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Abstract

The local tree-width of a graphG = (V, E) is the function ltwG : N → N

that associates with everyr ∈ N the maximal tree-width of anr-neighborhood in
G. Our main graph theoretic result is a decomposition theoremfor graphs with
excluded minors that essentially says that such graphs can be decomposed into
trees of graphs of bounded local tree-width.

As an application of this theorem, we show that a number of combinatorial
optimization problems, such as MINIMUM VERTEX COVER, M INIMUM DOM-
INATING SET, and MAXIMUM INDEPENDENTSET have a polynomial time ap-
proximation scheme when restricted to a class of graphs withan excluded minor.

1 Introduction

Tree-width, measuring the similarity of a graph with a tree, has turned out a to be an
important notion both in structural graph theory and in the theory of graph algorithms.
It is well known that planar graphs may have arbitrarily large tree-width. However,
for every fixedd the class of planar graphs of diameter at mostd has bounded tree-
width. In other words, the tree-width of a planar graph can bebounded by a function
of the diameter of the graph. This makes it possible to decompose planar graps into
families of graphs of small tree-width in an orderly way. Such decompositions of planar
graphs, better known under the nameouterplanar decompositions, have been explored
in various algorithmic settings [5, 10, 14, 12]. The main ideas go back to a fundamental
article of Baker [5] on approximation algorithms on planar graphs.

The local tree-width of a graphG = (V, E) is the function ltwG : N → N that
associates with everyr ∈ N the maximal tree-width of anr-neighborhood inG. More
formally, we define ther-neighborhood Nr(v) of a vertexv ∈ V to be the set of all
w ∈ V of distance at mostr from v, and we let〈Nr(v)〉 denote the subgraph induced
by G onNr(v). Then, denoting the tree-width of a graphH by tw(H), we let

ltwG(r) := max
{

tw
(

〈Nr(v)〉
)

∣

∣

∣
v ∈ V

}

.

We are mainly interested in classes of graphs ofbounded local tree-width, that is,
classesC for which there is a functionf : N → N such that for allG ∈ C and
r ∈ N we have ltwG(r) ≤ f(r). The class of planar graphs is an example. It has
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been observed by Eppstein [10] that if a classC is closed under taking minors and has
bounded local tree-width (Eppstein calls this the “diameter-treewidth property”), then
the graphs inC admit a decomposition into graphs of small tree-width in thestyle of
the outerplanar decomposition of planar graphs, and the planar-graph algorithms based
on this decomposition generalize to graphs inC. Eppstein gave a nice characterization
of such classes; he proved that a minor closed classC of graphs has bounded local
tree-width if, and only if, it does not contain all apex graphs.

The main graph-theoretic result of this paper, Theorem 4.2,can be phrased as fol-
lows: LetC be a minor closed class of graphs that does not contain all graphs. Then
all graphs inC can be decomposed into a tree of graphs that, after removing abounded
number of vertices, have bounded local tree-width. (Of course the converse is also true,
but trivial: If C is a minor closed class of graphs such that every graph inC admits such
a decomposition, thenC is not the class of all graphs.) The proof of this result is based
on a deep structural characterization of graphs with excluded minors due to Robertson
and Seymour [17].

We defer the precise technical statement of our decomposition theorem to Section 4
and turn to its applications now. In this paper, we focus on approximation algorithms.
But let me mention that the theorem can also be used to re-prove a result of Alon, Sey-
mour, and Thomas [2] that graphsG with an excluded minor have tree-widthO(

√

|G|)
(see Section 6).1

Actually, the main result of Alon, Seymour, and Thomas’s article is a separator the-
orem for graphs with an excluded minor, generalizing a well-known separator theorem
due to Lipton and Tarjan [15] for planar graphs. These separator theorems have numer-
ous algorithmic applications, among them a polynomial timeapproximation scheme
(PTAS) for the MAXIMUM INDEPENDENT SET problem on planar graphs [16] and,
more generally, classes of graphs with an excluded minor [1].

A different approach to approximation algorithms on planargraphs is Baker’s [5]
technique based on the outerplanar decomposition. It does not only give another PTAS
for MAXIMUM INDEPENDENT SET, but also for other problems, such as MINIMUM

DOMINATING SET, to which the technique based on the separator theorem does not
apply.

We can use our decomposition theorem to extend Baker’s approach to arbitrary
classes of graphs with an excluded minor. Our purpose here isto explain the technique
and not to give an extensive list of problems to which it applies. We show in detail
how to get a PTAS for MINIMUM VERTEX COVER on classes of graphs with an ex-
cluded minor and then explain how this PTAS has to be modified to solve the problems
M INIMUM DOMINATING SET and MAXIMUM INDEPENDENT SET. It should be no
problem for the reader to apply the same technique to other optimization problems.

The paper is organized as follows: In Section 2 we fix our terminology and recall
a few basic facts about tree-decompositions of graphs. Local tree-width is introduced
in Section 3. In Section 4, we prove our decomposition theorem for classes of graphs
with an excluded minor. Approximation algorithms are discussed in Section 5, and in
Section 6 we briefly explain two other applications of the decomposition theorem.

1We have observed this in discussions with Reinhard Diestel and Daniela Kühn.
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2 Preliminaries

The vertex set of a graphG is denoted byV G, the edge set byEG. Graphs are always
assumed to be finite, simple, and undirected. We writevw ∈ EG to denote that there is
an edge fromv to w. For a subsetX ⊆ V G, we let〈X〉G denote the induced subgraph
of G with vertex setX . We letG \ X := 〈V G \ X〉G. For graphsG andH , we let
G∪H := (V G ∪ V H , EG ∪EH). We often omit superscriptsG if G is clear from the
context.

