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A COMBINATORIAL PROOF OF KNESER’S CONJECTURE*
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Kneser’s conjecture, first proved by Lovász in 1978, states that the graph with all k-element
subsets of {1,2, . . . ,n} as vertices and with edges connecting disjoint sets has chromatic
number n−2k+2. We derive this result from Tucker’s combinatorial lemma on labeling the
vertices of special triangulations of the octahedral ball. By specializing a proof of Tucker’s
lemma, we obtain self-contained purely combinatorial proof of Kneser’s conjecture.

1. Introduction

Let
([n]

k

)
denote the system of all k-element subsets of the set [n] =

{1,2, . . . ,n}. The Kneser graph KG(n,k) has vertex set
([n]

k

)
and edge set

{{S,S′} : S,S′ ∈
([n]

k

)
, S ∩ S′ = ∅}. Kneser [7] conjectured in 1955 that

χ(KG(n,k))≥n−2k+2, n≥2k≥2, where χ denotes the chromatic number.
This was proved in 1978 by Lovász [11], as one of the earliest and most spec-
tacular applications of topological methods in combinatorics. Several other
proofs have been published since then, all of them topological; among them,
at least those of Bárány [2], Dol’nikov [4] (also see e.g. [3]), and Sarkaria [15]
can be regarded as substantially different from each other and from Lovász’
original proof. These proofs are also presented in [13].
In this paper, we first we show how Kneser’s conjecture can be derived

directly from Tucker’s lemma, which is a combinatorial statement concern-
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ing labelings of vertices of certain triangulations (somewhat resembling the
well-known Sperner’s lemma). Then we give a proof of Kneser’s conjecture
that avoids any mentioning of topology or triangulations, by reformulat-
ing and specializing a known proof of Tucker’s lemma (namely one due to
Freund and Todd [6]) for our particular setting. The proof is self-contained
and can be read without reference to the part with Tucker’s lemma. Other
known proofs of Tucker’s lemma, such as the one in [10], seem to lead to sim-
ilar considerations when traced down to the “combinatorial core”, although
many details can be varied.
Currently the topological proofs appear preferable in all respects, except

possibly for a short presentation to an audience with no topological back-
ground. On the other hand, it is interesting that a reasonable combinatorial
proof can be given, and perhaps further investigation might lead to combi-
natorial methods of real interest.
The proof from Tucker’s lemma is inspired by previous author’s simpli-

fied proof [12] of a theorem of Kř́ıž [8], [9] (a generalization of Kneser’s
conjecture). The approach of Kř́ıž is in turn based on some ideas from Alon,
Frankl, and Lovász [1], who established a generalized Kneser’s conjecture
for hypergraphs.

2. A proof from Tucker’s lemma

Tucker [16] in his lecture at the First Canadian Math. Congress gave an
elementary proof of the 2-dimensional Borsuk–Ulam theorem using a com-
binatorial lemma about labelings of the vertices of a particular triangulation
of the square. A slightly different version, concerning triangulations of the n-
dimensional octahedral sphere, was used in Lefschetz’s textbook [10]. Later,
this lemma has been re-proved and generalized in several papers, mainly be-
cause it provides an “effective” proof of the Borsuk–Ulam theorem; see, for
example, Freund [5] or Freund and Todd [6]. We use the version of Tucker’s
lemma given in the latter paper.
Let Bn denote octahedral ball in R

n (the unit ball of the �1-norm),
let Sn−1 denote its boundary (the octahedral sphere), and let K0 be the
natural triangulation of Bn induced by the coordinate hyperplanes (the n-
dimensional simplices are in one-to-one correspondence with the orthants in
R

n). Call a triangulation K of Bn a special triangulation if it refines K0 and
is antipodally symmetric around the origin.

