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Abstract
Simple drawings are drawings of graphs in which the edges are Jordan arcs and each
pair of edges share at most one point (a proper crossing or a common endpoint). A
simple drawing is c-monotone if there is a point O such that each ray emanating
from O crosses each edge of the drawing at most once. We introduce a special kind
of c-monotone drawings that we call generalized twisted drawings. A c-monotone
drawing is generalized twisted if there is a ray emanating from O that crosses all the
edges of the drawing. Via this class of drawings, we show that every simple drawing

of the complete graph with n vertices contains �(n
1
2 ) pairwise disjoint edges and a

plane cycle (and hence path) of length �(
log n

log log n ). Both results improve over best
previously published lower bounds. On the way we show several structural results and
properties of generalized twisted and c-monotone drawings, some of which we believe
to be of independent interest. For example, we show that a drawing D is c-monotone
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if there exists a point O such that no edge of D is crossed more than once by any ray
that emanates from O and passes through a vertex of D.

Keywords Simple drawings · Simple topological graphs · Disjoint edges · Plane
matching · Plane path

Mathematics Subject Classification 05C10 · 05C38 · 05C62

1 Introduction

In this work we investigate simple drawings of complete graphs, in particular plane
subdrawings in them and special classes of them. Simple drawings are drawings of
graphs in the plane or on the sphere such that the vertices are distinct points in the
plane, the edges are Jordan arcs connecting their endpoints, and every pair of edges
intersects at most once either in a proper crossing (of exactly two edges) or in a shared
endpoint. We say that a drawing or subdrawing is plane if it contains no crossings.
A graph is planar if there exists a drawing of the graph which is plane.

Two simple drawings on the sphere are called strongly isomorphic if there is a
homeomorphism of the sphere that maps one drawing into the other. Similarly, two
simple drawings in the plane are called strongly isomorphic if their homeomorphic
drawings on the sphere are strongly isomorphic. (These homeomorphic drawings on
the sphere exist by the general Jordan–Schoenflies theorem [11, 25].) Two simple
drawings D and D′ (in the plane or on the sphere) are weakly isomorphic if there is
a bijection between the vertices of D and D′ such that adjacency is preserved and
any pair of edges in D crosses exactly when the corresponding pair of edges in D′
crosses. In this paper, we aremostlyworkingwith simple drawings in the plane, though
everything holds equivalently also on the sphere. We often consider these drawings
up to (strong or weak) isomorphism, where the type of isomorphism depends on the
context.

In the past decades, there has been significant interest in simple drawings. Questions
about plane subdrawings of simple drawings of the complete graph on n vertices, Kn ,
have received particularly close attention. Rafla [31] conjectured that for any n ≥ 3,
every simple drawing of Kn contains a plane Hamiltonian cycle. The conjecture has
been shown to hold for n ≤ 9 [2], as well as for several special classes of simple
drawings, like straight-line, x-monotone, and cylindrical drawings. But it still remains
open in general. If Rafla’s conjecture is true, then this would immediately imply that
every simple drawing of the complete graph contains a plane perfect matching (if the
number of vertices is even) and a plane Hamiltonian path. However, to-date even the
existence of such a matching or such a path is still unknown.

Note that the behavior of general simple drawings with respect to plane subdraw-
ings is often very different from the one of special simple drawings like straight-line
drawings. For example, in contrast to straight-line drawings, simple drawings of Kn

in general do not contain triangulations, that is, plane subdrawings where all faces
(except at most one) are 3-cycles. Moreover, different edge-maximal plane subdraw-
ings of a given simple drawing of Kn might have different numbers of edges, and
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it is NP-complete to decide whether a given simple drawing of Kn contains a plane
subdrawing of size k [18].

There has been a considerable series of results successively improving the lower
bound of the number of disjoint edges contained in any simple drawing of Kn . In
2003, Pach, Solymosi, and Tóth [28] showed that any simple drawing of Kn contains

�((log n)
1
6 ) disjoint edges. This bound has been improved to �(

log n
log log n ) by Pach and

Tóth [29] in 2005, to �((log n)1+ε) by Fox and Sudakov [14] in 2009, and to �(n
1
3 )

by Suk in 2013, where the last bound has been reproved via different techniques by
Fulek and Ruiz-Vargas in 2013 [17] and 2014 [15]. Finally, in 2017 Ruiz-Vargas [33]

showed a bound of �(n
1
2−ε) for any ε > 0. We further improve this bound, showing

that every simple drawing of Kn contains �(n
1
2 ) disjoint edges.1

Theorem 1.1 Every simple drawing of Kn contains at least �
√

n
48� pairwise disjoint

edges.

For connected plane substructures, it follows from the definition of simple drawings
that every such drawing of Kn contains n plane spanning stars (a star is a tree in which
all edges are incident to the same vertex). General plane trees are harder to find. Pach,
Solymosi, andTóth [28] showed that any simple drawing of Kn has a plane subdrawing

strongly isomorphic to any fixed treewith O((log n)
1
6 ) vertices. This implies that every

such drawing contains a plane path of length �((log n)
1
6 ). We improve this bound by

showing a lower bound of �(
log n

log log n ) for the length of a plane cycle, which in turn
implies the same bound also for plane paths. An extended abstract containing the
result for paths has been previously presented at EGC 2021 [6]. To the best of our
knowledge, no non-trivial lower bound on the size of plane cycles had been published
before.

Theorem 1.2 Every simple drawing of Kn contains a plane cycle of length�(
log n

log log n ).

Very recently, Suk and Zeng [34] improved the number of vertices from the above-

mentioned result on fixed trees [28] to (log n)
1
4−o(1). In that work, they independently

also obtained the same bound for plane paths as we do (partially using similar state-
ments but quite different proof techniques).

To prove Theorem 1.1 and Theorem 1.2, we work with special families of simple
drawings. In particular, we use c-monotone drawings and subfamilies of them.

Definition 1.3 A simple drawing D is c-monotone (short for circularly monotone) if
there is a point O such that any ray emanating from O intersects any edge of D at
most once.

We label the vertices of c-monotone drawings v1, . . . , vn in counterclockwise order
around O . We remark that Fulek and Ruiz-Vargas [15, 17] also used c-monotone

1 An extended abstract of this result has been previously presented at CG:YRF 2021 [5]. We recently

learned that the PhD thesis of Ruiz-Vargas also contains a bound of �(n
1
2 ), which, according to personal

communication with Ruiz-Vargas, is an extension of [33]. However, the thesis is not publicly available and
the extended result itself has not been published.
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(a) A generalized twisted drawing D of K5.

v1 v5v2 v3 v4

(b) A classic way of drawing the twisted drawing of K5. It
is strongly isomorphic to the drawing D of the left figure.

Fig. 1 Two strongly isomorphic drawings of K5 representing the twisted drawing

drawings2 to show their bound on the number of disjoint edges in any simple drawing
of Kn .

The two subfamilies of c-monotone drawings we mainly work with are the well-
known family of x-monotone drawings (see further below for a discussion); and the
new family of generalized twisted drawings, which we have introduced because they
are a main ingredient for proving Theoremd 1.1 and 1.2.

Definition 1.4 A simple drawing D of Kn is generalized twisted if there is a point O
such that D is c-monotone with respect to O and there exists a ray r emanating from O
that intersects every edge of D.

We label the vertices of generalized twisted drawings such that the ray r emerges
from O between the ray to v1 and the one to vn (and, like in all c-monotone drawings,
v1, . . . , vn are labeled in counterclockwise order around O). Figure 1a shows an
example of a generalized twisted drawing of K5.

