Lemma 4. Disks dl+ and dl− do not intersect d; and disks dr+ and dr− do not intersect
d∗.

The following lemma together with Claim 2 implies that S = {pl, pr, q+, q−} stabs D.

I Lemma 5. Any disk e ∈ D, whose center is outside V , contains a point of S.

Proof. We consider four cases according to which quadrant (with apex at c∗) the center of e
belongs to.
Case 1: e’s center is in the second quadrant and outside V . If q+ lies above `′1, then we have
by Corollary 16 that e contains pl or q+. To see that, pl, q+, d, e, dl+ and `1, play the role
of a, b, η′, ε, δ and ` in Corollary 16. Else, q+ lies below `′1 and above the mutual tangent of
d∗ and d as shown in Lemma 3. We have by Observation 6 that e contains pl or q+. To see
that, pl, q+, d, dl+, e d∗ and `1, play the role of a, b, η, δ, ε, γ and ` in Observation 6.
Case 2: e’s center is in the third quadrant and outside V . Then, since e intersects `′1 this
case is analogous to the previous case.
Case 3: e’s center is in the first quadrant and outside V . Then, we have by Corollary 16
(reflected with respect to the y-axis) that e contains pr or q+. To see that, pr, q+, d∗, e, dr+

and `1, play the role of a, b, η′, ε, δ and ` in Corollary 16.
Case 4: e’s center is in the fourth quadrant and outside V . Then, since e intersects `′1 this
case is analogous to the previous case. J

In the rest of this section we provide the proofs for the claims that we stated without
proof. We distinguish between the three main cases with respect to the location of c (d’s
center). That is, (i) α ≤ 17◦ in Section 5.2.1; (ii) α > 17◦ and y(c) > 0 in Section 5.2.2; (iii)
α > 17◦ and y(c) < 0 in Section 5.2.3.

5.2.1 α ≤ 17◦

Recall that in this case q+ = (0, 1.7). Let t be the upper mutual tangent of d∗ and d. In
order to be able to apply Observation 6, we first need to prove the following claim.
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`1

d∗

c∗

d

c

pl
pr

q+

q−

dl+

dr+

d′

`′1

dl−

dr−

Figure 5 Illustration of d, dr+, dl+, dl−, and dr− when α ≤ 17◦.

B Claim 6. q+ is above t.

Proof. By our assumptions on the underlying setting we know that x(c) > 0. Moreover,
d intersects d∗ but is not stabbed by c∗, and d intersects the line l1, so y(c) ≤ 1 (since
r(d) ≤ 2). Let tq+ be the line with positive slope tangent to d∗ and passing through q+; see
Figure 6. If d lies below tq+ , then q+ is clearly above t and we are done. So assume that d
intersects tq+ , i.e., the distance between c and tq+ is at most r(d). Since c is below tq+ and
r(d) ≤ 2, we conclude that c lies in the strip U defined by tq+ and the line parallel to tq+

at distance 2 from tq+ and below tq+ . Moreover, c is closer to tq+ than to c∗, so c must lie
on the ‘right’ side of the bisector between c∗ and tq+ . Finally, c must also lie in the convex
wedge W defined by the rays emanating from c∗ of angles 17◦ and −17◦, respectively. Our
calculations below show that the intersection of these three regions is empty, leading to the
conclusion that d does not intersect tq+ .

Indeed, tq+ ’s point of tangency is (− 3
√

21
17 , 10

17 ) and tq+ ’s equation is y = 6.3√
21x+ 1.7. Thus,

the equation of the lower boundary of the strip U is y = 6.3√
21x− 1.7. The bisector between

c∗ and tq+ is the parabola P :

x2 + y2 = 21
6.32 + 21

(
6.3√
21
x− y + 1.7

)2
.

Since x(c) > 0 and c must lie in U and on the ‘right’ side of P , it is enough to show that
any point satisfying these conditions does not lie in W . To see this, we calculate the point
p and the angle β corresponding to it, where p is the higher intersection point between P
and the lower boundary of U ; see Figure 6. We get that p = (

√
3( 10

17 + 3
√

7
17 ), 9

√
7

17 −
10
17 ) and

β > 23◦, and therefore any point satisfying these conditions corresponds to an angle greater
than β. J
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l1

q+

tq+

c∗

2

α = 17◦

bisector(c∗, tq+)

p

U

W

Figure 6 Proof of Claim 6.

First we prove that dl+ and dl− do not intersect d. Because of symmetry, we prove this
only for dl+. To that end, let (a, b) denote the center of dl+; notice that a ≤ 0 and b ≥ 0.
Since dl+ is tangent to `1 and has pl = (−0.5, 0) and q+ = (0, 1.7) on its boundary, the
following equations hold:

1. r(dl+) = b+ 1,
2. (a+ 0.5)2 + b2 = r(dl+)2,
3. a2 + (b− 1.7)2 = r(dl+)2.

These equations solve to: a = −27
34 −

3
√

471/5
17 , b = 2919

2890 + 3
√

2355
289 .

Let d′ be the disk of radius 2 that has c∗ on its boundary and has its center c′ = (x′, y′)
on the ray from c∗ to c, i.e., its center is on a line through the origin that makes angle α
with the x-axis; see Figure 7. If fact we have x′ = 2 cosα and y′ = 2 sinα. We claim that if
dl+ does not intersect d′, then it also does not intersect d. To verify this claim we consider
two cases: (i) c is on the line segment c∗c′ (ii) c′ is on the line segment c∗c. In case (i) our
claim holds because d′ contains d; see Figure 7(a). In case (ii) our claim holds because the
center of dl+ is closer to c′ than to c (the center of dl+ and the point c′ are on the same side
of the the perpendicular bisector of c′c) and r(d′) ≥ r(d); see Figure 7(b).

c∗

d∗

d

c c′

d′

c∗

d∗

d

c′

d′

c

(a) (b)

Figure 7 (a) The center c lies on c∗c′, and (b) the center c′ lies on c∗c.

By the above claim it suffices to show that dl+ does not intersect d′, that is the distance
between their centers is more than the sum of their radii: (a−x′)2 + (b−y′)2 > (2 + (b+ 1))2.
This can be verified by plugging a, b, x′, and y′ as follows:
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(a− x′)2 + (b− y′)2 = (a− x′)2 + (y′ − b)2 =(
2 cosα+ 27

34 +
3
√

471/5
17

)2

+
(

2919
2890 + 3

√
2355

289 − 2 sinα
)2

≥

(
2 cos 17◦ + 27

34 +
3
√

471/5
17

)2

+
(

2919
2890 + 3

√
2355

289 − 2 sin 17◦
)2

>

(
2 + 2919

2890 + 3
√

2355
289 + 1

)2

.

