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Volumes of subset Minkowski sums and the Lyusternik region
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Abstract

We begin a systematic study of the region of possible values of the volumes of Minkowski subset
sums of a collection of M compact sets in Rd, which we call the Lyusternik region, and make some first
steps towards describing it. Our main result is that a fractional generalization of the Brunn-Minkowski-
Lyusternik inequality conjectured by Bobkov et al. (2011) holds in dimension 1. Even though Fradelizi et
al. (2016) showed that it fails in general dimension, we show that a variant does hold in any dimension.

1 Introduction

The Brunn-Minkowski-Lyusternik inequality is a cornerstone in a number of fields of mathematics– it appears
in geometry as a route to the isoperimetric principle in Euclidean spaces, in algebraic geometry as a route
to the Hodge inequality, in functional analysis as a tool in the asymptotic theory of Banach spaces due
to the appearance of symmetric convex bodies as their unit balls, and in probability as the heart of the
Prékopa-Leindler inequality that provides an efficient route to the concentration of measure phenomenon.
It states that, for nonempty compact subsets A,B of Rd,

|A+B|
1
d ≥ |A|

1
d + |B|

1
d ,

where |A| denotes the volume (Lebesgue measure) of A. First developed for convex sets by Brunn and
Minkowski, it was extended by Lyusternik [32] to compact sets, and more generally to Borel sets. The
survey [26] is an excellent introduction to the Brunn-Minkowski-Lyusternik inequality, its history, and its
many ramifications and connections to other geometric and functional inequalities.

An immediate consequence of the Brunn-Minkowski-Lyusternik inequality is its extension to M sets. If
A1, A2, . . . , AM are compact sets in Rd, then

∣

∣

∣

∣

M
∑

i=1

Ai

∣

∣

∣

∣

1
d

≥
M
∑

i=1

|Ai|
1
d . (1)

Bobkov, Wang, and the second-named author [8] conjectured that this superadditivity property of the
functional | · |1/d may be improved.

Conjecture 1. [8] The functional A 7→ |A|1/d is fractionally superadditive with respect to Minkowski sum-
mation on the class of compact sets in Rd.

The fractional superadditivity property is defined in Section 2; it would have been a strict improvement
of the inequality (1) for M sets when M > 2. It was observed in [8] that Conjecture 1 holds for convex sets;
thus the interest lay in extending this to general compact, and thence, Borel sets.
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Conjecture 1 was motivated by analogies between the inequalities explored in this paper to Information
Theory. The formal resemblance between inequalities in Information Theory and Convex Geometry was first
noticed by Costa and Cover [13] but has since been extensively developed. For example, there now exist
entropy analogues of the Blaschke-Santaló inequality [33], the reverse Brunn-Minkowski inequality [6, 7], the
Rogers-Shephard inequality [9, 38] and the Busemann inequality [4]. Indeed, volume inequalities, entropy
inequalities, and certain small ball inequalities can be unified using the framework of Rényi entropies [55, 42];
the surveys [15, 41] may be consulted for much more in this vein. On the other hand, natural analogues in the
Brunn-Minkowski theory of inequalities from Information Theory hold sometimes but not always [17, 2, 24].
Another related set of results has to do with Schur-concavity of entropy or volume in various settings; see
[43] for details.

LetX be a random vector taking values in Rd, with density function fX (with respect to Lebesgue measure
dx). Define the entropy of X by h(X) = −

∫

fX(x) log fX(x)dx if the integral exists and −∞ otherwise (see,
e.g., [14]). The entropy power of X is N(X) = exp{2h(X)/d}. The functional A 7→ Vold(A)

1/d in the
geometry of compact subsets of Rd, and the functional fX 7→ N(X) in probability are analogues in the
resemblance discussed above. The superadditivity property N(X + Y ) ≥ N(X) + N(Y ) for independent
random vectors, which is called the Shannon-Stam entropy power inequality [48, 53] is then the analogue of
the Brunn-Minkowski-Lyusternik inequality. Fractional superadditivity of the entropy power was established
in stages: by [1] for the leave-one-out case in a paper that was celebrated because it resolved a conjecture
regarding the central limit theorem (simpler proofs were given by [35, 54, 52]), for a larger class of hypergraphs
by [36], and finally in full by [37], where the Stam region (which is like the Lyusternik region that we define
and explore in this paper, but for entropy powers) was defined and explored. Conjecture 1 is the precise
analogue in this dictionary of the fractional superadditivity of entropy power established by [37].

Therefore, it was rather surprising when [20] constructed a counterexample to establish that Conjecture 1
fails in dimension 12 and above; soon after, [19] found a counterexample in dimension 7. This provides another
example where the analogy between Euclidean geometry and Information Theory breaks down. The goal
of this note is to show that, in fact, the fractional superadditivity conjecture of [8] does hold in dimension
1. Moreover, a variant of Conjecture 1 does hold in general dimension– namely, the volume functional itself
(without an exponent) is fractionally superadditive with respect to Minkowski summation on the class of
compact sets in Rd.

This note is organized as follows. In Section 2, we describe our main results carefully, giving all necessary
definitions along the way and also some of the shorter proofs. Sections 3 and 4 are devoted to proving
the theorems described in Section 2– specifically, Section 3 proves in stages the fractional superadditivity
statement in Theorem 2, which is the technically most demanding part of this note, while Section 4 contains
the proofs of the subsequent theorems in Section 2. We supplement this main part of the paper with some
discussion and open questions in Section 5, and with some reasons why we believe fractional superadditivity is
an important structural property of set functions and therefore worthy of study in the Appendix (Section A).

2 Main Results

Let Kd be the collection of nonempty compact sets in Rd. We write [M ] for the index set {1, 2, . . . ,M}, and
∅ for the empty set. For any nonempty S ⊂ [M ], and any A1, A2, . . . , AM ∈ Kd, define the Minkowski subset
sum

AS =
∑

i∈S

Ai.

We are interested in the volumes of the subset sums AS (denoted |AS |), which leads naturally to the following
objects of study.

Definition. Let KM
d be the collection of all M -tuples A = (A1, . . . , AM ) of nonempty compact subsets Ai
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of Rd. Define the set function νA : 2[M ] → R+ := [0,∞) by νA(∅) = 0 and

νA(S) = |AS | =

∣

∣

∣

∣

∑

i∈S

Ai

∣

∣

∣

∣

(2)

for nonempty S ⊂ [M ]. The (d,M)-Lyusternik region is

Λd(M) = {νA : A ∈ KM
d }.

By arranging the elements of 2[M ] = {S1, S2, . . . , S2M } according to the shortlex order1, we may identify the

set Λd(M) of set functions with the subset of (R+)
2M given by {(|AS1

|, |AS2
|, . . . , |AS

2M
|) : A ∈ KM

d }.

We name these regions (we will use the description as a collection of set functions or as a collection

of points in (R+)
2M interchangeably, but this will always be obvious by context) after L. A. Lyusternik in

honor of his pioneering role [32] in the study of volumes of Minkowski sums, especially when dealing with sets
that are not necessarily convex. Clearly, any inequality that relates volumes of different subset sums gives
a bound on the Lyusternik region. Conversely, knowing the Lyusternik region is equivalent, in principle, to
knowing all volume inequalities that hold for Minkowski sums of general collections of compact sets, and all
that do not.