Kn denotes the complete graph withn vertices, and for an arbitrary setX , KX

denotes the complete graph with vertex setX . A vertex setX ⊆ V G in a graphG
is a clique if KX ⊆ G. Theclique number ω(G) of a graphG is the maximal size
of a clique inG. For a classC of graphs, we letω(C) be the maximum of the clique
numbers of all graphs inC, or∞, if this maximum does not exist.

Note that ifC is closed under taking subgraphs and is not the class of all graphs,
thenω(C) is finite.

Graph minors. A minor of a graphG is a graphH that can be obtained from a sub-
graph ofG by contracting edges; we writeH � G to denote thatH is a minor of
G.

Note thatH � G if, and only if, there is a mappingh : V H → Pow(V G) such
that 〈h(x)〉G is a connected subgraph ofG for all x ∈ V H , h(x) ∩ h(y) = ∅ for
x 6= y ∈ V H , and for every edgexy ∈ EH there exists an edgeuv ∈ EG such
that u ∈ h(x), v ∈ h(y). We say that the mappingh witnesses H � G and write
h : H � G.

A classC is minor closed if, and only if, for allG ∈ C andH � G we haveH ∈ C.
We callC non-trivial if it is not the class of all graphs.

A classC is H-free if H 6� G for all G ∈ C. We then callH anexcluded minor for
C. Note that a classC of graphs has an excluded minor if, and only if, there is ann ≥ 1
such thatC is Kn-free. Furthermore, this is equivalent to saying thatC is contained in
some non-trivial minor closed class of graphs.

Robertson and Seymour’s [18]Graph Minor Theorem states that for every minor
closed classC of graphs there is a finite setF of graphs such that

C = {G | ∀H ∈ F : H 6� G}.

For a nice introduction to graph minor theory we refer the reader to the last chapter of
[7], a recent survey is [20].

Tree-decompositions.In this paper, we assume trees to be directed from the root to
the leaves. Iftu ∈ ET we callu achild of t andt theparent of u. The root of a treeT
is always denoted byrT .

A tree-decomposition of a graphG is a pair(T, (Bt)t∈V T ), whereT is a tree and
(Bt)t∈V T a family of subsets ofV G such that

⋃

t∈V T 〈Bt〉G = G and for everyv ∈ V G

the set{t | v ∈ Bt} is connected. The setsBt are called theblocks of the decompo-
sition. Thewidth of (T, (Bt)t∈V T ) is the number max{‖Bt‖ | t ∈ V T } − 1. The
tree-width of G, denoted by tw(G), is the minimal width of a tree-decomposition ofG.

The following lemma collects a few simple and well-known facts about tree-de-
compositions:
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Lemma 2.1. (1) Let (T, (Bt)t∈V T ) be a tree-decomposition of a graph G and X ⊆
V G a clique. Then there is a t ∈ V T such that X ⊆ Bt.

(2) Let G, H be graphs such that V G ∩ V H is a clique in both G and H . Then
tw(G ∪ H) = max{tw(G), tw(H)}.

(3) Let G be a graph and X ⊆ V G. Then tw(G) ≤ tw(G \ X) + |X |.

(4) Let G, H be graphs such that H � G. Then tw(H) ≤ tw(G).

Throughout this paper, for a tree-decomposition(T, (Bt)t∈V T ) andt ∈ T \ {rT }
with parents we letAt := Bt ∩ Bs. We letArT := ∅.

Theadhesion of (T, (Bt)t∈V T ) is the number

ad(T, (Bt)t∈V T ) := max{‖At‖ | t ∈ V T }.

Thetorso of (T, (Bt)t∈V T ) at t ∈ V T is the subgraph

[Bt] := 〈Bt〉
G ∪ KAt

∪
⋃

u child of t

KAu
,

or equivalently, the subgraph with vertex setBt in which two vertices are adjacent if,
and only if, either they are adjacent inG or they both belong to a blockBu, where
u 6= t. (T, (Bt)t∈V T ) is a tree-decomposition ofG over a classB of graphs if all its
torsos belong toB.

Note that the adhesion of a tree-decomposition overB is bounded byω(B). Actu-
ally, it can be easily seen that if a graph has a tree-decomposition over a minor-closed
classB then it has a tree-decomposition overB of adhesion at mostω(B) − 1.

Path decompositions.A path-decomposition of a graphG is a tree decomposition
where the underlying tree is a path. Of course we can always assume that the pathP of
a path decomposition(P, (Bp)p∈P ) has vertex setV P = {1, . . . , m}, for somem ∈
N, and that the vertices occur onP in their natural order (that is, we havei(i+1) ∈ EP

for 1 ≤ i < m).

Lemma 2.2. Let G, H be graphs and ({1, . . . , m}, (Bi)1≤i≤m) a path-decomposition
of H of width k. Let x1 . . . xm be a path in G such that xi ∈ Bi for 1 ≤ i ≤ m and
V G ∩ V H = {x1, . . . , xm}. Then tw(G ∪ H) ≤ (tw(G) + 1)(k + 1) − 1.

PROOF: Let (T, (Ct)t∈V T ) be a tree-decomposition ofG. Then(T, (C′
t)t∈V T ) with

C′
t = Ct ∪

⋃

1≤i≤m,
xi∈Ct

Bi

is a tree-decomposition ofG ∪ H . 2
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3 Local tree-width

The distancedG(x, y) between two verticesx, y of a graphG is the length of the
shortest path inG from x to y. For r ≥ 1 andx ∈ G we define ther-neighborhood
aroundx to beNG

r (x) := {y ∈ V G | dG(x, y) ≤ r}.

