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Abstract. We present a new method to show concentration of the upper
tail of random variables that can be written as sums of variables with plenty
of independence. We compare our method with the martingale method by
Kim and Vu, which often leads to similar results.

Some applications are given to the number XG of copies of a graph G
in the random graph G(n, p). In particular, for G = K4 and G = C4 we
improve the earlier known upper bounds on − lnP(XK4 ≥ 2EXK4) in some
range of p = p(n). .

1. Introduction

Kim and Vu [8] and Vu [13, 15, 16] have developed a very interesting new
method to show concentration of certain random variables, i.e. to obtain upper
bounds (typically exponentially small) of the probabilities P(X ≤ µ − t) and
P(X ≥ µ + t), where X is the random variable, µ = EX and t > 0; see also
the further references with various applications given in these papers. Two
key features of their method are that a basic martingale inequality is used
inductively, and that, when applied to a function of some underlying indepen-
dent random variables, the obtained estimates use the average influence of one
or several of the underlying variables, in contrast to e.g. Azuma’s inequality
where the maximum influence appears; the latter improvement is crucial for
many applications.

In the present paper, we introduce another method, based on ideas by Rödl
and Ruciński [11], to obtain bounds for the upper tail P(X ≥ µ + t). The new
method, which we call the deletion method, see Remark 2.4, looks different
from the method of Kim and Vu; it is based on different ideas and the ba-
sic estimate differs from their results. Nevertheless, in many situations both
methods naturally lead to induction yielding very similar estimates. Indeed, in
the applications we have tried so far, we obtain, up to the values of inessential
numerical constants, the same results as by the method of Kim and Vu. The
only exception is Example 6.2 which gives a new and essentially sharp bound
on the probability of having e.g. twice as many copies of K4 as expected in a
random graph, improving an earlier bound by Vu [15] and the later bound in
[5], but we guess that the new bound could be derived using Kim and Vu’s
method too, cf. [9] for the case of K3. SJ

There are several reasons for presenting the new method, even if we cannot
claim that it produces new results. First, in some applications, although the
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methods yield the same final result, our method may be somewhat easier to
apply. In other applications, the required estimates are the same, and we invite
the reader to form his or her own opinion by comparing the two methods on
various examples.

Secondly, the new method is stated in a different and more general setting
than Kim and Vu’s method, at least in current versions. Kim and Vu generally
study variables that can be expressed as polynomials in independent random
variables; we have no need for this constraint and instead use certain inde-
pendence assumptions. Hence it is conceivable that applications will emerge
where only the new method can be applied.

Thirdly, applications may emerge where the numerical constants in the re-
sults are important. In such cases, we do not know which of the methods can
be trimmed to yield the best result.

Fourthly, we want to stimulate more research into these methods. Neither
of the methods seems yet to be fully developed and in a final version, and
it is likely that further versions will appear and turn out to be important
for applications. It would be most interesting to find formal relations and
implications between Kim and Vu’s method and our new method, possibly
by finding a third approach that encompasses both methods. Conversely, it
would also be very interesting and illuminating to find applications where the
methods yield different results. For these reason (and to give due credit), we
specify some connections in detail in Section 5.

Of course, our method has the drawback that it applies to the upper tail
only, but this is not serious, since bounds for the lower tail easily are obtained
by other well-known methods, see Janson [1], Suen [12] and Janson [2], or the
survey in [3, Chapter 2]. (See also the preprint version of the present paper [6]
for a new version of Suen’s inequality that applies in the setting of our basic
theorem.) Note that the bounds for the lower tail obtained by these methods
often are much better (i.e. show faster decay) than the bounds obtained for the
upper tail by the deletion method. This is not necessarily due to a weakness of
the method; it seems that in many applications, the lower tail really is much
more concentrated than the upper tail, see for example [5]. Nevertheless, it
is convenient to obtain estimates for both tails at the same time, as by Kim
and Vu’s method, so we leave the question whether the deletion method can
be extended to the lower tail as an important open problem.

Problem 1.1. Does the bound for P(X ≥ µ + t) in Theorem 2.1 below apply
to P(X ≤ µ− t) too?

The basic theorem is stated and proved in Section 2, together with some
immediate consequences. These results are directly applicable in some situa-
tions. In other cases, the basic result may be used repeatedly with an inductive
argument. We give in Section 3 several results obtained in that way for rather
general situations. These theorems are still a bit technical, and we give in
Section 4 several more easily applicable corollaries.