The above inequalities imply that dl+ does not intersect d′. Therefore dl+ does not
intersect d.

Now we prove that dr+ and dr− do not intersect d∗. Because of symmetry, we show this
only for dr+. Let (a, b) denote the center of dr+, and recall that a ≥ 1 and b ≥ 1. Since
dr+ is tangent to `1 and has pr = (1.5, 0) and q+ = (0, 1.7) on its boundary, the following
equations hold:

1. r(dr+) = b+ 1,
2. (a− 1.5)2 + b2 = r(dr+)2,
3. a2 + (b− 1.7)2 = r(dr+)2.

These equations solve to: a = 81
34 + 3

√
771/5
17 , b = 6619

2890 + 9
√

3855
289 .

To prove that dr+ and d∗ do not intersect, it suffices to show that the distance between
their centers is more than the sum of their radii: (a− 0)2 + (b− 0)2 > (1 + (b+ 1))2. This
can be verified by plugging a and b as follows:

(
81
34 +

3
√

771/5
17

)2

+
(

6619
2890 + 9

√
3855

289

)2

>

(
1 + 6619

2890 + 9
√

3855
289 + 1

)2

.

The above inequality implies that dr+ does not intersect d∗.

5.2.2 α > 17◦ and y(c) > 0
Recall that in this case q+ = (−0.5, 1.83). Let t be the upper mutual tangent of d∗ and d. In
order to be able to apply Observation 6, we first need to prove the following claim.

B Claim 7. q+ is above t.

Proof. By our assumptions on the underlying setting we know that c is in the first quadrant.
Moreover, d intersects d∗ but is not stabbed by c∗, and d intersects the line l1, so y(c) ≤ 1
(since r(d) ≤ 2). Let tq+ be the line with positive slope tangent to d∗ and passing through q+;
see Figure 8. If d lies below tq+ , then q+ is clearly above t and we are done. So assume that
d intersects tq+ , i.e., the distance between c and tq+ is at most r(d). Since c is below tq+ and
r(d) ≤ 2, we conclude that c lies in the strip U defined by tq+ and the line parallel to tq+ at
distance 2 from tq+ and below tq+ . Moreover, x(c) ≤ x(a), where a is the intersection point
between the lower boundary of U and the line y = 1 (since y(c) ≤ 1). On the other hand, c
is closer to tq+ than to c∗, so c must lie on the ‘right’ side of the bisector Ptq+ between c∗
and tq+ , and c is closer to l1 than to c∗, so c must also lie on the ‘right’ side of the bisector
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l1

q+

tq+
c∗

Ptq+

Pl1

2

y = 1b
a

U

Figure 8 Proof of Claim 7.

Pl1 between c∗ and l1. But, any point in the first quadrant that is on the ‘right’ side of both
these bisectors has x-coordinate greater than that of b, the right intersection point between
Ptq+ and Pl1 . Our calculations below show that x(a) < x(b), so d cannot intersect tq+ .

Indeed, tq+ ’s equation is y = ( 61
50 +

√
8663

3
25 )x + 61

25 +
√

8663
3

50 , and therefore the equation

of the lower boundary of the strip U is y = ( 61
50 +

√
8663

3
25 )x − ( 61

25 +
√

8663
3

50 ) and x(a) =
√

25989
83 − 50

83 < 1.34. The bisector between c∗ and tq+ is the parabola Ptq+ :

x2 + y2 =
(( 61

50 +
√

8663
3

25 )x− y + ( 61
50 +

√
8663

3
50 ))2

( 61
50 +

√
8663

3
25 )2 + 1

,

and the bisector between c∗ and l1 is the parabola Pl1 : x2 − 2y − 1 = 0. Finally,

x(b) = 1
283

(
50 +

√
25989 +

√
2(54289 + 50

√
25989)

)
> 1.99, so clearly x(a) < x(b). J

First we prove that dl+ does not intersect d. Let (a, b) denote the center of dl+; notice
that a ≤ 0 and b ≥ 0. Since dl+ is tangent to `1 and has pl = (−0.5, 0) and q+ = (−0.5, 1.83)
on its boundary, the following equations hold:

1. r(dl+) = b+ 1,
2. (a+ 0.5)2 + b2 = r(dl+)2,
3. (a+ 0.5)2 + (b− 1.83)2 = r(dl+)2.

These equations solve to: a = − 1
2 −

√
283
10 , b = 183

200 .

Let d′ be the disk of radius 2 that has c∗ on its boundary and has its center c′ on the ray
from c∗ to c, i.e., its center is on a line through the origin of angle α with the x-axis. We
claim that if dl+ does not intersect d′, then it also does not intersect d. To verify this claim
we consider two cases: (i) c is on the line segment c∗c′ (ii) c′ is on the line segment c∗c. In
case (i) our claim holds because d′ contains d. In case (ii) observe that c is located below the
parabola x2 − 2y = 1 (because otherwise c is closer to c∗ than to `1). This also implies that
the angle α is less than 30◦ (because y(c) ≤ 1). Therefore, the center of dl+ is closer to c′
than to c, and since the r(d′) ≥ r(d) our claim holds.

Let d′′ be the disk of radius 2 that has c∗ on its boundary and has its center c′′ = (
√

3, 1),
i.e., its center is on a line through origin that makes angle 30◦ with the x-axis. We claim that
if dl+ does not intersect d′′, then it also does not intersect d′. See Figure 10 for illustration.
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`1

d∗

c∗

d

c

pl pr

q+

q−

dl+

dr+

d′

`′1

dl− dr−

Figure 9 Illustration of d, dr+, dl+, dl−, and dr− when α > 17◦ and y(c) ≥ 0.

To verify this claim we notice that the center of dl+ is closer to c′′ than to c′ (the bisector
between c′′ and c′ goes through c∗ and thus the center of dl+ is closer to c′′), and thus our
claim holds.

`1

d∗

c∗

c′′

pl pr

q+
dl+

d′

`′1

c′

d′

Figure 10 Illustration of d′, d′′ and dl+, when α ≥ 17◦.

By the above claims, it suffices to show that dl+ does not intersect d′′, that is, the distance
between their centers more than the sum of their radii: (a−

√
3)2 + (b− 1)2 > (2 + (b+ 1))2.

By plugging a and b we get:(
−1

2 −
√

283
10 −

√
3
)2

+
(

183
200 − 1

)2
>

(
2 + 183

200 + 1
)2

.