Let (G, β) be a weighted hypergraph on a set T , i.e., a collection G of subsets of T (which we may think
of as “hyperedges”), together with a weight function β : G → R+ that assigns weight βS = β(S) to each
set S in G. We say that (G, β) is a fractional partition of T if for each i ∈ T , we have

∑

S∈G: i∈S βS = 1.
These conditions can be phrased as a single one, using the characteristic functions 1S : T → {0, 1}, as
∑

S∈G βS1S = 1T = 1.

We say that a set function v : 2[M ] → R+ is fractionally superadditive if for every subset T ⊂ [M ]

v(T ) ≥
∑

S∈G

βSv(S) (3)

holds for every fractional partition (G, β) of T . Write ΓFSA(M) for the class of all fractionally superadditive
set functions v with v(∅) = 0.

The set function v : 2[M ] → R+ is said to be supermodular if

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T )

for all sets S, T ⊂ [M ]. Write ΓSM (M) for the class of all supermodular set functions v with v(∅) = 0.
It is known [47, 44] that for M ≥ 3, ΓSM (M) ( ΓFSA(M), i.e., every supermodular set function is

fractionally superadditive but not vice versa. For M = 2, given the limited availability of subsets, it is easy
to see that ΓSM (2) = ΓFSA(2), and both are equal to the class of superadditive set functions.

We start with two straightforward observations that set the stage for further discussion.

Observation 1. For each d,M ∈ N∗, Λd(M) is a cone, which is invariant under the natural action of the
symmetric group on M elements.

Proof. To prove the first part, suppose νA ∈ Λd(M), with A = (A1, . . . , AM ) and compact sets Ai ⊂ Rd.

For any λ > 0, consider A′ = (λ
1
dA1, . . . , λ

1
dAM ). Clearly νA′ = λνA, hence λνA belongs to Λd(M). This

is also true for λ = 0, since 0 ∈ Λd(M) (it can be realized e.g. with singletons). Hence Λd(M) is a cone.
Let us address the second part. If A = (A1, . . . , AM ) realizes (αS : S ∈ [M ]) ∈ Λd(M), then clearly

π(A) := (Aπ(1), . . . , Aπ(M)) realizes the vector

(απ(S) : S ∈ [M ]),

where π(S) := {π(i) : i ∈ S}. Thus (απ(S) : S ∈ [M ]) ∈ Λd(M).
1We merely need to fix any total order on 2[M]; we choose the shortlex order, which first orders the sets by cardinality

and then lexicographically within sets of a given cardinality, for convenience. Thus S1 = ∅, S2 = {1}, S3 = {2}, . . . , SM+1 =
{M}, SM+2 = {1, 2}, . . . , S2M = [M ]}. Whenever we write (aS : S ⊂ [M ]), what we mean is the 2M -tuple (aS1

, aS2
, . . . , aS

2M
),

where the coordinates are indexed in the shortlex order.

3



Observation 2. For all d ∈ N∗,

Λd(2) =
{

(0, a, b, c) ∈ R4
+ : c ≥

(

a
1
d + b

1
d

)d
}

.

When d = 1, this can be rephrased as Λ1(2) = ΓSM (2) = ΓFSA(2).

Proof. The Brunn-Minkowski-Lyusternik inequality states that all nonempty compact subsets A1, A2 of Rd

verify |A1 + A2|
1
d ≥ |A1|

1
d + |A2|

1
d ; this proves the inclusion of Λd(2) in the above set. To see the reverse

inclusion, we need to show that for any triple (a, b, c) ∈ R3
+ with c

1
d ≥ a

1
d +b

1
d , there exists a pair of compact

sets A1, A2 in R with |A1| = a, |A2| = b and |A1 +A2| = c.
We start with the case when a or b is strictly positive. Without loss of generality (thanks to the invariance

property mentioned in Observation 1), we may assume a > 0, b ≥ 0 and c
1
d ≥ a

1
d + b

1
d . We may find q ∈ N

and r ∈ [0, a
1
d ) such that

c−
(

a
1
d + b

1
d

)d

a
d−1

d

= qa
1
d + r.

Let e1 be the first vector in the canonical basis of Rd. Consider A1 = [0, a
1
d ]d and

A2 = [−b
1
d , 0]d ∪

( q
⋃

i=1

{

ia
1
d e1
}

)

∪
{(

qa
1
d + r

)

e1
}

,

(we understand the union within parentheses to be empty when q = 0). Then

A1 +A2 = [−b
1
d , a

1
d ]d ∪

(

( q
⋃

i=1

[ia
1
d , (i+ 1)a

1
d ]}

)

∪ [qa
1
d + r, (q + 1)a

1
d + r]

)

× [0, a
1
d ]d−1

= [−b
1
d , a

1
d ]d ∪

(

[a
1
d , (q + 1)a

1
d + r] × [0, a

1
d ]d−1

)

.

Consequently |A1| = a, |A2| = b and |A1 +A2| =
(

a
1
d + b

1
d

)d
+ (qa

1
d + r)a

d−1

d = c; thus we are done.
It remains to deal with triples of the form (0, 0, c) with c ≥ 0. By the cone property of Observation 1 it

is enough to deal with one c > 0. This is very easy in dimension d ≥ 2, by considering lower dimensional
cubes A1 = [0, 1]×{0}d−1, A2 = {0}× [0, 1]d−1, which have measure 0 and sum up to the full cube [0, 1]d. In
dimension 1, we can still use sets of lower dimensions: consider the Cantor ternary set C = ∩n∈NEn, where
E0 = [0, 1] and for all n ≥ 0, En+1 = 1

3En ∪
(

2
3 + 1

3En

)

. It is classical that this compact set has measure
zero, and contains all numbers which can be expressed as

∑

k≥1 xk3
−k for some sequence (xk) taking values

in {0, 2} (in other words, numbers in [0, 1] admitting an expansion in base 3 involving only digits 0 and 2).
As a consequence, 1

2C contains numbers in [0, 1] admitting an expansion in base 3 involving only digits 0 and
1, and it is clear that

[0, 1] ⊂ C +
1

2
C ⊂

[

0,
3

2

]

.

We have put forward two sets of measure 0, with a sum of positive measure. This completes the proof of
Observation 2.

Observation 2 gives a complete description of the Lyusternik region for the case where one has only two
sets. This naturally gives rise to the question that is the main focus of this paper: what is the relationship
between Λd(M) on the one hand, and ΓFSA(M) or ΓSM (M) on the other, when M ≥ 3? The following
statement sums up our contribution to this problem:

Theorem 1. For any d ∈ N∗ and M ≥ 3,

• Λd(M) ( ΓFSA(M),

• Λd(M) and ΓSM (M) have nonempty intersection but neither is a subset of the other.
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Proof. The inclusion Λd(M) ⊂ ΓFSA(M) comes from the inequality in Theorem 2 below. The fact that the
inequality is strict is a consequence of the second item, since ΓSM (M) ⊂ ΓFSA(M).