The results in this paper are to a large extent inspired by the results of Kim
and Vu; this is explaind in some detail in Section 5. In Section 6 we discuss
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some applications to subgraph counts in random graphs; two cases (K4 and
C4) where we obtain new results are treated in detail. For comparisons with
other methods, we refer to [7].

We use ln for natural logarithms and lg for logarithms with base 2. If Γ is
a set and k ≥ 1 a natural number, then [Γ]k denotes the family of all subsets

I ⊆ Γ with |I| = k and [Γ]≤k :=
⋃k

j=0[Γ]j denotes the family of all subsets

I ⊆ Γ with |I| ≤ k. We use c or C, sometimes with subscripts or superscripts,
to denote various constants that may depend on the parameter k only, unless
we explicitly give some parameters; we often give explicit values for these
constants, but we have not tried to optimize them.

2. The basic theorem

We begin with a general theorem stated for sums of random variables with
a dependency graph given for the summands. We need here only the weak
version of dependency graphs with independence between a single vertex and
the set of its non-neighbours. Note that, except in trivial cases, we demand α ∼
α in the theorem, because a non-constant random variable is not independent
of itself; in other words, we define dependency graphs to have loops at every
vertex except when the corresponding variable is constant.

Theorem 2.1. Suppose that Yα, α ∈ A, is a finite family of non-negative
random variables and that ∼ is a symmetric relation on the index set A such
that each Yα is independent of {Yβ : β 6∼ α}; in other words, the pairs (α, β)
with α ∼ β define the edge set of a (weak) dependency graph for the variables
Yα. Let X :=

∑
α Yα and µ := EX =

∑
α EYα. Let further, for α ∈ A,

X̃α :=
∑

β∼α Yβ and

X∗ := max
α∈A

X̃α.

If t > 0, then for every real r > 0,

P(X ≥ µ + t) ≤
(
1 +

t

2µ

)−r

+ P
(
X∗ >

t

2r

)

≤
(
1 +

t

µ

)−r/2

+
∑
α∈A

P
(
X̃α >

t

2r

)
.

Remark 2.2. In applications, a suitable value of r has to be found that makes
both terms in the estimate small; note that the first term in the estimates
decreases with r, while the second term increases. Of course, the theorem is
useless unless we can bound the probability that X̃α is large. We will later see
several ways of doing this.

For the first term it is often convenient to use the estimate

(
1 +

t

µ

)−r/2

≤
{

e−rt/3µ, t ≤ µ;

e−r/3, t ≥ µ;

this follows since ln(1 + t/µ) ≥ min(t/µ, 1) ln 2 by concavity, and ln 2 > 2/3.
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Proof. For J ⊆ A, we write α ∼ J if α ∼ β for some β ∈ J .
Let Er,t be the event that for any set J ⊆ A with |J | ≤ r, if we delete all Yα

with α ∼ J , then the sum of the remaining Yα is at least µ + t, i.e.

|J | ≤ r =⇒
∑

α6∼J

Yα ≥ µ + t.

We begin with a simple lemma.

Lemma 2.3 (Deletion lemma). For all real r and t > 0, P(Er,t) ≤
(
1 + t

µ

)−r
.

Proof. Let
∑*

α1,...,αm
denote the sum over all sequences of α1, . . . , αm ∈ A such

that αj 6∼ αj for 1 ≤ i < j ≤ m, and let Zm =
∑*

α1,...,αm
Yα1 · · ·Yαm . If Er,t

holds and m ≤ r, then

Zm+1 =
∑*

α1,...,αm

Yα1 · · ·Yαm

∑

α 6∼{α1,...,αm}
Yα

≥
∑*

α1,...,αm

Yα1 · · ·Yαm(µ + t) = (µ + t)Zm,

so by induction Zm ≥ (µ + t)m for m ≤ r + 1.
On the other hand, by assumption, the factors Yαi

in each term in Zm are
independent, and thus

EZm =
∑*

α1,...,αm

EYα1 · · ·EYαm ≤
(∑

α

EYα

)m

= µm. (2.1)

Now take m = dre. Then, using Markov’s inequality and (2.1),

P(Er,t) ≤ P
(
Zm ≥ (µ + t)m

) ≤ EZm

(µ + t)m
≤

( µ

µ + t

)m

.

