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Furstenberg sets in finite fields: Explaining and improving the

Ellenberg-Erman proof

Manik Dhar∗ Zeev Dvir† Ben Lund‡

Abstract

A (k,m)-Furstenberg set is a subset S ⊂ F
n
q with the property that each k-dimensional

subspace of Fn
q can be translated so that it intersects S in at least m points. Ellenberg and

Erman [EE16] proved that (k,m)-Furstenberg sets must have size at least Cn,km
n/k, where

Cn,k is a constant depending only n and k. In this paper, we adopt the same proof strategy as
Ellenberg and Erman, but use more elementary techniques than their scheme-theoretic method.
By modifying certain parts of the argument, we obtain an improved bound on Cn,k, and our
improved bound is nearly optimal for an algebraic generalization the main combinatorial result.
We also extend our analysis to give lower bounds for sets that have large intersection with shifts
of a specific family of higher-degree co-dimension n − k varieties, instead of just co-dimension
n− k subspaces.

1 Introduction

Let Fq be a finite field, where q is a prime power. Given a finite set of points S ⊂ F
n
q , a k-dimensional

affine subspace V in F
n
q is (S,m)-rich if |S ∩ V | ≥ m.

Definition 1.1 (Furstenberg Sets). A set S ⊆ F
n
q is (k,m)-Furstenberg, if for each k-dimensional

linear subspace V , some translate of V is (S,m)-rich.

The study of finite field Furstenberg sets can be traced back to a question posed by Wolff
[Wol99]. He asked whether a set in F

n
q that contains a line in each direction must have at least

Cnq
n points, where Cn is a positive constant that depends only on n. This question, known as the

finite field Kakeya problem, is a combinatorial version of the notoriously difficult Euclidean Kakeya
problem that is linked to fundamental questions in harmonic analysis. Dvir [Dvi09] answered
Wolff’s question affirmatively using the polynomial method, and his proof immediately implies the
following bound on Furstenberg sets for lines.
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Theorem 1.2. A (1,m)-Furstenberg set S ⊆ F
n
q satisfies the bound,

|S| ≥ Cnm
n

where Cn depends only on n.

Dvir proved Theorem 1.2 with Cn = 1/n!. Subsequent work [SS08, DKSS13] improved the value
of Cn, and the best possible value of Cn = 2−n+1 was recently proved by Bukh and Chao [BC21].
For a more detailed discussion of this result and its applications, see the survey article [Dvi12].

Ellenberg, Oberlin, and Tao [EOT10] used a modification of Dvir’s argument to show that, if
S is a (k, qk)-Furstenberg set, then |S| ≥ (1 − oq(1))q

n, where oq(1) denotes a function f(q) such
that limq→∞ f(q) = 0. Kopparty, Lev, Saraf, and Sudan [KLSS11] later improved the oq(1) term.
However, unlike in the k = 1 case, the proof of this result does not generalize for m much smaller
than qk.

Ellenberg and Erman gave the first non-trivial, fully general lower bound on the size of finite
field Furstenberg sets. In particular, they showed that, if S is a (k,m)-Furstenberg set in F

n
q , then

|S| ≥ Cn,km
n/k, where Cn,k is a constant that depends only on n and k. Instead of bounding the

size of Furstenberg sets directly, they introduced and worked on more general Furstenberg schemes;
see definition 2.6 for an equivalent definition of Furstenberg algebras that avoids the language of
schemes.

While Ellenberg and Erman didn’t explicitly specify the value of Cn,k, a close inspection of their
proof gives Cn,k = (1/n)O(n ln(n/k). Our first result is a quantitative improvement to Ellenberg and
Erman’s result. Our sharpening of their bound for Furstenberg algebras leads to the following
improvement to their bound for Furstenberg sets.

Theorem 1.3 (Furstenberg Set Bound). A (k,m)-Furstenberg set S ⊆ F
n
q satisfies the bound,

|S| ≥ Cn,km
n/k

where Cn,k = Ω((1/16)n ln(n/k)).

The proof of Theorem 1.3 generally the same as the proof of Ellenberg and Erman, but we
avoid the language of schemes to give a more elementary presentation. The modifications of the
proof that lead to the quantitative improvement are discussed in Section 1.1.

As with the work of Ellenberg and Erman, Theorem 1.3 is a corollary to a more general result
on Furstenberg algebras; see Theorem 3.3. The value of Cn,k given in Theorem 1.3 is nearly optimal
for Furstenberg algebras. Indeed, Example 3.7 shows that Cn,k in Theorem 3.3 cannot be larger
than O(e−n log(n/k)).

For Furstenberg sets, a simple combinatorial argument (unrelated to [EE16]) gives the following
bound, which is superior to Theorem 1.3 for m = o(qk−k/(k+1)).

Theorem 1.4 (Easy Furstenberg Bound). If S ⊂ F
n
q is a (k,m)-Furstenberg set in F

n
q and ℓ is an

integer with 1 ≤ ℓ < logq(m) + 1, then

|S|ℓ+1 ≥ qℓ(n−k)m(m− 1)(m− q) . . . (m− qℓ−1).

Recent work by the current authors [DDL21] uses completely different techniques to prove
Theorem 1.3 with Cn,k = 2−n. As with Theorem 1.4, the bound proved in [DDL21] is not true for
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Furstenberg algebras, and the techniques used there cannot lead to any improvement in Theorem
3.3. It is also unlikely that the techniques of [DDL21] can be adapted to prove higher-degree analogs
of Theorem 1.3, such as Theorem 1.6.

Our final result is a generalization of Theorem 1.3 for higher degree surfaces. First, for the sake
of simplicity we restrict ourselves to the k = n− 1 case. In an (n− 1,m)-Furstenberg set S ⊂ F

n
q ,

for any hyperplane equation h(x) = a1x1 + . . . + anxn there is a constant c ∈ Fq such that the
equation h(x) = c has at least m solutions in S. A higher degree analog of this property is that, for
any homogeneous degree d equation h(x), there is an equation f(x) of degree at most d − 1 such
that the equation h(x) = f(x) has at least m solutions in S. We show that such sets must be large,
even if we only require the property to hold for h(x) that are d’th power of a hyperplane. The
proof turns out to be quite simple given all the machinery already developed to tackle the linear
case. This is defined more formally below.

A hypersurface in F
n
q is defined as a zero set of some polynomial in Fq[x1, . . . , xn]. Given a

subset S ⊆ F
n
q , a hypersurface is called (S,m)-rich if it contains m many points from S. We can

generalize this further for higher co-dimension varieties. A set of polynomials p1, . . . , pk is said to
be (S,m)-rich for a set S ⊆ F

n
q if |{x ∈ S|p1(x) = . . . = pk(x) = 0}| ≥ m.

Definition 1.5 (Hyper-Furstenberg Sets). A set S ⊆ F
n
q is (k,m, d)-Hyper-Furstenberg if, for

any k-dimensional subspace U ⊆ F
n
q , there exist linearly independent hyperplanes h1, . . . , hn−k that

contain U and polynomials gi ∈ Fq[x1, . . . , xn] for i = 1, . . . , n − k of degree at most di − 1 with
∏n−k

i=1 di ≤ d such that the set of polynomials hd11 + g1, . . . , h
dk
k + gk is (S,m)-rich.

We see that (n−k,m, d)-Hyper-Furstenberg sets have large intersections with shifts of a special
family of degree d and co-dimension k varieties. For k = 1 we see that we are looking at shifts of
degree d hyper-surfaces.

Theorem 1.6 (Hyper-Furstenberg Bound). A (k,m, d)-Hyper-Furstenberg Set S ⊆ F
n
q satisfies the

bound,

|S| ≥ Cn,k

(m

d

)n/k
,

where Cn,k = Ω(1/16n ln(n/k)).

1.1 Key modifications to the proof of Ellenberg-Erman

For the sake of readers familiar with [EE16], we outline the main modifications we make to their
proof (readers unfamiliar with [EE16] are encouraged to skip this discussion). We only mention
those modifications that allow us to improve the quantitative bounds (i.e., not just using different
language).

The improvement to the constant Cn,k in Theorem 1.3 follows from a more significant looking
improvement to an intermediate result, Theorem 3.5 in our paper (which appears in [EE16] as the
case k = n − 1 of Theorem 1.5). This intermediate result deals with the more general object of
Furstenberg Algebra (or Furstenberg scheme in [EE16]). Theorem 1.3 follows from this intermediate
result by an inductive argument and the improvement to the constant carries over in the reduction.
Ellenberg-Erman prove Theorem 3.5 with constant 1/n, whereas we are able to improve it to an
absolute constant 1/16. The reduction from Theorem 1.3 translates this improvement to the final
Cn,k = Ω((1/16)n ln(n/k)).
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The first main modification is in the part of the proof dealing with Borel-fixed subsets of the
integer lattice (following the degeneration to a generic initial ideal in the case XS

m,k = Gr(k, n)). In
Lemma 5.3 of [EE16] these are dealt with using a rather short proof by induction. In Lemma 5.5
we give a different, more involved, treatment of such sets which results in an improved quantitative
bound.

The other main modification is the place in [EE16] which uses a deep result of Hochster and
Huneke [HH02] to bound the number of m-rich flats in the case XS

m,k 6= Gr(k, n). In Section 6 we
replace this with the more elementary Schwartz-Zippel lemma (with multiplicities) to arrive at a
better quantitative bound.

1.2 Organization

We start by discussing some preliminaries in the next section. These include basic facts about
polynomial rings and ideals, monomial orderings and zeros of polynomials as well as definitions of
Furstenberg algebras, which are the main object we will work with in the paper. Next, in section
3 we discuss the Ellenberg-Erman reduction from Theorem 1.3 to a simpler statement involving
only hyperplanes. Section 4 constructs the ideal which vanishes on rich hyperplane equations, the
central object used to analyse the problem in the hyperplane case. Sections 5 and 6 discuss the
cases when this ideal is zero or not respectively. As at this point as we will have all the required
tools, we prove Theorem 1.6 in section 7 by reducing it to the Furstenberg Algebra theorem for
hyperplanes.

2 Preliminaries

2.1 Polynomial rings, Ideals, and Varieties

The core algebraic objects we will be using are polynomial rings F[x1, . . . , xn], their ideals I, and
their quotients F[x1, . . . , xn]/I for an arbitrary field F. Later we will focus on Fq and its algebraic
closure. Given a ring R, we use 〈f1, . . . , fk〉 to refer to the ideal generated by elements f1, . . . , fk ∈
R. The sum I + J refers to the ideal generated by elements of the form f + g with f ∈ I, g ∈ J .
The product IJ refers to the ideal generated by elements of the form fg with f ∈ I, g ∈ J . It is
easy to check that given two ideals I and J , (J + I)/I is an ideal of the ring R/I. It is also easy to
see (R/I)/((J + I)/I) = R/(I + J). For brevity, we write (R/I)/((J + I)/I) as (R/I)/J . There is
no cause for confusion as (J + I)/I is precisely the ideal generated by J in the ring R/I.

