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Abstract

We investigate read�once branching programs for the following search problem�

given a Boolean m� n matrix with m � n� �nd either an all�zero row� or two ��s in

some column� Our primary motivation is that this models regular resolution proofs

of the pigeonhole principle PHPm
n � and that for m � n� no lower bounds are known

for the length of such proofs� We prove exponential lower bounds �for arbitrarily

large m�	 if we further restrict this model by requiring the branching program either
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to �nish one row of queries before asking queries about another row �the row model	

or put the dual column restriction �the column model	�

Then we investigate a special class of resolution proofs for PHPm
n that operate

with positive clauses of rectangular shape
 we call this fragment the rectangular

calculus� We show that all known upper bounds on the size of resolution proofs

of PHPm
n actually give rise to proofs in this calculus and� inspired by this fact�

also give a remarkably simple �rectangular� reformulation of the Haken�Buss�Tur
an

lower bound for the case m � n
�� Finally we show that the rectangular calculus is

equivalent to the column model on the one hand� and to transversal calculus on the

other hand� where the latter is a natural proof system for estimating from below the

transversal size of set families� In particular� our exponential lower bound for the

column model translates both to the rectangular and transversal calculi�

�� Warm�up

The following elementary �data structure� problems� which may be contemplated as
independent puzzles by the reader� are the axis connecting the di�erent notions in the title
of the paper� Consider algorithms which probe� once� the entries of an input array A in
an arbitrary adaptive order� and use s bits of memory� Let m � n� What is the smallest
memory size s � s�n�m� needed for solving the following problems	

� When A � 
m�n� �nd a number in 
m� missing from A�

� When A � 
n�m� �nd two entries A containing the same number from 
n��

�� Introduction

Complexity of propositional proofs is rapidly taking on as important a role in the theory
of feasible proofs as the role played by the complexity of Boolean circuits in the theory
of e
cient computations� The resolution proof system introduced in 
Bla��� and further
developed in 
DP��� Rob��� is one of the �rst and simplest in the hierarchy of propositional
proof systems� it is also of importance for various automatic theorem proving procedures�
Tseitin 
Tse��� proved� almost �� years ago� the �rst exponential lower bound for regular
resolutions �these are resolutions with the additional restriction that along every path every
particular variable can be resolved at most once��

However� despite its apparent �and deluding� simplicity� the �rst lower bounds for non�
regular resolutions were proven only in ���� by Haken 
Hak���� These bounds were achieved
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for the pigeonhole principle PHP n��
n which asserts that n�� pigeons cannot sit in n holes

so that every pigeon is alone in its hole� Motivated by a separation problem in Bounded
Arithmetic �just like the research on the complexity of Boolean circuits is motivated by the
needs of the theory of Turing computations��� Buss and Tur�an 
BT��� extended his bound

to exp
�
�
�
n�

m

��
for a more general form PHPm

n of the pigeonhole principle in which the

number of pigeons� m� is also a parameter� See also 
Urq��� CS��� BP��� for other bounds
on the complexity of resolutions� and 
Juk��� for a generalization of the Haken�Buss�Tur�an
bound to the case of semantic resolutions�

All these lower bounds trivialize when m � n�� As mentioned in 
BT��� �also see

Kra��� page ���� it is an open question whether PHP n�

n has a poly�size resolution proof�
and this is open even for regular resolutions� More generally� it is open whether there is
any m �as a function of n� for which PHPm

n has a resolution proof of size polynomial in
n� The only non�trivial upper bound is due to Buss and Pitassi 
BuP���� PHPm

n has a
resolution proof of size exp�O�

p
n logn�n logn� logm��� and the only known lower bound

was also proven in the same paper� every tree�like resolution proof of PHPm
n must have

size at least �n�

In this paper we make some partial progress toward resolving the above open question in
the negative for regular �and� perhaps� for general� resolutions� The meaning of our results
is most clear when we employ the characterization of regular resolutions in computational
terms �see e�g� 
Kra��� Theorem �������� Namely� regular resolutions are known to be
equivalent to read�once branching programs �b�p�� solving the following search problem�
given a truth assignment� �nd some initial clause falsi�ed by this assignment�

For the special case when the search problem �i�e� the initial clauses� corresponds to
PHPm

n � we introduce two restricted classes of read�once b�p� and call these computational
models the row model and the column model� In the row model �with rows corresponding
to pigeons� the �read�once� b�p� must query all variables from some row immediately after
it queries the �rst such variable� The column model is de�ned dually�

