Read-Once Branching Programs, Rectangular
Proofs of the Pigeonhole Principle and the
Transversal Calculus

Alexander Razborov* Avi Wigderson'
Steklov Mathematical Institute Institute of Computer Science
117966, Moscow, Russia Hebrew University

Jerusalem, Israel

Andrew Yao!
Computer Science Department
Princeton University
Princeton, New Jersey 08544

Abstract

We investigate read-once branching programs for the following search problem:
given a Boolean m x m matrix with m > n, find either an all-zero row, or two 1’s in
some column. Our primary motivation is that this models regular resolution proofs
of the pigeonhole principle PH P™, and that for m > n? no lower bounds are known
for the length of such proofs. We prove exponential lower bounds (for arbitrarily
large m!) if we further restrict this model by requiring the branching program either

*Part of the work was done while this author was visiting Special Year on Logic and Algorithms at
DIMACS, Princeton. Also supported by Russian Basic Research Foundation grant 96-01-01222.

tPart of this work was done while on sabbatical leave at the Institute for Advanced Study and Princeton
University, Princeton. This work was supported by USA-Israel BSF grant 92-00106 and by a Wolfson
research award administered by the Israeli Academy of Sciences, as well as a Sloan Foundation grant.

!This work was supported in part by National Science Foundation and DARPA under grant CCR-
9627819, and by USA-Israel BSF grant 92-00106.

to finish one row of queries before asking queries about another row (the row model)
or put the dual column restriction (the column model).

Then we investigate a special class of resolution proofs for PH P]" that operate
with positive clauses of rectangular shape; we call this fragment the rectangular
calculus. We show that all known upper bounds on the size of resolution proofs
of PHP]" actually give rise to proofs in this calculus and, inspired by this fact,
also give a remarkably simple “rectangular” reformulation of the Haken-Buss-Turan
lower bound for the case m < n2. Finally we show that the rectangular calculus is
equivalent to the column model on the one hand, and to transversal calculus on the
other hand, where the latter is a natural proof system for estimating from below the
transversal size of set families. In particular, our exponential lower bound for the
column model translates both to the rectangular and transversal calculi.

0. Warm-up

The following elementary “data structure” problems, which may be contemplated as
independent puzzles by the reader, are the axis connecting the different notions in the title
of the paper. Consider algorithms which probe, once, the entries of an input array A in
an arbitrary adaptive order, and use s bits of memory. Let m > n. What is the smallest
memory size s = s(n, m) needed for solving the following problems?

e When A € [m]", find a number in [m] missing from A.

e When A € [n|™, find two entries A containing the same number from [n].

1. Introduction

Complexity of propositional proofs is rapidly taking on as important a role in the theory
of feasible proofs as the role played by the complexity of Boolean circuits in the theory
of efficient computations. The resolution proof system introduced in [Bla37] and further
developed in [DP60, Rob65] is one of the first and simplest in the hierarchy of propositional
proof systems; it is also of importance for various automatic theorem proving procedures.
Tseitin [Tse68] proved, almost 30 years ago, the first exponential lower bound for regular
resolutions (these are resolutions with the additional restriction that along every path every
particular variable can be resolved at most once).

However, despite its apparent (and deluding) simplicity, the first lower bounds for non-
regular resolutions were proven only in 1985 by Haken [Hak85]. These bounds were achieved

for the pigeonhole principle PHP™*! which asserts that n+ 1 pigeons cannot sit in n holes
so that every pigeon is alone in its hole. Motivated by a separation problem in Bounded
Arithmetic (just like the research on the complexity of Boolean circuits is motivated by the
needs of the theory of Turing computations!), Buss and Turédn [BT88] extended his bound
to exp (Q (%2)) for a more general form PHP," of the pigeonhole principle in which the
number of pigeons, m, is also a parameter. See also [Urq87, CS88, BP96] for other bounds
on the complexity of resolutions, and [Juk97] for a generalization of the Haken-Buss-Turan
bound to the case of semantic resolutions.

All these lower bounds trivialize when m > n?. As mentioned in [BT88] (also see
[Kra94, page 31]) it is an open question whether PHP;f has a poly-size resolution proof,
and this is open even for regular resolutions. More generally, it is open whether there is
any m (as a function of n) for which PH P! has a resolution proof of size polynomial in
n. The only non-trivial upper bound is due to Buss and Pitassi [BuP96]: PHP!™ has a
resolution proof of size exp(O(y/nlogn+nlogn/logm)), and the only known lower bound
was also proven in the same paper: every tree-like resolution proof of PH P must have
size at least 2".

In this paper we make some partial progress toward resolving the above open question in
the negative for regular (and, perhaps, for general) resolutions. The meaning of our results
is most clear when we employ the characterization of regular resolutions in computational
terms (see e.g. [Kra94, Theorem 4.2.3]). Namely, regular resolutions are known to be
equivalent to read-once branching programs (b.p.) solving the following search problem:
given a truth assignment, find some initial clause falsified by this assignment.

For the special case when the search problem (i.e. the initial clauses) corresponds to
PHP" we introduce two restricted classes of read-once b.p. and call these computational
models the row model and the column model. In the row model (with rows corresponding
to pigeons) the (read-once) b.p. must query all variables from some row immediately after
it queries the first such variable. The column model is defined dually.

We prove a tight exp(€2(nlogn)) size lower bound in the row model and an almost
tight bound exp(2(y/n + n/logm)) in the column model; note that they make perfect
sense for m = oo. The proofs for both models have one remarkable feature in common
that is somewhat novel for research of this kind (in fact, it is this feature that allowed
us to overcome the n? barrier). As in many similar proofs we do construct a distribution
on inputs that fools branching programs from some class. But (and this is the novelty)
our distributions depend essentially on the program being fooled, and are being constructed
along with the progress of computation itself.