The name generalized twisted is derived from the known class of twisted drawings.
A simple drawing of Kn is twisted if there is a labeling of the vertices to v1, v2, . . . , vn
such that viv j (i < j) crosses vkvl (k < l) if and only if i < k < l < j or
k < i < j < l. It is known that for any n, there exists a twisted drawing of Kn [21].
Further, this drawing is unique up to weak isomorphism by definition. Generalized
twisted drawings are a generalization of twisted drawings in the sense that one can show
that every twisted drawing is strongly isomorphic to a generalized twisted drawing.
In contrast, most generalized twisted drawings are not even weakly isomorphic to
twisted drawings; see the discussion in the conclusion. Figure 1b shows a classic way
of representing the (up to strong isomorphism unique) twisted drawing of K5 [21]. It
is strongly isomorphic to the generalized twisted drawing in Fig. 1a.

Originally introduced by Harborth and Mengersen in 1992 [21], twisted drawings
have been thoroughly investigated; see for example [4, 9, 13, 24, 27, 28, 34]. Pach,
Solymosi, and Tóth [28] showed that every simple drawing of Kn contains an induced

2 They use the terms ‘monotone simple cylindrical graphs’ and ‘cylindrical drawings’ instead of ‘c-
monotone drawings’.However, the term ‘cylindrical drawings’ has also beenused for other types of drawings
in the literature; see for example [1] and references therein.
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subdrawing of a complete graph on �(log
1
8 n) vertices which is either convex3 or

twisted. They used this to obtain their previously mentioned tree-existence result.
Recently, Suk and Zeng [34] improved the lower bound on the size of a convex or
twisted induced subdrawing of a complete graph in any simple drawing of Kn to

(log n)
1
4−o(1) vertices.

In this paper,we investigate generalized twisted drawings anduse their rich structure
to prove Theorems 1.1 and 1.2. As one of the most important properties for those
proofs, we show the following.

Theorem 1.5 Every generalized twisted drawing D of Kn contains a plane Hamil-
tonian path. Moreover, if n ≥ 3 is odd, then D also contains a plane Hamiltonian
cycle.

Note that for any plane substructure in a simple drawing, the according substructure
in any strongly or even just weakly isomorphic drawing is plane as well. Hence we
could also state Theorem 5 starting with "Any simple drawing of Kn that is weakly
isomorphic to a generalized twisted drawing...". This holds analogously for several
other statements throughout thiswork. For simplicity, we stickwith the shorter (though
at first glance more restricted) statements.

To gain more insight into c-monotone drawings and to show Theorem 1.2, we
further use x-monotone drawings. A simple drawing in the plane is x-monotone if
any vertical line intersects any edge of the drawing at most once; see Fig. 2b for an
illustration. This family of drawings has been studied extensively in the literature; see
for example [3, 8, 10, 16, 30].

For a characterization of x-monotone drawings via c-monotone drawings, consider
c-monotone drawings inwhich there exists a ray r from the origin O that does not cross
any edge of the drawing. Any such drawing is strongly isomorphic to an x-monotone
drawing. One way to obtain this isomorphic x-monotone drawing is the following:
We transform the plane such that O is sent to infinity and all rays through O become
(parallel) vertical rays, with r being the vertical line at infinity. (This process is an
isotopy, so the resulting drawing is strongly isomorphic to the original one. One can
also imagine the transformation as cutting the drawing open along r and then stretching
it until it is x-monotone.) On the other hand, it is easy to see that every x-monotone
drawing in the plane is strongly isomorphic to a c-monotone drawing (for example by
using the inverse of the above described transformation).

Figure 2a shows a c-monotone drawing D of K5 where no edge crosses the ray r ,
and Fig. 2b shows an x-monotone drawing of K5 strongly isomorphic to D.

We call simple drawings that are strongly isomorphic to x-monotone drawings
monotone drawings. In particular, any c-monotone drawing for which there exists a
ray emanating from O that crosses no edge of the drawing is monotone. Note that
generalized twisted drawings are somewhat opposite to such monotone drawings,
in the sense that they contain a ray emanating from O that crosses every edge of
the drawing. We explore further connections in the proof of Theorem 1.2 and show,
amongst other things, that every c-monotone drawing of Kn contains a drawing of

3 In their definition for simple drawings, convex means that there is a labeling of the vertices to
v1, v2, . . . , vn such that viv j (i < j) crosses vkvl (k < l) if and only if i < k < j < l or k < i < l < j .
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v1

v3

v2v4

v5

O

r

(a)A c-monotone drawingD of K5 such that the ray
r crosses no edge ofD.

v1

v2

v3

v4

v5

(b)An x-monotone drawing ofK5strongly isomorphic to
the drawingDof the left figure.

Fig. 2 Two strongly isomorphic monotone drawings of K5

K�√n	 as an induced subdrawing that is either generalized twisted or x-monotone
(Theorem 6.3).

We further study c-monotone drawings, especially in the context of generalized
twisted drawings. We obtain the following sufficient condition for a drawing to be
generalized twisted, which we also use to prove Theorem 1.1.

Theorem 1.6 Let D be a simple drawing of a complete graph containing a subdrawing
D2,n, which is a plane drawing of K2,n. Let A = {a1, a2, . . . , an} and B = {b1, b2}
be the sides of the bipartition of D2,n. Let DA be the subdrawing of D induced by the
vertices of A. Then DA is strongly isomorphic to a c-monotone drawing. Moreover, if
all edges in DA cross the edge b1b2, then DA is strongly isomorphic to a generalized
twisted drawing.

A weaker version of the first part of Theorem 1.6 has been implicitly shown in [15,
17], namely, the statement that in a drawing containing a plane K2,n as above, the sub-
drawing DA is weakly isomorphic to a c-monotone drawing. However, the reasoning
in [15, 17] does not yield strongly isomorphic drawings. To prove Theorem 1.6, we
provide an explicit construction of a strongly isomorphic c-monotone drawing, which
we show to be generalized twisted if b1b2 is crossed by all edges.

The strong isomorphism in Theorem 1.6 is obtained from a result on c-monotone
drawings, which we believe to be of independent interest as well. In that context, we
look at quasi-monotone drawings. A drawing D is quasi-x-monotone [17] if each one
of the vertical lines passing through the vertices of D, crosses each edge of D at most
once (while vertical lines that do not pass through a vertex are allowed to intersect
edges more than once). Similarly, the drawing D is quasi-c-monotone, if there is a
point O such that each halfline emanating from O and passing through a vertex of D
crosses each edge of D at most once. As pointed out by Fulek and Ruiz-Vargas [17],
any quasi-x-monotone (quasi-c-monotone) drawing is weakly isomorphic to an x-
monotone (c-monotone) drawing.We strengthen this result and show that any quasi-x-
monotone (quasi-c-monotone) drawing is also strongly isomorphic to an x-monotone
drawing (c-monotone drawing).
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Theorem 1.7 Let D be a quasi-x-monotone or quasi-c-monotone drawing of a graph
G = (V , E). Then D is strongly isomorphic to an x-monotone or a c-monotone
drawing D of G, respectively.

Outline. In Sect. 2, we introduce some further definitions, give some preliminaries
on plane drawings, and prove some useful properties of generalized twisted drawings
(including Theorem 1.5). In Sect. 3, we turn to c-monotone drawings and show that
quasi-c-monotone drawings are strongly isomorphic to c-monotone drawings (Theo-
rem 1.7). In Sect. 4, we use that result to give a sufficient condition for drawings to be
strongly isomorphic to generalized twisted drawings (Theorem 1.6). Sections5 and 6
are devoted to improving the lower bound on the number of disjoint edges in any sim-
ple drawing of Kn (Theorem 1.1) and the lower bound on the size of the largest plane
cycle and plane path in any such drawing (Theorem 1.2), respectively. We conclude
with some open questions and a short discussion on generalized twisted drawings in
Sect. 7.