Lemma 2.1 (Tucker’s lemma). Let K be a special triangulation of
Bn, and suppose that each vertex v of K is assigned a label λ(u) ∈
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{+1,−1,+2,−2, . . . ,+n,−n} in such a way that for the vertices of K lying
in Sn−1 the labeling satisfies λ(−u)=−λ(u). Then there exists a 1-simplex
(edge) of K which is complementary, i.e. its two vertices are labeled by
opposite numbers.

Proof of Kneser’s conjecture from Tucker’s lemma. First we define
the appropriate triangulation K. Let L0 be the subcomplex of K0 consisting
of the simplices lying on Sn−1. We note that the nonempty simplices of L0

are in one-to-one correspondence with nonzero vectors from V ={−1,0,1}n;
see Fig. 1(a) for a 2-dimensional illustration. The inclusion relation on the

0

(1,−1)

(1,1)(−1,1)

(−1,−1)

(0,−1)

(0,1)

(1,0)(−1,0)

(a) (b)

Figure 1. The triangulations K0 and L0 (a), and K (b).

simplices of L0 corresponds to the relation � on V , where u�v if ui�vi for
all i=1,2, . . . ,n and where 0�1 and 0�−1.
Let L′

0 be the first barycentric subdivision of L0. Thus, the vertices of
L′

0 are centers of gravity of the simplices of L0 and the simplices of L′
0

correspond to chains of simplices of L0 under inclusion. A simplex of L′
0

can be identified with a chain in the set V \ {(0, . . . ,0)} under �. Finally,
we define the triangulation K: it consists of the simplices of L′

0 and of the
cones with apex 0 over such simplices. This is a special triangulation of Bn

as in Tucker’s lemma.
Let n>2k≥2. Suppose that c is a coloring of the vertices of the Kneser

graph KG(n,k) with n − 2k + 1 colors (as we will show, it cannot be a
proper coloring, so we regard it just as an arbitrary assignments of colors
to the k-tuples in

([n]
k

)
). For technical convenience, we suppose that the

colors are numbered 2k,2k+1, . . . ,n. We are going to define a labeling of
the vertices of K as in Tucker’s lemma. These vertices include 0 and so they
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can be identified with the vectors of V ,1 and we want to define a labeling
λ:V →{±1, . . . ,±n}.
Let us fix some arbitrary linear ordering ≤ on 2[n] that refines the partial

ordering according to size, i.e. such that if |A|< |B| then A<B. Let v∈V be
a sign vector. To define λ(v), we consider the ordered pair (A,B) of disjoint
subsets of [n] defined by

A = {i ∈ [n] : vi = 1} and B = {i ∈ [n] : vi = −1}.

We distinguish two main cases. If |A|+ |B|≤2k−2 (Case I) then we put

λ(v) =
{ |A|+ |B|+ 1 if A ≥ B
−(|A|+ |B|+ 1) if A < B.

If |A|+ |B|≥2k−1 (Case II) then at least one of A and B has size at least
k. If, say, |A| ≥ k we define c(A) as c(A′), where A′ consists of the first k
elements of A, and for |B|≥k, c(B) is defined similarly. We set

λ(v) =
{

c(A) if A > B
−c(B) if B > A.

So labels assigned in Case I are in {±1, . . . ,±(2k−1)} while labels assigned
in Case II in {±2k, . . . ,±n}.
One can check that this is a well-defined mapping from V to

{±1,±2, . . . ,±n} and that it has the antipodal property, i.e. for every
nonzero v∈V we have λ(−v)=−λ(v). Therefore, by Tucker’s lemma, there
is a complementary edge of K.
Suppose that the complementary edge connects vertices v1,v2 ∈ V , so

λ(v1) = −λ(v2). Since {v1,v2} is an edge of K, we have v1 � v2 (after a
possible renaming), and so if (A1,B1) and (A2,B2) are the corresponding
set pairs, we have A1 ⊆A2 and B1⊆B2, with at least one of the inclusions
being proper. From this it is seen that neither of the labels λ(v1) and λ(v2)
could have been assigned in Case I, since |A1|+ |A2|< |B1|+ |B2|.
Suppose, for instance, that λ(v1)>0 (the other case is symmetric). Then,

by the definition in Case II, λ(v1) is the color of a k-tuple contained in A1 and
−λ(v2)=λ(v1) is the color of a k-tuple contained in B2. We have B2∩A2=∅
and A1⊆A2, and so A1∩B2=∅. We have found two disjoint k-tuples with
the same color and c is not a proper coloring of the Kneser graph KG(n,k).
This proves Kneser’s conjecture.