To complete the proof of Theorem 2.1, we note that
∑

α6∼J

Yα ≥ X −
∑

β∈J

X̃β ≥ X − |J |X∗

and thus {X ≥ µ + t} ∩ {X∗ ≤ t/2r} ⊆ Er,t/2, so

P(X ≥ µ + t) ≤ P(Er,t/2) + P(X∗ > t/2r).

This and Lemma 2.3 show the first inequality in the statement. The second
follows easily, using (1 + x/2)2 > 1 + x and thus (1 + x/2)−1 < (1 + x)−1/2 for
x > 0.

Remark 2.4. The use of the event Er,t above is the reason that we call our
approach “the deletion method”. For earlier versions, see [11] and [3, Lemma
2.51].

In combinatorial applications, the variables Yα usually are indexed by sub-
sets of some index set Γ. We then obtain the following estimate.
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Theorem 2.5. Suppose that H ⊆ [Γ]≤k for an integer k ≥ 1, and that YI ,
I ∈ H, is a family of non-negative random variables such that each YI is
independent of {YJ : J ∩ I = ∅}. Let X :=

∑
I YI and µ := EX =

∑
I EYI .

Let further, for I ⊆ Γ, XI :=
∑

J⊇I YJ and

X∗
1 := max

i∈Γ
X{i}.

If t > 0, then for every real r > 0,

P(X ≥ µ + t) ≤
(
1 +

t

2µ

)−r

+ P
(
X∗

1 >
t

2kr

)

≤
(
1 +

t

µ

)−r/2

+
∑
i∈Γ

P
(
X{i} >

t

2kr

)
.

Proof. We apply Theorem 2.1 with A = H and I ∼ J if I ∩ J 6= ∅, and note
that

X̃I =
∑

J∩I 6=∅
YJ ≤

∑
i∈I

X{i} ≤ kX∗
1 .

In some applications, the summands YI satisfy a stronger independence as-
sumption: two common elements are needed for dependence. For example, this
is the case for variables that are indexed by subsets of vertices of the random
graph G(n, p), but are functions of edge indicators. (See e.g. [3] for definition
of G(n, p).) In this case, we have the following alternative to Theorem 2.5,
which usually gives stronger bounds.

Theorem 2.6. Suppose that H ⊆ [Γ]≤k for an integer k ≥ 2, and that YI ,
I ∈ H, is a family of non-negative random variables such that each YI is
independent of {YJ : |J ∩ I| ≤ 1}. Let X :=

∑
I YI and µ := EX =

∑
I EYI .

Let further, for I ⊆ Γ, XI :=
∑

J⊇I YJ and

X∗
2 := max

i6=j∈Γ
X{i,j}.

If t > 0, then for every real r > 0,

P(X ≥ µ + t) ≤
(
1 +

t

2µ

)−r

+ P
(
X∗

2 >
t

k(k − 1)r

)

≤
(
1 +

t

µ

)−r/2

+
∑

{i,j}∈[Γ]2

P
(
X{i,j} >

t

k(k − 1)r

)
.

Proof. This time we apply Theorem 2.1 with I ∼ J if |I ∩ J | ≥ 2, and note
that

X̃I =
∑

|J∩I|≥2

YJ ≤
∑

{i,j}∈[I]2

X{i,j} ≤
(

k

2

)
X∗

2 .

Remark 2.7. For random graphs, another possibility leading to the same
bounds is to use Theorem 2.5 with Γ being the set of edges of the complete
graph; nevertheless, Theorem 2.6 is often more convenient and will be useful
in Section 3.
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As remarked in Remark 2.2, there are several ways to bound the term
P(X̃α > t/2r) in Theorem 2.1 and the corresponding terms in Theorems 2.5
and 2.6. It seems that this problem has to be approached on a case to case
basis, and that there is room for ingenuity and ad hoc arguments.

In some cases, these terms can be estimated directly, for example in Exam-
ple 6.2 below where we use a Chernoff bound for sums of independent variables
twice.

In other applications, the terms are naturally estimated by induction; we
explore this in detail in Section 3.

The simplest possibility to estimate these probabilities is to choose r so small
that they trivially vanish, as in the following corollaries.