Definition 3.1. (1) Thelocal tree-width of a graphG is the function ltwG : N → N

defined by

ltwG(r) := max
{

tw(〈NG
r (x)〉)

∥

∥ x ∈ V G
}

.

(2) A classC of graphs hasbounded local tree-width if there is a functionf : N → N

such that ltwG(r) ≤ f(r) for all G ∈ C, r ∈ N.
C haslinear local tree-width if there is aλ ∈ R such that ltwG(r) ≤ λr for all
G ∈ C, r ∈ N.

Example 3.2. Let G be a graph of tree-width at mostk. Then ltwG(r) ≤ k for all
r ∈ N.

Example 3.3. Let G be a graph of valence at mostl, for an l ≥ 1. Then ltwG(r) ≤
l(l − 1)r−1 for all r ∈ N.

The planar graph algorithms due to Baker and others that we mentioned in the
introduction are based on the following result:

Proposition 3.4 (Bodlaender [6]). The class of planar graphs has linear local tree-
width. More precisely, for every planar graph G and r ≥ 1 we have ltwG(r) ≤ 3r.

In this paper, asurface is a compact connected 2-manifold with (possibly empty)
boundary. The (orientable or non-orientable)genus of a surfaceS is denoted byg(S).
An embedding of a graphG in a surfaceS is a mappingΠ that associates distinct points
of S with the vertices ofG and internally disjoint simple curves inS with the edges of
G in such a way that a vertexv is incident with an edgee if, and only if, Π(v) is an
endpoint ofΠ(e).

Proposition 3.5 (Eppstein [9]). Let S be a surface. Then the class of all graphs em-
beddable in S has linear local tree-width. More precisely, there is a constant c such
that for all graphs G embeddable in S and for all r ≥ 0 we have ltwG(r) ≤ c ·g(S) ·r.

In the next subsection, we prove an extension of Proposition3.5 that forms the
bases of our decomposition theorem for graphs with excludedminors.

But before we do so, let me state another result due to Eppstein that characterizes
the minor closed classes of graphs of bounded local tree-width. An apex graph is a
graphG that has a vertexv ∈ V G such thatG \ {v} is planar.

Theorem 3.6 (Eppstein [10, 9]).Let C be a minor-closed class of graphs. Then C has
bounded local tree-width if, and only if, C does not contain all apex graphs.

It is an interesting open problem whether there is a minor closed class of graphs
of bounded local tree-width that does not have linear (or polynomially bounded) local
tree-width.
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Almost embeddable graphs.Let S be a surface with non-empty boundary. The
boundary ofS consists of finitely many connected componentsC1, . . . , Cκ, each of
which is homeomorphic to the cycleS1.

We now define a graphG to bealmost embeddable in S. Roughly, this means that
we can obtainG from a graphG0 embedded inS by attaching at mostκ graphs of
path-width at mostκ to G0 along the boundary cyclesC1, . . . , Cκ in an orderly way.

This notion plays an important role in the structure theory of graphs with excluded
minors, to be outlined in the next subsection.

Definition 3.7. Let S be a surface with boundary cyclesC1, . . . , Cκ. A graphG is
almost embeddable in S if there are (possibly empty) subgraphsG0, . . . , Gκ of G

such that

– G = G0 ∪ . . . ∪ Gκ,

– G0 has an embeddingΠ in S,

– G1, . . . , Gκ are pairwise disjoint,

– for1 ≤ i ≤ κ, Gi has a path decomposition({1, . . . , mi}, (Bi
j)1≤j≤mi

) of width
at mostκ,

– for 1 ≤ i ≤ κ there are verticesxi
1, . . . , xi

mi
∈ V G0 such thatxi

j ∈ Bi
j for

1 ≤ j ≤ mi andV G0 ∩ V Gi = {xi
1, . . . , xi

mi
},

– for 1 ≤ i ≤ κ, we haveΠ(V G0) ∩ Ci = {Π(xi
1), . . . , Π(xi

mi
)}, and the points

Π(xi
1), . . . , Π(xi

mi
) appear onCi in this order (either if we walk clockwise or

anti-clockwise).

Proposition 3.8. Let S be a surface. Then the class of all graphs almost embeddable
in S has linear local tree-width.

PROOF: Let G be a graph that is almost embeddable inS. We use the notation of Def-
inition 3.7. LetH0 be the graph obtained fromG0 by adding new verticesz1, . . . , zκ,
and edges(zi, x

i
j), (x

i
j , x

i
j+1), and(xi

κ, xi
1), for 1 ≤ i ≤ κ, 1 ≤ j ≤ mi (see Figure 1).

Clearly,H0 is still embeddable inS. For1 ≤ i ≤ κ we letHi := H0 ∪G1 ∪ . . .∪Gi.

Ci xi
1

G0

xi
2

xi
3

xi
5

xi
6

xi
4

H0

zi

Figure 1: FromG0 to H0

Let λ ∈ N such that for every graphG embedabble inS and everyr ∈ N we have
ltwG(r) ≤ λr (such aλ exists by Theorem 3.5). Forr ∈ N we letf0(r) := λr and, for
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i ∈ N, we letfi(r) := (fi−1(r + 1) + 1)(κ + 1) − 1. Thenfi is a linear function for
everyi ∈ N.

By induction oni ≥ 0 we shall prove that for everyr ∈ N andx ∈ V Hi we have

tw
(

〈NHi

r (x)〉
)

≤ fi(r). (1)

For i = 0, this is immediate. So we assume thati ≥ 1 and that we have proved (1) for
i − 1.