Therefore, dl+ does not intersect d′′.
Now we prove that dl− does not intersect d. Let (a, b) denote the center of dl−; notice

that a ≤ 0 and b ≤ 0. Since dl− is tangent to `′1 and has pl = (−0.5, 0) and q− = (0.5,−2.5)
on its boundary, the following equations hold:
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1. r(dl−) = |b− 1|,
2. (a+ 0.5)2 + b2 = r(dl−)2,
3. (a− 0.5)2 + (b+ 2.5)2 = r(dl−)2.

These equations solve to: a = − 9
10 −

√
203/2
5 , b = − 161

100 −
√

406
25 .

Let d′′ be a disk of radius 2 that has c∗ on its boundary and its center c′′ = (2, 0). First
we show that if dl− does not intersect d′′ it does not intersect d. let d′ be a disk of radius
2 tangent to c∗ whose center is on the ray from c∗ through c. Notice that if dl− intersects
d it must intersect d′. To see this consider the two cases with respect to the location of c.
If c is between c∗ and c′ (i.e., c ∈ c∗c), then d ⊆ d′. Else (c /∈ c∗c) since r(c) ≤ r(c′) = 2,
y(c) ≤ 1 and (a, b) (the center of dl−) is closer to c′ than to c, we have that if dl− intersects
d it must intersect d′. Now consider the bisector bis(c′, c′′) between c′ and c′′ and observe
that bis(c′, c′′) goes through c∗ and above (a, b). The latter follows from the fact the angle
between bis(c′, c′′) and the x-axis is at most 15◦ (since the ray from c∗ to c is of angle at
most 30◦).

Now we show that dl− does not intersect d′′, that is the distance between their centers is
more than the sum of their radii: (a− 2)2 + (b− 0)2 > (2 + (|b− 1|))2.

(
− 9

10 −
√

203/2
5 − 2

)2

+
(
−161

100 −
√

406
25

)2

>

(
2 + 161

100 +
√

406
25 + 1

)2

.

Therefore, dl− does not intersect d′′.
Now we prove that dr+ does not intersect d∗. Let (a, b) denote the center of dr+; notice

that a > 1 and b > 1. Since dr+ is tangent to `1 and has pr = (1/2 + 2
√

6/5, 1/5) and
q+ = (−0.5, 1.83) on its boundary, the following equations hold:

1. r(dr+) = b+ 1,
2. (a− (1/2 + 2

√
6/5))2 + (b− 1/5)2 = r(dr+)2,

3. (a+ 0.5)2 + (b− 1.83)2 = r(dr+)2.

These equations solve to:

a =
10075 + 5660

√
6 +

√
8490

(
46169 + 8000

√
6
)

8150 > 5.836 (a ≈ 5.83662)

b =
13292307 + 3224000

√
6 + 960

√
1415

(
46169 + 8000

√
6
)

+ 400
√

8490
(
46169 + 8000

√
6
)

5313800
< 7.51 (b ≈ 7.50912)

Now we show that dr+ does not intersect d∗, that is the distance between their centers is
more than the sum of their radii.

(a− 0)2 + (b− 0)2 > (1 + (b+ 1))2

a2 − 4− 4b > 0

5.8362 − 4− 4 ∗ 7.51 > 0

Consider disk dr−, and let (a, b) be its center (recall that a > 1 and b < −1). Since dr−

is tangent to `′1 and has pr = (1/2 + 2
√

6/5, 1/5) and q− = (0.5,−2.5) on its boundary, the
following equations hold:
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1. r(dr−) = |b− 1|,
2. (a− 1

2 −
2
√

6
5 )2 + (b− 1/5)2 = r(dr−)2,

3. (a− 0.5)2 + (b+ 2.5)2 = r(dr−)2.

Solving these equations we get that

a = 1
54(27 + 28

√
6 + 2

√
2310) > 3.52, b = −1393

972 − 8
√

385
243 > −2.08.

Now we show that dr− does not intersect d∗, that is the distance between their centers is
more than the sum of their radii.

(a− 0)2 + (b− 0)2 > (1− (b− 1))2

a2 − 4 + 4b > 0

3.522 − 4 + 4 ∗ (−2.08) > 0

5.2.3 α > 17◦ and y(c) < 0
This case is identical under reflection with respect to the x-axis to Section 5.2.2.

5.3 Proof of Case 2 < rmin < 4
Recall the disk dmin ∈ D− of radius rmin. Since rmin > 2, any disk in D− has radius larger
than 2, and since rmin < 4, dmin ∈ D−≤k, for any k ≥ 4. In each of the following three claims,
we pick a disk d′ from a set D−≤k, for some k ≥ 4. In these claims we do not assume the
base setting; rather we assume, after a suitable rotation, that the center of d′ lies on the
positive x-axis. In this section we slightly abuse the notation and for a disk e we denote by
x(e) and y(e) the x-coordiante and y-coordinate of the center of e, respectively.

B Claim 8. Let d′ be the disk in D−≤5 with maximum δ(d′), and assume that its center lies
on the positive x-axis. If δ(d′) ≥ 0.5, then {(0, 0), (2, 0), (0.4, 2), (0.4,−2)} stabs D.

Proof. Any disk in D \D− contains (0, 0). Thus, we prove the claim for D−. We claim for
any disk e ∈ D− that if y(e) ≥ 0 then e contains (2, 0) or (0.4, 2), otherwise e contains (2, 0)
or (0.4,−2). We prove our claim for y(e) ≥ 0, since the proof for y(e) < 0 is symmetric.
Notice that the center of d′ is (r(d′) + δ(d′), 0). Depending on the sign of x(e) we consider
two cases.

x(e) ≤ 0.

Let d2 be the disk of radius 2, with negative x(d2), that has (0, 0) and (0.4, 2) on its boundary.
If (x2, y2) denotes the center of d2, then we have the following equations

x2
2 + y2

2 = 4, (x2 − 0.4)2 + (y2 − 2)2 = 4,

which solve to x2 = 1
5 −

√
37/13 and y2 = 1 +

√
37/13
5 .

Since r(d′) ≤ 5 and 0.5 ≤ δ(d′) ≤ 1, it is easy to verify that the distance between the
centers of d2 and d′ is greater than the sum of their radii, that is

(x2 − (r(d′) + δ(d′)))2 + (y2 − 0)2 > (2 + r(d′))2.
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d′′

d∗

t

t⊥

d2

q

5

2

c∗ (5.5, 0)

Figure 11 Proof of Claim 8, c(e) in the second quadrant.