Next we turn to the proof of the second part of the theorem. By taking all the sets Ai to be singletons,
it is clear that the zero function (which assigns the value 0 to every subset of [M ]) is in Λd(M) ∩ ΓSM (M);
hence this intersection is nonempty.

It was observed in [21] that the volume is not supermodular already in dimension 1. Indeed, they
considered the sets A1 = {0, 1} and A2 = A3 = [0, 1]. Then, |A1 + A2 + A3| + |A1| = 3 < 4 = |A1 + A2|+
|A1 + A3|. Consequently it is clear that for any M ≥ 3, Λ1(M) * ΓSM (M). This example can be adapted
to cover the case of dimensions d ≥ 2: let k ∈ N∗, and consider A1 = [k]d = {0, . . . , k}d, A2 = A3 = [0, 1]d.
Plainly A1 +A2 = A1 +A3 = [0, k + 1]d and A1 +A2 +A3 = [0, k + 2]d, and for k large enough

|A1 +A2 +A3|+ |A1| = (k + 2)d < 2(k + 1)d = |A1 +A2|+ |A1 + A3|.

Finally, we need to show that volumes of partial sums cannot reach all supermodular set functions.
Consider the set function α : 2[M ] → R+ defined by α(S) = Card(S), which is clearly supermodular.
If α was in Λd(M), there would be compact sets in Rd with, in particular, |Ai| = Card({i}) = 1 and
|A1 + A2| = Card({1, 2}) = 2. In dimension d ≥ 2 this is impossible since the Brunn-Minkowski inequality

ensures that |A1 +A2| ≥
(

|A1|
1
d + |A2|

1
d

)d
= 2d > 2.

To deal with dimension d = 1, we consider the set function β defined by β([M ]) = M+1 = α([M ])+1 and
for S ( [M ], β(S) = Card(S) = α(S). It is still supermodular, since increasing the value of a supermodular
function on the full set only improves the supermodularity property. If β was in Λ1(M), we would have
compact sets in R with |Ai| = 1, |Ai + Aj | = 2 for i 6= j. Therefore Ai, Aj are an equality case of the
one-dimensional Brunn-Minkowski inequality, which ensures that they are intervals (see, e.g., [30] or [11,
Section 8]), of length 1. This implies that |A1 + · · ·+ AM | = M < β(M). Hence β 6∈ Λ1(M).

Our main result is the following fractional superadditivity property:

Theorem 2. For any fractional partition (G, β) of [M ],

∣

∣A1 + · · ·+AM

∣

∣ ≥
∑

S∈G

βS

∣

∣

∣

∑

i∈S

Ai

∣

∣

∣ (4)

holds for nonempty compact subsets A1, . . . , AM of Rd. In dimension d = 1, the inequality is an equality
when all sets S ⊂ [M ] with βS > 0 satisfy that

∑

i∈S Ai is an interval.

Theorem 2 is proved in stages in Section 3. First, it is shown in Section 3.1 that it suffices to consider
so-called “regular fractional partitions”. After a discussion of some examples to set notation in Section 3.2,
the proof for the case d = 1 is detailed in Section 3.3. Finally, the extension to general finite dimension is
done in Section 3.4, following ideas of [21] where a similar approach is used for the leave-one-out fractional
partition.

We note that it is possible to have equality in (4) for non-convex sets– for example, one can consider
A1 = A2 = A3 = [0, 12 ] ∪ [1, 32 ], and the leave-one-out hypergraph (i.e., G = {{1, 2}, {2, 3}, {3, 1}} is the
collection of all sets of cardinality 2, and each βS = 1

2 ).
Theorem 2 may be compared with Conjecture 1, originally proposed in [8, Conjecture 3.1]. This conjecture

proposed that

∣

∣A1 + · · ·+AM

∣

∣

1
d ≥

∑

S∈G

βS

∣

∣

∣

∣

∣

∑

i∈S

Ai

∣

∣

∣

∣

∣

1
d

, (5)

for all compact sets, and [8, Theorem 3.7] verified the same for convex sets. The motivation of [8] came
from the fact that the conjectured inequality would have provided a fundamental refinement of the Brunn-
Minkowski inequality for 3 or more sets. However, even a very special case of the inequality (5) (involving
a particular fractional partition and all sets Ai being copies of the same compact set A) was shown by [20]
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to fail in dimension 12 and above, and by [19] to fail in dimension 7 and above. Nonetheless, Theorem 2
shows in particular that the conjectured inequality (5) is true for all compact sets in dimension 1. Moreover,
Theorem 2 also shows that a bound similar to (5) continues to hold for arbitrary compact sets in general
dimension, but at the cost of removing the exponent 1/d on the volume.

In fact, we also have a positive result in general dimension for a special class of sets.

Theorem 3. Let (G, β) be a fractional partition of [M ]. Fix 0 ≤ k ≤ M . For each i ∈ [k], suppose Ci,1,
. . . , Ci,M are nonempty compact convex subsets of Rdi . For each k + 1 ≤ i ≤ L, suppose Ci,1, . . . , Ci,M are
nonempty compact subsets of R. Let Aj = C1,j × . . .×CL,j, so that each Ai is a compact subset of Rd, with

d = L− k +
∑k

i=1 di. Then
∣

∣A1 + · · ·+AM

∣

∣

1
d ≥

∑

S∈G

βS

∣

∣

∣

∑

i∈S

Ai

∣

∣

∣

1
d

.

Proof. Combining Proposition 2 (which we will prove in Section 4.1) with our main result (fractional super-
additivity for d = 1) and the fractional Brunn-Minkowski inequality for convex bodies observed in [8], we
obtain Theorem 3.

If we consider the special case of Theorem 3 where k = 0 (i.e., each Aj is a Cartesian product of one-
dimensional compact sets), standard approximation arguments yield that one can extend the statement to
Cartesian product of one-dimensional Borel sets. In other words, Theorem 3 implies that the conjecture of
[8] does hold for “Borel-measurable rectangles with axis-parallel sides”.

It is natural to ask if the phenomena investigated thus far for Minkowski sums in finite-dimensional real
vector spaces also have analogues in a discrete setting, i.e., for Minkowski sums of finite subsets of a discrete
group, with volume replaced by cardinality. One would expect such discrete analogues to be relevant to the
field of additive combinatorics, as they are related to the Cauchy-Davenport inequality. We observe that an
analogue does hold in the group of integers, extending a result of Gyarmati, Matolcsi and Ruzsa [28].

Theorem 4. Let (G, β) be a fractional partition of [M ]. Let A1, . . . , AM be nonempty finite subsets of Z.
Then

#(A1 + · · ·+AM )− 1 ≥
∑

S∈G

βS

[

#

(

∑

i∈S

Ai

)

− 1
]

,

where #(S) denotes the cardinality of S for any finite S ⊂ Z. The inequality is an equality when there exists
ρ ∈ N such that all S ⊂ [M ] with βS > 0 verify that

∑

i∈S Ai is an arithmetic progression of increment ρ.

Theorem 4 is proved in Section 4.2. Note that the leave-one-out case of Theorem 4 was proved by [28].
For other related inequalities, the reader may consult [39, 40, 56, 46, 45].