Corollary 2.8. Let the assumptions of Theorem 2.1 hold. Suppose further
that M is a number such that 0 ≤ Yα ≤ M for each α, and let ∆ := maxi |{j :
j ∼ i}|, the maximum degree of the dependency graph (with loops contributing
1). Then

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−t/(4M∆)

.

Proof. Take r = t/(2M∆) in Theorem 2.1 and observe that then X̃α ≤ ∆M =
t/2r.

Corollary 2.9. Let the assumptions of Theorem 2.5 hold. Suppose further
that M is a number such that 0 ≤ YI ≤ M for each I, and let N := |Γ| and
∆1 := maxi∈Γ |{J ∈ H : i ∈ J}|. Then

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−t/(4kM∆1)

≤
(
1 +

t

µ

)−t/(4kMNk−1)

.

Proof. Take r = t/(2kM∆1) in Theorem 2.5 and observe that ∆1 ≤ Nk−1.

Corollary 2.10. Let the assumptions of Theorem 2.6 hold. Suppose further
that M is a number such that 0 ≤ YI ≤ M for each I, and let N := |Γ| and
∆2 := maxi6=j∈Γ |{J ∈ H : i, j ∈ J}|. Then

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−t/(2k(k−1)M∆2)

≤
(
1 +

t

µ

)−t/(2k2MNk−2)

.

Proof. Take r = t/(k(k − 1)M∆2) in Theorem 2.6 and observe that ∆2 ≤
Nk−2.

These corollaries yield essentially the same estimate as the one obtained (for
a special case) in [3, Proposition 2.44] by another method, based on another
idea by Rödl and Ruciński [10]. See also [7].

Note further that for the case of independent summands (∆ = 1 in Corol-
lary 2.8, k = 1 in Corollary 2.9 or k = 2 in Corollary 2.10), we obtain, at
least for t = O(µ), up to a constant in the exponent, the well-known Chernoff
bound, see e.g. [3, Chapter 2].

Remark 2.11. Sometimes, for example when studying random hypergraphs,
even stronger independence properties than in Theorem 2.6 may hold; for



THE DELETION METHOD FOR UPPER TAIL ESTIMATES 7

instance that YI is independent of {YJ : |J ∩ I| < 3}. All such cases are
easily handled by Theorem 2.1, and we leave the formulation of analogues of
Theorem 2.6 to the reader.

3. Induction

In many cases, Theorem 2.5 can be used inductively. A general setting where
this is possible is described by the following set of assumptions, which will be
used throughout this section and the next one.

(H1) Let, as above, X :=
∑

I YI , where YI , I ∈ H ⊆ [Γ]≤k for some finite index
set Γ and an integer k ≥ 1, is a family of non-negative random variables.

Suppose further that A is another index set and that there is a family
ξα, α ∈ A, of independent random variables and a family of subsets
AI ⊆ A, I ∈ [Γ]≤k, such that each YI is a function of {ξα : α ∈ AI} and,
further, A∅ = ∅ and AI ∩ AJ = AI∩J for all I, J ∈ [Γ]≤k.

Let µ := EX and N := |Γ|. To avoid trivialities, assume N > 1.
Note that although YI is defined for I ∈ H only, we want A to be defined

for all I ∈ [Γ]≤k. Actually, we can without loss of generality assume that YI is
defined for all I ∈ [Γ]≤k too, by setting YI = 0 for I /∈ H, but this is slightly
inconvenient in applications.

It is easily seen that the assumptions of Theorem 2.5 hold under (H1). The
situation studied here is more special than in Theorem 2.5, but applications
are usually of this type. The conditions (H1) are a bit technical, and we give
some examples.

Example 3.1. In many applications we simply take A = Γ and AI = I. In
other words, ξi, i ∈ Γ, are independent random variables and YI is a function
of {ξi : i ∈ I}.
Example 3.2. An important special case of Example 3.1 is when each ξi is an
indicator random variable, i.e. attains the values 0 and 1 only, and YI =

∏
i∈I ξi.

In other words, the indicator random variables ξi describe a random (Bernoulli)
subset Γp of Γ, p = (p1, . . . , pN), where pi = P(ξi = 1), and X is the number
of elements of H that are contained in Γp.