Both the obvious 2°(™-sized resolution proof of PHP™ and the Buss-Pitassi proof

3

mentioned above can be restructured to operate with positive clauses of rectangular form
only. Inspired by this fact, we introduce the corresponding rectangular calculus (a subclass
of resolution proofs for PH P"), and show that both these proofs can be carried out there.
We have failed to simulate arbitrary resolution proofs of PHP™ in this calculus, and
we doubt that such a simulation is possible (it actually seems that already the row model
cannot be reduced to the rectangular calculus). However, as will be seen, we have succeeded
in “simulating” at least the proof of the Haken-Buss-Turan lower bound: the “rectangular”
version of their proof is remarkably simple and may be of independent interest.

Interestingly, it turns out that the rectangular calculus is equivalent to the column
model. This allows us to translate the Buss-Pitassi upper bound exp(O(y/nlogn +
nlogn/logm)) to the column model, and our exp(2(y/n + n/logm)) lower bound in the
column model to the rectangular calculus; these bounds are matching up to a logarithmic
factor.

From the complexity-theoretic perspective, the set of all propositional tautologies
TAUT is just one of natural co-NP-complete sets, even though it was historically the
first. For any such set we can raise the question of what are natural (i.e., coherent to the
intrinsic structure of the set) proof systems for membership proving, and then ask how
proof systems for different systems compare to each other in terms of their strength via
natural reductions. While natural proof systems for the co-NP-complete sets correspond-
ing to the INDEPENDENT SET and CHROMATIC NUMBER, problems were defined and
studied by Chvatal [Ch77] and McDiarmid [Mc79] respectively, no relations between the
power of these systems and others are known. Reductions were systematically studied only
for the different systems for TAUT (which, in our opinion, is to a large extent caused by
historical and psychological reasons). The only nice exceptions we are aware of are Hajds
calculus for the set of non-3-colourable graphs [Haj61], and the proof of its equivalence to
Frege systems [PU92].

We contribute to this line of research by defining a natural (sound and complete) proof
system for proving lower bounds on the transversal (hitting set) size of set families (dual
to the SET COVER problem). We call this system the transversal calculus and show it to
be equivalent to the rectangular calculus. In particular, all upper and lower bounds for the
column model and for the rectangular calculus immediately translate to the transversal
calculus.

The paper is organized as follows. In Section 2 we recall some needed notation and
definitions. In Section 3 we present our lower bounds for the row and column models.
Section 4 is devoted to the rectangular calculus (including our reformulation of the Haken-
Buss-Turdn bound), and Section 5 to the transversal calculus. The paper is concluded

with a few remarks and open problems in Section 6.

2. Preliminaries

Let py,p2,...,Pn,... be propositional atoms. A literal is either an atom or the negation
(—=p) of an atom p. A clause is a set of literals, to be thought of as the disjunction of
participating literals. A clause is positive if it does not contain negated literals. The
resolution system is the propositional proof system that operates with clauses and has one

rule of inference
Co U {p} Cy U {—-p}
C

called the resolution rule. We say that the atom p is resolved in this application of the res-
olution rule. A resolution proofis a proof in the resolution system. A resolution refutation
of a set of clauses is a resolution proof of the empty clause from this set.

Throughout this paper we allow straight-line proofs (as opposed to tree-like), i.e., after
a formula is inferred, it can be used arbitrarily many times in further inferences. The size
of a proof is the number of clauses in it.

A resolution proof is regular if along every path from an axiom to the final clause every
atom is resolved at most once. For any unsatisfiable set of clauses

C = {Ol(ph tee 7pn)7 H '7Ck(p17 tee 7pn)}7

let us consider the following search problem Se: given a truth assignment a € {0, 1}", find
some v such that C,(a) = 0.

Following Borodin and Cook [BC82|, we define an R-way branching program in n vari-
ables as a directed acyclic graph with one source node s (sometimes also called the root), in
which every non-sink node v is labeled by one of the variables z1, ..., z, (denoted var(v))
and has exactly R outgoing edges numbered by 1,..., R. Let [R] = {1,2,..., R}. Every
input string A € [R]|" determines a computational path comp(A) from s to a sink node.
An R-way b.p. (branching program) solves some search problem with inputs from [R]™ if
its sinks can be labeled by possible solutions to the search in such a way that for every
A € [R]", comp(A) leads to a sink labeled by a solution admissible for the input A.

The size of an R-way b.p. is the total number of nodes. The logarithm of size corre-
sponds to the space used by general sequential algorithms.

An R-way b.p. is read-once if along every path p every variable is tested (i.e. appears
as a node label) at most once. Let X (p) be the set of variables that are tested along a
path p. A read-once b.p. is uniform if:

(CoUCy CC)

a) for a path p beginning at the root s, X (p) depends only on the terminal node v of p
(accordingly, we denote it by X (v));

b) for every sink ¢, X (¢) contains all variables.

If, moreover, the variables are tested in the same order along every path (i.e., X (v) depends
only on the depth of v defined as | X (v)]), the program is called oblivious.

Uniform read-once R-way b.p. possess the nice property that every path from the root
to a sink node is the computational path comp(A) for a uniquely defined input A € [R]";
therefore we can identify inputs with such I/O paths. On the other hand, [Oko91] noticed
that uniformity is not actually a serious restriction:

Proposition 2.1. Every R-way read-once b.p. in n variables can be simulated by an equiv-
alent uniform program whose size is larger by at most a factor of n.

(It is not known whether a similar simulation is in general possible by oblivious programs.)
For completeness we include here a sketch of its proof.