Finally we remark that while the study in this paper has focused on compact sets, analogous objects
are clearly of interest and highly nontrivial to characterize even if we restrict to convex sets. Indeed,
characterizing the possible volumes of Minkowski sums of convex sets is closely related to describing the
possible collections of mixed volumes, and some comments on the relevant literature are made in Section 5.

3 Proof of Theorem 2

3.1 A reduction to regular fractional partitions

A first step in the proof of Theorem 2 is to reduce to regular fractional partitions. First note that a fractional
partition can be viewed as a map defined on the power set of [M ], β : 2[M ] → [0, 1], where the collection of
subsets of M for which β is nonzero (which we call the “support” of β) is the collection G in our original
definition of fractional partitions in Section 2. The fractional partition condition becomes

∑

S⊂[M ]

βS1S = 1.

6



Obviously the term corresponding to S = ∅ is superfluous, so that we may represent the set of possible
fractional partitions of [M ] as follows:

FM =







(βS)∅6=S⊂[M ]; ∀S, βS ≥ 0 and ∀i ∈ [M ],
∑

S; i∈S

βS = 1







. (6)

Note that the above conditions ensure that βS ≤ 1.
A regular fractional partition is a fractional partition that is constant on its support, i.e., β(S) = c for

S ∈ G, and β(S) = 0 otherwise. The defining condition can then be written as c ·#{S ∈ G : i ∈ S) = 1 for
each i ∈ [M ], which means that c = 1/q for a positive integer q, and each index is contained in exactly q
elements of G. In other words, G is a q-regular hypergraph as commonly defined in combinatorics, whence
the terminology.

The representation (6) of FM shows that it is a compact polyhedral convex set. Any of its extreme
points β is the unique point in FM satisfying βS = 0 for all S in a certain collection Gc ⊂ 2[M ]. This means
that (βS)S∈G is the unique solution of a system of the form: for all i ∈ [M ],

∑

S∈G; i∈S βS = 1. Hence this
system is invertible and since it has rational coefficients, we get that the nonzero coefficients βS are rational.
Hence, we have shown2 that extreme fractional partitions (i.e., extreme points of FM ) only involve rational
coefficients βS .

In order to prove Inequality (4) for all fractional partitions (i.e., to show that FM lies in the halfspace
defined by the linear inequality (4)), it is enough to prove it for the extreme fractional partitions. In
particular, it is enough to deal with partitions with βS ∈ Q for all S. Writing these coefficients as fractions
with the same denominator q and allowing to repeat sets (as many times as the numerator of their coefficient
by β), we can reduce to the following simpler setting: S1, . . . , Ss are subsets of [M ] and verify

s
∑

j=1

1Sj
= q1, (7)

or equivalently, for each i ∈ [M ], there are exactly q indices j such that i ∈ Sj . This means that [M ] is
covered exactly q times by the sets (Sj)1≤j≤s. Observe that because of repetitions, we use a finite sequence
of sets, rather than a collection of sets. Under the above assumption (7), our task is to show that

q
∣

∣A1 + · · ·+AM

∣

∣ ≥
s
∑

j=1

∣

∣

∣

∑

i∈Sj

Ai

∣

∣

∣.

3.2 Starting with examples

Gyarmati, Matolcsi and Ruzsa [28] have dealt (for subsets of Z), with the ”leave-one-out” case where the
fractional partition is made of all the subsets of [M ] with cardinality M − 1 and equal weights. Their
argument is based on decompositions of the small sumsets and a double counting argument. As noted in [20]
it also works for subsets of R. As a warm-up we present the simplest non-trivial case of M = 3, for subsets
of R and the fractional partition

1{1,2,3} =
1

2

(

1{1,2} + 1{2,3} + 1{3,1}

)

.

Let A1, A2, A3 be three nonempty compact subsets ofR. Assume that min(Ai) = 0 and denote ai := max(Ai).
Since 0 belongs to all Ai’s, the following inclusions hold:

(A1 +A2) ∪ a1+a2<(a1 +A2 +A3) ⊂ A1 +A2 +A3 (8)

(A2 +A3)≤a2
∪ (A1 + a2 +A3) ⊂ A1 +A2 +A3,

2This is not claimed to be new; similar arguments and conclusions appear, e.g., in [49, 27], which also contain additional
information about extreme fractional partitions. For example, [27] show that one needs to allow denominators of the rational
numbers that appear in extreme fractional partitions to grow at least exponentially in M .
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1 2 3

{1, 2}

{2, 3}

{1, 3}

Figure 1: Leave-one-out partition on {1, 2, 3}

where t<S := S ∩ (t,+∞) and S≤t := S ∩ (−∞, t]. By construction the unions are essentially disjoint (sets
intersect in at most one point), hence passing to lengths and summing up the corresponding two inequalities
gives

2|A1 +A2 +A3| ≥ |A1 +A2|+ |a1+a2<(a1 +A2 +A3)|+ |(A2 +A3)≤a2
|+ |A1 + a2 +A3|

= |A1 +A2|+ |a2<(A2 +A3)|+ |(A2 +A3)≤a2
|+ |A1 +A3|

= |A1 +A2|+ |A2 +A3|+ |A1 +A3|.

One can cook up by hand such decompositions for slightly more complicated fractional partitions. In order
to explain our strategy for general regular partitions, let us put forward some features of the above decom-
position. Since this is only meant to explain where our forthcoming formal proof comes from, we do not try
to give formal definitions.

We shall say that an element i ∈ [M ] is covered by a term in the above decompositions (i.e. a truncated
sumset), if this term contains a translate of Ai (or rather of Ai \ {0, ai}). This is actually a property of the
formula rather than of the sets.

For instanceA1+A2 covers 1 sinceA1 ⊂ A1+A2. It also covers 2, but not 3. The term a1+a2<(a1+A2+A3)
covers 3 since it contains a1 + a2 +A3 (more precisely a1 + a2 +A3 \ {0}). It does not cover 1, neither 2.

If we rewrite the decompositions (8) and underline in each term the indices which it covers, we get:

(A1 +A2) ∪ a1+a2<(a1 +A2 +A3) ⊂ A1 +A2 +A3 (9)

(A2 +A3)≤a2
∪ (A1 + a2 +A3) ⊂ A1 +A2 +A3, (10)

we observe that each decomposition covers every index once. We can encode this on the incidence matrix
of the regular partition (columns correspond to elements i ∈ [M ] and lines to the sets in the partition): for
each decomposition we connect the couples (i, S) where i is covered by a term involving a translation of
∑

k∈S Ak. For the first line (9), we connect (1, {1, 2}) to (2, {1, 2}), and then (2, {1, 2}) to (3, {2, 3}). As
we observed that all indices are covered this line is a graph of a function on [M ] = {1, 2, 3}. For (10), we
connect (1, {1, 3}) to (2, {, 2, 3}), and then (2, {, 2, 3}) to (3, {1, 3}). We get Figure 1. We remark that the
connections are only drawn for easy visualization of our procedure in terms of graphs of set-valued functions
on {1, 2, 3} drawn as though we would draw a graph of a function from the real line to itself; it is not
important, for instance, that we did not connect (1, {1, 3}) to (3, {1, 3}).