Therefore, d2 does not intersect d′. We use this fact to show below that any disk e ∈ D− with
y(e) ≥ 0 and x(e) ≤ 0 (that intersects both d′ and d∗) must contain the point q = (0.4, 2).

Let d′′ be the disk of radius 5 centered at (5.5, 0) (see Figure 11). Notice that since e
intersects d′ it must also intersect d′′. Let t′ be the (relevant) mutual tangent to d′′ and d∗,
i.e., t′ : y = 8√

57x+ 11√
57 . It is easy to verify that the point q lies above t′. Now, let t be the

line parallel to t′ that passes through q, let t⊥ be the line perpendicular to t that passes
through q, and let P = P (q, d∗) be the bisector between q and d∗.

We first observe that in the halfplane to the left of the y-axis, t⊥ is above P . This can
be verified by showing that for any point p on t⊥ with x(p) ≤ 0, we have that the distance
between p and q is less than the distance between p and d∗ (which is the distance between p
and c∗ minus 1).

If c(e) is above t⊥ then clearly e contains q (since e intersects d∗), so assume that c(e) is
below t⊥. Our assumptions on e (e ∈ D−, r(e) > 2, c(e) is in the second quadrant) imply
that c(e) is above t. Now, if e intersects t at a point above q, then by the triangle inequality
e contains q. Otherwise, since e intersects d′′, e must intersect the clockwise arc of d2 from
c∗ to q. But, then e contains q (since r(e) > r(d2) = 2 and c∗ /∈ e).

x(e) > 0.

Let d2 be the disk of radius 2, with x(d2) > 0.4, that has (2, 0) and (0.4, 2) on its boundary.
If (x2, y2) denotes the center of d2, then we have the following equations

(x2 − 2)2 + y2
2 = 4, (x2 − 0.4)2 + (y2 − 2)2 = 4,

which solve to x2 = 6
5 +

√
59/41 and y2 = 1 + 4

√
59/41
5 .

The distance between the centers of d2 and d∗ is greater than the sum of their radii, that
is (x2)2 + (y2)2 > (2 + 1)2, which implies that d2 does not intersect d∗. This, together with
some of our geometric observations, implies that e contains point (2, 0) or point (0.4, 2). To
see this, let l be the line through the points (2, 0) and (0.4, 2). Let V be the strip that is
defined by the two lines perpendicular to l through (2, 0) and (0.4, 2), respectively. Notice
that d∗ is contained in V below l. If c(e) is outside V and above l, then by Observation 2 we
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have that e contains (2, 0) or (0.4, 2). If c(e) is in V and above l, then by Observation 3 we
have that e contains (2, 0) or (0.4, 2). Finally, if c(e) is below l (recall that c(e) is in the first
quadrant), then, since r(e) > 2 and c∗ /∈ e, e contains (0.4, 2). J

B Claim 9. Assume that D−≤5 does not contain any disk with δ(·) greater or equal to 0.5. Let
d′ be the disk in D−≤20 with maximum δ(d′), and assume that its center lies on the positive
x-axis. If δ(d′) ≥ 0.5, then {(0, 0), (2, 0), (−0.15, 2.7), (−0.15,−2.7)} stabs D.

Proof. Any disk in D \D− contains (0, 0). Thus, we prove the claim for D−. We claim for
any disk e ∈ D− that if y(e) ≥ 0 then e contains (2, 0) or (−0.15, 2.7), otherwise e contains
(2, 0) or (−0.15,−2.7). We prove our claim for y(e) ≥ 0, since the proof for y(e) < 0 is
symmetric. Notice that the center of d′ is (r(d′) + δ(d′), 0). We consider the following three
cases.

x(e) ≤ 0.

Let d2 be the disk of radius 2, with negative x(d2), that has (0, 0) and (−0.15, 2.7) on its
boundary. If (x2, y2) denotes the center of d2, then we have the following equations

x2
2 + y2

2 = 4, (x2 + 0.15)2 + (y2 − 2.7)2 = 4,

which solve to x2 = − 3
40 −

9
√

139/13
20 and y2 = 27

20 +
√

139/13
40 .

Since r(d′) ≤ 20 and 0.5 ≤ δ(d′) ≤ 0.5, it is easy to verify that the distance between the
centers of d2 and d′ is greater than the sum of their radii, that is (x2− (r(d′)+δ(d′)))2 +y2

2 >

(2 + r(d′))2.
Therefore, d2 does not intersect d′. As above, we use this fact to show that any disk

e ∈ D− with y(e) ≥ 0 and x(e) ≤ 0 (that intersects both d′ and d∗) must contain the point
q = (−0.15, 2.7).

Let d′′ be the disk of radius 20 centered at (20.5, 0). Notice that since e intersects
d′ it must also intersect d′′. Let t′ be the (relevant) mutual tangent to d′′ and d∗, i.e.,
t′ : y = 38√

237x+ 41√
237 . It is easy to verify that the point q lies above t′. Now, let t be the line

parallel to t′ that passes through q, let t⊥ be the line perpendicular to t that passes through
q, and let P = P (q, d∗) be the bisector between q and d∗.

We first observe that in the halfplane to the left of the y-axis, t⊥ is above P . This can
be verified by showing that for any point p on t⊥ with x(p) ≤ 0, we have that the distance
between p and q is less than the distance between p and d∗ (which is the distance between p
and c∗ minus 1).

If c(e) is above t⊥ then clearly e contains q (since e intersects d∗), so assume that c(e) is
below t⊥. Our assumptions on e (e ∈ D−, r(e) > 2, c(e) is in the second quadrant) imply
that c(e) is above t. Now, if e intersects t at a point above q, then by the triangle inequality
e contains q. Otherwise, since e intersects d′′, e must intersect the clockwise arc of d2 from
c∗ to q. But, then e contains q (since r(e) > r(d2) = 2 and c∗ /∈ e).

x(e) > 0 and r(e) ≥ 5.

Let d5 be the disk of radius 5, with positive x(d5), that has (2, 0) and (−0.15, 2.7) on its
boundary. If (x5, y5) denotes the center of d5, then we have

(x5 − 2)2 + y2
5 = 25, (x5 + 0.15)2 + (y5 − 2.7)2 = 25,
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which solve to x5 = 37
40 + 243

√
87/953

20 and y5 = 27
20 + 387

√
87/953

40 .
Since the distance between the centers of d5 and d∗ is greater than the sum of their radii,

i.e., (x5)2 + (y5)2 > (1 + 5)2, these disks do not intersect. Thus, using observations 2 and 3
as above, we have that e contains point (2, 0) or point (−0.15, 2.7).

x(e) > 0 and r(e) < 5.