For all x ∈ Hi, we either haveNHi
r (x) ⊆ Hi−1, or NHi

r (x) ⊆ Gi, or NHi
r ∩

{xi
1, . . . , xi

mi
} 6= ∅.

If NHi
r (x) ⊆ V Hi−1 then tw

(

〈NHi
r (x)〉Hi

)

≤ fi−1(r) ≤ fi(r).
If x ∈ V Hi−1 andNHi

r (x) 6⊆ V Hi−1 , thenNHi

r−1(x) ∩ {xi
1, . . . , xi

mi
} 6= ∅. By the

construction ofH0, this implieszi ∈ N
Hi−1

r (x) and thus{xi
1, . . . , xi

mi
} ⊆ N

Hi−1

r+1 (x).
By Lemma 2.2 and the induction hypothesis we get

tw
(

〈NHi

r (x)〉Hi
)

≤ tw
(

〈N
Hi−1

r+1 (x) ∪ V Gi〉Hi
)

≤ (fi−1(r + 1) + 1)(κ + 1) − 1 = fi(r).

If x ∈ V Gi , thenNHi
r (x) ∩ V Hi−1 ⊆ N

Hi−1

r+1 (zi). Thus by Lemma 2.2 and the
induction hypothesis we have

tw
(

〈NHi

r (x)〉Hi
)

≤ tw
(

〈N
Hi−1

r+1 (zi) ∪ V Gi〉Hi
)

≤ (fi−1(r + 1) + 1)(κ + 1) − 1 = fi(r).

2

Note that the local tree-width of a graph is not minor-monotone (that is,H � G

does not imply ltwH(r) ≤ ltwG(r) for all r). However, we do have

H ⊆ G =⇒ ltwH ≤ ltwG. (2)

Proposition 3.9. Let S be a surface. Then the class of all minors of graphs almost
embeddable in S has linear local tree-width.

PROOF: Recall the proof of Proposition 3.8. We use the same notation here. Suppose
G′ is a minor ofG. We can assume thatG′ is a subgraph of a graphG′′ obtained from
G only by contracting edges. Because of (2) we can even assume thatG′ = G′′.

Let X = {xi
j | 1 ≤ i ≤ κ, 1 ≤ j ≤ mi}. Contracting edges with at least

one endpoint not inX is unproblematic, because the resulting graph is still almost
embeddable inS.

So we can further assume thatG′ is obtained fromG by contracting edgese1, . . . ,
en with both endpoints inX . Let H := Hκ (the graph obtained fromG by adding the
verticeszi and corresponding edges as in Figure 1). LetH ′ be the graph obtained from
H by contractinge1, . . . , en, and leth : H ′ � H witness these edge contractions.

7



The key observation is that for allx, y ∈ V H′

andu ∈ h(x), v ∈ h(y) we have

dH(u, v) ≤ dH′

(x, y) + 3κ− 1 (3)

(no matter how largen is). To see this, letP ′ be a shortest path fromx to y in H ′.
Let P be a path fromu to v in H such thatP ′ is obtained fromP by contracting
the edgese1 . . . , en. Let us call such an edge an(i, j)-edge if it connects a vertex
in {xi

1, . . . , xi
mi

} with a vertex in{xj
1, . . . , xj

mj
}. Suppose thatP = w1 . . . wr. For

1 ≤ i ≤ κ, let ws andwt, where1 ≤ s ≤ t ≤ r, be the first and last vertex from
{xi

1, . . . , xi
mi

} onP . If s < t we replace the intervalws . . . wt in P by wsziwt. Doing
this for1 ≤ i ≤ κ we obtain a new pathQ from u to v in H . This pathQ contains no
at most2κ edges that are not onP and no(i, i)-edges. Furthermore, for1 ≤ i < j ≤ n

the number of(i, j)-edges onQ is at most(κ − 1). Because assume thatQ contains
at leastκ such edges. Then there would be a “cycle”i = i1, i2, . . . , il = i such that
for 1 ≤ j < l, Q contains an(ij , ij+1)-edge. However, this cycle would have been
removed while transformingP to Q.

Hence length(Q) ≤ length(P ′) + 3κ − 1, which proves (3).

(3) implies that for allr ≥ 0, x ∈ V H′

, andu ∈ h(x) we have

〈NH′

r (x)〉 � 〈NH
r+3κ−1(u)〉. (4)

To see this, lety ∈ NH′

r (x). Then for allv ∈ h(y), by (3) we havev ∈ NH
r+3κ−1(u).

Thush(NH′

r (x)) ⊆ Pow(NH
r+3κ−1(u)). Therefore the restriction ofh to NH′

r (x)

witnesses〈NH′

r (x)〉 � 〈NH
r+3κ−1(u)〉. This proves (4).

By (1) and (4) we get tw(〈NH′

r (x)〉) ≤ fκ(r+3κ−1). The statement of the lemma
follows. 2

4 Graphs with excluded minors

The following deep structure theorem forKn-free graphs plays a central role in the
proof of the Graph Minor Theorem. For a surfaceS andµ ∈ N we letA(S, µ) be the
class of all graphsG such that there is anX ⊆ V G with ‖X‖ ≤ µ such thatG \ X is
almost embeddable inS.

Theorem 4.1 (Robertson and Seymour [17]).For every n ∈ N there exist µ ∈ N and
surfaces S, S′ such that all Kn-free graphs have a tree-decomposition over A(S, µ) ∪
A(S′, µ).

Further details concerning this theorem can be found in [8, 20, 17].
Forλ, µ ≥ 0 we let

L(λ) :=
{

G
∥

∥ ∀H � G ∀r ≥ 0 : ltwH(r) ≤ λ · r
}

,

L(λ, µ) :=
{

G
∥

∥

∥
∃X ⊆ V G :

(

‖X‖ ≤ µ ∧ G \ X ∈ L(λ)
)

}

.