Reading this simple figure from bottom to top, one can recover the decompositions (8): the bottom graph
(in blue) corresponds to (9); again we read by considering lines (corresponding to sets) from bottom up:
we use A1 + A2 to cover 1 and 2, and then A2 + A3 to cover 3, but we truncate it from below at a1 + a2
(corresponding to 1 and 2 being already covered) for disjointness. Next we pass to the upper graph, and
consider sets starting from below: the first relevant one is A2 + A3 which we use to cover 2 only, so we
truncate it from above at a2. Next we use A1 +A3, translated by a2 (note that the translation corresponds
to the previously covered index).

The main feature of the figure is that it contains the graphs of two functions on {1, 2, 3} which do not
cross. Since the partition is regular, they are uniquely determined by this property.
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1 2 3 4 5

{2, 3}

{1, 2, 4}

{1, 2, 4, 5}

{1, 3, 5}

{3, 4, 5}

Figure 2: A 3-regular partition of {1, 2, 3, 4, 5}

Let us try this reverse engineering approach in a more intricate situation:

31[5] = 1{2,3} + 1{1,2,4} + 1{1,2,4,5} + 1{1,3,5} + 1{3,4,5}.

We start with plotting the incidence table of this fractional partition in Figure 2 and we draw the corre-
sponding non-crossing graphs. Next we use them in order to build decompositions of sumsets.

We start with the bottom graph (in blue), of a function defined on the set [5] . We consider the sets
of the partition starting from the bottom, and at each step we want to cover exactly the indices 1 ≤ i ≤ 5
which are on the set and on the graph:

• The first set is {2, 3} it is entirely on the blue graph: we need to cover 2 and 3, so can simply take
A2 +A3. We could write (A2 +A3)≤a2+a3

even if the truncation is useless here, in order to stress our
goal: cover 2 and 3, but nothing more.

• We move up and consider the next set {1, 2, 4}. Our goal is to cover the indices 1 and 4 (which
correspond to the dots on the graph at the height of {1, 2, 4}), using A1 + A2 + A4 translated by as
many ai as we can, for previously covered indices i. The truncation from below is imposed by the
upper bound on the previous set, the one from above by the fact that we do not want to cover more
indices than 1 and 4 (it is superfluous in this case). The only choice is

a2+a3<(A1 +A2 + a3 +A4)≤a1+a2+a3+a4
.

• The last dot on the blue graph is at the third line, so we have to use the set {1, 2, 4, 5} in order to
cover the last uncovered index 5. By similar considerations we are led to choose:

a1+a2+a3+a4<(A1 +A2 + a3 +A4 +A5).

Summing up, using the blue line, we have obtained the following disjoint union inside the full sum set:

(A2 +A3)
⋃

a2+a3<(A1 +A2 + a3 +A4)
⋃

a1+a2+a3+a4<(A1 +A2 + a3 + A4 + A5) ⊂
5
∑

i=1

Ai. (11)

Next we deal with the second graph (in red).

• The first relevant set (starting from bottom) is {1, 2, 4} and only the point (2, {1, 2, 4}) is on the red
graph. So we select (A1 +A2 +A4)≤a2

9



• Going up one set, the points (1, {1, 2, 4, 5}) and (4, {1, 2, 4, 5}) are on the red graph so we need to use
{1, 2, 4, 5} to cover 1 and 4. This leads to

a2<(A1 +A2 +A4 +A5)≤a1+a2+a4
.

• Eventually considering the set {1, 3, 5} which meets the red graph at 3 and 5 we choose

a1+a2+a4<(A1 + a2 +A3 + a4 +A5).

Summing up, the red line leads to the inclusion

(A1+A2+A4)≤a2

⋃

a2<(A1+A2+A4+A5)≤a1+a2+a4

⋃

a1+a2+a4<(A1+a2+A3+a4+A5) ⊂
5
∑

i=1

Ai. (12)

The same procedure for the upper graph (in black) gives

(A1 +A2 +A4 +A5)≤a2

⋃

(A1 + a2 +A3 +A5)≤a1+a2

⋃

(a1 + a2 +A3 +A4 +A5) ⊂
5
∑

i=1

Ai. (13)

Eventually, passing to length of sets in the inclusions (11), (12), (13), adding everything up and collecting
the pieces of the various sumsets gives

3
∣

∣

∣

5
∑

i=1

Ai

∣

∣

∣ ≥ |A2 +A3|+ |A1 +A2 +A4|+ |A1 +A2 +A4 +A5|+ |A1 +A3 +A5|+ |A3 +A4 +A5|.

After these examples, we are ready for the general case.

3.3 Proof for the real line

Let us proceed to some simplifications and introduce concise notation. First of all, by translation invariance
of Lebesgue’s measure, we can translate all the sets and assume that for all i ∈ [M ], minAi = 0. Then we
denote ai := maxAi. Viewing A as a function from [M ] to 2R and a as a function from [M ] to R+, we write

∑

S

A :=
∑

i∈S

Ai and
∑

S

a :=
∑

i∈S

ai.

With this notation our goal is to show that

q
∣

∣

∑

[M ]

A
∣

∣ ≥
s
∑

j=1

∣

∣

∣

∑

Sj

A
∣

∣

∣
. (14)

Our proof of this inequality will rely on the arbitrary choice of an order of the sets (which was already made
in the notation (Sj)1≤j≤s).

By the q-covering hypothesis, each i ∈ [M ] belongs to exactly q of the sets (Sj)
s
j=1. Hence there are

indices
1 ≤ h1(i) < h2(i) < · · · < hq(i) ≤ s

such that i belongs to the sets having these indices, and to these sets only: i ∈ Shk(i) for all k with 1 ≤ k ≤ q.
Hence, we have built q functions h1, . . . , hq from [M ] to [s]. They will play a central role in the argument.
For each of these functions, we prove a lower bound on the length of the full sum

∑

[M ] A:
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Lemma 1. Let k ∈ [q] be an integer between 1 and q. Then

s
⋃

j=1









∑

Sj

A+
∑

h−1

k
([1,j−1])\Sj

a



 ∩





∑

h−1

k
([1,j−1])

a ;
∑

h−1

k
([1,j])

a







 ⊂
∑

[M ]

A, (15)

where the union is disjoint. Hence, passing to lengths of sets:

s
∑

j=1

∣

∣

∣

∣

∣

∣





∑

Sj

A+
∑

h−1

k
([1,j−1])\Sj

a



 ∩





∑

h−1

k
([1,j−1])

a ;
∑

h−1

k
([1,j])

a





∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∑

[M ]

A
∣

∣

∣. (16)

Observe that quite a few of the above sets can be empty. For instance when j = 1, [1, j − 1] = ∅ and
∑

h−1

k
([1,j−1]) a = 0 as a sum on the empty set. More importantly, when j does not belong to the range of

hk the interval
(

∑

h−1

k
([1,j−1]) a ;

∑

h−1

k
([1,j]) a

]

is also empty.