Recall that r(e) > 2. Since e ∈ D−≤5, by the claim’s assumption we have that δ(e) < 0.5.
Using an idea similar to the one used in the previous case, we show that e contains (2, 0)
or (−0.15, 2.7). Let d2 be the disk of radius 2, with positive x(d2), that has (2, 0) and
(−0.15, 2.7) on its boundary. If (x2, y2) denotes the center of d2, then

(x2 − 2)2 + y2
2 = 4, (x2 + 0.15)2 + (y2 − 2.7)2 = 4,

which solve to x2 = 37
40 + 27

√
327/953
20 and y2 = 27

20 + 43
√

327/953
40 .

We claim that d2 does not intersect the disk of radius 0.5 and center c∗, which we denote
by d0.5. This claim can be verified by showing that the distance between the centers of these
disks is greater than the sum of their radii, that is, x2

2 + y2
2 > (0.5 + 2)2. Thus, again, using

observations 2 and 3 we have that e contains point (2, 0) or point (−0.15, 2.7). J

The proofs of the following two claims use similar arguments and can be found in
Section B.

B Claim 10. Assume that D−≤20 does not contain any disk with δ(·) at least 0.5. Let d′ be
the disk in D−≤5 with maximum δ(d′), and assume that its center lies on the positive x-axis.
If 0.11 ≤ δ(d′) < 0.5, then {(0, 0), (2, 0), (−0.15, 1.75), (−0.15,−1.75)} stabs D.

Claims 8, 9, and 10 imply that if D−≤5 contains a disk with δ(·) ≥ 0.11, or if D−≤20 contains
a disk with δ(·) ≥ 0.5, then there exists a set of four points that stabs D. It remains to prove
our claim for the case where every disk in D−≤5 has δ(·) < 0.11 and every disk in D−≤20 has
δ(·) < 0.5. To that end, we assume the base setting.

In what follows we show that in this case D is stabbed by (0, 0), (2.5, 1), (−2.5, 1), and
(0,−1.52). Here we assume w.l.o.g. that one of the tangents (`1) is as described in Section 5.1.
See Figure 12.

la

l′a

d∗ c∗

(0,−1.52)

(−2.5, 1) (2.5, 1)

Figure 12 The 4 piercing points in this case are depicted in red.

B Claim 11. If for every disk e1 ∈ D−≤5 we have δ(e1) < 0.11 and for every disk e2 ∈ D−≤20
we have δ(e2) < 0.5, then the set {(0, 0), (2.5, 1), (−2.5, 1), (0,−1.52)} stabs D.

6 Geometric Observations

In the following three observations, ` is a line and a and b are two points on `. We think of
` as a directed line, such that a precedes b along `. If an object lies to the left (right) of `
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`a b

η

V

Figure 13 The setting for Observations 1-3.

V

δ2

δ1

a

b

`

Figure 14 The setting for Observation 4.

(when traversing `), then we say that it lies “above” (“below”) `. Let V be the strip that is
defined by the two lines perpendicular to ` through a and b, respectively. Finally, let η be a
disk with center below `, such that (i) η ∩ ` = ∅ or η is tangent to the line segment ab, and
(ii) η ∩ V 6= ∅; see Figure 13.

B Observation 1. Let ε be a disk with center above `. If ε ∩ (η ∩ V ) 6= ∅, then ε intersects
the segment ab.

B Observation 2. Let ε be a disk with center above ` and not in V . If ε ∩ (η ∩ V ) 6= ∅, then
ε contains a or b.

B Observation 3. Let δ be a disk tangent to a, b, and η, and let ε be a disk with center
above ` and in V and with radius at least the radius of δ. If ε∩ η 6= ∅, then ε contains a or b.

B Observation 4. Consider the setting depicted in Figure 14. Let

` be a horizontal line;
a and b be two points above ` with a to the left of b;
V be the vertical strip whose left side contains a and whose right side contains b;
δ1 and δ2 be the two disks that have a and b on their boundary and are tangent to ` from
above;
δ ∈ {δ1, δ2};
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`

`′

p

q

a

r

s

b
δ

η

Figure 15 The setting for Observation 5.

If ε is a disk with center in V and above the center of δ that intersects `, then ε contains a
or b.

The following two observations (i.e., Observations 5 and 6) are somewhat more involved,
so we present a proof to the former one. The proof to the latter one is similar.

B Observation 5. Consider the setting depicted in Figure 15. Let

` be a horizontal line;
η be a disk that intersects ` and whose center is above `;
`′ be the line parallel to ` and tangent to η from above;
δ be a disk that intersects `′ and is tangent to ` from above at some point p and is tangent
to η from the left at some point q;
r be the intersection point of `′ with the right boundary of δ;
s be the highest point of δ;
a be a point on the boundary of δ on the counterclockwise arc from p to q;
b be a point on the boundary of δ on the counterclockwise arc from r to s.

If ε is a disk with center in the upper-left quadrant of a that intersects both ` and η, then ε
contains a or b.

Proof. If ε contains a or b, then we are done, so assume that both a and b are not in ε. By
Observation 7, we have that ε cannot interest ` at a point that belongs to the lower-right
quadrant of a, and that ε cannot interest η at a point that belongs to the lower-right quadrant
of a. We distinguish between two cases according to the location of c(ε), the center of ε.

c(ε) is in the upper-right quadrant of b (this is only possible if b is to the left of a). By
Observation 7, we have that ε must interest ` at a point with x-coordinate between the
x-coordinate of a and the x-coordinate of b, but this implies that ε intersects δ more than
twice, which is of course impossible.
Otherwise (c(ε) is not in the upper-right quadrant of b). By Observation 7, and since
ε interests η, we have that ε intersects δ at a point on the boundary of δ on the
counterclockwise arc from a to b. However, since ε needs to intersect ` to the left of a, we
have that ε and δ intersect more than twice, which again is impossible.

J

I Corollary 16. Given the setting for Observation 5, let η′ be a disk that is contained in η.
If ε is a disk with center in the upper-left quadrant of a that intersects both ` and η′, then ε

contains a or b.
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`

`′

p

q

a

r

s
b

δ

ηγ

Figure 16 The setting for Observation 6.