We recall the polynomial ring F[x1, . . . , xn] is Noetherian. This means for any ideal I of
F[x1, . . . , xn] we can find finitely many polynomials f1, . . . , fk ∈ I such that I = 〈f1, . . . , fk〉 =
〈f1〉+ . . .+ 〈fk〉. Given an ideal I of F[x1, . . . , xn], the set VF(I) defined by I is the subset of Fn on
which all polynomials in I vanish. This set may be empty. Given a finite set of points S we define
IF(S) as the ideal of polynomials in F[x1, . . . , xn] which vanish on S. We write VF(〈f1, . . . , fk〉) as
VF(f1, . . . , fk). It is easy to check that VF(I + J) = VF(I) ∩VF(J).

A polynomial f ∈ F[x1, . . . , xn] of degree d is said to be homogenous if it only consists of degree
d monomials. An ideal I of F[x1, . . . , xn] is said to be homogenous if it can be generated by a set of
homogenous polynomials. An ideal I of F[x1, . . . , xn] is said to be monomial if it can be generated
by a set of monomials. We note, if a polynomial f belongs to a monomial ideal I then all its
monomials also belong to I.
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2.2 F-algebras

Definition 2.1 (F-algebras). A finitely generated F-algebra R, is a ring R of the form F[x1, . . . , xn]/I
where I is an ideal of F[x1, . . . , xn]. We will omit the words “finitely generated” from now on as
all our algebras will be finitely generated.

For a F-vector space V , we use dimFV to represent its dimension. Finite dimensional (as a
F-vector space) F-algebras can be used to capture certain geometric properties of a finite set of
points in F

n. Note, from now on whenever we talk about the dimension of an F-algebra we mean
its vector space dimension and not its Krull dimension (the dimension of the corresponding variety,
which is always zero in our setting).

Definition 2.2 (Algebras from Point sets). Given a finite set S ⊆ F
n, we define Alg(S) to be the

F-algebra F[x1, . . . , xn]/IF(S).

In dimension 1 the picture is simple. For example take the point set S = {0, 1} ⊆ F. We see
any polynomial in F[x] which vanishes on S belongs to the ideal 〈x(x − 1)〉. Therefore, Alg(S) =
F[x]/〈x(x− 1)〉. Evaluating polynomials at 0 and 1 produces an isomorphism of vector spaces from
F[x] to F

2. This shows Alg(S) is of dimension 2. Take a polynomial f(x) such that f(0) = 0 and
f(1) 6= 0. Using the isomorphism induced by the evaluation map F[x] → F

2 we have Alg(S)/〈f(x)〉
is isomorphic to F via the map which evaluates polynomials at x = 0. This shows Alg(S)/〈f(x)〉 =
Alg(S ∩V(f)) = Alg({0}). Fortunately, this picture holds true in general.

Proposition 2.3 (Geometry of Algebras). Given a finite set S of points in F
n, the F-algebra,

Alg(S) = F[x1, . . . , xn]/IF(S) satisfies the following properties:

1. Alg(S) is an F-vector space of dimension |S|, that is dimFAlg(S) = |S|.

2. For an ideal J ⊆ F[x1, . . . , xn], Alg(S)/J equals Alg(S ∩VF(J)) and hence is of dimension
|S ∩VF(J)|.

Proof. We write IF(S) as I in this proof. For every point b ∈ S we can define the map Evalb :
F[x1, . . . , xn] → F which simply evaluates a polynomial at the point b. This map is linear. This map
is also the same as the quotient map Evalb : F[x1, . . . , xn] → F[X]/〈X − b〉 where X = (x1, . . . , xn)
and 〈X − b〉 = 〈x1 − b1, . . . , xn − bn〉.

Combining the |S| evaluation maps together for each point in S we have the linear map
EvalS : F[x1, . . . , xn] →

⊕

b∈S F[X]/〈X − b〉 ∼= F
|S|. R =

⊕

b∈S F[X]/〈X − b〉 is a ring with a unit.
It is easy to check that EvalS(fg) = EvalS(f)EvalS(g) and EvalS(1) = 1. This shows the map is a
ring homomorphism. The kernel of this map is precisely going to be the ideal I of polynomials van-
ishing on S. This means EvalS factors through an injective map φ from Alg(S) = F[x1, . . . , xn]/I
to R ∼= F

|S| and the quotient map F[x1, . . . , xn] → Alg(S). This proves that Alg(S) is finite dimen-
sional.

F[x1, . . . , xn] R =
⊕

b∈S F[X]/〈X − b〉 ∼= F
|S|

Alg(S)

EvalS

φ
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By construction φ maps any element of Alg(S) to its evaluation over S.
For all points a ∈ S if we can find polynomials fa which vanish on |S| \ {a} but not on a using

interpolation. This implies φ is a surjective map. This is the case because fa will map to a basis
of F|S|. This would prove Alg(S) is isomorphic to F

|S| as a vector space, via the map φ. Hence,
Alg(S) is |S| dimensional.

We claim φ(J + I) will correspond exactly to
⊕

a∈S\VF(J)
F[X]/〈X − a〉. As each polynomial in

J vanishes on VF(J) it follows φ(J+I) ⊆
⊕

a∈S\VF(J)
F[X]/〈X−a〉. For each a ∈ S\VF(J), we can

find a polynomial fa which vanishes on S \{a} and fa(a) = 1, using interpolation. We can also find
a polynomial ga ∈ J such that it does not vanish on a. faga is then an element of J and the span
of φ(faga) is precisely

⊕

a∈S\VF(J)
F[X]/〈X − a〉. This implies φ induces an isomorphism between

Alg(S)/J = Alg(S)/((J + I)/I) and
⊕

a∈S∩VF(J)
F[X]/〈X − a〉 via evaluation of polynomials on

the set S ∩VF(J). This proves Alg(S)/J is isomorphic to Alg(S ∩VF(J)).

The previous proposition shows that for a finite set S, the finite dimensional F-algebra Alg(S)
captures a number of geometric properties of S. In particular, the size of S and the size of
its intersections with varieties is captured. Not all finite dimensional F-algebras need to be
produced from a finite set of points like in the previous proposition. For example, the ring
F[x1, . . . , xn]/〈x1, . . . , xn〉

d, d > 1 is a finite dimensional algebra but contains lots of non-zero nillpo-
tent elements while it is easy to check that an algebra produced by a finite set will have none. As
d varies we get different rings but all of them only have one maximal ideal 〈x1, . . . , xn〉. Because
we particularly care about subspaces we make the following definition.

Definition 2.4 (Algebra-subspace intersection). Given an affine subspace W ⊆ F
n and a finite

dimensional F-algebra R = F[x1, . . . , xn]/I, we define R ⊓W to be R/IF(W ).

The ideal IF(W ) is generated by any set of n−k degree 1 equations of hyperplanes in F
n whose

intersection defines the k-dimensional affine subspace W . Now we can generalize the Furstenberg
problem to this setting.

Definition 2.5 ((R,m)-rich subspaces). Given a finite dimensional F-algebra R = F[x1, . . . , xn]/I
an affine subspace W is said to be (R,m)-rich if dimFR ⊓W ≥ m.

Definition 2.6 (Furstenberg Algebras). A finite dimensional F-algebra R = F[x1, . . . , xn]/I is
said to be (k,m)-Furstenberg, if for any k-dimensional linear subspace V , some translate of V is
(R,m)-rich.

This definition is useful because of the following simple corollary of Proposition 2.3.

Corollary 2.7 (Furstenberg Sets to Algebras). Given a finite (k,m)-Furstenberg set S ⊆ F
n,

Alg(S) is a F-vector space of dimension |S| and a (k,m)-Furstenberg Algebra.

The previous corollary immediately shows that a lower bound for the dimension of Furstenberg
Algebras can be lifted to produce a lower bound for the size of Furstenberg Sets.

We make similar definitions for the case of Hyper-Furstenberg sets.

Definition 2.8 (Hyper-Furstenberg Algebras). Given a finite dimensional F-algebra R = F[x1, . . . , xn]/I,
a hypersurface Vf defined as the zero of a polynomial f ∈ F[x1, . . . , xn] is said to be (R,m)-rich, if
dimF (R/〈f〉) ≥ m.
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A finite dimensional F-algebra R = F[x1, . . . , xn]/I is said to be (m,d)-Hyper-Furstenberg, if
for any hyperplane equation h(x) = h1x1 + . . . + hnxn we can find a degree d − 1 polynomial
g ∈ F[x1, . . . , xn] such that hd + g is (R,m)-rich.

Proposition 2.3 immediately implies the following Corollary.

Corollary 2.9 (Hyper-Furstenberg Sets to Algebras). Given a finite (m,d)-Hyper-Furstenberg set
S ⊆ F

n, Alg(S) is a F-vector space of dimension |S| and a (m,d)-Hyper-Furstenberg Algebra.

2.3 Graded Lexicographic order and the basis of standard monomials

To better understand a finite dimensional F-algebra we would like a nice basis for it. We will now
construct one using the graded lexicographic order over monomials. The arguments here and in
the next section are part of a more general treatment of monomial orders which can be found in
Chapter 15 of [Eis95].

Let Zn
≥0 be the set of lattice points in n-dimensional space with non-negative coordinates. For

i ∈ Z
n
≥0 we let wt(i) =

∑

t it be the weight of i. A monomial f over variables x = (x1, . . . , xn) can

be equivalently represented by an element of λ ∈ Z
n
≥0 by writing f = xλ = xλ1

1 . . . xλn
n . The weight

of λ is precisely the degree of f .

Definition 2.10 (Graded Lexicographic order). The graded lexicographic order < (abbreviated as
grlex) is a total order over monomials in the variables x1, . . . , xn. For two monomials f = xλ and
g = xµ, f < g if wt(λ) < wt(µ) or wt(λ) = wt(µ) and λi < µi for the first index i with λi 6= µi.

We state a few properties of the grlex order which we will use. The grlex order satisfies x1 >
x2 > . . . > xn. It also refines the partial order induced by divisibility. In other words, given two
monomials f1 and f2 such that f1 divides f2 we have f1 < f2. Finally, we note grlex is a well
ordering. In other words, any non-empty set of monomials will have a least element under this
order.