We prove a tight exp���n logn�� size lower bound in the row model and an almost
tight bound exp���

p
n � n� logm�� in the column model� note that they make perfect

sense for m � �� The proofs for both models have one remarkable feature in common
that is somewhat novel for research of this kind �in fact� it is this feature that allowed
us to overcome the n� barrier�� As in many similar proofs we do construct a distribution
on inputs that fools branching programs from some class� But �and this is the novelty�
our distributions depend essentially on the program being fooled� and are being constructed

along with the progress of computation itself�

Both the obvious �O�n��sized resolution proof of PHPm
n and the Buss�Pitassi proof
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mentioned above can be restructured to operate with positive clauses of rectangular form
only� Inspired by this fact� we introduce the corresponding rectangular calculus �a subclass
of resolution proofs for PHPm

n �� and show that both these proofs can be carried out there�
We have failed to simulate arbitrary resolution proofs of PHPm

n in this calculus� and
we doubt that such a simulation is possible �it actually seems that already the row model
cannot be reduced to the rectangular calculus�� However� as will be seen� we have succeeded
in �simulating� at least the proof of the Haken�Buss�Tur�an lower bound� the �rectangular�
version of their proof is remarkably simple and may be of independent interest�

Interestingly� it turns out that the rectangular calculus is equivalent to the column
model� This allows us to translate the Buss�Pitassi upper bound exp�O�

p
n logn �

n logn� logm�� to the column model� and our exp���
p
n � n� logm�� lower bound in the

column model to the rectangular calculus� these bounds are matching up to a logarithmic
factor�

From the complexity�theoretic perspective� the set of all propositional tautologies
TAUT is just one of natural co�NP�complete sets� even though it was historically the
�rst� For any such set we can raise the question of what are natural �i�e�� coherent to the
intrinsic structure of the set� proof systems for membership proving� and then ask how
proof systems for di�erent systems compare to each other in terms of their strength via
natural reductions� While natural proof systems for the co�NP�complete sets correspond�
ing to the INDEPENDENT SET and CHROMATIC NUMBER problems were de�ned and
studied by Chvatal 
Ch��� and McDiarmid 
Mc��� respectively� no relations between the
power of these systems and others are known� Reductions were systematically studied only
for the di�erent systems for TAUT �which� in our opinion� is to a large extent caused by
historical and psychological reasons�� The only nice exceptions we are aware of are Haj�os
calculus for the set of non���colourable graphs 
Haj���� and the proof of its equivalence to
Frege systems 
PU����

We contribute to this line of research by de�ning a natural �sound and complete� proof
system for proving lower bounds on the transversal �hitting set� size of set families �dual
to the SET COVER problem�� We call this system the transversal calculus and show it to
be equivalent to the rectangular calculus� In particular� all upper and lower bounds for the
column model and for the rectangular calculus immediately translate to the transversal
calculus�

The paper is organized as follows� In Section � we recall some needed notation and
de�nitions� In Section � we present our lower bounds for the row and column models�
Section � is devoted to the rectangular calculus �including our reformulation of the Haken�
Buss�Tur�an bound�� and Section � to the transversal calculus� The paper is concluded
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with a few remarks and open problems in Section ��

�� Preliminaries

Let p�� p�� � � � � pn� � � � be propositional atoms� A literal is either an atom or the negation
��p� of an atom p� A clause is a set of literals� to be thought of as the disjunction of
participating literals� A clause is positive if it does not contain negated literals� The
resolution system is the propositional proof system that operates with clauses and has one
rule of inference

C� � fpg C� � f�pg
C

�C� � C� � C�

called the resolution rule� We say that the atom p is resolved in this application of the res�
olution rule� A resolution proof is a proof in the resolution system� A resolution refutation

of a set of clauses is a resolution proof of the empty clause from this set�
Throughout this paper we allow straight�line proofs �as opposed to tree�like�� i�e�� after

a formula is inferred� it can be used arbitrarily many times in further inferences� The size
of a proof is the number of clauses in it�

A resolution proof is regular if along every path from an axiom to the �nal clause every
atom is resolved at most once� For any unsatis�able set of clauses

C � fC��p�� � � � � pn�� � � � � Ck�p�� � � � � pn�g�
let us consider the following search problem SC� given a truth assignment a � f�� �gn� �nd
some � such that C��a� � ��

Following Borodin and Cook 
BC���� we de�ne an R�way branching program in n vari�

ables as a directed acyclic graph with one source node s �sometimes also called the root�� in
which every non�sink node v is labeled by one of the variables x�� � � � � xn �denoted var�v��
and has exactly R outgoing edges numbered by �� � � � � R� Let 
R� � f�� �� � � � � Rg� Every
input string A � 
R�n determines a computational path comp�A� from s to a sink node�
An R�way b�p� �branching program� solves some search problem with inputs from 
R�n if
its sinks can be labeled by possible solutions to the search in such a way that for every
A � 
R�n� comp�A� leads to a sink labeled by a solution admissible for the input A�

The size of an R�way b�p� is the total number of nodes� The logarithm of size corre�
sponds to the space used by general sequential algorithms�

An R�way b�p� is read�once if along every path p every variable is tested �i�e� appears
as a node label� at most once� Let X�p� be the set of variables that are tested along a
path p� A read�once b�p� is uniform if�
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a� for a path p beginning at the root s� X�p� depends only on the terminal node v of p
�accordingly� we denote it by X�v���

b� for every sink t� X�t� contains all variables�

If� moreover� the variables are tested in the same order along every path �i�e�� X�v� depends
only on the depth of v de�ned as jX�v�j�� the program is called oblivious�

Uniform read�once R�way b�p� possess the nice property that every path from the root
to a sink node is the computational path comp�A� for a uniquely de�ned input A � 
R�n�
therefore we can identify inputs with such I�O paths� On the other hand� 
Oko��� noticed
that uniformity is not actually a serious restriction�

Proposition ���� Every R�way read�once b�p� in n variables can be simulated by an equiv�

alent uniform program whose size is larger by at most a factor of n�

�It is not known whether a similar simulation is in general possible by oblivious programs��
For completeness we include here a sketch of its proof�

Proof of Proposition ���� sketch� Given an arbitrary read�once R�way b�p� B� for
any non�sink node v� we still de�ne X�v� as the union of X�p� taken over all the paths
p leading from s to v� For each sink v� de�ne X�v� to be the set of all the variables� If
e � �v� v�� is an edge of B then clearly X�v� � fvar�v�g � X�v��� Whenever the di�erence
X�v��n �X�v��fvar�v�g� � fxi� � � � � � xidg is non�empty� we insert d new nodes ve��� � � � � ve�d
between v and v� and replace e with the following construction� ve�� will be the terminal
node of e� var�ve��� � xi� � and all R edges going out of ve�� go to the same node ve���� �to
v� if � � d��

It is easy to see that this procedure transforms B into a uniform program computing
the same function and increases the number of nodes in B by at most a factor of n�

The following remarkable result is apparently the only known case of an equivalence
between a propositional proof system and a computational model �we omit the pre�x
���way� in the case of ordinary binary programs��

Proposition ���� Let C be an unsatis�able set of clauses� Then the minimum size of any

regular resolution refutation of C is equal to the minimum size of any read�once b�p� solving

SC�

The proof can be found e�g� in 
Kra��� Theorem ����� For completeness we include here
its sketch as well�
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Proof of Proposition ���� sketch� There are two directions to prove� In both� the
transformation of one model to the other leaves the underlying directed graph untouched
�so in particular size is unchanged�� and simply replaces the labels�

First� assume we are given a read�once b�p� B solving SC� Let v be an internal �non�
sink� vertex in B� and v� �resp� v�� the descendant of v reached if var�v� � � �resp�
var�v� � ���

Inductively label the vertices of B by clauses cl�v� for every v as follows� If v is a sink�
then cl�v� is its label in B� If some vertex is unlabeled� consider any such vertex v for
which v� and v� are already labeled� Let var�v� � p� If cl�v�� is NOT of the form C� �fpg
�for some C��� set cl�v� � cl�v��� If cl�v�� is NOT of the form C� � f�pg �for some C���
set cl�v�� cl�v��� Otherwise� set cl�v�� C� � C��

When all vertices are labeled� reversing the direction of edges in this dag gives a reso�
lution refutation of SC� This is proved by simple induction showing that if after each such
step we remove from B the edges �v� v�� and �v� v�� �thus creating a new sink v�� then the
resulting b�p� is a read�once b�p� solving SC�fcl�v�g� �Note that the fact B is read�once is
essential for the correctness of the induction step��

For the second �easy� direction� assume we are given a regular resolution refutation R
of C� Construct the b�p� as follows� For each clause C in C make a separate vertex vC �
For every step of the proof do the following� Assume this step derives a new clause C from
C� � fpg and C� � f�pg� let v� � vC��fpg and v� � vC��f�pg� Label vC by the variable p�
and connect it with edges labeled � �resp� �� to v� �resp� v���

Again� simple induction shows that starting from a newly added vertex vC � and following
the computational path according to any truth assignment a which falsi�es C� we eventually
reach a sink vC� such that C � is also falsi�ed by a� Since the last vertex generated in the
construction above is v�� and by virtue of the regularity of R� it yields a read�once b�p� for
SC�

De�nition ���� �PHPm
n is the following set of clauses� over the �m�n matrix of� atoms

pij

f�pi��j��pi��jg �i�� i� � 
m�� i� 	� i�� j � 
n��� ���

fpi�� pi�� � � � � ping �i � 
m��� ���

Clearly� �PHPm
n is unsatis�able form � n��� Hence it possesses resolution refutations

that we will sometimes call resolution proofs of PHPm
n � In the matrix representation�� an

�Note that this is a transpose of Haken
s original representation from �Hak	�
� The reason for imple�
menting this change is that at the moment it has become more customary to use the notation in which
the �rst index i corresponds to the largest of the two numbers m�n �most often m��
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admissible solution of S�PHPm
n

is either an identically zero row� or two ��entries in the
same column� Since we do not consider in this paper any tautologies other than PHPm

n �
we assume throughout that m�n are some integers� m � n��� and all propositional atoms
have the form pij� where i � 
m� and j � 
n��

Let A be a family of sets �that are subsets of some �nite underlying universe�� A set T
is called a transversal of A if it intersects all members of A �i�e�� A
 T 	� � for all A � A��
The transversal number ��A� of the family A is the minimum size jT j of any transversal
T of A�

�� Lower bounds

The proofs of many lower bounds in Boolean complexity are based upon the following trans�
parent idea� de�ne a natural probability distribution a on inputs�� and show that every
small circuit�program B presumably solving our problem must err with positive probabili�
ty on a random input chosen accordingly to a� In particular� it seems that all known lower
bounds for read�once b�p� �see e�g� 
Weg��� Chapter ������ 
Raz��� for examples� employ
this idea�

In this paper we bring something fresh to this method� the distribution aB will not be
�xed in advance but will depend essentially on the program B� and will be constructed
dynamically along with the progress of the computation� We consider two types of read�
once b�p� for S�PHPm

n
� those which must query all variables from some row immediately

after querying the �rst such variable� and those satisfying the dual column restriction�

���� The Row Model

If a read�once b�p� attempting to solve S�PHPm
n

queries at once all variables from some
row� then the adversary should not respond with all zeros since then the program can
immediately produce an unsatis�able clause of the form ���� Conversely� if he follows this
recommendation and never responds with all zeros� then all clauses ��� will be satis�ed�
and the result of the search must be a negative clause of the form ���� Which means that
it is disadvantageous for the adversary to respond with more than a single one either� and
this leads us to the following model�

�throughout the paper we use the math bold face for denoting random objects

�



De�nition ���� In the row model� an n�way read�once b�p� in m variables attempts to
output a solution to the following search problem Rowm

n � given an input A � 
n�m� �nd
some i�� i� � 
m� and j � 
n�� where i� 	� i�� such that Ai� � Ai� � j�

Clearly� there is an exp�O�n logn���sized program solving Rowm
n � just ignore all but the

�rst �n � �� variables� and treat every one of nn�� inputs individually by a decision tree�
Our �rst result shows that in the row model we cannot do any better�

Theorem ���� Any n�way read�once b�p� in m variables that solves Rowm
n must have size

exp���n logn���

Proof� We can assume n � �� Let B be an n�way read�once b�p� in m variables� For
any node v� denote by J�v� the set of all j � 
n� such that for some �xed variable xi� every
path from the root s to v makes the assignment xi � j� Note that if e � �u� v� is an edge
�directed from u to v�� then jJ�v�j � jJ�u�j � �� Let us call an edge e labeled by j and
outgoing of v legal if j 	� J�v� and illegal otherwise�

Claim ���� If B solves Rowm
n � then there is no path from the root to a sink consisting

entirely of legal edges�

Proof of Claim ���� Consider some path p between the root s and a sink node t labeled
by Ai� � Ai� � j� Then p must contain at least two edges labeled by j� Let e � �v� u� be
the last edge along p with this property� We are going to show that e is illegal�

Replacing� if necessary� i� by i�� we may assume that i� is not the label of v� Every
path from s to v must make the assignment xi� � j� otherwise we could combine it with
the segment of p beginning at v �keeping in mind that B is a read�once program�� and get
a computational s 
 t path that does not make the assignment xi� � j� contrary to the
assumption that B solves Rowm

n � Hence j � J�v�� and e is illegal�

Now we convert B into a �nite Markov chain as follows� the set of states is simply the
set of nodes� s is the initial state� and terminal states are sink nodes along with those v
for which J�v� � 
n�� The Markov process which at any non�terminal state v traverses all
outgoing legal edges with equal probabilities� de�nes a random path pB� Claim ��� implies
that with probability � pB actually arrives at a terminal node v of the second type� i�e�
such that J�v� � 
n�� Also� the value jJ�v�j can increase� decrease� or stay the same along
each edge in pB� But every time it increases� it increases by at most one in a step� Thus�
with probability �� pB visits some node v such that jJ�v�j � dn��e� Let v be the �rst such
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node along pB� We are only left to show that for every speci�c v� with jJ�v��j � dn��e�
P
v � v�� � exp�
��n logn�� �and� hence� there must be at least exp���n logn�� such v���

Consider any v� with J�v�� � fj�� � � � � jdn��eg� and let i� �� � � � dn��e� be integers
such that every path from s to v� has made all the assignments xi� � j�� � � � � xidn��e � jdn��e�
Clearly� i�� � � � � idn��e are also distinct� Then v � v� implies� in particular� that before
arriving at the node v�� the Markov process pB must have tested all variables xi� � � � � � xidn��e
�possibly in a variable order� and make every time the decision xi� � j� � Moreover� since v
was chosen to be the �rst node along pB with J�v� � dn��e� pB must make these decisions
at nodes v with at least dn��e outgoing legal edges which implies that� for each �� the
probability to make the decision xi� � j� is at most ��n� It follows from general properties
of Markov processes that P
v � v�� � ���n�dn��e � exp�
��n log n���

The proof of Theorem ��� is complete�

���� The Column Model

Similarly to the row model� if a read�once b�p� for S�PHPm
n

always queries at once all
variables from the same column� we may assume that it receives in response a single one�
and this leads us to the following model that is dual to the row model�

De�nition ���� Let Columnmn be the following search problem� given an input A � 
m�n

�viewed as a function�� �nd some i 	� im�A�� In the column model� we consider m�way
read�once b�p� in n variables attempting to solve Columnmn �

Unlike the row model� there is a non�trivial upper bound in this model� and it will be
presented in the next section �see Corollary ����� Our lower bound matches it within a
factor of O�logn� in the exponent�

Theorem ���� Any m�way read�once b�p� in n variables that solves Columnmn must have

size at least exp���
p
n � n� logm���

Proof� First we prove the bound

exp���n� logm��� ���

Let B be an m�way read�once b�p� in n variables solving Columnmn � By Proposition ����
we may assume that B is uniform� For a node v of B denote by I�v� the set of all i � 
m�
which are not assigned to any variable xj � X�v� along any path from the root s to v� Let
us call an edge e outgoing of v and labeled by i legal if i � I�v� and illegal otherwise�
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The dual statement to Claim ��� simply says that I�v� 	� � for every node v� Moreover�
I�s� � 
m�� I�v� can only decrease along edges� and i � I�t� for every sink node t labeled
by i 	� im�A�� De�ne pB by the same Markov process as in the proof of Theorem ���
�with the new notion of legal edge� of course�� The remark above implies that pB arrives�
with probability �� to a sink node t� Since B is uniform� pB has length n �w�p� ��� Let
k � dlogme� and s � v�� v�� � � � � vk � t be nodes along pB that divide this random path
into segments of length at least bn�kc each�

Since jI�v��j � m� jI�vk�j � � and I�v�� is decreasing in � �w�p� ��� we have that for
some � � � � k 
 ��

jI�v����j � �

�
jI�v��j�

Similarly to the proof of Theorem ���� we are left to show that for any speci�c pair �u�� u�� of
nodes with the properties jX�u�� nX�u��j � bn�kc� I�u�� � I�u�� and jI�u��j � �

�
jI�u��j�

we have
P
u� and u� belong to pB in this order� � ��bn�kc� ���

This again follows from the general theory of Markov processes� Indeed� any successful
pB can visit between u� and u� only those nodes v for which

I�u�� � I�v� � I�u��� ���

At any such node v there are jI�v�j outgoing legal edges� and at most jI�v� n I�u��j ways
for the Markov process to maintain the property ���� Thus� the probability to make the
�right� decision at every individual node v is at most

jI�v�j 
 jI�u��j
jI�v�j � �
 jI�u��j

jI�u��j �
�

�
�

and on its way from u� to u� the process must make at least bn�kc of them� The bounds
��� and ��� follow�

In order to see the remaining bound exp���
p
n�� on the size of B� let m� be the overall

number of sinks in B� If m� � �
p
n� we are done� If m� � �

p
n� we can assume w�l�o�g�

that only �� �� � � � � m� appear as labels on the sink nodes in B� It is easy to see that�
without increasing its size� B can be transformed into an m��way read�once b�p� B� solv�
ing Columnm

�

n � Now the bound exp���
p
n�� follows from the already proven ��� when

substituting m� � �
p
n for m�

The proof of Theorem ��� is complete�
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�� The Rectangular Calculus

For I � 
m�� J � 
n�� let RIJ denote the positive clause fpij j i � I� j � J g� we call clauses
of this form rectangular or� if we want to specify sizes� jIj � jJ j rectangular� The perimeter
of a non�empty a � b rectangular clause is de�ned as a � b �half of the �geometrical�
perimeter��

As we will see below� rectangular clauses �and especially those of perimeter �n���� are
of extreme importance for both upper and lower bounds on the complexity of resolution
proofs of PHPm

n � This motivates the study of the following fragment of resolutions that
operates with rectangular clauses only and captures that kind of reasoning�

De�nition ���� The rectangular calculus is the proof system that works with rectangular
clauses and has one inference rule

RI��J��fjg� � � � � RIk�Jk�fjg
RIJ

�I� 
 � � � 
 Ik � �� j � 
n�� I� � � � � � Ik � I� J� � � � � � Jk � J��

���������
��������

���

�Intuitively� only one pigeon from I can go to hole j� and there is no pigeon which is
common to all Ij� so at least one has to go to J ��

A rectangular proof is a proof in the rectangular calculus� a rectangular refutation of a
set of rectangular clauses is a rectangular proof of the empty clause from this set� and a
rectangular refutation of �PHPm

n �a rectangular proof of PHPm
n � is a rectangular refuta�

tion of the set of axioms ���� The size of a rectangular proof is the number of clauses in
it� Let s�m�n� be the minimum size of any rectangular refutation of �PHPm

n �

Let us �rstly see that proofs in the rectangular calculus can be polynomially simulated
by resolution proofs from �PHPm

n �

Statement ���� Suppose that a rectangular clause R has a rectangular proof of size s from
a set R of initial rectangular clauses� Then there exists a resolution proof of R from the

set of axioms R � ��� that has size at most m��s� n��

Proof� Since there are at most m�n axioms ���� we only have to show how to simulate the
rule ��� with at most m� resolution inferences using ��� as additional axioms� This is done