B Observation 6. Consider the setting depicted in Figure 16. Let

` be a horizontal line;
η be a disk that intersects ` and whose center is above `;
`′ be the line parallel to ` and tangent to η from above;
δ be a disk that intersects `′ and is tangent to ` from above at some point p and is tangent
to η from the left at some point q;
r be the intersection of `′ with the right boundary of δ;
γ be a disk that does not intersect `′, such that γ is tangent to ` from above and its
center is to the left of η.
s be the right intersection point of δ and the upper mutual tangent of η and γ.
a be a point on the boundary of δ on the counterclockwise arc from p to q;
b be a point on the boundary of δ on the counterclockwise arc from s to r.

If ε is a disk with center in the upper-left quadrant of a that intersects `, η, and γ, then ε
contains a or b.

B Observation 7. Let p be a point in the plane. Let δ be a disk with center c in the upper-left
quadrant of p. If δ intersects the lower-right quadrant of p, then δ contains p.

Proof. Assume δ intersects the lower-right quadrant of p. Then, δ’s boundary intersects the
upper boundary or the left boundary of the lower-right quadrant of p. Assume w.l.o.g. that
δ’s boundary intersects the left boundary at a point x. We have by the triangle inequality
that |cx| > |cp|, since ∠(cpx) > 90◦. Thus, δ contains p. J
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A Proof of Claim 1

In this section, we show that any disk e ∈ D that is centered at a point of negative y-
coordinate and does not contain pl nor q− intersects `′1. Assume towards contradiction that
there exists such a disk e that does not intersect `′1. We first consider the case where the
center of e (c(e)) is below q− (w.r.t. the y-coordinate). Then, we consider the case where
the center of e lies above q− (and has negative y-coordinate). In both cases we show that e
cannot exist.

B Claim 17. Let e ∈ D be a disk whose center is below q− and does not contain pl nor q−,
then e intersects `′1.

Proof. We distinguish between two cases according to the x-coordinate of e’s center. If c(e)
has negative x-coordinate, then let t be the vertical line through the point (1, 0). In this
case it is sufficient to show that the disk e′ (whose center has negative x-coordinate and
y-coordinate below q−) that is tangent to t and d∗ and has the point q− on its boundary
intersects `′1, since this implies that e intersects `′1.

If c(e) has positive x-coordinate, then we consider two sub-cases according to the location
of d’s center. If c(d) has positive y-coordinate, then let t be the vertical line through point
(−1, 0); otherwise, let t be the line tangent to d∗ at a point above the x-axis and forming an
angle of 30◦ with the (positive) x-axis. Notice that in the latter sub-case (c(d) has negative
y-coordinate), the angle between `2 and the (positive) x-axis is at most 30◦, since otherwise
d does not intersect `2 (as its radius is at most 2). In both sub-cases it is sufficient to show
that the disk e′ (whose center has positive x-coordinate and y-coordinate below q−) that is
tangent to t and d∗ and has the point q− on its boundary intersects `′1, since this implies
that e intersects `′1.

Let e′ be a disk whose center is below q− that is tangent to t and d∗ and has the point
q− on its boundary, and let (a, b) be its center.

First consider the case where c(e) has negative x-coordinate. We have the following
equations:

1. r(e′) = |1− a|,
2. a2 + b2 = (r(e′) + 1)2, and
3. (a− x(q−))2 + (b− y(q−))2 = r(e′)2.

Solving these equations when q− = (0,−17/10) we get that b > −5.4 and r(e′) > 7. Solving
these equations when q− = (1/2,−5/2) we get that b > −4.9 and r(e′) > 5.9. Solving these
equations when q− = (−1/2,−183/100) we get that b > −13 and r(e′) > 40. Thus, in all
three cases e′ intersects `′1 (b+ r ≥ 1).

Next, consider the sub-case where c(e) has positive x-coordinate and d has positive
y-coordinate. We have the following equations:

1. r(e′) = |1 + a|,
2. a2 + b2 = (r(e′) + 1)2, and
3. (a− x(q−))2 + (b− y(q−))2 = r(e′)2.

Solving these equations when q− = (0,−17/10) we get that b > −5.4 and r(e′) > 7. Solving
these equations when q− = (1/2,−5/2) we get that b > −20 and r(e′) > 80. Thus, in all
three cases e′ intersects `′1 (b+ r ≥ 1).

Finally, consider the sub-case where c(e) has positive x-coordinate and c(d) has negative
y-coordinate. We have the following equations:
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1. r(e′) = |
√

3b−a−2|
2 ,

2. a2 + b2 = (r(e′) + 1)2, and
3. (a− x(q−))2 + (b− y(q−))2 = r(e′)2.

Solving these equations when q− = (0,−17/10) we get that b > −17 and r(e′) > 25. Solving
these equations when q− = (−1/2,−183/100) we get that b > −64 and r(e′) > 80. Thus, in
all three cases e′ intersects `′1 (b+ r ≥ 1). J

In the rest of this section we assume that the center of e has negative y-coordinate and
lies above q−. Recall that we are in the base setting and the angle between `2 and `3 is the
largest in the triangle ∆ (formed by `1, `2, and `3). Let β be the angle of ∆ between `1
and `3, and let γ be the angle of ∆ between `1 and `2. We distinguish between three cases
according to the angle β. In each of these cases we show that e does intersect both `2 and
`3, and therefore cannot exist (in D).

`2

`3

pl

q−

d∗

e′

γ

β

`2

`3

pl

q−

d∗

e′

γ

β

`1 `1

`2

`3

pl

q−

d∗

e′

γ

β

`1

Figure 17 Left: q− = (0,−1.7). Middle: q− = (0.5,−2.5). Right: q− = (−0.5,−1.83).

Let e′ be the disk, with center of negative y-coordinate and above q−, tangent to pl, q−
and `3, where the point of tangency with `3 is below `′1 (otherwise, e′ clearly intersects `′1).
We observe that it is sufficient to show that e′ does not intersect both `2 and `3, since this
implies that any other disk whose center is of negative y-coordinate and above q− that avoids
pl and q− and intersects `3 below `′1 does not intersect `2; see Figure 17.

B Claim 18. If the angle β ≤ 45◦, then e′ does not intersect `2.

Proof. Let t be the vertical line through the point (−1, 0). Observe that it is sufficient to
show that e′ does not intersect t, since this implies that e′ does not intersect `2. It is enough
to show that e′ does not intersect t when β = 45◦. Notice that if β = 45◦, then the equation
of `2 is y = −x+

√
2. Let c(e′) = (a, b).

Since e′ is tangent to `3 and has pl and q− on its boundary, the following equations hold:

1. (a− x(pl))2 + (b− y(pl))2 = r(e)2,
2. (a− x(q−))2 + (b− y(q−))2 = r(e)2, and
3. (a+b−

√
2)2

2 = r(e)2.