A monomial multiplied by a scalar is called a term. We can use the grlex order to compare
terms in F[x1, . . . , xn] by ignoring scalars. Given any polynomial f ∈ F[x1, . . . , xn], we define the
initial term of f written as in(f) as the largest term which is a part of f (this will be the largest
monomial and its corresponding scalar). For a set X of polynomials, we let in(X) be the set of
initial terms of the polynomials in X. Given an ideal I, we let in(I) be the ideal generated by
initial terms of the polynomials in I. As each of the initial terms is a monomial, we see that in(I)
is a monomial ideal. It is called the initial ideal of I. Given an F-algebra R = F[x1, . . . , xn]/I we
let in(R) = F[x1, . . . , xn]/in(I). We now construct the special basis we need.

Definition 2.11 (Standard Monomials). Given an F-algebra R = F[x1, . . . , xn]/I, the set of mono-
mials of F[x1, . . . , xn] not in in(I) are called the standard monomials of R and written as Std(R).

Theorem 2.12 (Monomial basis). Given a finite dimensional F-algebra R = F[x1, . . . , xn]/I, the
standard monomials Std(R) of R form a basis for R as an F-vector space.

Proof. Take monomials g1, g2, .., gk ∈ Std(R). We claim they are linearly independent in R. If
they were linearly dependent then we could find ai ∈ F such that

∑k
i=1 aigi = f ∈ I. Hence,

in(f) ∈ in(I). As in(f) will have to be one of aigi we obtain a contradiction.
Now suppose Std(R) does not form a basis for F[x1, . . . , xn]/I. Consider the set of polynomials

X in F[x1, . . . , xn]/I not spanned by Std(R). We can pick the smallest term h from in(X). Pick

7



a polynomial f ∈ X such that in(f) = h. If in(f) was in in(I) we could find a polynomial g ∈ I
such that in(f − g) < in(f). In R, f − g is the same as f and hence in X but this would contradict
the fact that in(f) = h is the smallest term in in(X). If in(f) is not in in(I) then we could find a
monomial m ∈ Std(R) and a scalar a such that in(f −ma) < in(f). Again, f −ma ∈ X because
f is not spanned by the standard basis. We now have a contradiction as in(f) is again not the
smallest term in in(X).

Corollary 2.13. Given a finite dimensional F-algebra R = F[x1, . . . , xn]/I, we have that,

dimFR = dimFin(R).

Proof. As Std(R) = Std(in(R)), Theorem 2.12 shows that the same set of monomials form a basis
for R and in(R).

Using the initial ideal operation we get a nice algebra of the same dimension. We can preserve
even more information by means of a different operation. Any polynomial f can be written as
∑D

d=0 fd where fd is a homogenous polynomial of degree d, where D is the degree of f . We
let hd(f) refer to fD. For an ideal I we also define hd(I) as the ideal generated by hd(f) for
all f ∈ I. We see that hd(I) is homogenous. Given an F-algebra R = F[x1, . . . , xn]/I, we let
hd(R) = F[x1, . . . , xn]/hd(I). To prove properties about hd(I) we use in(I) and the following
lemma connecting the two.

Lemma 2.14. Given an ideal I of F[x1, . . . , xn] we have,

in(hd(I)) = in(I).

Proof. In one direction, for any f ∈ I we have hd(f) ∈ hd(I) and in(f) = in(hd(f)). This implies
in(I) ⊆ in(hd(I)).

Now we prove the other inclusion. Take g ∈ hd(I). It is of the form
∑

i hihd(fi) where fi ∈ I
and hi are homogenous polynomials. As hd(fi) are homogenous and hi are homogenous, hihd(fi)
is also homogenous. The sum

∑

i hihd(fi) can then be split into parts with the same degree. This
means hd(g) will be of the form

∑

i h
′
ihd(f

′
i) with h′i homogenous and f ′

i ∈ I. In fact we have,

hd(g) =
∑

i

h′ihd(fi) =
∑

i

hd(h′ifi) = hd

(

∑

i

h′ifi

)

as h′i are homogenous. We finally note,

in(g) = in(hd(g)) = in

(

hd

(

∑

i

h′ifi

))

= in

(

∑

i

h′ifi

)

But
∑

i h
′
ifi ∈ I which implies in(I) ⊇ in(hd(I)).

We now prove a lemma proved in [EE16] using alternate elementary arguments. The original
proof uses algebraic geometric arguments and properties of flat families.

Lemma 2.15. Given a finite dimensional F-algebra, R = F[x1, . . . , xn]/I, we have the following:

1. dimFR = dimFhd(R).
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2. For an ideal J , we have dimF (R/J) ≤ dimF (hd(R)/hd(J)) .

Proof. Using Corollary 2.13 and Lemma 2.14, we have

dimFR = dimFin(R) = dimF (F[x1, . . . , xn]/in(I))

= dimF (F[x1, . . . , xn]/in(hd(I))) = dimFin(hd(R)) = dimFhd(R).

Recall for ideals K1 and K2, (R/K1)/K2 = R/(K1 +K2). Given an ideal J , using the first claim
of this lemma we have,

dimF (R/J) = dimF (F[x1, . . . , xn]/(I + J))

= dimF (F[x1, . . . , xn]/hd(I + J))

≤ dimF (F[x1, . . . , xn]/(hd(I) + hd(J)))

= dimF (hd(R)/hd(J)) .

The inequality follows from the fact that (hd(I) + hd(J)) ⊆ hd(I + J).

2.4 Generic Initial Ideals

The theorem in this section will only be used in Section 5. Every ideal has a “canonical” initial
ideal associated with it which is invariant under the action of the Borel group, that is the group of
upper triangular invertible matrices. In this section we will make this statement precise. First, we
need to define the Borel group and its action on polynomials.

The Borel group B(n,F) is the group of n×n upper-triangular invertible matrices over the field
F. Given an element g ∈ B(n,F), we define its action over a polynomial f ∈ F[x1, . . . , xn] as

gf(x) = f(xg),

where xg is the product of the matrix g with the row vector x = (x1, . . . , xn). Given an ideal I, gI
refers to the ideal generated by gf for all polynomials f ∈ I. B(n,F) can be identified with a subset
of Fn(n−1)/2 described using n(n − 1)/2 indeterminates bij, 1 ≤ i ≤ j ≤ n corresponding to the
non-zero entries in the upper triangular matrix. The following theorem is a standard result from
commutative algebra (see e.g., Chapter 15 in [Eis95]). For the sake of completeness we include a
somewhat simplified proof in Appendix A.

Theorem 2.16 (Generic Initial Ideals). Given an infinite field F and I a homogenous ideal of
F[x1, . . . , xn], there exists a monomial ideal GIN(I) called the generic initial ideal of I with the
following properties:

1. There exists a non-zero polynomial q in the indeterminates bij , 1 ≤ i ≤ j ≤ n, such that for
any g ∈ B(n,F) for which q(g) 6= 0 we have in(gI) = GIN(I).

2. The ideal GIN(I) is stable under the action of the Borel group. That is, given any element
g ∈ B(n,F) we have gGIN(I) = GIN(I).

9



2.5 Method of multiplicities

The results here are from a paper by Dvir, Kopparty, Saraf, and Sudan [DKSS13]. We state the
theorems we need and the proofs can be found in the aforementioned paper.

Definition 2.17 (Hasse Derivatives). Given a polynomial f ∈ F[x1, . . . , xn] and a i ∈ Z
n
≥0 the ith

Hasse derivative of f is the polynomial f (i) in the expansion f(x + z) =
∑

i∈Zn
≥0

f (i)(x)zi where

x = (x1, ..., xn), z = (z1, ..., zn) and zi =
∏

z
ij
j .

They satisfy some useful identities. We state two simple ones that we will use.

Lemma 2.18. Given polynomials f, g ∈ F[x1, . . . , xn] and i ∈ Z
n
≥0 we have,

(f + g)(i) = f (i) + g(i) and (fg)(i) =
∑

j+k=i

f (j)g(k).

We make precise what it means for a polynomial to vanish on a point a ∈ F
n with multiplicity.

First we recall for a point j in the non-negative lattice Zn
≥0, its weight is defined as wt(i) =

∑n
i=1 ji.

Definition 2.19 (Multiplicity). For a polynomial f and a point a we say f vanishes on a with
multiplicity N , if N is the largest integer such that all Hasse derivatives of f of weight strictly less
than N vanish on a. We use mult(f, a) to refer to the multiplicity of f at a.

Notice, mult(f, a) = 1 just means f(a) = 0. We will use the following simple property concerning
multiplicities of composition of polynomials.

Lemma 2.20. Given a polynomial f ∈ F[x1, . . . , xn] and a tuple g = (g1, . . . , gn) of polynomials in
F[y1, . . . , ym], and a ∈ F

m we have,

mult(f ◦ g, a) ≥ mult(f, g(a)).

The key lemma here is an extended Schwartz-Zippel bound [Sch79][Zip79] which leverages mul-
tiplicities and is proven in [DKSS13].

Lemma 2.21 (Schwartz-Zippel with multiplicity). Let f ∈ F[x1, .., xn], with F an arbitrary field,
be a nonzero polynomial of degree at most d. Then for any finite subset U ⊆ F ,

∑

a∈Un

mult(f, a) ≤ d|U |n−1.

3 The Ellenberg-Erman reduction

We are going to make a series of reductions starting from Theorem 1.3 to end up at a simpler
problem just involving hyperplanes. The first step in the reduction is provided by Corollary 2.7
which shows Furstenberg Sets S produce |S|-dimensional Furstenberg Algebras. One of the trickier
aspects about dealing with Furstenberg sets and Algebras arises from the translating of subspaces.
We can perform a “dilation” operation on Furstenberg Algebras to move all rich subspaces to the
origin. First, we make a definition.
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Definition 3.1 (Homogenous Furstenberg Algebra). A finite dimensional F-algebra R = F[x1, . . . , xn]/I
with I homogenous is said to be (k,m)-Hom-Furstenberg, if all k-dimensional linear subspaces
V in F

n are (S,m)-rich.

The next lemma shows Furstenberg Algebras can be transformed to homogenous Furstenberg
Algebras.

Lemma 3.2 (Reduction to Hom Furstenberg). Given a finite dimensional (k,m)-Furstenberg Al-
gebra R = F[x1, . . . , xn]/I, hd(R) = F[x1, . . . , xn]/hd(I) is a (k,m)-Hom-Furstenberg Algebra such
that dimFhd(R) = dimFR.