��



straightforwardly� for every i � I� we �nd some � with i 	� I�� and infer RIJ �f�pijg from
RI� �J��fjg using at most jI�j � �m
 �� resolutions with appropriate axioms ���� Then we
consecutively resolve the resulted clauses with RI��J��fjg along fpij j i � I�g and get rid of
these atoms� The whole inference uses at most jI�j � �m
 �� � jI�j � m� resolution rules�

Unfortunately� it does not look plausible that arbitrary resolution proofs of PHPm
n can

be e
ciently simulated in the rectangular calculus� However� as the following examples
show� many known constructions� both in the context of upper and lower bounds� can in
fact be viewed as rectangular�

Example � 	brute
force search proof of PHP n��
n �� We consecutively infer� for d �

n� n
 �� � � � � �� �� all �n� �
 d�� d rectangular clauses of the form RI� �d�� The case d � n
is given as axioms ���� and if we already have all �n 
 d� � �d � �� clauses� then� given

I � 
n � �� with jIj � n 
 d � �� we infer RI� �d� from
n
RInfig� �d��� j i � I

o
with a single

application of ���� At the end �for d � �� we get the empty rectangle� This shows the
bound

s�n� �� n� � �n��� ���

Example � 	non
trivial proof of PHPm
n for large m �BuP�
��� We also have the

following non�trivial recursion for s�m�n��

s�m�� �n� � �m � �� � s�m�n�� ���

In order to see this� let P be the rectangular refutation of �PHPm
n that has size s�m�n��

Replacing every clause RIJ in P with RI�J�fn��������ng �i�e�� adding n new holes�� we will
get a rectangular proof of R�m��fn��������ng from axioms fpi�� pi�� � � � � pi��ng �i � 
m�� that has
the same size s�m�n�� By symmetry� we have similar s�m�n��sized proofs of every m� n
rectangular clause�

The dual transformation that can be done with the proof P is to replace every single
pigeon with an m�member pigeon family� i�e�� replace every clause RIJ with RI��m��J � This
gives us an s�m�n��sized rectangular refutation of the set of clauses

n
Rf�g��m��fn��������ng� � � � � Rfmg��m��fn��������ng

o
�

Combining this refutation with the s�m�n��sized proofs of Rfig��m��fn��������ng constructed
above� we get the recursion ����

Now� ��� and ��� imply

s
�
�n� ����

��� �� � n
�
� �n� ����

�� � �n���

��



Substituting here n �� d�n log n
logm

e� � �� blog
�
logm
log n

�
c �m � n�� logarithms are base ��� we

have the bound
s�m�n� � exp�O�logm� n logn� logm�� ���

�which follows from ��� for m � n��� It implies

s�m�n� � exp
�
O
�q

n logn� n logn� logm
��

����

�for m � �
p
n log n just use the �rst �

p
n log n pigeons ignoring all others�� and this is the best

upper bound on the complexity of resolution proofs of PHPm
n �not necessarily rectangular��

known today�

Example � 	Haken
Buss
Tur�an bound�� In Example � we used rectangular clauses of
perimeter �n � �� for upper bounds� now we show how to trace such clauses through an
arbitrary resolution proof�

Firstly we get rid of negations �a dual construction was previously used in 
Bus���
BP��� BuP��� Juk����� For this purpose we replace in a resolution refutation of �PHPm

n

every negative literal ��pij� by the set of literals fpij� j j � 	� j g� This results in a proof
of the empty clause in the positive calculus that operates with positive clauses� has �� n
and �� �n
 �� rectangular clauses as axioms �the latter resulting from ����� and has one
inference rule

C� � fpijg C� � fpij� j j � 	� j g
C

�C� � C� � C�� ����

In fact� this calculus is easily seen to be equivalent to resolution proofs from �PHPm
n �

ff�pij� ��pij�g j i � 
m�� j�� j� � 
n�� j� 	� j�g� but we will not need this in what follows�
Now suppose that the premises in ���� are known to contain rectangular clauses of

perimeter �n � ��� RI�J� � C� � fpijg� RI�J� � C� � fpij� j j � 	� j g� We wish to �nd a
subclause of perimeter �n � �� in the conclusion C� We may assume that i � I� 
 I� and
j � J� n J� �otherwise C simply inherits one of RI�J�� RI�J��� But then C contains two
rectangular clauses R�I��I��nfig�J��J� and RI��I��J��J�� and the sum of their perimeters is
equal to jI� 
 I�j� jJ� � J�j� jI� � I�j� jJ� 
 J�j 
 � � jI�j� jI�j� jJ�j� jJ�j 
 � � �n���
Hence� one of them has perimeter at least �n � ���

Summing up� in every line of a refutation in the positive calculus we can trace a rect�
angular clause of perimeter �n � ��� until we get at the end the �virtual� �n � �� � �
empty clause� Moreover� the above construction shows that jIj � jI�j� jI�j� where I�� I�� I
correspond to the rectangular clauses in the premises and the conclusion of the rule �����
respectively� Since initially for every axiom we have jIj � �� every such refutation should

��



contain somewhere an �n���� �n��� rectangular subclause ��bottleneck� in the standard
terminology��

Now it is easy to �nish the proof of the Haken�Buss�Tur�an exp �� �n��m�� bound with
the idea proposed in 
BP���� Namely� if we hit a refutation in the positive calculus with a
random restriction assigning n�� randomly chosen pigeons to n�� randomly chosen holes�
then every individual clause containing an �n���� �n��� rectangular subclause gets killed
to � with probability at least � 
 exp �
� �n��m��� Hence� in order for the restricted
refutation to have an �n��� � �n��� bottleneck� the original refutation must contain at
least exp �� �n��m�� positive clauses�

Quite remarkably� the rectangular calculus is equivalent to the column model from the
previous section� The proof of this equivalence �similar to the proof of Proposition ����
takes up the rest of Section ��

Firstly we note that rectangular proofs can be further structured to work with only
�one�dimensional� clauses like those used in Example �� We say that a rectangular clause
RIJ is compact if J � 
d� for some d� and abbreviate this clause as RI�d� Note that the
axioms ��� are compact� The following inference rule

RI��d��� � � � � RIk�d��

RI�d

�I� 
 � � � 
 Ik � �� d � �� I� � � � � � Ik � I�

���������
��������

����

is a special case of the rule ����

Lemma ���� For every rectangular proof of a compact clause R from a set fR�� � � � � Rkg
of initial compact clauses� there exists a rectangular proof of R from fR�� � � � � Rkg whose

size is less or equal to the size of the original proof� and such that every line is a compact

clause and every inference rule has the form �����

Proof� It is easy to see that the �compression operator� that replaces any rectangular
clause RIJ by RI�jJj� transforms the rule ��� into either the trivial weakening rule �i�e��
when some premise is contained in the conclusion� or an instance of ����� Now we contract
all applications of weakening rules using the fact that the restriction put on the conclusion
RI�d in ���� is monotone in both I and d�

��



Theorem ���� s�m�n� is equal to the minimal possible size of a uniform m�way read�once

b�p� in n variables solving the search problem Columnmn �

Proof� a�� Let P be a rectangular refutation of �PHPm
n that has size s�m�n�� By

Lemma ��� we may assume that P contains only compact clauses� and uses only inference
rules of the form ����� We convert P into an �oblivious� m�way read�once b�p� B as
follows� Nodes of B are just lines of P � the source node s is the �nal �empty� rectangle
in P � and axioms become sink nodes� For the computational node corresponding to the
conclusion RI�d of the inference ����� query Ad�� �	 is asked� and the outgoing edge labeled
by i goes to some premise RI� �d�� with the property i 	� I�� Clearly� working on an input
A � 
m�n� this b�p� traverses only through compact clauses RI�d falsi�ed by A �in the sense
fA���� A���� � � � � A�d�g 
 I � �� and thus eventually �nds i 	� im�A��

b�� Conversely� suppose that B is a uniformm�way read�once b�p� in n variables solving
the search problem Columnmn � Using notation from the proof of Theorem ���� we associate
with every node v the compact clause R�v� � RI�v��X�v�� Clearly� R�s� is empty �since X�s�
is so�� R�t� contains Rfig��n� for a sink t labeled by the output i 	� im�A�� and R�v� can be
obtained from R�v��� � � � � R�vm� via one application of the rule ��� if v is a computational
node and v�� � � � � vm are all its children� Thus� we have constructed a rectangular refutation
of �PHPm

n that has the same size as B�

As a by�product of the above proof we obtain the fact that every read�once b�p� solving
Columnmn can be made oblivious without any increase in size �this is also easy to prove
directly��

Using Theorem ���� we can translate the Buss�Pitassi upper bound from Example � to
the column model� and our lower bound in Theorem ��� to the rectangular calculus�

Corollary ���� There exists an m�way read�once b�p� in n variables that solves Columnmn
and has size at most exp�O�

p
n logn � n logn� logm���

Corollary ��
� s�m�n� � exp���
p
n � n� logm���

�� The Transversal Calculus

In this section we de�ne a natural �sound and complete� proof system for proving lower
bounds on the transversal number ��A�� and show it to be equivalent to the rectangular
calculus�

��



Recall that for a family of sets A� we denoted by ��A� the size of the smallest set hitting
every member of A� Let us further de�ne 
A � 
A�AA and �A � �A�AA �respectively
the intersection and union of all sets in A�� As usual jAj denotes the cardinality of this
family� i�e�� the number of sets in A�

De�nition ���� Lines in the transversal calculus have the form ��A� � n� where A is a
family of sets� and n is an integer� The default axioms are of the form ��A� � �� where A
is non�empty� and the only �unary� inference rule has the form

��A� � n

��B� � n� �

��A � A �BA � B �
BA � � � � BA � A���

���������
��������

����

While the intuition behind this inference rule may not be clear at �rst sight� the simple
proof of its soundness and completeness below would clarify it� We de�ne the size of a
transversal proof as the sum of cardinalities jAj of families appearing in all lines of the
proof�

Remark ���� A sensible alternative de�nition of size is to use the count
P

A�A jAj in
place of jAj which is tantamount to the length of the proof� These two de�nitions are
polynomially equivalent in many situations� such as for example� if the cardinality of the
family we are interested in is not smaller than the number of elements in the underlying
universe�

Theorem ���� ��A� � n is provable in the transversal calculus if and only if it is true�

i�e�� this calculus is sound and complete�

Proof�
Soundness is proved by induction on the length of a transversal proof� For the inductive
step� suppose ��A� � n is already known to be true� and �A � A �BA � B�
BA �
� � � BA � A�� We wish to prove ��B� � n � �� Assume that� to the contrary� T is
a transversal of B with jT j � n� We derive a contradiction� Choose any i � T � Since
T n fig is not a transversal of A� there exists some A � A such that A 
 T � fig� But
since 
BA � �� there exists also some B � BA �which implies B � A� such that i 	� B�
We conclude that B 
 T � �A 
 T � 
 fig � �� contrary to our assumption that T is a
transversal of B�

��



Completeness� Let Un be the family of all sets whose complements �to the whole universe�
have size n
 �� Let � be the quasiordering on families of sets given by A � B �� �B �
B �A � A�A � B�� Completeness is immediately implied by the combination of the
following three facts easily checkable individually�

� Provability in the transversal calculus is antimonotone w�r�t� �� In other words� if
A � B and ��B� � n is provable� then ��A� � n is provable� too�

� ��A� � n i� A � Un�
� �cf� Example �� ��Un� � n is provable in the transversal calculus� In fact�

��Un� � n

��Un��� � n� �

is a legal inference�

For a family of sets A and an integer n such that ��A� � n�� is true� let us denote by
t�A� n� the minimum size of any transversal proof of this fact� and by s�A� n� the minimum
size of any rectangular proof of the empty clause from the set of initial clauses

n
RA��n� j A � A

o
� ����

Note that s�A� n� generalizes the function s�m�n� studied in the previous section� namely�
s�m�n� � s�ff�g� f�g� � � � � fmgg� n�� The following result says that the rectangular and
transversal calculi are essentially just di�erent forms of the same proof system�

Theorem ���� For every family of sets A and every integer n such that ��A� � n��� we
have

s�A� n� � t�A� n� � s�A� n� � jAj�

Proof�
Lower bound on t�A� n�� Suppose we have a transversal proof

��A�� � �

��A�� � �

� � �
��An��� � n � �

��



of size t�A� n�� where An�� � A� We convert it into a rectangular proof �in the compact
form� as follows� for every A � Ad� introduce the clause RA��d���� Then the clauses resulting
from An�� become initial axioms ����� Furthermore� if d � n and A � Ad� then RA��d��� is

inferred from
n
RB��d� jB � BA

o
�where BA � Ad�� is chosen accordingly to ����� via one

application of ����� Finally� any A � A� �remember that A� is non�empty�� gives rise to
the empty clause�

Upper bound on t�A� n�� We prove it by reversing the above argument� By Lemma ����
there is a rectangular proof in compact form of size s�A� n�� To obtain a transversal proof�
we set for each d

Ad �
n
A
���RA��d��� appears in the proof

o
�

One subtle point is that in this way we obtain only a s�A� n��sized transversal proof of
��A�� � n � � for some subset A� of A� as we do not require that all axioms necessarily
appear in the proof �this is more than just an excessive pedantry  cf� the last argument
in the proof of the bound ������ We convert it into a transversal proof of ��A� � n � �
simply by adding all sets from A n A� to the last line�

Denote t�ff�g� f�g� � � � � fmgg� n� by t�m�n��

Corollary ���� exp���logm� n� logm�� � t�m�n� � exp�O�logm� n logn� logm���

Proof� Immediate from Theorem ���� Corollary ��� combined with the trivial bound
t�m�n� � m� and ����

�� Conclusion and open problems

In studying the complexity of resolution proofs of the pigeonhole principle PHPm
n � the case

of m � n� pigeons becomes a natural barrier where ordinary �static� distributions on the
set of partial truth assignments� restrictions etc� fail to ful�ll their mission� In this paper
we have proved �rst partial results beyond this barrier� and we hope that the idea which
allowed us to overcome it �i�e�� the usage of dynamical distributions constructed along with
the progress of a computation or a proof itself� will eventually lead to establishing lower
bounds on the size of resolution proofs of PHPm

n � at least in the regular case� The next
step in carrying out this program might be the following

Problem �� Prove exponential lower bounds on the size of any oblivious read�once b�p�
solving S�PHPm

n
�

��



More modest �but still interesting� goal is to close the logarithmic gap between upper
and lower bounds on s�m�n��

Problem �� What is the order of magnitude of log s��� n�	 
BuP��� showed that it is at
most

p
n logn� and we have proved that it is at least

p
n�

Finally� we would like once more to draw attention to the fact that we have only a
handful of natural proof systems for co�NP�complete sets other than TAUT� We propose
a more systematic study of natural reducibilities between such systems� this would help
convincing combinatorists and complexity theoretists �and ourselves� that proof complexity
is a little bit more than just the Hilbert�style game with abstract symbols on a sheet of
paper�
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