Note thatL(λ, µ) is minor closed and thatω(L(λ, µ)) = λ + µ + 1. Thus a tree-
decomposition overL(λ, µ) has adhesion at mostλ + µ + 1.
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Theorem 4.2. Let C be a class of graphs with an excluded minor. Then there exist
λ, µ ∈ N such that all G ∈ C have a tree-decomposition over L(λ, µ).

PROOF: This follows immediately from Theorem 4.1 and Proposition3.9. 2

For algorithmic applications we have in mind, Theorem 4.2 alone is not enough; we
also have to compute a tree-decomposition of a given graph overL(λ, µ). Fortunately,
Robertson and Seymour have proved another deep result that helps us with this task:

Theorem 4.3 (Robertson and Seymour [19]).Every minor closed class of graphs
has a polynomial time membership test.

Lemma 4.4. Let C be a minor closed class of graphs.
Then there is a polynomial time algorithm that computes, given a graph G, a tree-

decomposition of G over C, or rejects G if no such tree-decomposition exists.

PROOF: Note that the classT of all graphs that have a tree-decomposition overC is
minor closed. Thus by Theorem 4.3 we have polynomial time membership tests for
bothC andT .

Without loss of generality, we can assume thatC is not the class of all graphs. Thus
the clique numberω := ω(C) is finite. Recall that every tree-decomposition overC
has adhesion at mostω. Our algorithm uses the following observation to recursively
construct a tree-decomposition of the input graphG:

G ∈ T if, and only if, G ∈ C or there is a set X ⊆ V G such that |X | ≤ ω,
G \ X has at least two connected components, and for all components C

of G \ X we have 〈X ∪ C〉G ∪ KX ∈ T .

We omit the details. 2

In particular, we are going to apply this result to the minor closed classesL(λ, µ).

5 Approximation algorithms

Optimization problems. An NP-optimization problem is a tuple(I, S, C, opt), con-
sisting of a polynomial time decidable setI of instances, a mappingS that associates
a non-empty setS(x) of solutions with eachx ∈ I such that the binary relation
{(x, y) | y ∈ S(x)} is polynomial time computable and there is ak ∈ N such that
for all x ∈ I, y ∈ S(x) we have‖y‖ ≤ ‖x‖k, a polynomial time computablecost (or
value) functionC : {(x, y) | x ∈ I, y ∈ S(x)} → N, and agoal opt∈ {min, max}.

Given anx ∈ I, we want to find ay ∈ S(x) such that

C(x, y) = opt(x) := opt{C(x, z) | z ∈ S(x)}.

Let x ∈ I andǫ > 0. A solutiony ∈ S(x) for x is ǫ-close if

(1 − ǫ)opt(x) ≤ C(x, y) ≤ (1 + ǫ)opt(x).

A polynomial time approximation scheme (PTAS) for (I, S, C, opt) is a uniform family
(Aǫ)ǫ>0 of approximation algorithms, whereAǫ is a polynomial time algorithm that,
given anx ∈ I, computes anǫ-close solution forx in polynomial time. Uniformity
means that there is an algorithm that, givenǫ, computesAǫ.

9



The levels of graphs of bounded local tree-width.For graphG, a vertexv ∈ V G,
and integersj ≥ i ≥ 0 we let

LG
v [i, j] := {w ∈ V G | i ≤ dG(v, w) ≤ j}.

To keep the notation uniform, we are actually going to writeLG
v [i, j] for arbitrary

i, j ∈ Z, with the understanding thatLG
v [i, j] := ∅ for i > j andLG

v [i, j] := LG
v [0, j]

for i ≤ 0.

Lemma 5.1. Let λ ∈ N. Then for all G ∈ L(λ), v ∈ V G, and i, j ∈ Z with i ≤ j we
have tw

(

〈LG
v [i, j]〉

)

≤ λ · (j − i + 1).

PROOF: First note thatLG
v [1, j] ⊆ LG

v [0, j] = NG
j (v), thus the claim holds fori ≤ 1.

For i ≥ 2, consider the minorH of G obtained by contracting the connected subgraph
〈LG

v [0, i − 1]〉 to a single vertexv′. Then we haveLG
v [i, j] ⊆ NH

j−i+1(v
′), and the

claim follows. 2

Minimum vertex cover. Instances of MINIMUM VERTEX COVER are graphsG, so-
lutions are setsX ⊆ V G such that for every edgevw ∈ EG eitherv ∈ X or w ∈ X

(such setsX are calledvertex covers), the cost function is defined byC(G, X) := |X |,
and the goal is min.

Lemma 5.2 ([3]). For every k ≥ 1, the restriction of M INIMUM VERTEX COVER to
instances of tree-width at most k is solvable in linear time.

Theorem 5.3. Let C be a class of graphs with an excluded minor. Then the restriction
of M INIMUM VERTEX COVER to instances in C has a PTAS.

PROOF: Applying Theorem 4.2, we chooseλ, µ ∈ N such that everyG ∈ C has a
tree-decomposition overL(λ, µ). Let ǫ > 0; we shall describe a polynomial time
algorithm that, given a graphG ∈ C, computes anǫ-close solution for MINIMUM

VERTEX COVER on G. Uniformity will be clear from our description. Letk = ⌈ 1
ǫ
⌉

and note thatk+1
k

≤ (1 + ǫ).

In a first step, let us prove that the restriction of MINIMUM VERTEX COVER to
instances inL(λ) has a PTAS.