Proof of Proposition 2.1, sketch. Given an arbitrary read-once R-way b.p. B, for
any non-sink node v, we still define X (v) as the union of X (p) taken over all the paths
p leading from s to v. For each sink v, define X (v) to be the set of all the variables. If
e = (v,v') is an edge of B then clearly X (v) U {var(v)} C X (v'). Whenever the difference
X @)\ (X (v)U{var(v)}) = {zi,..., i} is non-empty, we insert d new nodes ve 1, ..., Veq
between v and v' and replace e with the following construction. v.; will be the terminal
node of e. var(ve,) = x;,, and all R edges going out of v, , go to the same node v, 41 (to
v if v =d).

It is easy to see that this procedure transforms B into a uniform program computing
the same function and increases the number of nodes in B by at most a factor of n.m

The following remarkable result is apparently the only known case of an equivalence
between a propositional proof system and a computational model (we omit the prefix
“2-way” in the case of ordinary binary programs):

Proposition 2.2. Let C be an unsatisfiable set of clauses. Then the minimum size of any
reqular resolution refutation of C is equal to the minimum size of any read-once b.p. solving

Se.

The proof can be found e.g. in [Kra94, Theorem 4.3]. For completeness we include here
its sketch as well.

Proof of Proposition 2.2, sketch. There are two directions to prove. In both, the
transformation of one model to the other leaves the underlying directed graph untouched
(so in particular size is unchanged), and simply replaces the labels.

First, assume we are given a read-once b.p. B solving Sc. Let v be an internal (non-
sink) vertex in B, and vy (resp. wv;) the descendant of v reached if var(v) = 0 (resp.
var(v) = 1).

Inductively label the vertices of B by clauses cl(v) for every v as follows. If v is a sink,
then cl(v) is its label in B. If some vertex is unlabeled, consider any such vertex v for
which vy and v; are already labeled. Let var(v) = p. If ¢l(vp) is NOT of the form CyU {p}
(for some Cy), set cl(v) < cl(vy). If cl(vy) is NOT of the form C; U {-p} (for some C),
set cl(v) < cl(v1). Otherwise, set cl(v) < Cy U Ch.

When all vertices are labeled, reversing the direction of edges in this dag gives a reso-
lution refutation of S¢. This is proved by simple induction showing that if after each such
step we remove from B the edges (v,vy) and (v,v;) (thus creating a new sink v), then the
resulting b.p. is a read-once b.p. solving Scufew)} - (Note that the fact B is read-once is
essential for the correctness of the induction step!)

For the second (easy) direction, assume we are given a regular resolution refutation R
of C. Construct the b.p. as follows. For each clause C' in C make a separate vertex vc.
For every step of the proof do the following. Assume this step derives a new clause C' from
Co U {p} and Cy U {—p}; let vy = ve,ugpy and v1 = ve,u-py- Label ve by the variable p,
and connect it with edges labeled 0 (resp. 1) to vy (resp. vy).

Again, simple induction shows that starting from a newly added vertex v¢, and following
the computational path according to any truth assignment a which falsifies C, we eventually
reach a sink v such that C' is also falsified by a. Since the last vertex generated in the
construction above is vy, and by virtue of the regularity of R, it yields a read-once b.p. for
Sc.l

Definition 2.3. =PHP!" is the following set of clauses, over the (m x n matrix of) atoms
Dij
{=pivg> 7Pz} (insi2 € [m], iy # a5 j € [n]); (1)
{pi1, piz; - -, pin} (i € [m]). (2)

Clearly, ~PH P;" is unsatisfiable for m > n+1. Hence it possesses resolution refutations
that we will sometimes call resolution proofs of PHP™. In the matrix representation’, an

!Note that this is a transpose of Haken’s original representation from [Hak85]. The reason for imple-
menting this change is that at the moment it has become more customary to use the notation in which
the first index ¢ corresponds to the largest of the two numbers m,n (most often m).

7

admissible solution of S_pgpm is either an identically zero row, or two l-entries in the
same column. Since we do not consider in this paper any tautologies other than PHP",
we assume throughout that m, n are some integers, m > n+ 1, and all propositional atoms
have the form p;;, where ¢ € [m] and j € [n].

Let A be a family of sets (that are subsets of some finite underlying universe). A set T
is called a transversal of A if it intersects all members of A (i.e., ANT # () for all A € A).
The transversal number T(A) of the family A is the minimum size |T'| of any transversal
T of A.

3. Lower bounds

The proofs of many lower bounds in Boolean complexity are based upon the following trans-
parent idea: define a natural probability distribution @ on inputs?, and show that every
small circuit/program B presumably solving our problem must err with positive probabili-
ty on a random input chosen accordingly to a. In particular, it seems that all known lower
bounds for read-once b.p. (see e.g. [Weg87, Chapter 14.4], [Raz91] for examples) employ
this idea.

In this paper we bring something fresh to this method: the distribution ag will not be
fixed in advance but will depend essentially on the program B, and will be constructed
dynamically along with the progress of the computation. We consider two types of read-
once b.p. for S_pypm: those which must query all variables from some row immediately
after querying the first such variable, and those satisfying the dual column restriction.

3.1. The Row Model

If a read-once b.p. attempting to solve S_pgpm queries at once all variables from some
row, then the adversary should not respond with all zeros since then the program can
immediately produce an unsatisfiable clause of the form (2). Conversely, if he follows this
recommendation and never responds with all zeros, then all clauses (2) will be satisfied,
and the result of the search must be a negative clause of the form (1). Which means that
it is disadvantageous for the adversary to respond with more than a single one either, and
this leads us to the following model:

Zthroughout the paper we use the math bold face for denoting random objects

Definition 3.1. In the row model, an n-way read-once b.p. in m variables attempts to
output a solution to the following search problem Row,": given an input A € [n]™, find
some i1,1p € [m] and j € [n], where i; # iz, such that A;, = A;, = j.