2 Preliminaries and Further PreviousWork

Before we begin with proving statements, we need to introduce some more terminol-
ogy. The edges and vertices of a drawing partition the plane (or, more exactly, the
plane minus the drawing) into regions, which are called the cells of the drawing. If a
simple drawing is plane, then its cells are also called faces. A plane subdrawing H of
D is maximal if every edge of D\H crosses an edge in H . In particular, H would not
be plane when adding any further edge from D. A graph or drawing is biconnected if
after removing any vertex it is still connected. A drawing is outerplane if it is plane
and all vertices lie on the unbounded face of the drawing. A graph is outerplanar if
admits an outerplane drawing. Outerplanar graphs have a smaller upper bound on their
number of edges than planar graphs.

2.1 Previous PlaneWork

Asmentioned before, there has been plenty of research on plane subdrawings of simple
drawings. In this section, we state some further results that we will later use in our
proofs. One concept we work with regularly is the one of regions that are bounded by a
plane cycle. Any such plane cycle forms a Jordan curve and thus divides the plane into
two connected components (the interior and the exterior, which are separated from
each other via the curve) [23, 35].

Further, we will repeatedly work with maximal plane subdrawings and use the
following result by García et al. [18].

Theorem 2.1 ([18]) For n ≥ 3, every maximal plane subdrawing of any simple draw-
ing of Kn is spanning and biconnected.

For plane subdrawings of simple drawings, Ruiz-Vargas [32, Corollary 5] showed
the following. Let D be a simple drawing of an arbitrary graph and let H be a connected
plane subdrawing of D that contains at least two vertices. Let v be a vertex in D that
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is not in H and let F be the face of H that contains v. Further, assume that for every
vertex w incident to F , the edge vw is an edge of D. Then D contains two edges
incident to v that connect v with vertices on the boundary of F such that these edges
lie completely inside the face F . We will continuosly use the following theorem that
is a reformulation of this result for the special case of simple drawings of complete
graphs.

Theorem 2.2 ([32])Let D be a simple drawing of Kn with n ≥ 3. Let H be a connected
plane subdrawing of D containing at least two vertices, and let v be a vertex in D \H.
Then D contains two edges incident to v that connect v with H and do not cross any
edges of H.

2.2 Twisted Preliminaries

In addition to the properties of plane (sub-)drawings from the last section, we also
use several properties of generalized twisted drawings. In this section, we show most
of the properties that will be used in the following sections. We start with a lemma
concerning crossing properties of generalized twisted drawings.

Lemma 2.3 Let D beageneralized twisted drawingof K4, with vertices {v1, v2, v3, v4}
labeled counterclockwise around O. Then the edges v1v3 and v2v4 do not cross.

Proof Assume, for a contradiction, that the edge v2v4 crosses the edge v1v3. Note that
any simple drawing of K4 has at most one crossing (a fact which can be seen by an easy
case distinction). Hence all edges in D except v2v4 and v1v3 are uncrossed. Further,
recall that in any generalized twisted drawing, all edges are drawn c-monotone and
intersect the ray r . For every edge, this determines in which direction it emanates from
its vertices. Hence, there are (up to strong isomorphism) two possibilities how the
crossing edges v1v3 and v2v4 can be drawn in D, depending on whether v1v3 crosses
the ray from O through v4 at a point x3 before or after v4; see Fig. 3. In both cases,
v1v2 has to cross the ray from O through v4 at a point x2. This point x2 has to lie
after v4 in the first case and before v4 in the second case. In both cases, as the edge

O

v1

v2v3

v4

r

x 3

x 2

v1

v2

v4

O

v3

r

x 3

x 2

Fig. 3 The two possibilities to draw v1v3 and v2v4 such that they cross and the drawing is generalized
twisted
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v3v4 has to cross r , it must emanate from v4 in the interior of the triangular region
bounded by the segment x2x3, the portion v1x3 of v1v3, and the portion v1x2 of v1v2.
However, the vertex v3 is in the exterior of that triangular region, and therefore v3v4
would have to either cross the segment x2x3, contradicting that D is c-monotone, or
cross v1v3, contradicting the simplicity of D, or cross v1v2 twice, again contradicting
the simplicity of D. 
�

Using the crossing property of Lemma 2.3, we next show that generalized twisted
drawings always contain plane Hamiltonian paths.

Theorem 1.5 Every generalized twisted drawing D of Kn contains a plane Hamil-
tonian path. Moreover, if n ≥ 3 is odd, then D also contains a plane Hamiltonian
cycle.

Proof Let D be a generalized twisted drawing of Kn , with vertices {v1, v2, . . . , vn}
labeled counterclockwise around O . Depending on the parity of n, we first consider an
explicit Hamiltonian path and show that it is in fact plane. Consider the Hamiltonian
path v1, v� n

2 	+1, v2, v� n
2 	+2, v3, . . . , v� n

2 	−1, vn, v� n
2 	 if n ≥ 3 is odd, or the Hamilto-

nian path v1, v� n
2 	+1, v2, v� n

2 	+2, v3, . . . , vn−1, v� n
2 	, vn if n is even. See for example

the Hamiltonian path v1, v4, v2, v5, v3 in Fig. 1a. Take any pair of edges viv j and vkvl
of the path, where we can assumewithout loss of generality that i < j and k < l. If the
two edges share an endpoint, they are adjacent and hence do not cross. If they do not
share an endpoint, then either i < k < j < l or k < i < l < j by the definition of the
path. In each of the two cases, viv j and vkvl cannot cross by Lemma 2.3. Therefore,
no pair of edges cross, implying that the Hamiltonian path is plane.

If n ≥ 3 is odd, then this Hamiltonian path can be closed to a plane Hamiltonian
cycle. The edge v1v� n

2 	 is adjacent to v1v� n
2 	+1. For any other edge vkvl of the path, it

holds that 1 < k < � n
2 	 < l. Thus,v1, v� n

2 	+1, v2, v� n
2 	+2, . . . v� n

2 	, v� n
2 	−1, vn, v� n

2 	, v1
is plane. 
�

We strongly conjecture that every generalized twisted drawing of Kn contains a
plane Hamiltonian cycle, but for even n this is still an open problem.

3 Quasi-monotonicity andMonotonicity

The aimof this section is to proveTheorem1.7.Wewill then use it to showTheorem1.6
that we in turn will use to improve the lower bound on the number of disjoint edges.

Theorem 1.7 is a structural result on x-monotone and c-monotone drawings that
we believe to be of independent interest. Specifically, it states that every quasi-x-
monotone drawing is strongly isomorphic to an x-monotone drawing and every quasi-
c-monotone drawing is strongly isomorphic to a c-monotone drawing. A similar result
for pseudoline arrangements has been shown in [20], namely, that every arrangement
of pseudolines is isomorphic to a wiring diagram.

The proofs for the x-monotone case and the c-monotone case are very similar. For
better readability of the figures, we first present the proof for x-monotone drawings
and then conclude with a short explanation of how the proof for c-monotone drawings
is obtained.
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We prove Theorem 1.7 for monotone drawings by showing how to obtain, from
any quasi-x-monotone drawing D, a new drawing D that is strongly isomorphic to D
and x-monotone. Moreover, each edge of D will be a polygonal chain, with vertices
(turning points) only in the crossing points of D or in the crossing points of D with
the vertical lines passing through the vertices of D.