Let G ∈ L(λ) andv ∈ V G arbitrary. For1 ≤ i ≤ k andj ≥ 0 we let Lij :=
LG

v [(j − 1)k + i, jk + i]. By Lemma 5.1, tw(〈Lij〉) ≤ λ(k + 1).
For 1 ≤ i ≤ k, j ≥ 0 let Xij be a minimal vertex cover of〈Lij〉. We letXi :=

⋃

j≥0 Xij . ThenXi is a vertex cover ofG. Let Xmin be a minimal vertex cover for
G. We have|Xij | ≤ |Xmin ∩ Lij |, becauseXmin ∩ Lij is also a vertex cover of〈Lij〉.
Hence

k
∑

i=1

|Xi| ≤
k

∑

i=1

∑

j≥0

|Xij | ≤
k

∑

i=1

∑

j≥0

|Lij ∩ Xmin| ≤ (k + 1)|Xmin|.

10



The last inequality follows from the fact that everyv ∈ V G is contained in at most
(k + 1) (successive) setsLij .

Choosem, 1 ≤ m ≤ k such that|Xm| = min{|X1|, . . . , |Xk|}. Then

|Xm| ≤
k + 1

k
|Xmin| ≤ (1 + ǫ)|Xmin|.

Since theXij can be computed in polynomial time by Lemma 5.2,Xm can also be
computed in polynomial time.

In a second step, we show how to extend this approximation algorithm to classes
L(λ, µ) for λ, µ ≥ 0. Let G ∈ L(λ, µ) andU ⊆ V G such that|U | ≤ µ andH :=
G \ U ∈ L(λ, 0). The following extension of Lemma 5.2 can be proved by standard
dynamic programming techniques (cf. [3]):

Lemma 5.4. For every k ≥ 0, the following problem can be solved in linear time:
Given a graph G, a subset U ⊆ V G such that tw(G \ U) ≤ k, and a subset Y ⊆ U ,
compute a set X ⊆ V G \ U of minimal order such that X ∪ Y is a vertex cover of G,
if such a set exists, or reject otherwise.

For everyY ⊆ U we shall compute anX(Y ) ∈ Pow(V G \ U) ∪ {⊥} such that
eitherX(Y ) ∪ Y is a vertex cover ofG and

|X(Y )| ≤ (1 + ǫ)min{|X | | X ⊆ V G \ U, X ∪ Y vertex cover ofG},

or X(Y ) := ⊥ if no suchX(Y ) exists. Using Lemma 5.4 instead of Lemma 5.2, we
can do this analogously to the first step.

Then we choose aY0 ⊆ U such that|X(Y0) ∪ Y0| is minimal. Here we define
⊥ ∪ Z := ⊥ for all Z and|⊥| := ∞. Then clearlyX(Y0) ∪ Y0 is anǫ-close solution
for M INIMUM VERTEX COVER on G. Moreover, since|U | ≤ µ, there are at most2µ

setsY ⊆ U , soX(Y0) ∪ Y0 can be computed in polynomial time (remember thatµ is
a constant only depending on the classC).

In the third step, we extend our PTAS to graphs that have a tree-decomposition over
L(λ, µ), i.e. to all graphs inC.

So letG be such a graph. We first compute a tree-decomposition(T, (Bt)t∈V T ) of
G overL(λ, µ). Remember that by Lemma 4.4, this is possible in polynomial time.
Recall thatrT denotes the root ofT and that, for everyt ∈ V T with parentu, we
let At = Bt ∩ Bu. For everyt ∈ V T , we let St be the subtree ofT with root t,
that is, the subtree with vertex set{s | t occurs on the path froms to rT }. We let
Ct :=

⋃

s∈St
Bt.

Inductively from the leaves to the root, for every nodet ∈ V T and for everyY ⊆
At we compute anX(t, Y ) ∈ Pow(Ct \ At) ∪ {⊥} such that eitherX(t, Y ) ∪ Y is a
vertex cover of〈Ct〉 and

|X(t, Y )| ≤ (1 + ǫ)min{|X | | X ∪ Y vertex cover of〈Ct〉},

or X(t, Y ) := ⊥ if no such vertex set exists. Since a tree-decomposition over L(λ, µ)
has adhesion at mostλ + µ + 1 we have|At| ≤ λ + µ + 1, thus for everyt ∈ V T we

11



have to compute at most2λ+µ+1 setsX(t, Y ). For the rootrT we haveArT = ∅, so
X(rT , ∅) is anǫ-close solution for MINIMUM VERTEX COVER onG.

Suppose thatt ∈ V T and that for every childt′ of T we have already computed the
family X(t′, ·). LetU ⊆ Bt such that|U | ≤ µ and[Bt]\U ∈ L(λ). LetW := U ∪At

and letZ ⊆ W . Let Xmin(Z) ∈ Pow(Ct \ W ) ∪ {⊥} be a vertex set of minimal order
such thatXmin(Z) ∪ Z is a vertex cover of〈Ct〉, or X(Z) := ⊥ if no such vertex set
exists.

We show how to compute anX(Z) ∈ Pow(Ct \W )∪{⊥} such thatX(Z)∪Z is a
vertex cover of〈Ct〉 and|X(Z)| ≤ (1 + ǫ)|Xmin(Z)|, if Xmin(Z) 6= ⊥, or X(Z) = ⊥
otherwise. Then for everyY ⊆ At we choose aZ ⊆ W such thatY ⊆ Z with
minimal |X(Z) ∪ (Z \ Y )| (among allZ ⊇ Y ) and letX(t, Y ) := X(Z). Note that,
since|U | ≤ µ, for everyY we have to compute at most2µ setsX(Z) to determine
X(t, Y ).