Clearly, there is an exp(O(n logn))-sized program solving Row,': just ignore all but the
first (n + 1) variables, and treat every one of n™*! inputs individually by a decision tree.
Our first result shows that in the row model we cannot do any better:

Theorem 3.2. Any n-way read-once b.p. in m variables that solves Row," must have size
exp(Q2(nlogn)).

Proof. We can assume n > 3. Let B be an n-way read-once b.p. in m variables. For
any node v, denote by J(v) the set of all j € [n] such that for some fized variable z;, every
path from the root s to v makes the assignment z; = j. Note that if e = (u,v) is an edge
(directed from u to v), then |J(v)| < |J(u)| + 1. Let us call an edge e labeled by j and
outgoing of v legal if j ¢ J(v) and illegal otherwise.

Claim 3.3. If B solves Row,', then there is no path from the root to a sink consisting
entirely of legal edges.

Proof of Claim 3.3. Consider some path p between the root s and a sink node ¢ labeled
by A;, = A;, = j. Then p must contain at least two edges labeled by j. Let e = (v, u) be
the last edge along p with this property. We are going to show that e is illegal.

Replacing, if necessary, i; by is, we may assume that 4; is not the label of v. Every
path from s to v must make the assignment x;, = j: otherwise we could combine it with
the segment of p beginning at v (keeping in mind that B is a read-once program), and get
a computational s — ¢t path that does not make the assignment z;, = j, contrary to the
assumption that B solves Row'. Hence j € J(v), and e is illegal.m

Now we convert B into a finite Markov chain as follows: the set of states is simply the
set of nodes, s is the initial state, and terminal states are sink nodes along with those v
for which J(v) = [n]. The Markov process which at any non-terminal state v traverses all
outgoing legal edges with equal probabilities, defines a random path pg. Claim 3.3 implies
that with probability 1 pp actually arrives at a terminal node v of the second type, i.e.
such that J(v) = [n]. Also, the value |J(v)| can increase, decrease, or stay the same along
each edge in pg. But every time it increases, it increases by at most one in a step. Thus,
with probability 1, pg visits some node v such that |J(v)| = [n/2]. Let v be the first such

node along pg. We are only left to show that for every specific vy with |J(vy)| = [n/2],
Plv = vg] < exp(—Q(nlogn)) (and, hence, there must be at least exp(€Q(nlogn)) such vy).

Consider any vy with J(vo) = {j1,...,5[m/21}, and let i, (1 < v < [n/2]) be integers
such that every path from s to vy has made all the assignments z;, = ji, ... s iy = JIn/2]-
Clearly, iy,...,4[,/2 are also distinct. Then v = vy implies, in particular, that before
arriving at the node vy, the Markov process pp must have tested all variables z;,, ..., ;. .,
(possibly in a variable order) and make every time the decision z;, = j,. Moreover, since v
was chosen to be the first node along pp with J(v) = [n/2], pp must make these decisions
at nodes v with at least [n/2] outgoing legal edges which implies that, for each v, the
probability to make the decision z;, = j, is at most 2/n. It follows from general properties
of Markov processes that Plv = v] < (2/n)™/2! < exp(—Q(nlogn)).

The proof of Theorem 3.2 is complete.m

3.2. The Column Model

Similarly to the row model, if a read-once b.p. for S_pypm always queries at once all
variables from the same column, we may assume that it receives in response a single one,
and this leads us to the following model that is dual to the row model:

Definition 3.4. Let Column;' be the following search problem: given an input A € [m|”
(viewed as a function), find some ¢ ¢ im(A). In the column model, we consider m-way
read-once b.p. in n variables attempting to solve Column,".

Unlike the row model, there s a non-trivial upper bound in this model, and it will be
presented in the next section (see Corollary 4.5). Our lower bound matches it within a
factor of O(logn) in the exponent:

Theorem 3.5. Any m-way read-once b.p. in n variables that solves Column," must have
size at least exp(Q(y/n + n/logm)).

Proof. First we prove the bound

exp(Q(n/logm)). (3)

Let B be an m-way read-once b.p. in n variables solving Column;,". By Proposition 2.1,
we may assume that B is uniform. For a node v of B denote by I(v) the set of all i € [m]
which are not assigned to any variable z; € X (v) along any path from the root s to v. Let
us call an edge e outgoing of v and labeled by i legal if i € I(v) and illegal otherwise.

10

The dual statement to Claim 3.3 simply says that I(v) # () for every node v. Moreover,
I(s) = [m], I(v) can only decrease along edges, and i € I(t) for every sink node ¢ labeled
by i ¢ im(A). Define pp by the same Markov process as in the proof of Theorem 3.2
(with the new notion of legal edge, of course). The remark above implies that pg arrives,
with probability 1, to a sink node t. Since B is uniform, pg has length n (w.p. 1). Let
k = [logm], and s = vp, v1,...,vx =t be nodes along pp that divide this random path
into segments of length at least |n/k| each.