Proof. Since for all i ∈ [M ], 0 ∈ Ai and ai ∈ Ai it is plain that

∑

Sj

A+
∑

h−1

k
([1,j−1])\Sj

a ⊂
∑

[M ]

A,

hence the inclusion is proved. The fact that the union is disjoint comes from the disjointness of the intervals




∑

h−1

k
([1,j−1])

a ;
∑

h−1

k
([1,j])

a



 .

Indeed, since ai ≥ 0, j1 ≤ j2 implies that
∑

h−1

k
([1,j1])

a ≤
∑

h−1

k
([1,j2])

a.

In order to prove the fractional inequality (14), we sum up the inequalities provided by the above lemma,
for k ranging from 1 to q. Permuting sums, we obtain

q
∣

∣

∑

[M ]

A
∣

∣ ≥
s
∑

j=1

q
∑

k=1

∣

∣

∣

∣

∣

∣





∑

Sj

A+
∑

h−1

k
([1,j−1])\Sj

a



 ∩





∑

h−1

k
([1,j−1])

a ;
∑

h−1

k
([1,j])

a





∣

∣

∣

∣

∣

∣

=
s
∑

j=1





q
∑

k=1

∣

∣

∣

∣

∣

∣

∑

Sj

A ∩





∑

h−1

k
([1,j−1])∩Sj

a ;
∑

h−1

k
([1,j])\(h−1

k
([1,j−1])\Sj)

a





∣

∣

∣

∣

∣

∣



 .

Using in the first place that B \ (C \D) = (B \C) ∪ (B ∩D), and then the inclusion h−1
k ({j}) ⊂ Sj (which

follows from the definitions), we get that

h−1
k ([1, j]) \ (h−1

k ([1, j − 1]) \ Sj) = h−1
k ({j}) ∪ (h−1

k ([1, j]) ∩ Sj)

= h−1
k ([1, j]) ∩ Sj .

Hence we have shown that

q
∣

∣

∑

[M ]

A
∣

∣ ≥
s
∑

j=1





q
∑

k=1

∣

∣

∣

∣

∣

∣

∑

Sj

A ∩





∑

h−1

k
([1,j−1])∩Sj

a ;
∑

h−1

k
([1,j])∩Sj

a





∣

∣

∣

∣

∣

∣



 . (17)

In order to combine the terms in the inner sum, we need some observations on the end-points of the various
intervals.
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Lemma 2. Let 1 ≤ j ≤ s and 1 ≤ k ≤ q − 1 be integers. Then

1. h−1
q

(

[1, j − 1]
)

∩ Sj = ∅

2. h−1
1

(

[1, j]
)

∩ Sj = Sj

3. h−1
k+1

(

[1, j]
)

∩ Sj = h−1
k

(

[1, j − 1]
)

∩ Sj

Proof. The first point is obvious when j = 1 since [1, j − 1] = ∅ in that case. If j ≥ 1, and if i ∈
h−1
q

(

[1, j − 1]
)

∩ Sj then hq(i) ≤ j − 1. Therefore, by definition the q sets to which i belongs have indices
h1(i) < · · · < hq(i) ≤ j − 1. This contradicts the fact that i ∈ Sj .

To prove the second point, it is enough to show that Sj ⊂ h−1
1

(

[1, j]
)

. This is also very simple: if i ∈ Sj

then by definition there exists 1 ≤ ℓ ≤ q such that j = hℓ(i). Therefore 1 ≤ h1(i) ≤ hℓ(i) = j.
Let us address the third point, by establishing inclusions in both directions. First, assume that i ∈ Sj

and hk+1(i) ≤ j. By definition hk(i) < hk+1(i). Since these are integer numbers, hk(i) ≤ hk+1(i)−1 ≤ j−1.
This proves that h−1

k+1

(

[1, j]
)

∩ Sj ⊂ h−1
k

(

[1, j − 1]
)

∩ Sj .
Conversely, assume that i ∈ Sj and hk(i) ≤ j−1. Since i belongs to Sj there exists ℓ such that hℓ(i) = j.

It follows that hk(i) < hℓ(i) = j. Since t 7→ ht(i) is strictly increasing, we can deduce that k < ℓ, that is
k + 1 ≤ ℓ. Consequently hk+1(i) ≤ hℓ(i) = j. Thus we have shown that i ∈ h−1

k+1

(

[1, j]
)

∩ Sj . The proof of
the lemma is complete.

Let us explain how to conclude the proof, resuming at (17). By the latter lemma,





∑

h−1
q ([1,j−1])∩Sj

a ;
∑

h−1
q ([1,j])∩Sj

a



 =





∑

∅

a ;
∑

h−1
q ([1,j])∩Sj

a



 =



0 ;
∑

h−1
q ([1,j])∩Sj

a



 ,

and for all k such that 1 ≤ k ≤ q − 1





∑

h−1

k
([1,j−1])∩Sj

a ;
∑

h−1

k
([1,j])∩Sj

a



 =







∑

h−1

k+1
([1,j])∩Sj

a ;
∑

h−1

k
([1,j])∩Sj

a






.

Recalling hk < hk+1, it is then clear that the above q intervals are disjoint, and that their union is



0 ;
∑

h−1

1
([1,j])∩Sj

a



 =



0 ;
∑

Sj

a



 ,

where we have used the second point of the lemma in the last step. Using this information, we may rewrite
(17) as

q
∣

∣

∑

[M ]

A
∣

∣ ≥
s
∑

j=1

∣

∣

∣

∣

∣

∣

∑

Sj

A ∩
(

0 ;
∑

Sj

a
]

∣

∣

∣

∣

∣

∣

. (18)

Recall that Ai ⊂ [min(Ai),max(Ai)] = [0, ai], hence
∑

Sj
A ⊂

[

0 ;
∑

Sj
a
]

and actually it contains 0. Since

a point is Lebesgue negligible, we have

∣

∣

∣

∣

∣

∣

∑

Sj

A ∩
(

0 ;
∑

Sj

a
]

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∑

Sj

A
∣

∣

∣
,

and the fractional inequality is established.
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Eventually we check the sufficient condition for equality claimed in Theorem 2 for d = 1. Without loss of
generality we may assume that for all S, βS > 0 (otherwise we remove the sets from the fractional partition)
and that min(Ai) = 0, max(Ai) = ai. Summing up the inclusions {0, ai} ⊂ Ai ⊂ [0, ai] gives for all S ⊂ [M ],

{

0,
∑

S

a

}

⊂
∑

S

A ⊂

[

0,
∑

S

a

]

.

Since by hypothesis
∑

S A is an interval for S ∈ G, we get |
∑

S A| =
∑

i∈S ai. Hence, using the fractional
partition,

∑

S∈G

βS

∣

∣

∑

S

A
∣

∣ =
∑

S∈G

βS

(

∑

i∈S

ai

)

=

M
∑

i=1

ai





∑

S∈G;i∈S

βS



 =

M
∑

i=1

ai.

Moreover the above inclusion implies that |
∑

[M ] A| ≤
∑M

i=1 ai =
∑

S∈G βS

∣

∣

∑

S A
∣

∣, which should be com-

bined to the general inequality |
∑

[M ] A| ≥
∑

S∈G βS

∣

∣

∑

S A
∣

∣ in order to get equality.