1 The coordinate vector of the vertex corresponding to a nonzero v ∈V is v
‖v‖1
, where

‖v‖1= |v1|+ |v2|+ · · ·+ |vn|.
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3. A direct combinatorial proof

The basic objects in the proof are disjoint ordered pairs (A,B), where A,B⊆
[n] and A∩B=∅. The forthcoming definition of a labeling function on disjoint
ordered pairs is identical to that in the preceding section but we repeat it
for reader’s convenience.
For contradiction, we suppose that c is a proper coloring of the Kneser

graph KG(n,k) by n−2k+1 colors, which for convenience we assume to be
the integers 2k,2k+1, . . . ,n. We let ≤ be a linear ordering of the subsets of [n]
such that if |A|< |B| then A<B. For each disjoint ordered pair (A,B), we
define the label λ(A,B). We distinguish two main cases. If |A|+|B|≤2k−2
(Case I) then we put

λ(A,B) =
{ |A|+ |B|+ 1 if A ≥ B
−(|A|+ |B|+ 1) if A < B.

If |A|+ |B|≥2k−1 (Case II) then

λ(A,B) =
{

c(A) if A > B
−c(B) if B > A,

where c(A) is the color of the first k elements of A and c(B) is the color
of the first k elements of B. This is a valid definition since if, for instance,
A>B and |A|+ |B|≥2k−1 then |A|≥k. The labels assigned in Case I are
in {±1, . . . ,±(2k−1)} while labels assigned in Case II in {±2k, . . . ,±n}.
Next, we consider labels of signed sequences. A signed sequence is a se-

quence (s1,s2, . . . ,sm), where 0≤ m ≤ n, s1, . . . ,sm ∈ {±1,±2, . . . ,±n}, and
|si| �= |sj| for i �=j. A signed sequence (s1, . . . ,sm) defines a sequence of m+1
disjoint ordered pairs (A0,B0), (A1,B1),. . . , (Am,Bm), where

Ai = {sj : j ∈ [i], sj > 0}, Bi = {−sj : j ∈ [i], sj < 0}.

In other words, A0 =B0 = ∅ and (Ai,Bi) is obtained from (Ai−1,Bi−1) by
adding si to Ai−1 if si > 0 and by adding −si to Bi−1 if si < 0. The label
sequence associated to (s1, . . . ,sm) is (λ0,λ1, . . . ,λm), where λi = λ(Ai,Bi).
By the definition of λ, each label sequence begins with (1,±2,±3, . . .), up
until ±(2k−1), and then it has terms ±i with 2k ≤ i≤n (but of course it
may have fewer than 2k−1 terms).
We claim that if c is a proper coloring of the Kneser graph then the label

seuqence of any signed sequence never contains two complementary labels,
i.e. there are no i �= j with λi = −λj . This is exactly as in the preceding
section: supposing λi=−λj, we first observe that i,j≥2k−1, i.e. the labels
must have been assigned according to Case II. Supposing, for example, that
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i< j and λi > 0, we get that Ai and Bj are two disjoint subsets of [n] with
c(Ai) = c(Bj), which means that two disjoint k-tuples received the same
color under c.
We prove that there exists a signed sequence whose label sequence con-

tains complementary labels. We proceed again by contradiction. (But the
proof actually provides an algorithm for finding such a signed sequence and,
consequently, exhibiting two k-tuples given the same color by c.)
Let us call a signed sequence s = (s1, . . . ,sm) a permissible sequence if