Proof. Using Lemma 2.15 we have that dimFhd(R) = dimFR. We claim all k-dimensional linear
subspaces V are (hd(R),m)-rich. This is because given some V a translate of it V ′ will be (R,m)-
rich. Then we note the ideals IF(V ) and IF(V

′) are generated by the equations of hyperlanes
containing V and V ′ respectively. This implies IF(V ) = hd(IF(V )) = hd(IF(V

′)). The second claim
in Lemma 2.15 implies

m ≤ dimF

(

R/IF(V
′)
)

≤ dimF

(

hd(R)/hd(IF(V
′))
)

= dimF (hd(R)/IF(V )) .

This shows V is (hd(R),m)-rich.

Ellenberg and Erman in [EE16] call this step dilation. This terminology is most clear when we
think of F = R. The process of taking the highest degree term of a d-degree polynomial f can be
thought of as taking the limit tdf(x/t) as t → ∞ which corresponds to dilating the zero set of f
towards the origin. We have the following bound on Homogenous Furstenberg Algebras.

Theorem 3.3 (Homogenous Furstenberg Algebra Bound). A (k,m)-Hom-Furstenberg Algebra R =
Fq[x1, . . . , xn]/I with m ≤ qk satisfies the bound,

dimFqR ≥ Cn,km
n/k

where Cn,k = Ω(1/16n ln(n/k)).

Ellenberg and Erman in [EE16] show that Theorem 3.3 is tight in the exponent of m using
the algebra F[x1, . . . , xn]/〈x1, . . . , xn〉

d. They also produce an example to show why the condition
m ≤ qk is necessary (at least for k = 1). We discuss this example below.

Example 3.4 (m ≤ qk is necessary). Consider RN = Fq[x1, x2]/I with

I = 〈x1, x
qN

2 〉
∏

r∈Fq

〈x2 + rx1, x
qN

1 〉.

It is not hard to check for a line Lt with equation x2 + tx1 = 0 for t ∈ Fq, L ⊓ RN has dimension
at least qN . For the line L∞ with equation x1 = 0 the same holds. This shows RN is (1, qN )-
Hom-Furstenberg. If Theorem 3.3 did not have the condition m ≤ qk, then it would imply that
dimFqRN ≥ Cn,kq

2N .
Consider the map,

RN →
Fq[x1, x2]

〈x1, x
qN

2 〉
⊕
⊕

r∈Fq

Fq[x1, x2]

〈x2 + rx1, x
qN

1 〉

11



obtained by combining the quotient maps RN → Fq[x1, x2]/〈x2+ rx1, x
qN

1 〉 for all r ∈ Fq and RN →

Fq[x1, x2]/〈x1, x
qN

2 〉. It is easy to check this map is injective. This implies dimFqRN ≤ qN (q + 1)
which leads to a contradiction for N ≥ 2. Hence, the condition m ≤ qk is necessary.

We can prove Theorem 1.3 given Theorem 3.3.

Proof of Theorem 1.3. Given a (k,m)-Furstenberg set S in F
n
q , Alg(S) is a (k,m)-Furstenberg Alge-

bra of dimension |S| using Corollary 2.7. Lemma 3.2 shows hd(Alg(S)) is (k,m)-Hom-Furstenberg
Algebra of dimension |S|. Theorem 3.3 now proves Theorem 1.3.

Because we do not have to worry about translations anymore it suffices to prove Theorem 3.3 for
the case k = n−1 and using an induction argument. In the case k = n−1 we are taking intersection
with hyperplanes containing the origin. We first state the hyperplane version of Theorem 3.3.

Theorem 3.5 and Lemma 3.6 proves Cn,k = Ω(1/16n log(n/k)). The constant in Theorem 3.5 can
be optimized but unfortunately not all the way to match the bound in Example 3.7 below.

Theorem 3.5 (Hyperplane Furstenberg Bound). An (n − 1,m)-Hom-Furstenberg Algebra R =
Fq[x1, . . . , xn]/I with m ≤ qn−1 satisfies the bound,

dimFqR ≥ Cn,n−1m
n/(n−1),

where Cn,n−1 ≥ 1/16.

The following lemma shows how Theorem 3.5 proves Theorem 3.3.

Lemma 3.6. Suppose Theorem 3.5 is true for all n and for some constant Cn,n−1 then for all k, n
a (k,m)-Hom-Furstenberg Algebra R = Fq[x1, . . . , xn]/I satisfies the bound,

dimFqR ≥
n
∏

i=k+1

C
n/i
i,i−1m

n/k.

Proof. Say R = Fq[x1, . . . , xn]/I is a (k,m)-Hom-Furstenberg algebra. Given any k + 1 dimen-
sional linear subspace V consider the algebra R ⊓ V = R/IFq(V ) = Fq[x1, . . . , xn]/(I + IFq(V )).
IFq(V ) = 〈h1, . . . , hn−k−1〉 where h1, . . . , hn−k−1 are n− k − 1 linearly independent degree 1 equa-
tions of hyperplanes containing V . By performing a change of basis in the field Fq on the space
defined by x1, . . . , xn and renaming, we can assume h1, . . . , hn−k−1 are the coordinate hyperplanes
x1, . . . , xn−k−1. That is, V is the subspace defined by x1 = . . . = xn−k−1 = 0 after the base
change. This means R⊓V = R/IFq(V ) = Fq[xn−k, . . . , xn]/I

′ where I ′ is the ideal generated by the
restricted polynomials f ′(xn−k, . . . , xn) = f(0, 0, . . . , 0, xn−k, . . . , xn) for every polynomial f ∈ I.

Any k dimensional linear subspace W contained in V corresponds to a hyperplane in V . In
other words it will be a hyperplane in the variables xn−k, . . . , xn. We claim that (R ⊓ V ) ⊓W =
R/(IFq(V ) + IFq(W )) = R/IFq(W ) = R ⊓W . This is the case because any hyperplane containing
V automatically contains W . We know dimFqR ⊓W ≥ m. This implies dimFq(R ⊓ V ) ⊓W ≥ m.
As R ⊓ V = Fq[xn−k, . . . , xn]/I

′ and W is a hyperplane in V which is spanned by xn−k, . . . , xn, we
have R ⊓ V is (k,m)-Furstenberg. As we are supposing Theorem 3.3 is true for hyperplanes we
have dimFqR ⊓ V ≥ m1+1/kCk+1,k.
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Applying this argument recursively for a (k,m)-Hom-Furstenberg Algebra R proves

dimFqR ≥

n
∏

i=k+1

C
n/i
i,i−1m

n/k.

One might worry that during the recursion m is no longer an integer but that is not a problem
because at every stage when we calculate the bound we can take ceiling of the bound to get a better
bound. As the bound is increasing in m we will not run into problems.

Theorem 3.5 and Lemma 3.6 proves Cn,k = Ω(1/16n log(n/k)) in Theorem 3.3. Ellenberg and
Erman in [EE16] prove Theorem 3.5 with Cn,n−1 = Ω(1/n). Lemma 3.6 gives them Cn,k =
1/nO(n ln(n/k)) in Theorem 3.3. We will prove Thoerem 3.3 with Cn,n−1 = 1/16. We therefore
obtain the constant Cn,k = Ω(1/16n ln(n/k)) for k < n − 1. To obtain the Theorem 1.2 bound we
would need Cn,1 to be 1/2n. The reason we can not recover this bound is because this bound does
not hold for Algebras as seen from the following example.

Example 3.7 (Upper bound on Cn,k). The finite dimensional F-algebra Fq[x1, . . . , xn]/〈x1, . . . , xn〉
d

has dimension
(d−1+n

n

)

and is (k,
(d−1+k

k

)

)-Hom-Furstenberg. This gives us the following bounds
for Theorem 3.3.

Cn,k ≤

(d−1+n
n

)

(d−1+k
k

)n/k
≤





n
∏

j=k+1

d− 1 + j

j





(

d− 1 + k

k

)−(n−k)/k

≤





n
∏

j=k+1

d− 1 + j

j





(k!)(n−k)/k

dk−n
,

for all d ≤ q. At the last step we used the inequality (n − k + 1)k/k! ≥
(n
k

)

. We set d = q, and as
the bound is field independent, we can let q grow. This gives us the bound,

Cn,k ≤
(k!)n/k

n!
≤ O(e−n log(n/k)).

In particular, for Cn,1 we have,

Cn,1 ≤
1

n!
= O(e−n log(n)).

For Cn,n−1 we have,

Cn,n−1 ≤
(n− 1)!1/(n−1)

n
=

1

e
+ on(1),

where on(1) tends to 0 as n grows towards infinity.

4 The variety of (R,m)-rich hyperplanes

To prove Theorem 3.3 for hyperplanes we will treat the space of linear hyperplanes in F
n
q as an

algebraic space and provide a recipe to construct the space of (R,m)-rich hyperplanes as a variety
defined by an ideal. We will skip saying linear as from now on all our hyperplanes will contain
the origin. Given a field F, its extension E, and an ideal I of F[x1, . . . , xn], we let IE be the ideal
of E[x1, . . . , xn] generated by the polynomials in I. We extend this notation further so that given
R = F[x1, . . . , xn]/I, R

E refers to the algebra E[x1, . . . , xn]/I
E.
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Given a hyperplane Vh in F
n defined by the equation h(x) = h1x1+...+hnxn with (h1, . . . , hn) ∈

F
n, we note that the coefficients hi provide variables which allow us to consider a general hyperplane.

We can find polynomials in these variables which vanish at hyperplanes with some given property.
The objective in this section is to prove the following theorem.

Theorem 4.1 (Variety of (R,m)-rich hyperplanes). Given a finite dimensional F-algebra R =
F[x1, . . . , xn]/I, where F is an arbitrary field, and some number m ≥ 0, there exists an ideal Jm(R)
in the ring F[h1, . . . , hn], where h1, . . . , hn are variables defining a general hyperplane equation
h(x) = h1x1 + . . .+ hnxn, such that the following properties are satisfied:

1. VF(Jm(R)) ⊆ F
n is the set of (R,m)-rich hyperplane equations with coefficients in F.

2. Jm(R) is either 〈0〉 or generated by homogenous polynomials of degree (dimFR)−m+ 1.

3. Moreover, given a field extension E of F, we have Jm(RE) = Jm(R)E.

Proof. We want to understand the intersection of a finite dimensional F-algebra R = F[x1, . . . , xn]/I
with one hyperplane Vh described by the equation h(x) = h1x1 + . . .+ hnxn = 0. The intersection
involves quotienting out the ideal generated by h. This ideal is precisely the image of the multipli-
cation map Th : R → R mapping an element f to hf . If Vh is (R,m)-rich, that is dimFR⊓Vh ≥ m,
then the image of Th is required to be of dimension at most (dimFR)−m. This is the case because
quotienting R by the image of Th produces R⊓Vh. In other words, we require the rank of Th to be
strictly less than (dimFR)−m+1. This condition is the same as writing the matrix of the map Th

in any basis and requiring that all minors of Th of size (dimFR)−m+1× (dimFR)−m+1 vanish.
Each of these minors will be a polynomial in F[h1, . . . , hn]. We generate an ideal Jm(R) out of
them. By construction, VF(Jm(R)) is the set of (R,m)-rich hyperplanes equations with coefficients
in F.