Since |I(vg)| = m, |I(vg)| > 1 and I(v,) is decreasing in v (w.p. 1), we have that for
some 0 <v<k-1,

1w,0)] 2 511(w,)]

Similarly to the proof of Theorem 3.2, we are left to show that for any specific pair (ug, uy) of
nodes with the properties | X (u1) \ X (uo)| > [n/k], I(u1) C I(ug) and |I(u1)| > 3|1 (uo)l,
we have

Puy and u; belong to pp in this order] < 27"/, (4)

This again follows from the general theory of Markov processes. Indeed, any successful
pp can visit between uy and u; only those nodes v for which

I{uy) € I(v) € I(uo). (5)

At any such node v there are |I(v)| outgoing legal edges, and at most |I(v) \ I(uy)| ways
for the Markov process to maintain the property (5). Thus, the probability to make the
“right” decision at every individual node v is at most

[L(0)[= [(un)] _ . H(ud)
[1(v)] |1 (uo) |

and on its way from wug to u; the process must make at least |n/k| of them. The bounds
(4) and (3) follow.

In order to see the remaining bound exp(£2(y/n)) on the size of B, let m’ be the overall
number of sinks in B. If m' > 2V" we are done. If m' < 2V", we can assume w.l.o.g.
that only 1,2,...,m’ appear as labels on the sink nodes in B. It is easy to see that,
without increasing its size, B can be transformed into an m/-way read-once b.p. B’ solv-
ing Column™ . Now the bound exp(Q(y/n)) follows from the already proven (3) when
substituting m’ < 2v™ for m.

The proof of Theorem 3.5 is complete.m

<1 <

1
27

11

4. The Rectangular Calculus

For I C [m], J C [n], let R;; denote the positive clause {p;; | i € I, j € J}; we call clauses
of this form rectangular or, if we want to specify sizes, |I| x |J| rectangular. The perimeter
of a non-empty a X b rectangular clause is defined as a + b (half of the “geometrical”
perimeter).

As we will see below, rectangular clauses (and especially those of perimeter (n+1)) are
of extreme importance for both upper and lower bounds on the complexity of resolution
proofs of PHP™. This motivates the study of the following fragment of resolutions that
operates with rectangular clauses only and captures that kind of reasoning.

Definition 4.1. The rectangular calculus is the proof system that works with rectangular
clauses and has one inference rule

Rfl,JlU{j}7 et le:JkU{j}
Rpjy (6)

(LNn...NIy=0,j€n], LU..U,CI, JJU...UJ, CJ).

7

(Intuitively, only one pigeon from I can go to hole j, and there is no pigeon which is
common to all I}, so at least one has to go to J.)

A rectangular proof is a proof in the rectangular calculus, a rectangular refutation of a
set, of rectangular clauses is a rectangular proof of the empty clause from this set, and a
rectangular refutation of ~PHP!" (a rectangular proof of PHP!™) is a rectangular refuta-
tion of the set of axioms (2). The size of a rectangular proof is the number of clauses in
it. Let s(m,n) be the minimum size of any rectangular refutation of ~PH P™.

Let us firstly see that proofs in the rectangular calculus can be polynomially simulated
by resolution proofs from ~PHP".

Statement 4.2. Suppose that a rectangular clause R has a rectangular proof of size s from
a set R of initial rectangular clauses. Then there exists a resolution proof of R from the
set of axioms R + (1) that has size at most m?(s + n).

Proof. Since there are at most m?n axioms (1), we only have to show how to simulate the
rule (6) with at most m? resolution inferences using (1) as additional axioms. This is done

12

straightforwardly: for every ¢ € I; we find some v with i ¢ I,,, and infer R;; U {-p;;} from
Ry, .5,u(5) using at most || < (m — 1) resolutions with appropriate axioms (1). Then we
consecutively resolve the resulted clauses with Ry, ;i along {p;; | ¢ € I } and get rid of
these atoms. The whole inference uses at most |I;| - (m — 1) + |[I;] < m? resolution rules.m

Unfortunately, it does not look plausible that arbitrary resolution proofs of PH P can
be efficiently simulated in the rectangular calculus. However, as the following examples
show, many known constructions, both in the context of upper and lower bounds, can in
fact be viewed as rectangular.

Example 1 (brute-force search proof of PHP"*!). We consecutively infer, for d =
n,n—1,...,1,0, all (n+1—d) x d rectangular clauses of the form R; q. The case d = n
is given as axioms (2), and if we already have all (n — d) x (d + 1) clauses, then, given
I C[n+1]with [I| = n—d+1, we infer Ry g from { R an|i € I} with a single
application of (6). At the end (for d = 0) we get the empty rectangle. This shows the
bound

s(n+1,n) < 2"t (7)

Example 2 (non-trivial proof of PHP!" for large m [BuP96]). We also have the
following non-trivial recursion for s(m,n):

s(m?,2n) < (m +1) - s(m, n). (8)

In order to see this, let P be the rectangular refutation of ~PH P that has size s(m, n).
Replacing every clause Ry; in P with R; jufnt1,..20) (i-e., adding n new holes), we will
get a rectangular proof of Ry (n41,....20) from axioms {pi1, pio, - - ., Di2n} (¢ € [m]) that has
the same size s(m,n). By symmetry, we have similar s(m, n)-sized proofs of every m x n
rectangular clause.

The dual transformation that can be done with the proof P is to replace every single
pigeon with an m-member pigeon family, i.e., replace every clause Ry with Rry[y,) ;. This
gives us an s(m, n)-sized rectangular refutation of the set of clauses

{R{1}x[m},{n+1,...,zn}, e R{m}x[m},{n—l—l,...,?n}} :

Combining this refutation with the s(m,n)-sized proofs of Rg;yxpm),fn+1,..2n) constructed
above, we get the recursion (8).
Now, (7) and (8) imply

s ((n +1)@ 2L, n) < (n4 1)) . 9nH1,

13

Substituting here n := [%gm—ﬂ, ¢ = |log (ll%gg—Z)J (m > n3, logarithms are base 2), we
have the bound
s(m,n) < exp(O(logm + nlogn/logm)) (9)

(which follows from (7) for m < n?). It implies

s(m,n) < exp (O <\/nlogn + nlogn/log m)) (10)

(for m > 2vrloem just use the first 2V*1°8™ pigeons ignoring all others), and this is the best
upper bound on the complexity of resolution proofs of PH P! (not necessarily rectangular!)
known today.