Solving these equations when pl = (−1/2, 0) and q− = (0,−17/10) we get that a > 0.44
and r(e′) < 1.15. Solving these equations when pl = (−1/2, 0) and q− = (1/2,−5/2) we
get that a > 0.45 and r(e′) < 1.44. Solving these equations when pl = (−1/2, 0) and
q− = (−1/2,−183/100) we get that a > 0.45 and r(e′) < 1.4. Thus, in all cases e′ does
intersect t, and therefore does not intersect `2. J

B Claim 19. If the angle 45◦ < β ≤ 75◦, then e′ does not intersect `2.
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Proof. Let t be a line of positive slope that is tangent to d∗ at a point above the x-axis
and forms an angle of 67.5◦ with the x-axis; the equation of t is y = tan(67.5◦)x+ 1

cos(67.5◦) .
Notice that γ, the angle between `2 and the x-axis, is less than 67.5◦ (since β > 45◦ and the
largest angle in ∆ is between `2 and `3). Observe that it is sufficient to show that e′ does not
intersect t, since this implies that e′ does not intersect `2. It is enough to show that e′ does
not intersect t when β = 75◦, and in this case the equation of `3 is y = −(2+

√
3)x+

√
2+
√

6.
Let c(e′) = (a, b). To show that e′ does not intersect t we need to show that the distance

of the center of e′ from t is more than r(e′), that is:

(∗) | − a sin(67.5◦) + b cos(67.5◦)− 1| > r(e′) .

Since e′ is tangent to `3 and has pl and q− on its boundary, the following equations hold:

1. (a− x(pl))2 + (b− y(pl))2 = r(e′)2,
2. (a− x(q−))2 + (b− y(q−))2 = r(e′)2, and
3. |(2+

√
3)a+b−(

√
2+
√

6)|√
(2+
√

3)2+1
= r(e′).

Solving these equations when pl = (−1/2, 0) and q− = (0,−17/10) we get that a > 0.19,
b < −0.71 and r(e′) < 1. Solving these equations when pl = (−1/2, 0) and q− = (1/2,−5/2)
we get that a < −0.02, b > 1.26 and r(e′) < 1.346. Solving these equations when pl =
(−1/2, 0) and q− = (−1/2,−183/100) we get that a < 0.131, b > −0.92 and r(e′) < 1.111.

Thus, by setting these values in equation (∗) we get that in all cases e′ does not intersect
t, and therefore does not intersect `2. J

B Claim 20. If the angle 75◦ < β < 90◦, then e′ does not intersect `2.

Proof. Let t be a line of positive slope that is tangent to d∗ at a point above the x-axis and
forms an angle of 30◦ with the x-axis; the equation of t is y = 1√

3x+ 2√
3 . Notice that γ, the

angle between `2 and the x-axis, is less than 30◦ (since β > 75◦ and the largest angle in ∆ is
between `2 and `3). Observe that it is sufficient to show that e′ does not intersect t, since
this implies that e′ does not intersect `2. It is enough to show that e′ does not intersect t
when β = 90◦, and in this case the equation of `3 is x = 1.

Let c(e′) = (a, b). To show that e′ does not intersect t we need to show that the distance
of the center of e′ to t is more than r(e′), that is:

(∗) |
√

3b− a− 2|
2 > r(e′) .

Since e′ is tangent to `3 and has pl and q− on its boundary, the following equations hold:

1. (a− x(pl))2 + (b− y(pl))2 = r(e′)2,
2. (a− x(q−))2 + (b− y(q−))2 = r(e′)2, and
3. |a− 1| = r(e′).

Solving these equations when pl = (−1/2, 0) and q− = (0,−17/10) we get that a =
17
√

471
25 − 147

10 , b =
√

471
5 − 51

10 and r(e′) = 157
10 −

17
√

471
25 . Solving these equations when

pl = (−1/2, 0) and q− = (1/2,−5/2) we get that a < −0.42, b > −1.42 and r(e′) < 1.42.
Solving these equations when pl = (−1/2, 0) and q− = (−1/2,−183/100) we get that
a = −1163

40000 , b = −183
200 and r(e′) = −1163

40000 .
Thus, by setting these values in equation (∗) we get that in all cases e′ does not intersect

t, and therefore does not intersect `2. J
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B Proofs of Claims 10 and 11

B Claim 10. Assume that D−≤20 does not contain any disk with δ(·) greater or equal to
0.5. Let d′ be the disk in D−≤5 with maximum δ(d′), and assume that its center lies on the
positive x-axis. If 0.11 ≤ δ(d′) < 0.5, then {(0, 0), (2, 0), (−0.15, 1.75), (−0.15,−1.75)} stabs
D.

Proof. Any disk in D \D− contains (0, 0). Thus, we prove the claim for D−. We claim for
any disk e ∈ D− that if y(e) ≥ 0 then e contains (2, 0) or (−0.15, 1.75), otherwise e contains
(2, 0) or (−0.15,−1.75). We prove our claim for y(e) ≥ 0, since the proof for y(e) < 0 is
symmetric. Notice that the center of d′ is (r(d′) + δ(d′), 0). We consider the following three
cases.

x(e) ≤ 0.

Let d2 be the disk of radius 2, with negative x(d2), that has (0, 0) and (−0.15, 1.75) on its
boundary. If (x2, y2) denotes the center of d2, then we have the following equations

x2
2 + y2

2 = 4, (x2 + 0.15)2 + (y2 − 1.75)2 = 4,

which solve to x2 = − 3
40 −

21
√

287/617
8 and y2 = 7

8 −
9
√

287/617
40 .

Since r(d′) ≤ 5 and δ(d′) > 0.11, the following inequality holds, and thus d2 and d′ do
not intersect: (x2 − (r(d′) + δ(d′)))2 + (y2 − 0)2 > (2 + r(d′))2.

As above, we use this fact to show that any disk e ∈ D− with y(e) ≥ 0 and x(e) ≤ 0
(that intersects both d′ and d∗) must contain the point q = (−0.15, 1.75).

Let d′′ be the disk of radius 5 centered at (5.11, 0). Notice that since e intersects
d′ it must also intersect d′′. Let t′ be the (relevant) mutual tangent to d′′ and d∗, i.e.,
t′ : y = 400√

101121x+ 511√
101121 . It is easy to verify that the point q lies above t′. Now, let t be

the line parallel to t′ that passes through q, let t⊥ be the line perpendicular to t that passes
through q, and let P = P (q, d∗) be the bisector between q and d∗.