To prove the second claim, we can show that these minors are (dimFR) − m + 1 degree ho-
mogenous polynomials in any basis. To make our life easier we take the basis of standard mono-
mials Std(R). The size of the basis set is dimFR. For any monomial f ∈ Std(R), Th(f) =
(h1x1 + . . .+ hnxn)f = h1x1f + . . .+ hnxnf . Any xif which is not a standard monomial will be 0
in R. Thus we see that the entries in the matrix of the map Th come from the set {0, h1, . . . , hn}.
This immediately implies that the (dimFR) − m + 1 × (dimFR) − m + 1 minors are homogenous
polynomials of degree (dimFR)−m+ 1 if they are non-zero.

We prove the third claim, by noting that the standard basis of monomial for R and RE are
the same. This means the matrix defining Th is same for both rings in this basis. This means the
minors of this matrix and hence the generators of Jm(R) and Jm(RE) are the same.

We will use Theorem 4.1 on a (n − 1,m)-Hom-Furstenberg Algebra R = Fq[x1, . . . , xn]/I to
obtain the ideal Jm(R). This ideal can be 〈0〉.

Consider the finite dimensional algebra

P = Fq[x1, . . . , xn]/〈x1, . . . , xn〉
d,

considered in Example 3.7. We note for P = P Fq = Fq[x1, . . . , xn]/〈x1, . . . , xn〉
d, where Fq is the

algebraic closure of Fq, Jm(P ) = 〈0〉 for m =
(d+n−2

n−1

)

. This is the case because every hyperplane

in Fq
n
is (P ,m)-rich. This means that each polynomial in Jm(P ) vanishes on every point in Fq

n
,

which implies Jm(P ) = 〈0〉. Finally, item 3 of Proposition 4.1 shows Jm(P ) = 〈0〉.
When Jl(R) = 〈0〉 for some l ≥ 0 we have the following bound.
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Theorem 4.2 (Jl(R) = 〈0〉 case). Given an (n−1, l)-Hom-Furstenberg Algebra R = Fq[x1, . . . , xn]/I
such that Jl(R) = 〈0〉 for some l > 0 we have the following bound,

dimFqR ≥ 4−1ln/(n−1).

R being Furstenberg does imply that VFq(Jm(R)) will contain F
n
q \ {0} but that doesn’t mean

Jm(R) is always the 〈0〉 ideal. For example, consider Q = F2[x1, x2]/I with

I = 〈x2, x
8
1〉〈x1 + x2, x

8
1〉〈x1, x

8
2〉,

considered in Example 3.4. It is easy to check that F2
2 ⊆ VF2

(J10(Q)). But J10(Q) can’t be 〈0〉. If
it were then for QF4 = F4[x1, x2]/I we will also have J10(Q

F4) = 〈0〉 using Proposition 4.1. J10(Q
F4)

can’t be 〈0〉. Take f = x1 + ax2 with a ∈ F4 \ F2. It is easy to check |QF4/〈f〉| < 10. This means
J10(Q) is not 〈0〉.

We also prove the following bound corresponding to the case when Jl(R) 6= 〈0〉.

Theorem 4.3 (Jl(R) 6= 〈0〉 case). Given an (n−1,m)-Hom-Furstenberg Algebra R = Fq[x1, . . . , xn]/I
such that Jl(R) 6= 0 for some l ≤ m we have the following bound,

dimFqR ≥ qm

(

1−
l − 1

m

)

.

Theorem 4.2 and 4.3 immediately imply Theorem 3.5.

Proof of Theorem 3.5. Given an (n− 1,m)-Furstenberg Algebra R, if J⌈m/2⌉(R) = 0, Theorem 4.2
implies,

dimFqR ≥
mn/(n−1)

2n/(n−1)4
≥

mn/(n−1)

16
.

If J⌈m/2⌉(R) 6= 0 then Theorem 4.3 implies,

dimFqR ≥
mq

2
≥

mn/(n−1)

2
,

where in the last step we used the fact that m ≤ qn−1.

5 Theorem 4.2 using Borel stable ideals

This section will use the notations and definitions of Section 2.4. We recall a monomial ideal K of
the ring F[x1, . . . , xn] is said to be Borel stable if, for any element g in the Borel group B(n,F) we
have gK = K. Let Fq be the algebraic closure of Fq.

We will prove Theorem 4.2 by first showing that moving to the algebraic closure of Fq still
produces a Furstenberg Algebra. At that point, we use the Generic Initial ideal construction from
Theorem 2.16 to produce a Furstenberg Algebra whose basis of standard monomials satisfies a nice
combinatorial property. Using that combinatorial property we prove the required bound.

Lemma 5.1 (Extending to Fq). Given R = Fq[x1, . . . , xn]/I with I homogenous such that Jm(R) =
〈0〉, we have that the Fq-algebra R = Fq[x1, . . . , xn]/I is (n−1,m)-Hom-Furstenberg and a Fq-vector
space of dimension dimFqR. In other words, every hyperplane with coefficients in Fq is (R,m)-rich.
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Proof. Both R = Fq[x1, . . . , xn]/I and R are spanned by monomials not in in(I), that is the
standard monomials of R (or R). This shows dim

Fq
R = dimFqR. By item three in Proposition 4.1

we have Jm(R) = Jm(R)Fq = 〈0〉. This means all hyperplanes in F
n
q are (R,m)-rich.

As Fq is infinite we can use Theorem 2.16. Now, for the second step in our reduction.

Lemma 5.2 (Degeneration to Generic Initial ideal). Given an (n−1,m)-Hom-Furstenberg Algebra
R = Fq[x1, . . . , xn]/I, we define the Fq-Algebra R̂ = Fq[x1, . . . , xn]/K where K = GIN(I) is the
generic initial ideal of I. Then R̂ is a finite dimensional Fq-algebra with dimension dim

Fq
R and is

(n− 1,m)-Hom-Furstenberg.

Proof. From Theorem 2.16 we know we can find a g ∈ B(n,Fq) such that K = in(gI). Using
Corollary 2.13 we have dim

Fq
R̂ = dim

Fq
R.

We first show all coordinate hyperplanes are (R̂,m)-rich. For that, we pick hyperplane equations
hi with coefficients in Fq such that ghi = xi for all 1 ≤ i ≤ n. As R is (n− 1,m)-Hom-Furstenberg
we have dim

Fq
R ⊓ Vh ≥ m where Vhi

is the hyperplane defined by hi. Noting the fact that

in(gI) + 〈xi〉 ⊆ in(gI + 〈xi〉) we have,

dim
Fq
R̂ ⊓ Vxi

= dim
Fq

Fq[x1, . . . , xn]

(in(gI) + 〈x1〉)
≥ dim

Fq

Fq[x1, . . . , xn]

(in(gI + ghi))

= dim
Fq

Fq[x1, . . . , xn]

I + 〈hi〉
= dim

Fq
R ∩ Vhi

≥ m.

For any hyperplane Vf ∈ F
n
q with equation f = f1x1 + . . .+ fnxn, it is easy to see that we can

find an element gf ∈ B(n,Fq) such that gff is some coordinate hyperplane. Using Theorem 2.16
we know K is stable under the action of gf . Using the fact that all coordinate hyperplanes are

(R̂,m)-rich and gff is a coordinate hyperplane we have,

dim
Fq
R̂ ∩ Vf = dim

Fq

Fq[x1, . . . , xn]

K + 〈f〉
= dim

Fq

Fq[x1, . . . , xn]
gfK + 〈gff〉

= dim
Fq

Fq[x1, . . . , xn]

K + 〈xi〉
≥ m.

For the third step, we consider subsets of the lattice Z
n
≥0 with a simple geometric property. We

let êi be the ith standard basis vector in an n dimensional vector space. That is, êi is a vector of
length n, with 1 at position i and 0 everywhere else.

Definition 5.3 (Borel Exchange Property). A subset Λ of the set of non-negative lattice points Zn
≥0

has the Borel Exchange Property (BEP) if, for all 1 ≤ j < i ≤ n and point λ = (λ1, . . . , λn) ∈ Λ
with λi = 0, all lattice points of the form λ+ l(êi − êj) with 0 ≤ l ≤ λj are in Λ. In other words,
the intersection of Zn

≥0 with the ray starting from λ in the direction êi − êj is in Λ.

Lattices with BEP arise naturally from Borel stable monomial ideals.

Lemma 5.4. Given a finite dimensional F-algebra R = F[x1, . . . , xn]/K where K is a Borel stable
monomial ideal, the set of vectors λ = (λ1, . . . , λn), such that xλ = xλ1

1 . . . xλn
n ∈ Std(R), forms a

subset Λ of Zn
≥0 which has the Borel Exchange Property.
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Proof. By definition we have λ = (λ1, . . . , λn) ∈ Λ if and only if xλ = xλ1

1 . . . xλn
n 6∈ K. Take some

λ ∈ Λ such that λi = 0. Assume for contradiction, there exists some j < i and l ≤ λj such that

λ + l(êi − êj) 6∈ Λ. This means xλ+l(êi−êj) = xλ1

1 . . . x
λj−l
j . . . xλi+l

i . . . xλn
n ∈ K. We can find an

elementary upper triangular matrix b in the Borel subgroup B(n,F) such that bx = x + xj êi. As

xλ+l(êi−êj) ∈ K, K being Borel stable implies (bx)λ+l(êi−êj) = xλ1

1 . . . x
λj−l
j . . . (xi+xj)

λi+l . . . xλn
n ∈

K. Using the binomial expansion and the fact that K is a monomial ideal we have xλ ∈ K. But
this implies λ 6∈ Λ leading to a contradiction.

The next bound for lattices with BEP contains the main combinatorial argument.

Lemma 5.5 (Lattice bound). Given a set Λ ⊆ Z
n
≥0 with the Borel Exchange Property, let Λn be

the subset of Λ lying on the plane λn = 0. If |Λn| ≥ m then

|Λ| ≥ 4−1mn/(n−1).

Before proving this Lemma, we first show how it implies Theorem 4.2.