So let us fix aZ ⊆ W ; we show how to computeX(Z) in polynomial time.
If W = Bt we letX(Z) :=

⋃

t′ child of t X(t′, At′ ∩ Z).
Otherwise, we choose an arbitraryv ∈ Bt \ W . For 1 ≤ i ≤ k and j ≥ 0

we let Lij := L
[Bt]\W
v [(j − 1)k + i, jk + i]. Then tw(〈Lij〉) ≤ λ(k + 1). For

1 ≤ i ≤ k and every childt′ of t there is at least onej ≥ 0 such thatAt′ \ W ⊆ Lij ,
becauseAt′ induces a clique in[Bt]. Let j∗(i, t′) be the least suchj and L∗

ij :=
Lij ∪

⋃

t′ child of t
j∗(i,t′)=j

Ct′ \ At′ .

For everyX ⊆ Lij we let

X∗ := X ∪
⋃

t′ child of t
j∗(i,t′)=j

X(t′, (X ∪ Z) ∩ At′)

We compute anXij ⊆ Lij with minimal |X∗
ij | such thatXij ∪ Z is a vertex cover of

〈Lij ∪ W 〉 if such a vertex cover exists, andXij = ⊥ otherwise. The usual dynamic
programming techniques on graphs of bounded tree-width show that eachXij can be
computed in linear time if the numbers|X(t′, Y )| for the childrent′ of t are given (cf.
Lemmas 5.2 and 5.4 and [3]). It is important here that everyAt′ \W is a clique in〈Lij〉
and thus by Lemma 2.1(1) completely contained in a block of every tree-decomposition
of 〈Lij〉.

We letXi :=
⋃

j≥0 Xij andX∗
i :=

⋃

j≥0 X∗
ij . ThenX∗

i ∪ Z is a vertex cover of
〈Ct〉, if such a vertex cover exists, andXi = ⊥ otherwise. We choose ani, 1 ≤ i ≤ k,
such that|X∗

i | = min{|X∗
1 |, . . . , |X∗

k |} and letX(Z) := X∗
i . ThenX(Z) can be

computed in polynomial time.
Recall thatXmin := Xmin(Z) ⊆ Ct \ W is a vertex set of minimal order such

thatXmin ∪ Z is a vertex cover of〈Ct〉, if such a vertex cover exists, andXmin = ⊥
otherwise. It remains to prove that|X(Z)| ≤ (1 + ǫ)|Xmin|.

Recall that for every childt′ of t we have

|X(t′, (Xmin ∪ Z) ∩ At′)| ≤ (1 + ǫ)|Xmin ∩ Ct′ \ At′ |.

12



Our construction of theXij andX∗
ij guarantees that for1 ≤ i ≤ k, j ≥ 0 we have

|X∗
ij | ≤ |Xmin ∩ Lij | +

∑

t′ child of t
j∗(i,t′)=j

|X(t′, (Xmin ∪ Z) ∩ At′)|.

Then

k|X(Z)| ≤
k

∑

i=1

|X∗
i |

=

k
∑

i=1

∑

j≥0

|X∗
ij |

≤
k

∑

i=1

∑

j≥0

(

|Xmin ∩ Lij | +
∑

t′ child of t
j∗(i,t′)=j

|X(t′, (Xmin ∪ Z) ∩ At′)|
)

≤
k

∑

i=1

∑

j≥0

(

|Xmin ∩ Lij | +
∑

t′ child of t
j∗(i,t′)=j

(1 + ǫ)|Xmin ∩ Ct′ \ At′ |
)

≤(k + 1)|Xmin ∩ Bt| + k(1 + ǫ)|Xmin ∩ Ct \ Bt|.

This implies|X(Z)| ≤ (1 + ǫ)Xmin. 2

Minimum dominating set. Instances of MINIMUM DOMINATING SET are graphsG,
solutions are setsX ⊆ V G such that for everyv ∈ V G \ X there is aw ∈ X such
thatvw ∈ EG (such setsX are calleddominating sets), the cost function is defined by
C(G, X) := |X |, and the goal is min.

Theorem 5.5. Let C be a class of graphs with an excluded minor. Then the restriction
of M INIMUM DOMINATING SET to instances in C has a PTAS.

PROOF: We proceed very similarly to the proof of Theorem 5.3, the analogous result
for M INIMUM VERTEX COVER. Let λ, µ ∈ N such that every graph inC has a tree-
decomposition overL(λ, µ). Let ǫ > 0 andk := ⌈ 2

ǫ
⌉.

Again, in the first step we consider the restriction of the problem to input graphs
fromL(λ). Given such a graphG, we choose an arbitraryv ∈ V G. For1 ≤ i ≤ k and
j ≥ 0 we letLij := LG

v [(j − 1)k + i − 1, jk + i]. Then tw(〈Lij〉) ≤ λ(k + 2). Note
thatLij andLi(j+1) overlap in two consecutive rows, which is different from theproof
of Theorem 5.3. Theinterior of Lij is the setL◦

ij := LG
v [(j − 1)k + i, jk + i − 1].

For 1 ≤ i ≤ k, j ≥ 0 we letXij ⊆ Lij be a vertex set of minimal order with the
following property:

(∗) For everyw ∈ L◦
ij \ Xij there is ax ∈ Xij such that(w, x) ∈ EG.
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Then for1 ≤ i ≤ k the setXi :=
⋃

j≥0 Xij is a dominating set ofG. Let m be such
that |Xm| = min{|X1|, . . . , |Xk|}. ComputingXm amounts to solving a variant of
M INIMUM DOMINATING SET on instances of tree-width at mostλ(k + 2); using the
usual dynamic programming techniques, this can be done in linear time.