Example 3 (Haken-Buss-Turdn bound). In Example 1 we used rectangular clauses of
perimeter (n + 1) for upper bounds; now we show how to trace such clauses through an
arbitrary resolution proof.

Firstly we get rid of negations (a dual construction was previously used in [Bus87,
BP96, BuP96, Juk97]). For this purpose we replace in a resolution refutation of ~PH P"
every negative literal (—p;;) by the set of literals {p;; | 5/ # j}. This results in a proof
of the empty clause in the positive calculus that operates with positive clauses, has 1 x n
and 2 x (n — 1) rectangular clauses as axioms (the latter resulting from (1)), and has one

inference rule .
C1 U {pi;} CoU{py [#J}
C

In fact, this calculus is easily seen to be equivalent to resolution proofs from —~PHP +
{{=pij., pis } |7 € [m]; j1,72 € [n], j1 # j2}, but we will not need this in what follows.

Now suppose that the premises in (11) are known to contain rectangular clauses of
perimeter (n + 1): Rpj C Cy U{pij}; Ry € CoU{piy |7 # 7} We wish to find a
subclause of perimeter (n + 1) in the conclusion C. We may assume that i € Iy N Iy and
j € J1\ J2 (otherwise C' simply inherits one of Ry, j,, Rr,s,). But then C' contains two
rectangular clauses R(r,nm)\(i},5,07, and R ur, 07, and the sum of their perimeters is
equal to |[[; N I|+ | J1U Jo|+ |[LUL|+ | N —1 = |Ii|+ L] + | 1]+ |2 -1 =2n+1.
Hence, one of them has perimeter at least (n + 1).

Summing up, in every line of a refutation in the positive calculus we can trace a rect-
angular clause of perimeter (n + 1), until we get at the end the “virtual” (n + 1) x 0
empty clause. Moreover, the above construction shows that |I| < |I;| + |I2|, where Iy, I5, I
correspond to the rectangular clauses in the premises and the conclusion of the rule (11),
respectively. Since initially for every axiom we have |I| < 2, every such refutation should

(CLUC, C O). (11)

14

contain somewhere an (n/3) x (n/3) rectangular subclause (“bottleneck” in the standard
terminology).

Now it is easy to finish the proof of the Haken-Buss-Turdn exp (€ (n?/m)) bound with
the idea proposed in [BP96]. Namely, if we hit a refutation in the positive calculus with a
random restriction assigning n/2 randomly chosen pigeons to n/2 randomly chosen holes,
then every individual clause containing an (n/6) x (n/6) rectangular subclause gets killed
to 1 with probability at least 1 — exp (= (n?/m)). Hence, in order for the restricted
refutation to have an (n/6) x (n/6) bottleneck, the original refutation must contain at
least exp (Q (n?/m)) positive clauses.

Quite remarkably, the rectangular calculus is equivalent to the column model from the
previous section. The proof of this equivalence (similar to the proof of Proposition 2.2)
takes up the rest of Section 4.

Firstly we note that rectangular proofs can be further structured to work with only
“one-dimensional” clauses like those used in Example 1. We say that a rectangular clause
Rry is compact if J = [d] for some d, and abbreviate this clause as Ry 4. Note that the
axioms (2) are compact. The following inference rule

Rll,d-i-l) B Rfk,d-i-l
Rrq (12)

(LN..NI=0,d>0, [U...UI; CI)

is a special case of the rule (6).

Lemma 4.3. For every rectangular proof of a compact clause R from a set {Ry,..., Ry}
of initial compact clauses, there exists a rectangular proof of R from {Ry, ..., Ry} whose
size s less or equal to the size of the original proof, and such that every line is a compact
clause and every inference rule has the form (12).

Proof. It is easy to see that the “compression operator” that replaces any rectangular
clause R;; by Ry s, transforms the rule (6) into either the trivial weakening rule (i.e.,
when some premise is contained in the conclusion) or an instance of (12). Now we contract
all applications of weakening rules using the fact that the restriction put on the conclusion
Ry 4 in (12) is monotone in both I and d.m

15

Theorem 4.4. s(m,n) is equal to the minimal possible size of a uniform m-way read-once
b.p. in n variables solving the search problem Column,".

Proof. a). Let P be a rectangular refutation of ~PHP* that has size s(m,n). By
Lemma 4.3 we may assume that P contains only compact clauses, and uses only inference
rules of the form (12). We convert P into an (oblivious) m-way read-once b.p. B as
follows. Nodes of B are just lines of P, the source node s is the final (empty) rectangle
in P, and axioms become sink nodes. For the computational node corresponding to the
conclusion Ry 4 of the inference (12), query Ag1 =7 is asked, and the outgoing edge labeled
by ¢ goes to some premise Ry, 441 with the property ¢ € I,. Clearly, working on an input
A € [m]™, this b.p. traverses only through compact clauses Ry 4 falsified by A (in the sense
{A(1),A(2),...,A(d)} NI = 0) and thus eventually finds i & im(A).

b). Conversely, suppose that B is a uniform m-way read-once b.p. in n variables solving
the search problem Column'. Using notation from the proof of Theorem 3.5, we associate
with every node v the compact clause R(v) = Rj) x(v). Clearly, R(s) is empty (since X (s)
is s0), R(t) contains Ry; 1, for a sink ¢ labeled by the output i ¢ im(A), and R(v) can be
obtained from R(v1),..., R(vy) via one application of the rule (6) if v is a computational
node and vy, ..., v,, are all its children. Thus, we have constructed a rectangular refutation
of ~PHP" that has the same size as B.m

As a by-product of the above proof we obtain the fact that every read-once b.p. solving
Column;," can be made oblivious without any increase in size (this is also easy to prove
directly).