Proof of Theorem 4.2. We start with an algebra R = Fq[x1, . . . , xn]/I with Jl(R) = 〈0〉. We ex-
tend to the algebraic closure using Lemma 5.1 to obtain a (n − 1, l)-Hom-Furstenberg Algebra
R = Fq[x1, . . . , xn]/I of dimension dimFqR. Next, we use Lemma 5.2 to obtain a (n − 1, l)-Hom-

Furstenberg Algebra R̂ = Fq[x1, . . . , xn]/K of dimension dimFqR where K is a Borel stable mono-
mial ideal.

Std(R̂) forms a basis of R̂ and by Lemma 5.4 this produces a lattice Λ of size dimFqR with

the Borel Exchange Property. The basis of R̂/〈xn〉 is precisely the subset of monomials in Std(R̂)
which are not divisible by xn. Within Λ they are precisely the subset Λn of points λ in Λ lying on
the plane λn = 0. As R̂ is (n − 1, l)-Hom-Furstenberg, it has intersection of dimension at least l
with xn = 0. This implies |Λn| ≥ l. Finally, Lemma 5.5 gives us the required bound.

5.1 Proof of Lemma 5.5

The proof involves using the Borel Exchange Property to find a subset of points in Λ by applying
the exchange property on points in Λn. We will show each point in Λn will produce as many points
as its weight and that any point in Λ is generated by at most n−1 points in Λn. This lets us derive
a lower bound for Λ.

We have |Λn| ≥ m ≥ 1. For any non-negative real r and integer a let

(

r

a

)

=
r(r − 1)(r − 2) . . . (r − a+ 1)

a!
.

We can find a d ≥ 0 such that

m =

(

n− 1 + d

n− 1

)

. (1)

Let d′ = ⌊d⌋. Then we can also write m as

m =

(

n− 1 + d′

n− 1

)

+ β

(

n− 1 + d′

n− 2

)

, (2)

17



where β ∈ [0, 1].
We will split the proof in 3 parts. First, for each point λ ∈ Λn we will define a subset PATH(λ) ⊆

Λ associated with it and prove some simple properties of these sets. Next, we will lower bound the
size of the union of these subsets to lower bound |Λ|. Finally, we will analyse the expression for
D(n,m) in our lower bound.

a) Definition of PATH: For any point λ = (λ1, . . . , λn−1, 0) ∈ Λn we will produce points in
Λ and collect them in a set called PATH(λ). We will construct PATH(λ) in n− 1 stages. In stage
1, we start at λ = P1(λ) and we move along the direction ên − ên−1 until we hit the hyperplane
λn−1 = 0 producing the lattice points (λ1, λ2, . . . , λn−1 − l, l) ∈ Λ for all 0 < l ≤ λn−1, as Λ is
Borel fixed. We do not include l = 0 to avoid repetition if λn−1 = 0. We collect these points
in the set PATH(λ, 1). We note |PATH(λ, 1)| = λn−1. At the end of stage 1 we are at the point
P2(λ) = (λ1, . . . , λn−2, 0, λn−1) ∈ Λ.

In general, at stage i we start at the point Pi(λ) = (λ1, . . . , λn−i, 0, λn−i+1, . . . , λn−1). We
then move along the direction ên−i+1 − ên−i until we hit the hyperplane λn−i = 0 producing
lattice points (λ1, . . . , λn−i − l, l, λn−i+1, . . . , λn−1) ∈ Λ for 0 < l ≤ λn−i. We collect these
points in PATH(λ, i) which has size λn−i. At the end of stage i we are at the point Pi+1(λ) =
(λ1, . . . , λn−i−1, 0, λn−i, . . . , λn−1). There are n − 1 stages. We set PATH(λ) =

⋃n−1
i=1 PATH(λ, i).

We note,

|PATH(λ)| =
n−1
∑

i=1

|PATH(λ, i)| =
n−1
∑

i=1

λi = wt(λ). (3)

For distinct points λ and µ in Λn, PATH(λ) and PATH(µ) may not be disjoint. For example,
consider the points λ = (2, 0, 2, 0) and µ = (0, 2, 2, 0). It is easy to see PATH(λ) and PATH(µ) both
contain (0, 2, 0, 2). We are going to show a single point will appear in PATH(λ) for at most n − 1
points λ in Λn using the following claim.

Claim 5.6. For α ∈
⋃

λ∈Λn
PATH(λ) and each 1 ≤ i ≤ n − 1, there is at most one point λ ∈ Λn

such that α ∈ PATH(λ, i).

Proof. Say there exist two such points λ = (λ1, . . . , λn−1, 0) and µ = (µ1, . . . , µn−1, 0). Let α =
(α1, . . . , αn). As λ and µ produced α in stage i, there exist l1 and l2 such that

α = (α1, . . . , αn−i, αn−i+1, αn−i+2 . . . , αn)

= (λ1, . . . , λn−i − l1, l1, λn−i+1, . . . , λn−1)

= (µ1, . . . , µn−i − l2, l2, µn−i+1, . . . , µn−1).

This implies λj = µj = αj for 1 ≤ j ≤ n − i − 1, λj = µj = αj+1 for n − i + 1 ≤ j ≤ n − 1, and
λn−i = µn−i = αn−i + αn−i+1. This proves λ = µ.

This claim then implies there are at most n − 1 points λ in Λn such that α ∈ PATH(λ). This
gives us the following lower bound,

∣

∣

∣

⋃

λ∈Λn

PATH(λ)
∣

∣

∣ ≥
1

n− 1

(

∑

λ∈Λn

|PATH(λ)|
)

. (4)

b) Lower bound on union of PATH(λ): We have at least m points in Λn. We want to lower
bound the number of points in the set Λ by lower bounding the size of its subset

⋃

λ∈Λn
PATH(λ).
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Equation 4 shows that it suffices to lower bound
∑

λ∈Λn
|PATH(λ)|. We find a lower bound by

computing its minimum possible value. Equation 3 shows that |PATH(λ)| = wt(λ). We know there
are

(n−2+k
n−2

)

many points with weight k. Equation 2 shows m is of the form,

m =

(

n− 1 + d′

n− 1

)

+ β

(

n− 1 + d′

n− 2

)

=

d′
∑

k=0

(

n− 2 + k

n− 2

)

+ β

(

n− 1 + d′

n− 2

)

. (5)

To minimize
∑

λ∈Λn
|PATH(λ)| =

∑

λ∈Λn
wt(λ), Λn needs to contain points with as small weight as

possible. This implies that for the minimizer Λn should contain all points of weight at most d′ and
only a β fraction of points with weight d′ + 1. This gives us the following bound,

|Λ| ≥
∣

∣

∣

⋃

λ∈Λn

PATH(λ)
∣

∣

∣

≥
1

n− 1





∑

λ∈Λn

|PATH(λ)|





≥
1

n− 1

(

d′
∑

k=0

k

(

n− 2 + k

n− 2

)

+ β(d′ + 1)

(

n− 1 + d′

n− 2

)

)

=
1

n− 1

(

d′
∑

k=1

(n− 1)

(

n− 1 + k − 1

n− 1

)

+ β(n− 1)

(

n− 1 + d′

n− 1

)

)

=

(

n− 1 + d′

n

)

+ β

(

n− 1 + d′

n− 1

)

=
d′ + βn

n

(

n− 1 + d′

n− 1

)

. (6)

Rearranging Equation 2 gives us,

(

n− 1 + d′

n− 1

)

= m
( d′ + 1

d′ + 1 + β(n − 1)

)

.

This allows us to write Equation 6 as,

|Λ| ≥ m
d′ + βn

n

d′ + 1

d′ + 1 + β(n− 1)

= mn/(n−1)

(

n− 1 + d′

n− 1

)−1/(n−1) d′ + βn

n

( d′ + 1

d′ + 1 + β(n− 1)

)n/(n−1)
.

This equation has the form we need to prove the theorem. To complete the proof, we examine,

D(n,m) =

(

n− 1 + d′

n− 1

)−1/(n−1) d′ + βn

n

( d′ + 1

d′ + 1 + β(n− 1)

)n/(n−1)
. (7)

c) Analysing D(n,m): First, we want to prove D(n,m) ≥ 1/4. We note it suffices to do
this while assuming m ≥ 4n−1 because when m < 4n−1 setting D(n,m) = 1/4 we have |Λ| ≥ m ≥
mn/(n−1)/4. We also note m ≥ 4n−1 forces d > n. This is because if d ≤ n then m ≤

(2n−1
n−1

)

≤ 4n−1.
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Using Equation 7 we have,

D(n,m) =

(

n− 1 + d′

n− 1

)−1/(n−1) d′ + βn

n

( d′ + 1

d′ + 1 + β(n− 1)

)n/(n−1)

=

(

n− 1 + d′

n− 1

)−1/(n−1) (d′ + 1)n/(n−1)

n

d′ + βn

(d′ + 1 + β(n− 1))n/(n−1)
(8)

=
(n− 1)!1/(n−1)

n

d′ + 1
∏n−1

k=1(d
′ + k)1/(n−1)

( d′ + 1

d′ + 1 + β(n− 1)

)1/(n−1) d′ + βn

d′ + 1 + β(n − 1)
. (9)

To help analyse D(n,m), we want to show D(n,m) is increasing in d′ and β.

Claim 5.7. The expression of D(n,m) is increasing in d′.

Proof. In Equation 9, as β ≤ 1 we have (d′+βn)/(d′+1+β(n−1)) = 1−(1−β)/(d′+1+β(n−1))
is increasing in d′. (d′ +1)/(d′ +1+ β(n− 1)) = 1− β(n− 1)/(d′ +1+ β(n− 1)) is also increasing

in d′. (d′ + 1)/(
∏n−1

k=1(d
′ + k)1/(n−1)) =

∏n−1
k=1

(

1 − (k − 1)/(d′ + k)
)1/(n−1)

is also increasing in d′.

This shows D(n,m) is increasing in d′.

Claim 5.8. The expression of D(n,m) is increasing in β for β ≤ 1.

Proof. In Equation 8, consider the term (d′ + βn)/(d′ +1+ β(n− 1))n/(n−1). Taking logarithm we
get log(d′ + βn)− n log(d′ + 1+ β(n− 1))/(n− 1) which is a function in β. Taking derivative with
respect to β gives us n/(d′+βn)−n/(d′+1+β(n−1)) = n(1−β)/((d′+βn)(d′+1+β(n−1))) ≥ 0.
This shows D(n,m) is increasing in β for β ≤ 1.

We have the condition d > n and β ∈ [0, 1]. To find a lower bound for D(n,m) we set d′ = n
and β = 0 in Equation 7 to get the bound,

D(n,m) ≥

(

2n− 1

n− 1

)−1/(n−1)

≥ 1/4.