3.1 Procedure for Obtaining x-Monotone Drawings

Let D be a quasi-x-monotone drawing. We construct a monotone drawing strongly
isomorphic to D by looking at the parts of D between two vertical lines separately.
To that end, we describe the part of the drawing between two vertical lines h and h′
with k simple curves between them via a drawing Dh,h′ . To define that drawing, let
r1, . . . , rk be the k simple curves that are formed by the intersection of the edges of D
with the strip bounded by the vertical lines h and h′ through two vertices of D that are
consecutive in x-direction. We first observe the following: (1) Any two curves ri have
at most one common point (because they are parts of edges of the simple drawing D)
and the crossings are proper crossings. (2) Each edge of D induces at most one ri
and each curve ri connects a point yi on h with a point y′

i on h′ (since D is quasi-
x-monotone and the strip contains no vertices of D in its interior). Thus, taking the
points yi and y′

i (on h and h′) as vertices and the curves ri between them as edges,
we obtain a simple drawing. We define Dh,h′ as the simple drawing obtained by this
process. We suppose that the points y1, y2, . . . , yk are placed on h in this order (with
decreasing y-coordinates). Some of these vertices (or even all of them) can coincide,
that is, yi can coincide with y j or y′

i can coincide with y′
j . If ri and r j , with i < j ,

cross each other, we denote the corresponding crossing point by ci, j . We direct each
ri from yi to y′

i ; see Fig. 4 for an example.
Let D∗

h,h′ be the planarization of Dh,h′ , obtained by adding auxiliary vertices at
the crossing points of Dh,h′ and subdividing the edges of Dh,h′ at those points (each
crossing in Dh,h′ generates a vertex of degree four in D∗

h,h′). We direct each edge of
D∗
h,h′ according to the direction of the corresponding edge ri in Dh,h′ it lies on. This

way, D∗
h,h′ is a plane (and hence also simple) drawing of a directed planar graph. With

a slight abuse of notation, we use the same label for vertices in D∗
h,h′ as we do for

their corresponding point in Dh,h′ . In particular, we use ci, j to refer to crossing points
in Dh,h′ and vertices in D∗

h,h′ (which represent these crossing points). In D∗
h,h′ , the

vertices yi have indegree 0, the vertices ci, j have indegree 2 and outdegree 2, and the
vertices y′

i have outdegree 0. Any ri of Dh,h′ forms a directed path in D∗
h,h′ (which

is a sequence of directed edges from yi to y′
i connecting vertices that correspond to

crossing points of ri in the same order as they occur on ri in Dh,h′).
We consider the following lemma the key ingredient of our proof.

Lemma 3.1 The plane directed drawing D∗
h,h′ is a drawing of an acyclic directed

graph.

Proof By definition, D∗
h,h′ is a plane drawing of a directed graph. To see that it is

acyclic, assume for a contradiction that D∗
h,h′ contains some directed cycle. LetC be a
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y1

y2

y3

y7

y4

y5

y6
y ′
1

y ′
3

y ′
2

y ′
6

y ′
5

y ′
7

y ′
4

c1,4

c2,4

c3,4

c5,7
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Fig. 4 The simple drawing Dh,h′ with directed edges

directed simple cycle that does not contain any other such cycle in the region bounded
by C .

We first show that C must consist of the edges of a face of D∗
h,h′ or, equivalently,

there are no edges inside the region bounded by C .
Assume, for a contradiction, that there is an edge uv (directed from u to v) that lies

inside the region that C bounds. Then uv belongs to a curve ri that crosses C in two
vertices u′ and v′ and forms a directed path from u′ to v′ in D∗

h,h′ ; see Fig. 5 (left).
Hence, the directed cycle formed by the path from u′ to v′ on ri and the path from v′
to u′ on C is contained inside the region bounded by C .

This contradicts the assumption that there is no directed cycle contained in the
region bounded by C .

Now let e1, e2, . . . , e�, � ≥ 3, be the directed edges of C enclosing a face of D∗
h,h′

in this order. Suppose without loss of generality that C is directed counterclockwise
(the reasoning for clockwise is analogous). By the construction of D∗

h,h′ , each edge e j
of C lies on a curve ri j , which is an edge in Dh,h′ starting from a vertex yi j on h (and
ending at a point y′

i j
on h′). As Dh,h′ is a simple drawing, any two such curves ri j can

intersect at most once. For every 1 ≤ j ≤ � − 1, the edges e j and e j+1 share a point
onC . Since the vertices yi j have indegree 0 and the vertices y

′
i j
have outdegree 0, they

cannot be vertices of any directed cycle. Thus, each vertex of C has to be a crossing
vertex (which is the unique intersection point of the two curves). Further, since C
is directed counterclockwise, the starting point yi j of ri j must lie strictly above the
starting point yi j+1 of ri j+1 . Finally, since C is a cycle, all of these properties hold
cyclically along C , implying that also yi� lies strictly above yi1 . Altogether, it follows
that yi1 lies strictly below yi� , which in turn lies strictly below yi1 , a contradiction. 
�
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Fig. 5 Cycle C of the proof of Lemma 3.1

Since D∗
h,h′ is a directed acyclic graph, there is a linear order ≺ of its vertices such

that for every directed edge uv from u to v, vertex u comes before v in the order ≺.
By construction, if a vertex ci, j is before a vertex ci, j ′ on ri , then ci, j is before ci, j ′ in
the order ≺. For example, in Fig. 4, the curve r1 implies c1,4≺c1,2≺c1,7≺c1,5≺c1,6.
Likewise, r2 implies c2,4 ≺c1,2 ≺c2,7≺c2,5≺c2,6, and so on. Thus, a valid order for
the vertices ci, j is c3,4 ≺ c6,7 ≺ c5,7 ≺ c2,4 ≺ c1,4 ≺ c3,7 ≺ c3,5 ≺ c3,6 ≺ c1,2 ≺ c1,7 ≺
c1,5≺c1,6≺c2,7≺c2,5≺c2,6.

We now show how to obtain an x-monotone drawing Dh,h′ that is strongly iso-
morphic to Dh,h′ . First, we add two auxiliary vertices y0 and yk+1 to D∗

h,h′ , both on
the line h, y0 above y1, and yk+1 below yk . In the same way, we add a top point y′

0
and a bottom point y′

k+1 on the line h′. To the extended drawing, we further add the
straight-line segments yi yi+1, y′

i y
′
i+1 (if the endpoints are different) for i = 0, . . . , k,

and twomore edges: y0y′
0 on the top of the drawing, and yk+1y′

k+1 on the bottom, both
not crossing any other edge of the drawing. Denote by D0 the drawing of the subgraph
formed by these ≤ 2(k + 2) added edges. It forms a plane cycle with vertices on the
different points yi , y′

i for i = 0, . . . , k + 1.
We denote the drawing of the graph consisting of D0 and the first i curves

r1, r2, . . . , ri by Di . In other words, Di is obtained from Di−1 by adding ri to Di−1.
Analogously,we consider the followingplane directed drawing D∗

i , which corresponds
to Di : The initial drawing D∗

0 is identical to D0.
We will obtain piecewise straight-line (and monotone) drawings strongly isomor-

phic to D∗
i and call these drawings D∗

i . For every D∗
i , the following invariants hold.

(i) D∗
i is a drawing strongly isomorphic to D∗

i .
(ii) The edges of D∗

i on the curve ri form an x-monotone polygonal path in D∗
i .

(iii) All the internal faces of D∗
i are convex.