Using Theorem 4.4, we can translate the Buss-Pitassi upper bound from Example 2 to
the column model, and our lower bound in Theorem 3.5 to the rectangular calculus:

Corollary 4.5. There exists an m-way read-once b.p. in n variables that solves Column"
and has size at most exp(O(+/nlogn + nlogn/logm)).

Corollary 4.6. s(m,n) > exp(2(y/n + n/logm)).

5. The Transversal Calculus

In this section we define a natural (sound and complete) proof system for proving lower
bounds on the transversal number 7(A), and show it to be equivalent to the rectangular
calculus.

16

Recall that for a family of sets A, we denoted by 7(A) the size of the smallest set hitting
every member of A. Let us further define NA = NeyA and UA = Uyeg A (respectively
the intersection and union of all sets in \4). As usual |A4| denotes the cardinality of this
family, i.e., the number of sets in A.

Definition 5.1. Lines in the transversal calculus have the form 7(,A) > n, where A is a
family of sets, and n is an integer. The default axioms are of the form 7(A4) > 1, where A
is non-empty, and the only (unary) inference rule has the form

T(A) >n
7(B) 2 n+1 (13)

(VAEAHBAQB(QBA:@ & UBAQA))

S|V

)

While the intuition behind this inference rule may not be clear at first sight, the simple
proof of its soundness and completeness below would clarify it. We define the size of a
transversal proof as the sum of cardinalities |A4| of families appearing in all lines of the
proof.

Remark 5.2. A sensible alternative definition of size is to use the count Y 4c4|A4| in
place of |A| which is tantamount to the length of the proof. These two definitions are
polynomially equivalent in many situations, such as for example, if the cardinality of the
family we are interested in is not smaller than the number of elements in the underlying
universe.

Theorem 5.3. 7(A) > n is provable in the transversal calculus if and only if it is true,
i.e., this calculus is sound and complete.

Proof.

Soundness is proved by induction on the length of a transversal proof. For the inductive
step, suppose 7(A) > n is already known to be true, and VA € A 3B, C B(NB4 =
0 & UB4 C A). We wish to prove 7(B) > n + 1. Assume that, to the contrary, 7" is
a transversal of B with |T'| = n. We derive a contradiction. Choose any i € T. Since
T\ {i} is not a transversal of A, there exists some A € A such that ANT C {i}. But
since NBy = (, there exists also some B € B, (which implies B C A) such that ¢ ¢ B.
We conclude that BNT C (ANT) — {i} = 0, contrary to our assumption that T is a
transversal of B.

17

Completeness. Let U, be the family of all sets whose complements (to the whole universe)
have size n — 1. Let < be the quasiordering on families of sets given by A < B <= VB €
B dA € A(A C B). Completeness is immediately implied by the combination of the
following three facts easily checkable individually:

e Provability in the transversal calculus is antimonotone w.r.t. <. In other words, if
A < B and 7(B) > n is provable, then 7(.A) > n is provable, too.

o 7(A) >niff A=<U,.
e (cf. Example 1) 7(U,,) > n is provable in the transversal calculus. In fact,

T(Uy) > n
T(Ung1) >2n+1

is a legal inference.

For a family of sets A and an integer n such that 7(A) > n+1 is true, let us denote by
t(A, n) the minimum size of any transversal proof of this fact, and by s(.A, n) the minimum
size of any rectangular proof of the empty clause from the set of initial clauses

{RA,[n] | Ac€ .A} . (14)

Note that s(.A,n) generalizes the function s(m, n) studied in the previous section: namely,
s(m,n) = s({{1},{2},...,{m}},n). The following result says that the rectangular and
transversal calculi are essentially just different forms of the same proof system:

Theorem 5.4. For every family of sets A and every integer n such that T(A) > n+1, we
have

s(A,n) <t(A,n) <s(A,n)+|A|

Proof.

Lower bound on ¢(A,n). Suppose we have a transversal proof
T(Al) 2 1
T(Ag) Z 2

of size t(A,n), where A, 1 = A. We convert it into a rectangular proof (in the compact
form) as follows: for every A € Ay, introduce the clause R4 4-1). Then the clauses resulting
from A, 1 become initial axioms (14). Furthermore, if d <n and A € Ay, then R4 1) is
inferred from {RBM | B € BA} (where B4 C Ay is chosen accordingly to (13)) via one
application of (12). Finally, any A € A; (remember that A; is non-empty!) gives rise to
the empty clause.

Upper bound on #(.A,n). We prove it by reversing the above argument. By Lemma 4.3,
there is a rectangular proof in compact form of size s(A,n). To obtain a transversal proof,
we set, for each d

A = {A ‘ R4 [4-1] appears in the proof} :

One subtle point is that in this way we obtain only a s(A,n)-sized transversal proof of
7(A') > n+ 1 for some subset A" of A, as we do not require that all axioms necessarily
appear in the proof (this is more than just an excessive pedantry — cf. the last argument
in the proof of the bound (10)!) We convert it into a transversal proof of 7(A) > n + 1
simply by adding all sets from A\ A’ to the last line.m

Denote t({{1},{2},...,{m}},n) by t(m,n).

Corollary 5.5. exp(Q2(logm + n/logm)) < t(m,n) < exp(O(logm + nlogn/logm)).