In the argument above it is easy to show for a fixed n that limm→∞D(n,m) = (n−1)!1/(n−1)/n.
We now note Lemma 5.5 is asymptotically optimal upto constants, as the algebra F[x1, . . . , xn]/〈x1, . . . , xn〉

m

produces a lattice with the Borel Fixed Property and from the argument in Example 3.7 we have
D(n,m) ≤ (n − 1)!1/(n−1)/n.

6 Theorem 4.3 using Method of Multiplicities

To prove Theorem 4.3 we prove for any (n−1,m)-Hom-Furstenberg Algebra R, every polynomial in
Jk(R) vanishes on every point in VFq(Jm(R)) with high multiplicity. Finally, we use the Schwartz-
Zippel bound to obtain the desired bound.

We recall that if f ∈ Jl(R) and a hyperplane with equation h is (R, l)-rich then f(h) = 0. In
other words, mult(f, h) ≥ 1. The next lemma proves that if h is (R,m)-rich for m > l then f
vanishes on h with higher multiplicity.
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Lemma 6.1. Given a finite dimensional F-algebra R = F[x1, . . . , xn]/I, an (R,m)-rich hyperplane
Vh with equation h : h1x1 + . . . + hnxn = 0, and a polynomial f ∈ Jl(R) ⊆ F[h1, . . . , hn] for
0 ≤ l ≤ m we have,

mult(f, h) ≥ m− l + 1.

Proof. Recall, Th : R → R defined in the proof of Theorem 4.1 is the multiplication map, mapping
f ∈ R to (h1x1 + . . .+ hnxn)f ∈ R. Jl(R) is generated by L = (dimFR)− l+1 sized minors of the
matrix of Th in any basis. Fix any basis and let the matrix in this case be U(h) with entries which
are polynomials in h1, . . . , hn. Consider a formal L×L matrix Y with formal variable entries yij for
1 ≤ i, j ≤ L. Let DetL be a polynomial over the variables yij obtained by taking the determinant
of Y .

Any (dimFR)− l+1 minor is the composition of DetL and a L×L matrix of polynomials UL(h)
corresponding to some L×L sub-matrix of U(h). Given a (R,m)-rich hyperplane Vg with equation
g(x) = g1x1 + . . . + gnxn, all minors of the matrix of U(g) of size M = (dimFR) −m + 1 vanish.
As UL(g) is a submatrix, all its minors of size M < L also vanish. It is not hard to check that
the weight t Hasse derivatives of the determinant polynomial DetN of a matrix are generated by
minors of the matrix of size N − t. This means all the Hasse derivatives of DetN of weight strictly
less than m− l vanish on UL(g). This means mult(DetN , UL(g)) ≥ m− l + 1. Using Lemma 2.20
we have mult(DetN ◦ UL, g) ≥ mult(DetN , UL(g)) ≥ m− l + 1. As the polynomials DetN ◦ UL for
different submatrices UL of U generate Jl(R) we are done.

We finally prove Theorem 4.3.

Proof of Theorem 4.3. Given a (n − 1,m)-Hom-Furstenberg algebra R over the field Fq, we know
Jl(R) contains a non-zero polynomial f of degree (dimFqR)− l+ 1. Lemma 6.1 tells us f vanishes
on the equations of all (R,m)-rich hyperplanes with multiplicity m− l+1. We know all hyperplanes
in F

n
q are (R,m)-rich. This means f vanishes on F

n
q \ {0} with multiplicity at least m− l + 1. As

f is a homogenous polynomial of degree (dimFqR) − l + 1 > m − l + 1 it is easy to check f also
vanishes on the origin with multiplicity at least m− l + 1. Finally, using Lemma 2.21 we have

qn(m− l + 1) ≤ ((dimFqR)− l + 1)qn−1.

Rearranging, we get

dimFqR ≥ mq

(

1−
l − 1

m

)

.

7 Hyper-Furstenberg Bound

In this section we will prove Theorem 1.6 by reducing it to 3.5. The proof involves two steps first
we reduce to some problem over homogenous Hyper-Furstenberg Algebras. Finally, we will show
these algebras are also Furstenberg Algberas with appropriate parameters.

Definition 7.1 (Homogenous Hyper-Furstenberg Algebra). A finite dimensional F-algebra R =
F[x1, . . . , xn]/I with I homogenous is said to be (k,m, d)-Hyper-Hom-Furstenberg, if for all k di-
mensional subspaces U ⊆ F

n
q there exists linearly independent hyperplanes h1, . . . , hn−k whose in-

tersection equals U and d1, . . . , dn−k ∈ N,
∏n−k

i=1 di ≤ d such that, 〈hd11 , . . . , h
dn−k

n−k 〉 is (R,m)-rich.
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Lemma 7.2 (Reduction to Hyper Hom Furstenberg). Given a finite dimensional (k,m, d)-Hyper-
Furstenberg Algebra R = F[x1, . . . , xn]/I, hd(R) = F[x1, . . . , xn]/hd(I) is a (k,m, d)-Hyper-Hom-
Furstenberg Algebra such that dimFhd(R) = dimFR.

Proof. Given a k dimensional subspace U , let h1, . . . , hn−k be linearly independent hyperplanes
whose intersection is U and gi, 1 ≤ i ≤ n − k be polynomials of degree di − 1 such that 〈hd11 +

g1, . . . , h
dn−k

n−k + gn−k〉 is (R,m)-rich and
∏n−k

i=1 di ≤ d. We note that, hd(〈hd11 + g1, . . . , h
dn−k

n−k +

gn−k〉) = 〈hd11 , . . . , h
dn−k

n−k 〉. The second claim of Lemma 2.15 now implies

m ≤ dimF

(

R/〈hd11 + g1, . . . , h
dn−k

n−k + gn−k〉
)

≤ dimF

(

hd(R)/hd(〈hd11 + g1, . . . , h
dn−k

n−k + gn−k〉)
)

= dimF

(

hd(R)/〈hd11 , . . . , h
dn−k

n−k 〉
)

.

This shows 〈hd11 , . . . , h
dn−k

n−k 〉 is (hd(R),m)-rich.

Lemma 7.3 (Reduction to Theorem 3.3). Any (k,m, d)-Hyper-Hom-Furstenberg Algebra R =
F[x1, . . . , xn]/I is a (k,m/d)-Hom-Furstenberg Algebra.

Proof. Given any U ⊆ F
n
q dimensional subspaces there exists linearly independent hyperplanes

h1, . . . , hn−k whose intersection equals U and d1, . . . , dn−k ∈ N,
∏n−k

i=1 di ≤ d such that 〈hd11 , . . . , dn−k
n−k〉

is (R,m)-rich. We can perform a base change over F such that hi = xi for 1 ≤ i ≤ n− k. Take the
basis of standard monomials Std(R).

〈xd11 , . . . , x
dn−k

n−k 〉 being (R,m)-rich implies that there are at least m monomials in Std(R) such
that the degree of xi in each of these monomials is strictly less than di for 1 ≤ i ≤ n−k. We note if

xλ1

1 xλ2

2 . . . xλn
n is a standard monomial then so is x

λn−k+1

n−k+1 . . . xλn
n . This is because being a standard

monomial means not lying in in(I) and if a polynomial is not in an ideal than all its factors will
also not be in it. This shows there are at least m/d monomials in Std(R) such that the degree of
xi, 1 ≤ i ≤ n− k in each them is 0. This shows 〈x1, . . . , xn−k〉 is (R,m/d)-rich.

This shows that every k dimensional subspace is (R,m/d)-rich.

We also need a simple lemma connecting the value of m and d.

Lemma 7.4. For any (k,m, d)-Hyper-Furstenberg set over F
n
q we have that m ≤ dqk.

Proof. Consider a fixed k dimensional sub-space U . If S is a (k,m, d)-Hyper-Furstenberg set then
there exist linearly independent hyperplanes h1, . . . , hn−k whose intersection is U and d1, . . . , dn−k ∈
N,
∏n−k

i=1 di ≤ d and polynomials gi, 1 ≤ i ≤ n − k of degree at most di − 1 such that 〈hd11 +

g1, . . . , h
dn−k

n−k + gn−k〉 intersects with S in at least m points. After a bass change we can take
hi = xi. It is clear that m is upper bounded by the number of points in F

n
q which vanish on

〈hd11 + g1, . . . , h
dn−k

n−k + gn−k〉. In other words,

m ≤ dimFq

Fq[x1, . . . , xn]

〈hd11 + g1, . . . , h
dn−k

n−k + gn−k, x
q
1 − x1, . . . , x

q
n − xn〉

≤ dqk.
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The last inequality follows by noting that monomials of the form xλ1

1 . . . xλn
n where 0 ≤ λi ≤

di − 1, 1 ≤ i ≤ n− k and 0 ≤ λj ≤ q − 1, n − k + 1 ≤ j ≤ n spans the finite algebra

Fq[x1, . . . , xn]

〈hd11 + g1, . . . , h
dn−k

n−k + gn−k, x
q
1 − x1, . . . , x

q
n − xn〉

.

Proof of Theorem 1.6. Given a (k,m, d)-Hyper-Furstenberg Set S ⊆ F
n
q , Corollary 2.9 and Lemma 7

implies that hd(Alg(S)) is (k,m, d)-Hom-Furstenberg Algebra of dimension |S|. Lemma 7.3 implies
that hd(Alg(S)) is (k,m/d)-Hom-Furstenberg Algebra. By Lemma 7.4, we know m ≤ qkd which
means we can now apply Theorem 3.3 to get,

|S| ≥ Cn,k
mn/k

dn/k
,

where Cn,k = Ω(1/16n ln(n/k)).

8 Proof of Theorem 1.4

Before proving Theorem 1.4, we recall some elementary observations on the linear subspaces of Fn
q .

The number of k-dimensional linear subspaces of Fn
q is

(

n

k

)

q

=
(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)
.

Indeed, the numerator counts the number of ordered k-tuples of linearly independent vectors in F
n
q ,

and the denominator counts the number of ordered k-tuples of linearly independent vectors in F
k
q .

Similarly, the number of k-dimensional subspaces that contain a fixed ℓ-dimensional subspace (for
ℓ ≤ k) is

(n−ℓ
k−ℓ

)

q
. Note that

(

n

k

)

q

=
(qn − 1)(qn − q) . . . (qn − qℓ−1)

(qk − 1)(qk − q) . . . (qk − qℓ−1)

qℓ(qn−ℓ − 1)qℓ(qn−ℓ − q) . . . qℓ(qn−ℓ − qk−ℓ−1)

qℓ(qk−ℓ − 1)qℓ(qk−ℓ − q) . . . qℓ(qk−ℓ − qk−ℓ−1)

=
(qn − 1)(qn − q) . . . (qn − qℓ−1)

(qk − 1)(qk − q) . . . (qk − qℓ−1)

(

n− ℓ

k − ℓ

)

q

.