To build D∗
0 , we keep the vertices and edges of D∗

0 except for the edges
y0y′

0, yk+1y′
k+1 that are drawn straight-line. Thedrawing D

∗
0 vacuously satisfies Invari-

ants (i), (ii), and (iii).
To help the remainder of the construction, we add auxiliary vertical lines to D∗

0
which are not part of the drawing but will be used to place the crossing vertices. For
each crossing vertex ci, j of D∗

h,h′ , we add an auxiliary vertical line to D∗
0 and label
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Fig. 6 An x-monotone drawing that is strongly isomorphic to D∗
h,h′ , with crossing vertices on the added

auxiliary vertical lines

that line with the crossing vertex ci, j it will be used for. The x-order of the labeled
lines is the same as the linear order ≺ (as described above) such that when we put
each crossing vertex ci, j on the vertical line with that label in the following steps, the
x-order of the crossing vertices will be according to the linear order ≺. See Fig. 6 for
the final construction including the auxiliary lines.

To obtain D∗
1 from D∗

0 , we connect y1 to y
′
1 with a straight-line segment y1y′

1. Then,

if the crossings on r1 are c1, j1 , c1, j2 , . . ., at every intersection of the segment y1y′
1 with

an auxiliary line with one of those labels c1, j1 , c1, j2 , . . ., we place the corresponding
crossing vertex. The subdivided segment then gives the edges for r1 in D∗

1 . Observe
that we obtain two convex faces F1, F2 in D∗

1 , with the same vertices (and in the same
order), edges and adjacencies as in the two faces F1, F2 of D∗

1 . Thus D∗
1 satisfies

Invariants (i), (ii), and (iii).
To obtain D∗

i from D∗
i−1, let r

∗
i be the path of D∗

h,h′ that corresponds to ri . We add
r∗
i to D∗

i−1 (with the exact shape it has in D∗
h,h′ ). Note that r∗

i might go through several
faces of D∗

i−1. Further, r
∗
i enters and leaves each such face F of D∗

i−1 through some
vertex of both D∗

i−1 and r
∗
i , and splits F into two faces F1, F2 of D∗

i (via a sub-path
of r∗

i ).
To obtain D∗

i from D∗
i−1, we process the faces throughwhich r

∗
i goes independently.

Let F be a face of D∗
i−1 through which r

∗
i goes and let F be the corresponding face in

D∗
i−1. Further, let r

∗
iF

be the subpath of r∗
i in F and let vF and wF be the endvertices

of r∗
iF
. Note that vF , wF ∈ {yi , y′

i , c j,i : j < i}, all interior vertices of the subpath r∗
iF

are in {ci, j : j > i}.
Thus there are vertices vF and wF on the boundary of F , which correspond to vF

and wF , respectively. Further, the vertices of r∗
iF

are ordered along r∗
iF

according to
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the linear order ≺. Hence F is intersected by an auxiliary vertical line labeled cF for
every interior vertex cF of the subpath r∗

iF
. Moreover, all those lines lie between the

vertical lines through vF and wF , in the order of the vertices on r∗
iF
. We draw the

subpath r∗
iF

for r∗
iF

in F along the straight-line segment with endpoints vF and wF .
We place its vertices on all vertical lines that correspond to vertices of r∗

iF
.

Observe that, as all the vertices of r∗
i obey the linear order≺, the resulting polygonal

path r∗
i is monotone (both within each face and in total) and Invariants (i) and (ii) are

satisfied. Further, as r∗
iF

goes along a straight-line segment, the resulting faces F1, F2
in D∗

i are convex, so Invariant (iii) is satisfied as well.
Performing the construction for all of r1, . . . , rk , we obtain a straight-line drawing

D∗
k , which yields an x-monotone drawing Dk = Dh,h′ that is strongly isomorphic

to Dh,h′ .

3.2 Proof of Theorem 1.7

With the procedure from the previous section, we are now ready to prove Theorem 1.7.

Theorem 1.7 Let D be a quasi-x-monotone or quasi-c-monotone drawing of a graph
G = (V , E). Then D is strongly isomorphic to an x-monotone or a c-monotone
drawing D of G, respectively.

Proof We first prove the statement for quasi-x-monotone drawings. We draw all the
vertical lines passing through the vertices of D, thus partitioning D into drawing
parts Dh1,h2 , Dh2,h3, . . . , Dhn−1,hn , where each of them is the part of D between two
consecutive vertical lines (like the graph Dh,h′ described in Sect. 3.1).

Using the above procedure, we obtain strongly isomorphic rectilinear drawing parts
Dh1,h2 , Dh2,h3 , . . . , Dhn−1,hn whose union forms an x-monotone drawing D of G
strongly isomorphic to D. (Strictly speaking, the strong isomorphism for the drawing
parts requires auxiliary vertices and edges to turn each drawing part into a drawing.
These are disregarded for the drawing D of G.)

It remains to show the statement for quasi-c-monotone drawings. The method to
show the statement is essentially the same as the one for quasi-x-monotone drawings.
However, instead of having the parts Dh,h′ being strips in the quasi-x-monotone draw-
ing, the parts in the quasi-c-monotone drawing are wedges with O , and rays h and h′
on the boundary. To avoid difficulties with straight-line segments in a wedge that is
not convex, the quasi-c-monotone drawing first gets transformed by radially stretch-
ing the wedges such that all wedges are convex. (This process is an isotopy, so the
resulting drawing is strongly isomorphic to the original one.) Then, the procedure for
quasi-x-monotone drawings is applied to the (transformed) quasi-c-monotone drawing
but we replace “vertical lines” with rays through O . That way each Dh,h′ (between
consecutive rays h and h′) is a convex wedge and all connections within a wedge stay
inside the wedgewhen applying the procedure. Thus, we obtain a c-monotone drawing
strongly isomorphic to the original quasi-c-monotone drawing. 
�
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4 Possible Extension Containing a Plane K2,n Implies Strong
Isomorphism

Theorem 1.6 Let D be a simple drawing of a complete graph containing a subdrawing
D2,n, which is a plane drawing of K2,n. Let A = {a1, a2, . . . , an} and B = {b1, b2}
be the sides of the bipartition of D2,n. Let DA be the subdrawing of D induced by the
vertices of A. Then DA is strongly isomorphic to a c-monotone drawing. Moreover, if
all edges in DA cross the edge b1b2, then DA is strongly isomorphic to a generalized
twisted drawing.

As explained before, Theorem 1.6 is a stronger version of a lemma implicitly
shown in [15, 17]. We remark that the proof presented here is in parts similar to the
one in [17].

Proof We call the pair of edges in D2,n incident to ai , 1 ≤ i ≤ n, the long edge ri .
Let RA be the set of long edges. We first show that any edge between vertices in A
crosses any long edge at most once. Then we will use D2,n to obtain a simple drawing
which is essentially strongly isomorphic to D, but with b2 at infinity. In this drawing,
all long edges as well as b1b2 are infinite rays starting from b1, and the subdrawing
corresponding to DA is c-monotone with origin b1.

We now show that every edge between two vertices of A crosses every long edge
of RA at most once. Let a1, a2, and a3 be vertices in A. Let R1 be the region bounded
by the edges b1a1, a1b2, b2a2 and a2b1 that does not contain a3. Let R2 be the region
bounded by the edges b1a2, a2b2, b2a3 and a3b1 that does not contain a1. Since D2,n
is plane, these regions are disjoint.

As the edge e = a1a2 is incident to all edges on the boundary of R1, it cannot cross
it. Thus, e has to lie either completely inside or completely outside R1 (and meet the
boundary only in its endvertices). If e lies inside R1, it can cross neither a3b1 nor a3b2.
If it lies outside R1, it has to cross the boundary of R2 an odd number of times. (Since
e must begin at a1 outside R2 and finish at a2 inside R2, and passing through R1 is
not possible.) As e cannot cross edges incident to a2, this means it has to cross exactly
one of the edges a3b1 or a3b2. Thus, e crosses the long edge r3 at most once, for any
vertex a3.