Proof. Immediate from Theorem 5.4, Corollary 4.6 combined with the trivial bound
t(m,n) > m, and (9).m

6. Conclusion and open problems

In studying the complexity of resolution proofs of the pigeonhole principle PH P, the case
of m = n? pigeons becomes a natural barrier where ordinary (static) distributions on the
set of partial truth assignments, restrictions etc. fail to fulfill their mission. In this paper
we have proved first partial results beyond this barrier, and we hope that the idea which
allowed us to overcome it (i.e., the usage of dynamical distributions constructed along with
the progress of a computation or a proof itself) will eventually lead to establishing lower
bounds on the size of resolution proofs of PHP]", at least in the regular case. The next
step in carrying out this program might be the following

Problem 1. Prove exponential lower bounds on the size of any oblivious read-once b.p.
SOlVng S—‘PHP,'L"-

19

More modest (but still interesting) goal is to close the logarithmic gap between upper
and lower bounds on s(m,n):

Problem 2. What is the order of magnitude of log s(co,n)? [BuP96] showed that it is at
most v/nlogn, and we have proved that it is at least /n.

Finally, we would like once more to draw attention to the fact that we have only a
handful of natural proof systems for co-NP-complete sets other than TAUT. We propose
a more systematic study of natural reducibilities between such systems: this would help
convincing combinatorists and complexity theoretists (and ourselves) that proof complexity
is a little bit more than just the Hilbert-style game with abstract symbols on a sheet of

paper.

7. Acknowledgment

We are grateful to Paul Beame, Stasys Jukna and the anonymous referee for a few correc-
tions.

References

[BP96] P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In
Proceedings of the 37th IEEE FOCS, pages 274-282, 1996.

[Bla37] A. Blake. Canonical expressions in Boolean algebra. PhD thesis, University of
Chicago, 1937.

[BC82] A. Borodin and S. Cook. A time-space trade-off for sorting on a general sequential
model of computation. STAM J. on Computing, 11:287-297, 1982.

[Bus87] S. Buss. Polynomial size proofs of the propositional pigeonhole principle. Journal
of Symbolic Logic, 52:916-927, 1987.

[BuP96] S. Buss and T. Pitassi. Resolution and the weak pigeonhole principle. Manuscript,
1996.

[BT88] S. Buss and G. Turdn. Resolution proofs of generalized pigeonhole principle.
Theoretical Computer Science, 62:311-317, 1988.

20

[Ch77]

[CS88]

[DP60]

[Haj61]

[Hak85]

[Juk97]

[Kra94]

V. Chvéatal. Determining the stable set number of a graph. SIAM J. on Computing,
6:1-14, 1977.

V. Chvatal and E. Szemerédi. Many hard examples for resolution. Journal of the
ACM, 35(4):759-768, 1988.

M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7(3):210-215, 1960.

G. Hajos. Uber eine Konstruktion nicht n-farbbarer Graphen. Wiss. Zeitschr.
Martin Luther Univ. Halle- Wittenberg, 10:116-117, 1961.

A. Haken. The intractability or resolution. Theoretical Computer Science, 39:297—
308, 1985.

S. Jukna. Exponential lower bounds for semantic resolution. In P. Beame and
S. Buss, editors, Proof Complexity and Feasible Arithmetics: DIMACS workshop,
April 21-24, 1996, DIMACS Series in Dicrete Mathematics and Theoretical Com-
puter Science, vol. 39, pages 163-172. American Math. Soc., 1997.

J. Krajicek. Bounded arithmetic, propositional logic and complexity theory. Cam-
bridge University Press, 1994.

[LNNWO95] L. Lovasz and I. Newman and M. Naor and A. Wigdreson. Search Problems

[Mc79)

[Oko91]

[PU92]

in the Decision Tree Model SIAM J. on Discrete Math., 8:119-132, 1995.

C. McDiarmid. Determining the chromatic number of a graph. SIAM J. on
Computing, 8:643—662, 1979.

E. A. OronpuumankoBa. Hu:KHUE ONMEHKM CIO0KHOCTH Peaju3aluu Xapak-
TEPUCTUYECKNX (YHKIUA [OABOWMYHLIX KONOB OWHAPHBIMU IPOrDAMMAMMU.
Meronnr muckpernoro amaamsa, b1:61-83, 1991. E. A. Okolnishnikova, Low-
er bounds for branching programs computing characteristic functions of binary
codes, Metody discretnogo analiza, 51(1991), pages 61-83 (in Russian).

T. Pitassi and A. Urquhart. The complexity of the Hajos calculus. In Proceedings
of the 33rd IEEE Symposium on Foundations of Computer Science, pages 187-196,
1992.

21

[Raz91]

[Rob65]

[Tse68]

[Urq87]

A. Razborov. Lower bounds for deterministic and nondeterministic branching
programs. In Proceedings of the 8th FCT, Lecture Notes in Computer Science,
529, pages 47-60, New York/Berlin, 1991. Springer-Verlag.

J. A. Robinson. A machine-oriented logic based on the resolution principle. Jour-
nal of the ACM, 12(1):23-41, 1965.

I'. C. Hetitua. O CI0KHOCTH BLIBOLA B HCUYMCJIEHNM BLICKA3bLIBAHMURA. In
A. O. Cuaucesnxo, editor, Hccaedoganus no KoHCMPYKMUBHOU MAMEMAMUKE
u mamemamuveckoll nozuke, I1; Janucku nayunwszr cemunapos JIOMU, m. 8,
pages 234-259. Hayxka, Jleaunrpam, 1968. Engl. translation: G. C. Tseitin, On
the complexity of derivations in propositional calculus, in: Studies in mathematics
and mathematical logic, Part II, ed. A. O. Slissenko, pp. 115-125.

A. Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209-219,
1987.

[Weg87] 1. Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987.

22