We first observe that in the halfplane to the left of the y-axis, t⊥ is above P . This can
be verified by showing that for any point p on t⊥ with x(p) ≤ 0, we have that the distance
between p and q is less than the distance between p and d∗ (which is the distance between p
and c∗ minus 1).

If c(e) is above t⊥ then clearly e contains q (since e intersects d∗), so assume that c(e) is
below t⊥. Our assumptions on e (e ∈ D−, r(e) > 2, c(e) is in the second quadrant) imply
that c(e) is above t. Now, if e intersects t at a point above q, then by the triangle inequality
e contains q. Otherwise, since e intersects d′′, e must intersect the clockwise arc of d2 from
c∗ to q. But, then e contains q (since r(e) > r(d2) = 2 and c∗ /∈ e).

x(e) > 0 and r(e) ≥ 5.

Let d5 be the disk of radius 5, with positive x(d5), that has (2, 0) and (−0.15, 1.75) on its
boundary. If (x5, y5) denotes the center of d5, then we have

(x5 − 2)2 + y2
5 = 25, (x5 + 0.15)2 + (y5 − 1.75)2 = 25,

which solve to x5 = 37
40 + 7

√
18463/1537

8 and y5 = 7
8 + 43

√
18463/1537

40 .
Since the distance between the centers of d5 and d∗ is greater than the sum of their radii,

i.e., (x5)2 + (y5)2 > (1 + 5)2, these disks do not intersect. Thus, using observation 2 and 3 as
above, we have that e contains point (2, 0) or point (−0.15, 1.75).
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x(e) > 0 and r(e) < 5.

Recall that r(e) > 2. Since e ∈ D−≤5, by the claim’s assumption we have that δ(e) < 0.5.
Let d2 be the disk of radius 2, with positive x(d2), that has (2, 0) and (−0.15, 1.75) on its
boundary. If (x2, y2) denotes the center of d2, then

(x2 − 2)2 + y2
2 = 4, (x2 + 0.15)2 + (y2 − 1.75)2 = 4,

which solve to x2 = 37
40 + 7

√
1663/1537

8 and y2 = 7
8 + 43

√
1663/1537

40 .
We claim that d2 does not intersect the disk of radius 0.5 and center c∗, which we denote

by d0.5. This can be verified by showing that the distance between the centers of these disks
is greater than the sum of their radii, that is, x2

2 + y2
2 > (0.5 + 2)2. Notice that e intersects

d0.5 because δ(e) < 0.5. Thus, again, using observations 2 and 3 we have that e contains
point (2, 0) or point (−0.15, 1.75). J

Claims 8, 9, and 10 imply that if D−≤5 contains a disk with δ(·) ≥ 0.11, or if D−≤20 contains
a disk with δ(·) ≥ 0.5, then there exists a set of four points that stabs D. It remains to prove
our claim for the case where every disk in D−≤5 has δ(·) < 0.11 and every disk in D−≤20 has
δ(·) < 0.5. To that end, we assume the base setting.

In what follows we show that in this case D is stabbed by (0, 0), (2.5, 1), (−2.5, 1), and
(0,−1.52). Here we assume w.l.o.g. that one of the tangents (`1) is as described in Section 5.1.
See Figure 18.

la

l′a

d∗ c∗

(0,−1.52)

(−2.5, 1) (2.5, 1)

Figure 18 The 4 piercing points in this case are depicted in red.

B Claim 11. If for every disk e1 ∈ D−≤5 we have δ(e1) < 0.11 and for every disk e2 ∈ D−≤20
we have δ(e2) < 0.5, then the set {(0, 0), (2.5, 1), (−2.5, 1), (0,−1.52)} stabs D.

Proof. We prove that any disk e ∈ D− whose center has positive x-coordinate is stabbed
by at least one of the points (2.5, 1) or (0,−1.52). The case where e’s center has negative
x-coordinate is symmetric.

Let dk be the disk of radius k having points (0,−1.52) and (2.5, 1) on its boundary and
its center is below the line l that passes through points (0,−1.52) and (2.5, 1). Let V be the
strip defined by the two lines perpendicular to l and passing through the points (2.5, 1) and
(0,−1.52).

Consider the disk d2 (i.e., k = 2), whose center (x2, y2) is below l that is obtained by the
following equations

(x2 − 2.5)2 + (y2 − 1)2 = 4, x2
2 + (y2 + 1.52)2 = 4, (c(e) below l)

which solve to x2 = 5
4 + 63

√
8499
109

850 and y2 = −13
50 −

5
√

8499
109

68 .
We have that δ(d2) =

√
x2

2 + y2
2 − 2 > 0.11, that is disk d2 does not intersect the disk

d∗0.11 of radius 0.11 centered at the origin. By our assumptions any disk e ∈ D−≤5 intersects
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d∗0.11. By Observations 2 and 3, we have that e (recall that all disks in D− have radius at
least 2) contains at least one of the points (0,−1.52) or (2.5, 1), where d∗0.11, e, (2.5, 1) and
(0,−1.52) play the role of η, ε, a and b, respectively.

Moreover, we have that δ(d5) > 0.5 (this can be verified as above by computing the
location of the center of d5 and its distance to the origin), that is disk d5 does not intersect
the disk d∗0.5 of radius 0.5 centered at the origin. By our assumptions any disk e ∈ D−≤20
intersects d∗0.5. By Observations 2 and 3, we have that e with r(e) ≥ 5 contains at least one
of the points (0,−1.52) or (2.5, 1), where d∗0.5, e, (2.5, 1) and (0,−1.52) play the role of η, ε,
a and b, respectively.

Finally, we have that d20 does not intersect d∗ (this can be verified as above). By
Observations 2 and 3, we have that e ∈ D− with r(e) ≥ 20 contains at least one of the points
(0,−1.52) or (2.5, 1) (since e intersects d∗), where d∗, e, (2.5, 1) and (0,−1.52) play the role
of η, ε, a and b, respectively.

For a disk e ∈ D− centered above the line containing (−2.5, 1) and (2.5, 1), the argument
follows as the case where rmin ≥ 4.

Finally, the union of disks of radius 2 centered at points (0, 0), (2.5, 1), (−2.5, 1), and
(0,−1.52) covers the region (below the line containing (−2.5, 1) and (2.5, 1), above the line
containing (0,−1.52) and (2.5, 1), and above the line containing (0,−1.52) and (−2.5, 1))
that is not considered by the above cases. J
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