We now transform D to obtain a drawing in which b2 is at infinity, all long edges
as well as b1b2 are infinite rays starting from b1, and the subdrawing induced by
the vertices of A is strongly isomorphic to DA and c-monotone with origin b1 in
the following way; see Fig. 7. We first draw D on the sphere such that b1 and b2
are antipodes and the long edges of RA as well as the edge b1b2 are meridians. By
the general Jordan–Schoenflies theorem [11, 25], this can be done in a way that the
drawing on the sphere is homeomorphic to the original drawing D in the plane. We
then apply a stereographic projection from b2 onto the plane. This way, the long edges
in RA and the edge b1b2 are projected to rays emerging from vertex b1, where the long
edges in RA are exactly the rays through the vertices of D2,n . The resulting drawing
after these transformations is still strongly isomorphic to D (as all we did was apply a
stereographic projection from a homeomorphic drawing), except that b2 is at infinity.

123



Discrete & Computational Geometry (2024) 71:40–66 55

b1

b2

b1b2

a1

a2

an
an − 1

a1

a2

an
an − 1

r =̂ b1b2
O=̂ b1

Fig. 7 The homeomorphisms of D2,n . Left: DA , the edges in RA and b1b2 are drawn on the sphere, such
that RA and b1b2 are meridians. Right: The stereographic projection from b2

Let D′
A be the subdrawing corresponding to DA after the stereographic projection.

As all edges of DA cross the long edges in RA only once, D′
A is quasi-c-monotone

and thus, by Theorem 1.7, strongly isomorphic to a c-monotone drawing.
Finally, if all edges of DA cross the edge b1b2, then all edges in the quasi-c-

monotone drawing D′
A cross the ray r ′ corresponding to b1b2. Let W be the wedge

that contains r ′, is bounded by two rays emanating from O and passing through vertices
of D′

A, and does not contain any vertices of D′
A in its interior. Since all edges of D′

A
cross r ′, they all have to lie at least partially in W . As D′

A is quasi-c-monotone, each
edge of D′

A has to intersect each of the two rays bounding W exactly once (either
emanating from a vertex on the ray or crossing the ray). Those two intersection points
are connected via a continuous part of the edge that lies completely inside W . Thus,
after applying Theorem 1.7 to D′

A (and to the subdrawing in W in particular), we

obtain a c-monotone drawing D′
A in which any ray in the wedge corresponding to W

crosses all edges of D′
A. Therefore, D

′
A is strongly isomorphic to a generalized twisted

drawing. 
�

5 Disjoint Edges in Simple Drawings

In this section, we show that every simple drawing of Kn contains at least �
√

n
48�

pairwise disjoint edges, improving the best previously published bound of �(n
1
2−ε),

for any ε > 0, by Ruiz-Vargas [33].

Theorem 1.1 Every simple drawing of Kn contains at least �
√

n
48� pairwise disjoint

edges.
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Proof Let D be a simple drawing of Kn , and let M be a maximal plane matching of

D. If m := |M | ≥
√

n
48 , then Theorem 1.1 holds. So assume that |M | <

√
n
48 . We

will show how to find another plane matching, whose size is at least �
√

n
48�.

The overall idea is the following: Let H be amaximal plane subdrawing of Dwhose
vertex set is exactly the vertices matched in M and that contains M . We will find a
face f in H that contains much more unmatched vertices of D inside than matched
vertices on its boundary. Then we will show that there exists a subset of the vertices
inside that face, which induces a subdrawing of D that is strongly isomorphic to a
generalized twisted drawing and contains enough vertices to guarantee the desired
size of the plane matching.

To find the face f , we start by using that H is biconnected by Theorem 2.1. Thus,
H partitions the plane into faces, where the boundary of each face is a simple cycle.
Note that the vertices of H are exactly the vertices that are matched in M , and the
vertices inside faces are the vertices that are unmatched in M .

LetU be the set of vertices of D that are not matched by any edge of M . We denote
the set of vertices of U inside a face fi by U ( fi ), the number of vertices in U ( fi ) by
u( fi ), and the number of vertices on the boundary of the face fi by | fi |.

We next show that there exists a face f of H such that u( f ) ≥
√
48n
12 | f |. Assume

for a contradiction that for every face fi it holds that

u( fi ) <

√
48n

12
| fi |.

There are exactly n − 2m unmatched vertices. As every unmatched vertex is in the
interior of a face of H (that might be the unbounded face), we can count all unmatched
vertices by summing over the number of vertices in each face (including the unbounded
face). By the observation above that all matched vertices are vertices on H (and thus
on the boundary of the faces), it follows that n−2m = ∑

fi u( fi ). By the assumption

on u( fi ), it follows that
∑

fi u( fi ) <
√
48n
12

∑
fi | fi |. Consequently,

n − 2m <

√
48n

12

∑
fi

| fi |. (1)

The number of edges in H is 1
2

∑
fi | fi |. Since H is plane, by the well known Euler

formula, the number of edges of H is at most 3n′ − 6, where n′ is the number of
vertices in H . As the vertices of H are exactly the matched vertices, their number is
n′ = 2m. Hence,

∑
fi

| fi | ≤ 6 · 2m − 12.
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Fig. 8 Left: The face f in H containing the plane drawing H ′ (blue lines) inside. Right: We can obtain an
outerplane drawing from H ′ by interpreting bundles of edge pairs incident to the same black vertices as
plane edges

From m <
√

n
48 it follows that

∑
fi

| fi | < 12

√
n

48
− 12, (2)

and

n − 2

√
n

48
< n − 2m. (3)

Putting Eqs. (1) to (3) together we obtain that

n − 2

√
n

48
<

√
48n

12

(
12

√
n

48
− 12

)
= n − √

48n.

However, this inequality cannot be fulfilled by any n ≥ 0. Thus, there exists at least

one face fi with u( fi ) ≥
√
48n
12 | fi |. We take such a face and call it f .

As a next step, we will find two vertices on the boundary of f to which many
vertices inside f are connected via edges that do not cross each other or H . From f
and the set U ( f ), we construct a plane subdrawing H ′ as follows; cf. Fig. 8 (left).
We add the vertices and edges on the boundary of f to H ′. Then we iteratively add
all the vertices in U ( f ) to H ′. By Theorem 2.2, for each vertex v in U ( f ) that is not
yet in H ′ there are at least two edges of D incident to v that can be added such that
the resulting drawing stays plane. For each vertex v that we add, we also always add
exactly two such edges to H ′. Since the matching M is maximal plane, every edge
between two unmatched vertices must cross at least one edge ofM and thus must cross
the boundary of f . Hence, no edge in H ′ can connect two vertices of U ( f ) (as they
are unmatched). Consequently, every vertex in U ( f ) is connected in H ′ to exactly
two vertices that both lie on the boundary of f .

We consider the two edges in H ′ that connect a vertex in U ( f ) to f as a pair of
edges. Every edge in such a pair is incident to exactly one unmatched vertex (namely,
the one it is added for) and hence contained in no other pair. Thus, we can see every
such pair of edges as one long edge incident to two vertices on the boundary of f . We
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Fig. 9 The subdrawing Dvw induced by Uvw and the edges in Dvw . Left: The set Uvw . Right: The edges
adjacent to the leftmost vertex, v1, are drawn (in red)

call every group of long edges that have the same endpoints a bundle of edges; see
Fig. 8 (right).