si ∈ {λ0,λ1, . . . ,λm} for all i∈ [m], where (λ0, . . . ,λm) is the label sequence
of s. So, for example, a permissible sequence with t or more terms, where
t≤2k−1, contains +1, one of −2 and +2, . . . , one of −t and +t.
Assuming that no label sequence contains complementary labels, we now

define one or two neighbor permissible sequences for each permissible se-
quence, where the relation of being neighbor is symmetric. The only per-
missible sequence with a single neighbor is the empty one; all others have
exactly two neighbors. This, of course, is impossible since there are only
finitely many permissible sequences, and it provides the desired contradic-
tion.
The single neighbor of the empty sequence is the (permissible) sequence

(+1).
Let s = (s1, . . . ,sm) be a nonempty permissible sequence and let (λ0 =

1,λ1, . . . ,λm) be its label sequence. There are at least m distinct numbers
among the m+1 labels, namely s1, . . . ,sm (in some arbitrary order). De-
pending on the single remaining label, two cases can occur:

(i) Two labels coincide: λi=λj, i<j.
(ii) There is one extra label λi �∈{s1,s2, . . . ,sm}.

In case (i), one of the two neighbors of s is obtained by transposi-
tion at (i, i + 1), by which we mean that the neighbor sequence is
(s1,s2, . . . ,si−1,si+1,si,si+2, . . . ,sm). (Note that i = 0 is not possible since
the label λ0=1 cannot occur at any other position of the label sequence.)
Such a transposition preserves all terms of the label sequence except possi-
bly for λi, and so the just defined neighbor is a permissible sequence. The
second neighbor of s is defined similarly, by transposition at (j,j+1), un-
less j =m. For j =m, the second neighbor of s is the contracted sequence
(s1, . . . ,sm−1).
In case (ii), one of the two neighbors of s is the expanded sequence

(s1, . . . ,sm,λi). This sequence is permissible because we assume that there
are no two complementary labels, and therefore |λi| �∈{|s1|, . . . , |sm|}. To de-
fine the second neighbor, we must distinguish a few cases. If λi is neither the



A COMBINATORIAL PROOF OF KNESER’S CONJECTURE 169

first nor the last term of the label sequence, i.e. 1≤ i≤m−1, the second neigh-
bor is obtained from s by transposition at (i, i+1). If i=m then the second
neighbor arises by contraction, i.e. it is (s1, . . . ,sm−1). Finally if i=0 then
the second neighbor is obtained by sign change: it is (−s1,−s2, . . . ,−sm).
In this way, two distinct neighbors are assigned to each nonempty permis-

sible sequence. It remains to check that the neighbor relation is symmetric,
which is done by discussing the few possible cases. This concludes the proof.

Added in proof. Methods of this paper were further developed and applied
to generelizations of Kneser’s conjecture by Ziegler [17]. Relations of the
various topological proofs of Kneser’s conjecture were investigated in [14].
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[14] J. Matoušek and G. M. Ziegler: Topological lower bounds for the chromatic num-

ber: A hierarchy, Jahresbericht der Deutschen Mathematiker-Vereinigung, in press,
2004.

[15] K. S. Sarkaria: A generalized Kneser conjecture, J. Combinatorial Theory Ser. B
49 (1990), 236–240.

[16] A. W. Tucker: Some topological properties of disk and sphere, In Proc. First
Canadian Math. Congr., Montreal 1945, pages 285–309, Univ. of Toronto Press, 1946.

[17] G. M. Ziegler: Generalized Kneser coloring theorems with combinatorial proofs,
Invent. Math. 147 (2002), 671–691.
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118 00 Praha 1

Czech Republic

and

Institut für Informatik

ETH Zentrum

Zürich

Switzerland

matousek@kam.mff.cuni.cz

mailto:matousek@kam.mff.cuni.cz