Since for every dominating setX of G the setX ∩ Lij has property(∗) we have
Xij ≤ X ∩ Lij . Using this, we can argue as in the proof of Theorem 5.3 to showthat
Xm is anǫ-close solution.

Adapting the second and third step of the proof of Theorem 5.3, it is straightforward
to extend this algorithm to arbitrary input graphs inC. 2

Maximum independent set. Instances of MAXIMUM INDEPENDENTSET are graphs
G, solutions are setsX ⊆ V G such that for allv, w ∈ X we havevw 6∈ EG (such sets
X are calledindependent sets), the cost function is defined byC(G, X) := |X |, and
the goal is max.

Theorem 5.6. Let C be a class of graphs with an excluded minor. Then the restriction
of MAXIMUM INDEPENDENTSET to instances in C has a PTAS.

PROOF: Again we proceed similarly to the proof of Theorem 5.3. Letλ, µ ∈ N such
that every graph inC has a tree-decomposition overL(λ, µ). Let ǫ > 0 andk = ⌈ 1

ǫ
⌉.

We describe how to treat input graphs inL(λ). Following the lines of the proof of
Theorem 5.3, the extension to arbitraryG ∈ C is straightforward. LetG ∈ L(λ) and
v ∈ V G. For1 ≤ i ≤ k andj ≥ 0 we letLij := LG

v [(j − 1)k + i, jk + i − 2]. Then
tw(〈Lij〉) ≤ λ(k − 1). Note that there are no edges betweenLij andLi(j+1).

For 1 ≤ i ≤ k, j ≥ 0 we let Xij be a maximal independent set of〈Lij〉. Then
Xi :=

⋃

j≥0 Xij is an independent set ofG. Let 1 ≤ m ≤ k such that|Xm| =
max{|X1|, . . . , |Xk|}. Since the restriction of MAXIMUM INDEPENDENT SET to
graphs of bounded tree-width is solvable in linear time, such anXm can be computed
in linear time.

Let Xmax be a maximum independent set ofG. Then for1 ≤ i ≤ k, j ≥ 0 we have
|Xij | ≥ |Xmax∩ Lij |. Thus

k|Xm| ≥
k

∑

i=1

|Xi| =

k
∑

i=1

∑

j≥0

|Xij | ≥
k

∑

i=1

∑

j≥0

|Xmax∩ Lij | ≥ (k − 1)|Xmax|,

which implies thatXm ≥ k−1
k

|Xmax| ≥ (1 − ǫ)|Xmax|. 2

Other problems. Our approach can be used to find polynomial time approximation
schemes for the restrictions of a number of other problems toclasses of graphs with
excluded minors, in particular for the other problems considered by Baker [5]. I leave
it to the reader to work out the details.

6 Other applications of Theorem 5.3

The tree-width of Kn-free graphs. We re-prove a theorem of Alon, Seymour, and
Thomas [2] that the tree-width of aKn-free graphG is O(

√

|G|). This is joint work
with Reinhard Diestel and Daniela Kühn.
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Lemma 6.1. Let λ ∈ N and G ∈ L(λ). Then tw(G) ≤ 3
√

λ|G|.

PROOF: Let v ∈ V G arbitrary and, fori ≥ 0, Li := {w ∈ V G | dG(v, w) = i}. Let
m be maximal such thatLm is non-empty. We subdivide{1, . . . , m} into intervals
I1, J1, I2, . . . , Jl−1, Il, Jl such that for1 ≤ i ≤ l we have

– |Lj | ≤
√

λ · |G| for all j ∈ Ii,

– |Lj | >
√

λ · |G| for all j ∈ Ji.

Then tw(〈
⋃

j∈Ii
Lj〉) ≤ 2

√

λ · |G| and tw(〈
⋃

j∈Ji
Lj〉) ≤

√

λ · |G| (because the

length ofJi is at most
√

|G|
λ

). We can glue the decompositions together by adding
to every block of a tree-decomposition ofJi the last level of the previousIi and the
first level of the nextIi+1 and obtain tw(G) ≤ 3

√

λ · |G|. 2

Corollary 6.2. Let λ, µ ∈ N and G ∈ L(λ, µ). Then tw(G) ≤ 3
√

λ|G| + µ.

Corollary 6.3. Let G be Kn-free. Then tw(G) ≤ O(
√

|G|).

Deciding first-order properties. In [11] we give another algorithmic application of
Theorem 4.2. We show that for every classC of graphs with an excluded minor there
is a constantc > 0 such that for every property of graphs that is definable in first order
logic there is anO(|G|c)-algorithm deciding whether a given graphG ∈ C has this
property.

For example, this implies that for every classC with an excluded minor there is a
constantc such that for every graphH there is anO(|G|c)-algorithm testing whether a
given graphG ∈ C has a subgraph isomorphic toH .

7 Further research

We have never specified the exponents and coefficients of the polynomials bounding the
running times of our algorithms; they seem to be enormous. Soour algorithms are only
of theoretical interest. The first important step towards improving the algorithms would
be a practically applicable algorithm for computing tree-decompositions of graphs of
small tree-width. On the graph theoretic side, it would probably help to prove Theorem
4.2 directly without using Robertson’s and Seymour’s Theorem 4.1.

The traveling salesman problem is another optimization problem that has a PTAS
on planar graphs [13, 4]. It would be interesting to see if this problem has a PTAS on
class of graphs with an excluded minor.

Acknowledgements I thank Reinhard Diestel and Jörg Flum for helful comments on
earlier versions of this paper.
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