From the long edges, we can define a graph G ′ as follows. The vertices of G ′ are
the vertices of D that lie on the boundary of f . Two vertices u and v are connected in
G ′ if there is at least one long edge in H ′ that connects them. By the definition of long
edges, G ′ is outerplanar (as can be observed in Fig. 8 (right)). It is well known that
the number of edges in an outerplanar graph with n′ vertices is at most 2n′ − 3 [26].
Thus, G ′ has at most 2| f | − 3 edges. On the other hand, every unmatched vertex in

U ( f ) defines a long edge, so the number of long edges is u( f ) ≥
√
48n
12 | f |. As a

consequence, there is a pair of vertices on the boundary of f such that the number of
long edges in its bundle is at least

1

(2| f | − 3)

√
48n

12
| f | >

√
48n

24
.

This implies that there are two vertices, say v and w, such that for more than
√
48n
24

vertices in U ( f ) the two plain edges connecting them to f are incident to v and w.
We denote the set of vertices in U ( f ) that have plane edges to both vertices v and w

by Uvw. This set is marked in Fig. 9 (left). We denote the subdrawing of D induced
by Uvw by Dvw; see Fig. 9 (right).

We show that all edges between vertices in Uvw cross the edge vw. Let x and y
be two vertices of Dvw. Let R1 be the region bounded by the edges xv, vy, yw, and
wx that lies inside the face f ; see Fig. 10. We show that xy and vw lie completely
outside R1. The edge xy has to lie either completely inside or completely outside R1
because it is adjacent to all edges on the boundary of R1. As M is maximal and the
edge xy connects two unmatched vertices, it has to cross at least one matching edge.
Thus, xy has to lie completely outside R1. (There can be no matching edges in R1, as
R1 is contained inside the face f .)

Note that as H is a maximal plane subdrawing, vw cannot lie completely inside the
face f . Since both edges vw and xy lie completely outside R1 and the vertices along
the boundary of R1 are sorted vxwy, the two edges have to cross. Thus, all edges
of Dvw cross the edge vw.
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Fig. 10 The edge xy has to cross the edge vw

Since the edges from vertices in Uvw to v and w are plane, it follows from Theo-
rem 1.6 that Dvw is strongly isomorphic to a generalized twisted drawing. Thus, Dvw

contains at least � 1
2

√
48n
24 � pairwise disjoint edges by Theorem 1.5. Hence, D contains

at least �
√

n
48� pairwise disjoint edges. 
�

6 Plane Cycles and Paths in Simple Drawings

In the previous section, we used generalized twisted drawings to improve the lower
bound on the number of disjoint edges in simple drawings of Kn . In this section, we
show that generalized twisted drawings are also helpful to obtain a lower bound of
�(

log n
log log n ) on the length of the longest plane cycle, where the length of a cycle (or

path) is the number of its edges.

Theorem 1.2 Every simple drawing of Kn contains a plane cycle of length�(
log n

log log n ).

To prove the lower bound for cycles, we first show that all c-monotone drawings
of Kn contain either a generalized twisted drawing of K√

n or a drawing strongly
isomorphic to an x-monotone drawing of K√

n . We know that drawings weakly iso-
morphic to generalized twisted drawings or x-monotone drawings of complete graphs
contain plane Hamiltonian cycles (by Theorem 1.5 and Observation 6.1 below). We
conclude that c-monotone drawings of Kn contain plane cycles of the desired size.
Essentially, we then show that for any 1 ≤ d ≤ n−2 every simple drawing of the com-
plete graph contains either a c-monotone drawing of Kd , or a plane spanning tree of
maximal degree at most d (plus more edges). With easy observations about the length
of the longest path in bounded degree trees and by putting all results together, we
obtain that every simple drawing D of Kn contains a plane cycle of length�(

log n
log log n ).

6.1 Plane Cycles in C-Monotone Drawings

It is well-known that any x-monotone drawing D of Kn contains a plane Hamiltonian
cycle. For instance, consider the edge e between the vertices v1 and vn with the smallest
and largest, respectively, x-coordinates; see for example the bold, red edge in Fig. 11.
The edge e splits the remaining vertices into two subsets, namely, the ones above e
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v1

v2

v3

v4

v5

e

Fig. 11 An x-monotone drawing of K5 with a plane Hamiltonian cycle, consisting of the (blue, dashed)
plane path above the (bold, red) edge e and the (green, dash-dotted) plane path below e

and the ones below e, where v1 and vn can be seen as belonging to both subsets. For
each subset, the vertices in x-order form a plane path in D, and none of those paths can
cross e. Hence, the union of the two paths is a plane Hamiltonian cycle of D. Recall
that every monotone drawing is strongly isomorphic to an x-monotone drawing by
definition. Therefore, we have the following observation.

Observation 6.1 Every monotone drawing of Kn contains a plane Hamiltonian cycle.

We will show that c-monotone drawings contain plane cycles of size at least
√
n,

by showing that any c-monotone drawing of Kn contains a subdrawing of K√
n that

is either generalized twisted or monotone. To do so, we will use Dilworth’s Theorem
on chains and anti-chains in partially ordered sets. A chain is a subset of a partially
ordered set such that any two distinct elements are comparable. An anti-chain is a
subset of a partially ordered set such that any two distinct elements are incomparable.

Theorem 6.2 (Dilworth’s Theorem, [12]) Let P be a partially ordered set of at least
(s−1)(t−1)+1 elements. Then P contains a chain of size s or an antichain of size t .

Theorem 6.3 Let s, t be two integers, 1 ≤ s, t ≤ n, such that (s − 1)(t − 1) + 1 ≤ n.
Let D be a c-monotone drawing of Kn. Then D contains either a generalized twisted
drawing of Ks or a monotone drawing of Kt as subdrawing. In particular, if s =
t = �√n	, D contains a complete subgraph Ks whose induced drawing is either
generalized twisted or monotone.

Proof Without loss of generality, we may assume that the vertices of D appear coun-
terclockwise around O in the order v1, v2, . . . , vn . Let r be a ray emanating from O in
the wedge defined by O , v1, and vn , that is, r is such that when rotating r clockwise,
the first vertex it encounters is v1, and when rotating r counterclockwise, the first
vertex is vn .

We define an order, �, in this set of vertices as follows: vi � v j if and only if either
i = j or i < j and the edge viv j crosses r .

We show that� is a partial order. The relation is clearly reflexive and antisymmetric.
Besides, if vi � v j and v j � vk , then i < j and j < k imply i < k, so for the transitive
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Fig. 12 If edges viv j and v j vk cross r in a c-monotone drawing, then vivk must also cross r

property, we only have to prove that if viv j and v jvk cross r , then vivk also crosses
r . We denote the rays emanating from O and passing trough vi , v j , vk by ri , r j , rk ,
respectively. We have two cases depending on where v jvi crosses the ray rk at a point
xk ; in the first case, xk is located before vk on rk , while in the second one xk is located
after vk . Then v jvk has to cross the ray ri at a point xi , which is after vi in the first
case and before vi in the second case; see Fig. 12. Let Q be the region bounded by
the segments Oxi , Oxk and the portions v j xi and v j xk of the edges v jvk and v jvi ,
respectively. By simplicity, the edge vivk cannot cross the edges viv j and v jvk . As
in both cases a vertex of {vi , vk} is placed outside Q, the edge vivk thus cannot be
contained in the counterclockwise wedge from ri to rk without contradicting the c-
monotonicity. Therefore, vivk must be in the clockwise wedge from ri to rk and thus
crosses the ray r .