Theorem 8.1. If S ⊂ F
n
q is a (k,m)-Furstenberg set in F

n
q and ℓ is an integer with 1 ≤ ℓ <

logq(m) + 1, then

|S|ℓ+1 ≥ qℓ(n−k)m(m− 1)(m− q) . . . (m− qℓ−1).

Proof. Let E be the set of pairs (H,P ), where H is an (S,m)-rich affine k-plane and P ⊂ (S ∩H)
is an ordered (ℓ+ 1)-tuple of affinely independent points of S contained in H.

Since S is (k,m)-Furstenberg, there is an (S,m)-rich k-plane parallel to each of the
(

n
k

)

q
sub-

spaces of dimension k. For a fixed (S,m)-rich k-plane H, there are at least m(m−1)(m−q) . . . (m−
qℓ−1) ordered tuples of (ℓ+ 1) affinely independent points of S contained in H. Indeed, the affine

23



span of any t affinely independent points contains qt−1 points of Fn
q , hence there are at least m−qt−1

choices for the next point once the first t are chosen. Combining these observations, we have

|E| ≥

(

n

k

)

q

m(m− 1)(m− q) . . . (m− qℓ−1).

On the other hand, each set of ℓ + 1 affinely independent points spans an ℓ-plane, which is
contained in

(n−ℓ
k−ℓ

)

q
affine k-planes. Since the total number of ordered (ℓ+ 1)-tuples of points in S

is less than |S|ℓ+1, we have

|E| ≤ |S|ℓ+1

(

n− ℓ

k − ℓ

)

q

.

Combining the upper and lower bounds yields

|S|ℓ+1 ≥
(qn − 1)(qn − q) . . . (qn − qℓ−1)

(qk − 1)(qk − q) . . . (qk − qℓ−1)
m(m− 1)(m− q) . . . (m− qℓ−1)

≥ qℓ(n−k)m(m− 1)(m− q) . . . (m− qℓ−1),

as claimed.
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A Appendix: Proof of Theorem 2.16

Proof. Let P = F[x1, . . . , xn]. Let Id be the degree-d part of the homogenous ideal I. Let b be a
general element in the Borel group described by the indeterminates bij , 1 ≤ i ≤ j ≤ n. The action
of b on Id is a linear map from Id to the space Pd of degree d homogenous polynomials in P . We
take degree d monomials in P as a basis of Pd and order them in decreasing order according to
the graded lexicographic order. We also take a basis f1, . . . , ft of Id. The action of b on Id can be
written as a matrix Hd(b) in these basis elements. Given a monomial m, let the entry at the ft
column and row m of Hd(b) be hm,fi(b). Observe hm,fi(b) is a polynomial in the indeterminates
bij . hm,fi(b) is the coefficient of m in the polynomial bfi. Here is a helpful diagram to keep in mind.

Hd(b) =

f1 f2 . . . ft












hxd
1
,f1

(b) hxd
1
,f2

(b) . . . hxd
1
,ft
(b)

hxd−1

1
x2,f1

(b) hxd−1

1
x2,f2

(b) . . . hxd−1

1
x2,ft

(b)

...
...

...
...

Rows are indexed by monomi-
als of degree d in decreasing
grlex order

Consider the set M(Hd(b)) of t× t submatrices of Hd(b). This set can be indexed by an ordered
t-tuple of degree d monomials corresponding to the rows chosen to form the t × t submatrices.
The grlex monomial order can be used to define an order over ordered t-tuples of monomials
a1 > . . . > at by ordering them lexicographically. Let M ′(Hd(b)) be the set of submatrices in
M(Hd(b)) with non-zero determinant, as a polynomial in b. This set will be non-empty as the
action of b on Kd is invertible. Each submatrix in M ′(Hd(b)) corresponds to an ordered t-tuple of
monomials. Let m1 > . . . > mt be the largest among them. If we perform row or column operations
over Hd(b) in the field of rational functions over b, the tuples determining elements in M ′ will not
change.

Let the vector space spanned by the monomials m1, . . . ,mt be Kd. Let qd be the non-zero
polynomial obtained by taking the determinant of the submatrix of Hd(b) corresponding to the
rows m1 > . . . > mt. We construct Kd and qd for every d ≥ 0. For a general g ∈ B(n,F) we can
also consider the set M ′(Hd(g)) of t× t submatrices with non-zero determinants in Hd(g). Each of
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the elements corresponds to a unique ordered t-tuple of monomials. Again, this set is non-empty as
the action of g on Id is invertible. Let k1(g) > . . . > kt(g) be the largest such tuple in M ′(Hd(g)).
We make the following claim.

Claim A.1. k1(g), . . . , kt(g) form a basis of in(gId).

Proof. First, note the column space of Hd(g) is by construction gId. Then as the submatrix corre-
sponding to the rows has non-zero determinant we can perform a series of column operations, or
equivalently left multiplying by a t× t invertible matrix to change the submatrix corresponding to
the rows k1(g) > . . . > kt(g) into identity without changing the column space. Let this new matrix
be H ′

d(g). As k1(g) > . . . > kt(g) was the largest tuple in M ′(Hd(g)) we claim that in column i
of H ′

d(g) there is no non-zero element over row ki(g). By construction there can’t be one in rows
k1(g), . . . , ki−1(g). There can’t be a non-zero entry in other rows because if there were then replac-
ing ki(g) by that row in k1 > . . . > kt(g) (and possibly re-ordering) we will get t × t submatrix
with non-zero determinant indexed by a larger tuple. This would contradict the maximality of
k1(g) > . . . > kt(g).

As F is infinite we can find an element g ∈ B(n,F) such that qd(g) 6= 0. Consider the set
M ′(Hd(g)) of t× t submatrices with non-zero determinants in Hd(g). Each of the elements corre-
sponds to a unique ordered t-tuple of monomials. Again, this set is non-empty as the action of g
on Id is invertible. The largest ordered tuple will be m1 > . . . > mt. This is the case because if
there were a larger tuple then that would mean the sub-matrix corresponding to that in Hd(b) will
have a non-zero determinant. This would contradict the maximality of m1 > . . . > mt. This shows
that if qd(g) 6= 0, then in(gId) is spanned by m1, . . . ,mt which means it equals Kd.

We claim K =
⊕

d≥0Kd is an ideal. It suffices to show that P1Kd ⊂ Kd+1. We can find an
element g ∈ B(n,F) such that qd(g)qd+1(g) 6= 0. We then have in(gId) spans Kd and in(gId+1) spans
Kd+1. As in(gI) is an ideal the claim follows. As each Kd is spanned by monomials we have that
K is a monomial ideal.

We finally finish proving the first claim. We know that ideals over P = F[x1, . . . , xn] are finitely
generated. Say the generators of K and I are of degree at most l. We set q =

∏l
d=0 qd. As the

generators of I and K are of degree at most l, we have for any g ∈ B(n,F), q(g) 6= 0 that in(gI) = K
proving the first claim.

To prove the second claim, we want to show for all g ∈ B(n,F), gK = K. As a simplification we
can take I = K as the generic initial ideal of K is K itself. As before consider the matrix Hd(b) for
an indeterminate b. For an element g ∈ B(n,F), consider again the set M ′(Hd(g)). Pick the largest
ordered tuple k1(g) > k2(g) . . . > kt(g) corresponding to a sub-matrix in M ′(Hd(g)). We claim
this tuple must be smaller than m1 > . . . > mt. If it were larger then that would imply that the
determinant of the submatrix corresponding to k1(g) > k2(g) . . . > kt(g) in Hd(b) will be non-zero
which will contradict the maximality of m1 > . . . > mt. We will use this fact to prove the second
claim.

To prove the second claim it suffices to prove that K is invariant under the action of diagonal
matrices and elementary upper triangular matrices. Recall, elementary upper triangular matrices
are invertible upper triangular matrices with each diagonal entry being non-zero and only one
other non-zero entry. The statement is trivial for diagonal matrices. Let g ∈ B(n,F) be an
elementary upper triangular matrix, such that gKd 6⊆ Kd. The basis of Kd is the set of monomials
m1 > . . . > mt. Recall, the grlex order satisfies x1 > x2 . . . > xn. As g is upper triangular and the
basis of Kd is monomial, we see that in Hd(g) all the non-zero entries in the column mi will all be
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in rows indexed by monomials at least as large as mi in the grlex order. This is the case because
gmi will all be spanned by monomials larger or equal to mi. As g is elementary upper triangular
for each column mi, the row mi will have a non-zero entry. The previous two statements imply the
set M ′(Hd(g)) will contain the t × t submatrix corresponding to the rows m1 > . . . > mt and the
previous paragraph implies it will be the largest such tuple in this set.

If we perform column operations over the field F on Hd(g) to produce the matrix H ′
d(g), the

column span of H ′
d(g) is the same as the column span of Hd(g) which is precisely gKd. The set

M ′(H ′
d(g)) will also be the same as M ′(Hd(g)). We perform Gaussian elimination on Hd(g) over

the field F to produce a lower triangular matrix H ′
d(g). As this process may involve some column

exchange operations we number the columns as 1, . . . , t. Let ki(g) be the largest monomial such
that the element at column i and row ki(g) be non-zero. By construction, k1(g) > . . . > kt(g). The
following diagram might be helpful,

H ′
d(g) =

1 2 . . . t
























































...
...

...
...

h′k1(g),1 0 . . . 0
...

...
...

...
h′k2(g),1 h′k2(g),2 . . . 0

...
...

...
...

h′kt(g),1 h′kt(g),2 . . . h′kt(g),t
...

...
...

...

Rows are indexed by monomi-
als of degree d in decreasing
grlex order

where h′m,i ∈ F is the entry of the matrix H ′
d(g) in row m and column i.

The sub-matrix corresponding to the rows k1(g), . . . , kt(g) will have a non-zero determinant and
hence belong to M ′(H ′

d(g)) = M ′(Hd(g)). The previous paragraph implies k1(g) > . . . > kt(g) is
smaller than m1 > . . . > mt. But as H ′

d(g) is lower triangular if k1(g) > . . . > kt(g) does not
equal m1 > . . . > mt, the sub-matrix corresponding to the rows m1 > . . . > mt will have zero
determinant contradicting the fact that it lies in M ′(Hd(g)). This implies gKd ⊆ Kd. As gKd has
the same dimension as Kd, they must be equal. This proves the second claim.
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