3.4 Extension to higher dimensions

We now complete the proof of Theorem 2 by treating the case of dimension bigger than 1.

Proposition 1. Let (G, β) be a fractional partition of [M ]. Let A1, . . . , AM be nonempty compact subsets
of Rd. Then

∣

∣A1 + · · ·+AM

∣

∣ ≥
∑

S∈G

βS

∣

∣

∣

∑

i∈S

Ai

∣

∣

∣,

where |A| denotes the d-dimensional Lebesgue measure of a compact subset A of Rd.

As before, it is enough to deal with the regular case. On each compact set Ai the first coordinate function
π (defined for x ∈ Rd by π(x) = x1) achieves its maximum at a point ai ∈ Ai. Since our problem is invariant
by translation, we may assume without loss of generality that the minimum of x 7→ x1 on Ai is achieved at
the origin. So {0, ai} ⊂ Ai and Ai ⊂ {x ∈ Rd; x1 ∈ [0, (ai)1]}, where (ai)1 is the first coordinate of ai. In
other words

Ai ⊂ π−1
(

[0, π(ai)]
)

,

and their boundaries meet at least at 0 and ai. The statement of Lemma 1 should be modified by replacing
the intervals





∑

h−1

k
([1,j−1])

a ;
∑

h−1

k
([1,j])

a





by the slabs

π−1









∑

h−1

k
([1,j−1])

π(a) ;
∑

h−1

k
([1,j])

π(a)







 .

The rest of the proof is the same as in the one-dimensional case.

4 Other proofs

4.1 Cartesian products

The next simple proposition allows combining fractional superadditivity results for volumes, and is the key
tool in the proof of Theorem 3.
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Proposition 2. Let d1, d2 be positive integers and p, q > 0. For i ∈ [M ], let Ai ⊂ Rd1 and Bi ⊂ Rd2 be
nonempty compact sets. Let (βS)S⊂[M ] be non-negative numbers and assume that we have the following two
volume inequalities:

∣

∣

∣

∑

i∈[M ]

Ai

∣

∣

∣

1
p

d1

≥
∑

S

βS

∣

∣

∣

∑

i∈S

Ai

∣

∣

∣

1
p

d1

and
∣

∣

∣

∑

i∈[M ]

Bi

∣

∣

∣

1
q

d2

≥
∑

S

βS

∣

∣

∣

∑

i∈S

Bi

∣

∣

∣

1
q

d2

.

Then the Cartesian product sets Ai ×Bi ∈ Rd1+d2 satisfy

∣

∣

∣

∑

i∈[M ]

(Ai ×Bi)
∣

∣

∣

1
p+q

d1+d2

≥
∑

S

βS

∣

∣

∣

∑

i∈S

(Ai ×Bi)
∣

∣

∣

1
p+q

d1+d2

.

Proof. Observe that
∑

i∈S(Ai ×Bi) =
(

∑

i∈S Ai

)

×
(

∑

i∈S Bi

)

. Thus by Hölder’s inequality

∑

S

βS

∣

∣

∣

∑

i∈S

(Ai ×Bi)
∣

∣

∣

1
p+q

=
∑

S

βS

∣

∣

∣

∑

i∈S

Ai

∣

∣

∣

1
p+q
∣

∣

∣

∑

i∈S

Bi

∣

∣

∣

1
p+q

≤

(

∑

S

βS

∣

∣

∣

∑

i∈S

Ai

∣

∣

∣

1
p

)
p

p+q
(

∑

S

βS

∣

∣

∣

∑

i∈S

Bi

∣

∣

∣

1
q

)
q

p+q

≤





∣

∣

∣

∑

i∈[M ]

Ai

∣

∣

∣

1
p





p

p+q




∣

∣

∣

∑

i∈[M ]

Bi

∣

∣

∣

1
q





q

p+q

=
∣

∣

∣

∑

i∈[M ]

(Ai ×Bi)
∣

∣

∣

1
p+q

.

4.2 Proof for the integers

We now prove Theorem 4 for cardinalities of sumsets in the integers.
The argument is the same as for the real line, but with minor changes. Again we translate the sets in

order to have minAi = 0 and set ai := maxAi ∈ Z. Then we observe that the set on the left-hand side of
(15) is included in



0 ;
∑

h−1

k
([1,s])

a



 =



0 ;
∑

[M ]

a





so it does not contain 0, the minimal element of
∑

[M ] A. So we may improve on (15):

s
⋃

j=1









∑

Sj

A+
∑

h−1

k
([1,j−1])\Sj

a



 ∩





∑

h−1

k
([1,j−1])

a ;
∑

h−1

k
([1,j])

a







 ⊂
(

∑

[M ]

A
)

\ {0}. (19)

Taking cardinalities gives

s
∑

j=1

#





{

∑

Sj

A+
∑

h−1

k
([1,j−1])\Sj

a

}

∩

(

∑

h−1

k
([1,j−1])

a ;
∑

h−1

k
([1,j])

a

]



 ≤ #

(

∑

[M ]

A

)

− 1. (20)

Then we follow the same line of reasoning and get instead of (18):

q



#
(

∑

[M ]

A
)

− 1



 ≥
s
∑

j=1

#

(

∑

Sj

A ∩
(

0 ;
∑

Sj

a
]

)

=

s
∑

j=1

[

#

(

∑

Sj

A

)

− 1
]

, (21)
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since min
(

∑

Sj
A
)

= 0 and max
(

∑

Sj
A
)

=
∑

Sj
a. This concludes the proof in the regular case. The

general case follows.

Eventually we check the sufficient condition for equality. Without loss of generality, we assume that for
all S, βS > 0 and that min(Ai) = 0, max(Ai) = ai. Summing up the inclusions {0, ai} ⊂ Ai ⊂ [0, ai] gives
for all S ⊂ [M ],

{

0,
∑

S

a

}

⊂
∑

S

A ⊂

[

0,
∑

S

a

]

. (22)

Since by hypothesis
∑

S A is an arithmetic progression of increment ρ, we get #(
∑

S A) = 1 + 1
ρ

∑

i∈S ai.
Hence, using the fractional partition,

∑

S∈G

βS

[

#
(

∑

S

A
)

− 1

]

=
∑

S∈G

βS

(

1

ρ

∑

i∈S

ai

)

=
1

ρ

M
∑

i=1

ai





∑

S∈G;i∈S

βS



 =
1

ρ

M
∑

i=1

ai.

Each i ∈ [M ] belongs to some S ∈ G, hence Ai ⊂
∑

S A ⊂ ρZ, where we used that 0 ∈ ∩jAj and that
∑

S A
is an arithmetic progression of increment ρ. Hence

∑

[M ] A ⊂ ρZ, which together with (22) implies that

#
(

∑

[M ]

A
)

− 1 ≤
1

ρ

M
∑

i=1

ai =
∑

S∈G

βS

[

#
(

∑

S

A
)

− 1

]

.

5 Concluding remarks and open questions

We leave a number of interesting open questions for future work.

• The question of characterizing all equality cases for our main inequality (4) in dimension 1 is interesting,
and seems doable but tedious.