In this partial order �, a chain consists of a subset vi1 , . . . , vis−1 of pairwise com-
parable vertices, that is, a subset of vertices such that their induced subdrawing is
generalized twisted (all edges cross r ). An antichain, v j1 , . . . , v jt−1 , consists of a
subset of pairwise incomparable vertices, that is, a subset of vertices such that their
induced subdrawing is monotone (no edge crosses r ).

Therefore, the first part of the theorem follows from applying Theorem 6.2 to the
set of vertices of D and the partial order �.

Finally, observe that if s = t ≤ �√n	, then (s − 1)(t − 1) + 1 ≤ n. Thus, D
contains a complete subgraph K�√n	 whose induced subdrawing is either generalized
twisted or monotone. 
�

Combining Theorem 6.3 with Theorem 1.5 (on K�√n	 if �√n	 is odd and K�√n	−1
otherwise) and Observation 6.1, we obtain the following theorem.

Theorem 6.4 Every c-monotonedrawingof Kn contains aplane cycle of length�(
√
n).

6.2 Plane Cycles in Simple Drawings

To show that any simple drawing of Kn contains a plane cycle of length �(
log n

log log n ),
we will use d-ary trees. A d-ary tree is a rooted tree in which no vertex has more than
d children. It is well-known that the height (and hence also the length of the longest
path) of a d-ary tree on n vertices is �(

log n
log d ).
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v

Fig. 13 A maximal plane subdrawing H containing the star S(v). Dashed edges are edges of K7 that are
not in H

Proof of Theorem 1.2 Let v be a vertex of D and let S(v) be the star centered at v,
that is, the set of edges of D incident to v. S(v) can be extended to a maximal plane
subdrawing H that must be biconnected by Theorem 2.1. See Fig. 13 for a depiction
of S(v) and H .

Assumefirst that there is a vertexw in H \v that has degree at least (log n)2 in H . Let
Uvw be the set of vertices neighbored in H to both, v andw. Note that |Uvw| ≥ (log n)2.
The subdrawing H ′ of H consisting of the vertices in Uvw, the vertices v and w, and
the edges from v to vertices inUvw, and from w to vertices inUvw is a plane drawing
of K2,|Uvw |. From Theorem 1.6, it follows that the subdrawing of D induced by Uvw

is strongly isomorphic to a c-monotone drawing. Therefore, by Theorem 6.4, the
subdrawing induced byUvw contains a plane cycle of length�(

√|Uvw|) = �(log n).
Assume now that the maximum degree in H \ v is less than (log n)2. Since H is

biconnected, H \ v contains a plane tree T of order n − 1 whose maximum degree is
at most (log n)2. Considering T as rooted (choosing an arbitrary vertex as root), it is
a (log n)2-ary tree and thus has height at least �(

log n
log log n ).

Therefore, since T is plane, it contains a plane path of length at least �(
log n

log log n ).
This plane path is edge-disjoint from the star of v, and the union of the path with the
star of v is in H and thus plane. Hence, the union of the obtained plane path with the
edges from v to the start- and endpoint of the path is a plane cycle and the theorem
follows. 
�

7 Conclusion and Outlook

We used properties of generalized twisted drawings for investigating plane substruc-
tures in (general) simple drawings of complete graphs. We improved the lower bound
on the number of disjoint edges in simple drawings of Kn to �(

√
n), and the lower

bound on the length of the plane cycle (and hence path) contained in every simple
drawing of Kn to �(

log n
log log n ). However, resolving Rafla’s conjecture on the existence

of plane Hamiltonian cycles, as well as its weaker versions for paths and matchings,
remain wide open.
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Fig. 14 All (up to weak isomorphism) different generalized twisted drawings of K6. The rightmost drawing
is twisted

Open Problem 1 Does every simple drawing of Kn contain a

• plane Hamiltonian cycle (if n ≥ 3)?
• plane Hamiltonian path?
• plane perfect matching (if n is even)?

For obtaining the improvedbounds,wehave shown several properties of generalized
twisted drawings. For example, we have proven that every generalized twisted drawing
on an odd number of vertices contains a plane Hamiltonian cycle. In that context, one
natural open question on generalized twisted drawings and plane substructures is the
following (where we strongly conjecture the answer to be to the positive).

Open Problem 2 Does every generalized twisted drawing of Kn contain a plane
Hamiltonian cycle?

Generalized twisted drawings also have more structure, which is not included in
this paper. For example, we have shown [19] that every generalized twisted drawing
contains exactly 2n − 4 empty triangles, which is the conjectured lower bound on the
number of empty triangles that any simple drawing of Kn must contain. Further, in the
conference version of this paper [7], we presented a characterization for drawings that
are weakly isomorphic to generalized twisted drawings; see there for details. Due to
suggestions by several reviewers to relevantly shorten the paper, this characterization
is not included in this version. Instead, it will appear in a forthcoming work, in which
we will also add the new equivalent property that drawings that are weakly isomorphic
to generalized twisted drawings are also strongly isomorphic to generalized twisted
drawings (the proof for strong isomorphism uses Theorem 1.6).

In the conference version [7], we used the above-mentioned characterization to
obtain all generalized twisted drawings of 4 ≤ n ≤ 6 up to weak isomorphism. The
(up to strong isomorphism) only simple drawing of K4 that is strongly isomorphic to
a generalized twisted drawing is the drawing of K4 with a crossing. Thus, generalized
twisted drawings are maximal crossing. The (up to strong isomorphism) only drawing
of K5 that is strongly isomorphic to a generalized twisted drawing is the twisted
drawing of K5. This no longer holds for n ≥ 6. For n = 6, we computationally
checked all 102 [2] weak isomorphism classes of simple drawings of K6, and only
three different classes have representatives that are generalized twisted; see Fig. 14 for
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Table 1 Number t(n) of weak isomorphism classes of generalized twisted drawings for 5 ≤ n ≤ 15

n 5 6 7 8 9 10 11 12 13 14 15

t(n) 1 3 9 32 115 443 1 723 6 875 27 663 112 629 461 734

a representation of each of the three classes. (Also, they can be extended to arbitrarily
large generalized twisted drawings that are not weakly isomorphic.) Using a similar
approach, we meanwhile computed the number of such weak isomorphism classes
of Kn for n ≤ 15 [22] and obtained the numbers shown in Table 1. This indicates
that the number of generalized twisted drawings seems to be relevantly growing for
increasing n (while there is always exactly one weak isomorphism class that has a
twisted representation).
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10. Balko, Martin, Fulek, Radoslav, Kynčl, Jan: Crossing numbers and combinatorial characterization of
monotone drawings of Kn . Discrete Comput. Geom. 53(1), 107–143 (2015). https://doi.org/10.1007/
s00454-014-9644-z

11. Brown,M.: A proof of the generalized Schoenflies theorem. Bull. Am.Math. Soc. 66(2), 74–76 (1960).
https://doi.org/10.1090/S0002-9904-1960-10400-4

12. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann.Math. 51(1), 161–166 (1950).
https://doi.org/10.2307/1969503

13. Figueroa, A.P., Fresán-Figueroa, J.: The biplanar tree graph. Boletín de la Sociedad Matemática Mex-
icana 26, 795–806 (2020). https://doi.org/10.1007/s40590-020-00287-y

14. Fox, J., Sudakov, B.: Density theorems for bipartite graphs and related Ramsey-type results. Combi-
natorica 29(2), 153–196 (2009). https://doi.org/10.1007/s00493-009-2475-5

15. Fulek,R.:Estimating thenumber of disjoint edges in simple topological graphsvia cylindrical drawings.
SIAM J. Discrete Math. 28(1), 116–121 (2014). https://doi.org/10.1137/130925554

16. Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.:. Hanani-Tutte, monotone drawings, and
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