• In a forthcoming paper [5], we use Theorem 2 to show a certain monotonicity property in a limit
theorem involving certain convolution powers of nonnegative measurable functions on the real line.

• The central problem posed in this paper– that of a full characterization of the Lyusternik region for
M > 2 – seems quite difficult in general. It should however be possible to improve on our (inclusion)
bounds or to put forward qualitative properties of these sets. From the discussion of the counterexample
showing that partial sums cannot reach all supermodular set functions, it is clear that characterizing
the region would require at least to be able to say that if the two-by-two sums are not too big, then the
sets are not far from convex and thus the three-by-three sum is not too big either. Such considerations
lead towards refined stability results (see, e.g., [16]) and additive combinatorics, and would be very
interesting to pursue.

• It is natural to ask what the analogue of the Lyusternik region looks like when, instead of allowing
all compact sets, one restricts to convex sets. In this case, the question becomes clearly related
to mixed volumes and their properties– indeed, supermodularity properties of mixed volumes are
discussed in [23], some properties of the reverse kind (log-submodularity) that hold for special subclasses
of convex sets are discussed in [23, 22], and the possibility of extensions to more general measures
absolutely continuous with respect to Lebesgue measure is discussed in [18]. Clearly the well known
Alexandrov-Fenchel inequalities (see, e.g., [11, Section 20.3] for a classical account and [50, 12] for
recent developments) are also key constraints on the collection of mixed volumes. We remark that
studies of regions involving the set of possible mixed volumes of convex bodies have been undertaken
in a series of works in convex geometry (see, e.g., [51, 29, 3]); however there does not appear to be a
direct connection between our work and those results because our interest is focused on what can be
said for general compact sets.
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• Theorem 1 includes the observation from [21] that |A + B + C| + |A| may be strictly less than |A +
B|+ |A+C| for compact sets A,B,C even in dimension 1. Nonetheless, [21] also show that if A,B,C
are compact subsets of R, then

|A+B + C|+ |conv(A)| ≥ |A+B|+ |A+ C|.

In particular, a supermodularity-type inequality holds if the set A is convex (i.e., a closed interval).
This may also be written as follows: if A is a compact convex set and B,C are arbitrary compact sets,
and we define ∆B(A) = |A+B| − |A|, then

∆B+C(A) ≥ ∆B(A) + ∆C(A).

This inequality was recently verified in general dimension when B is a zonoid (and C is an arbitrary
compact set) by [23], but the question is open in general.

A The relevance of fractional superadditivity

In this Appendix, we discuss some motivations for considering fractional superadditivity a structural property
of importance for set functions.

Our first observation, which is elementary but seemingly new, is that fractional superadditivity is closely
connected to the extendability of a set function to a function on the positive orthant with nice properties.
As usual we identify the set of subsets of [M ] with {0, 1}M or with the set of applications from [M ] to {0, 1}.
In particular for S ⊂ [M ], the indicator function 1S is viewed as a vector in {0, 1}M ⊂ RM . The following
result may be compared with the Lovász extension theorem for submodular functions (see, e.g., [31, 25]).

Proposition 3. Let f : {0, 1}M → R+. Then the following assertions are equivalent:

1. f is fractionally superadditive, meaning that if T ⊂ [M ] and non-negative numbers (βS)S⊂[M ] satisfy
1T =

∑

S⊂[M ] βS1S then

f(1T ) ≥
∑

S

βSf(1S).

2. f admits a 1-homogeneous concave extension to RM
+ = [0,+∞)M .

Proof. 2 =⇒ 1: Let F be such an extension then for βS ≥ 0, set β :=
∑

S βS . Assume β > 0 (otherwise all
βS = 0 and the conclusion will be trivial). Then by homogeneity and concavity

F
(

∑

S

βS1S

)

= βF
(

∑

S

βS

β
1S

)

≥
∑

S

βSF (1S) =
∑

S

βSf(1S).

So if 1T =
∑

S βS1S , we obtain f(1T ) = F (1T ) ≥
∑

S βSf(1S).

1 =⇒ 2: For x ∈ RM
+ we define

F (x) := sup

{

∑

S⊂M

βSf(1S)
∣

∣

∣ βS ≥ 0 s.t. x =
∑

S⊂M

βS1S

}

.

Observe that the superadditivity condition, when applied to empty sets gives that f(0) = f(1∅) = 0. So we
can also restrict the summation to S 6= ∅ in the supremum without changing its value. Then F (0) = 0 (as
only β∅ may be nonzero and f(1∅) = 0).

Let us consider x 6= 0 now. The above set is not empty as x =
∑

i∈[M ] xi1{i} and the relationship

xi =
∑

S; i∈S βS implies that for S 6= ∅, βS ∈
[

0, ‖x‖∞
]

. So F (x) is a well defined non-negative real
number. One readily checks that F is 1-homogeneous and concave. We have already seen that f(0) =
F (0) = 0. By definition F (1T ) ≥ f(1T ) by choosing the trivial decomposition of 1S as itself. But for general
decompositions 1T =

∑

S βS1S , fractional superadditivity gives that
∑

S βSf(1S) ≤ f(1T ), so by taking
supremum F (1T ) ≤ f(1T ). Consequently F (1T ) = f(1T ) for every T ⊂ [M ].
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It is tempting to try to find a simpler proof of Theorem 2 by constructing a 1-homogeneous concave
function that extends the set function f(S) = |

∑

i∈S Ai|. However, we have been unable to do this. We note
that the obvious choice to consider is F (x) = |

∑

i∈[M ] xiAi|, and moreover, the concavity of this function
is easy to check when each Ai is a convex set using the Brunn-Minkowski inequality and the “distributive”
property (s + t)A = sA + tA (which holds for s, t > 0 if and only if A is convex). However, the same idea
to prove concavity of F does not work for general compact sets because of the failure of the distributive
property.

Our second observation, which is classical, is that fractional superadditivity (or “balancedness” as it is
called in the economics literature) is equivalent to a certain “nonempty core” property of an optimization
problem connected to the set function. This equivalence, proved by the duality theorem of linear program-
ming, is the content of the Bondareva-Shapley theorem [10, 49] in the theory of cooperative games. We now
state this theorem in our language and avoiding game-theoretic terminology.

Let f : {0, 1}M → R+ with f(∅) = 0. Define the polyhedron

A(f) =

{

t ∈ RM
+ :

∑

i∈S

ti ≥ f(S) for each S ⊂ [M ]

}

.

The Bondareva-Shapley theorem states that f is fractionally superadditive if and only if there exists t ∈ A(f)
such that

∑

i∈[M ] ti = f([M ]).

The reader may consult [34] for a review of the cooperative game theory literature, including the
Bondareva-Shapley theorem, from the viewpoint of information theory.
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integers. In Proc. IEEE Intl. Symp. Inform. Theory, pages 2829–2833. Honolulu, Hawaii, July 2014.

20


	Introduction
	Main Results
	Proof of Theorem 2
	A reduction to regular fractional partitions
	Starting with examples
	Proof for the real line
	Extension to higher dimensions

	Other proofs
	Cartesian products
	Proof for the integers

	Concluding remarks and open questions
	The relevance of fractional superadditivity