Example 3.3. We may treat subgraph counts in the random graph G(n, p)
as in Example 3.2, letting Γ be the set of all edges in the complete graph Kn,
H the family of edge sets of copies of a given graph G assumed to have no
isolated vertices, and ξi the indicator that edge i is present in G(n, p); we thus
take k to be the number of edges in G. (See e.g. [3] for various properties of
subgraph counts of G(n, p).)

Example 3.4. To treat the number of induced copies in G(n, p) of a given
graph G with v(G) vertices, we may again let Γ, A, AI and ξi be as in Examples
3.3 and 3.1, but now letting H be the family of edge sets of copies of Kv(G)

and YI the indicator of the event that the subgraph of G(n, p) defined by I is

isomorphic to G. Here k =
(

v(G)
2

)
.

We now consider some examples where A and Γ are not the same.
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Example 3.5. Subgraph counts can also be treated as follows. Let Γ =
V (Kn) be the vertex set of the complete graph Kn and let A = [Γ]2 be its
edge set. Let ξα be the indicator variable showing whether the edge α is
present or not in G(n, p), and let, for I ⊆ Γ, AI = [I]2, the set of all edges in
Kn with both endpoints in I. Again, let G be a fixed graph, and let YI be the
number of copies of G in G(n, p) that have vertex set I; this time we thus take
k to be the number of vertices of G and H = [Γ]k. Induced copies of G can be
treated in exactly the same way.

Example 3.6. For substructure counts in random `-uniform hypergraphs, we
similarly may take A = [Γ]`. Here ` can be any positive integer.

Example 3.7. For an example with A =
⋃2

j=1[Γ]j and AI = [I]≤2 ∩ A, sup-

pose that the vertices in the random graph G(n, p) are randomly coloured
using 7 different colours. Then the number of rainbow 7-cycles, i.e. cycles con-
taining exactly one vertex of each colour, is a sum X of this type; we let ξi,
i ∈ [Γ]1 = Γ, be the colour of vertex i, and ξα, α ∈ [Γ]2, be the indicator of
edge α. Further examples with such A are given in [4].

Example 3.8. More generally, we can take anyA ⊆ ⋃`
j=1[Γ]j = [Γ]≤`\{∅}, for

some `, and AI = [I]≤`∩A. For another example with ` = 2 and A =
⋃2

j=1[Γ]j,

consider the number of extensions of a given type in G(n, p) with fixed roots
{1, . . . , r}; we take Γ = {r + 1, . . . , n}, let ξ{i,j}, {i, j} ∈ [Γ]2, be the random
indicator of the edge ij and let ξi, i ∈ [Γ]1 = Γ, be the random vector of edge
indicators (ξi1, . . . , ξir).

Subgraph counts in random graphs can thus be treated in two different
ways; this is similar to the choice between vertex exposure and edge exposure
in martingale arguments. It turns out that in many cases, the approach in
Example 3.5 yields better results with the theorems below, although we do
not know whether that always holds. One reason why the latter approach is
better is that it usually gives a lower value of k; another is that it exhibits the
stronger independence assumption in Theorem 2.6.

In order to formulate our results, we need some more notation. Let as above
XI :=

∑
J⊇I YJ and consider E(XI | ξα, α ∈ AI), the conditional expectation

of XI when we fix the values of ξα for α ∈ AI (i.e. taking the expectation over
ξα, α /∈ AI). This is a function of ξα, α ∈ AI , and we define µI to be its
maximum (or, in general, supremum):

µI := supE(XI | ξα, α ∈ AI). (3.1)

Further let, for l ≤ k,

µl := max
|I|=l

µI . (3.2)

In other words, µl is the smallest number such that E(XI | ξα, α ∈ AI) ≤ µl

for every I ∈ H with |I| = l and every choice of values of ξα, α ∈ AI .
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Note that if |I| = k, then XI = YI , which is a function of ξα, α ∈ AI , and
consequently, E(XI | ξα, α ∈ AI) = YI and µI = sup YI . Hence,

µk = max
|I|=k

sup XI = max
|I|=k

sup YI . (3.3)

Moreover, trivially µ0 = µ = EX.

Example 3.9. In Example 3.2, µI is the expected number of elements J ∈ H
such that I ⊆ J ⊆ Γp, given that I ⊆ Γp. In the special case P(ξi = 1) = p
for all i, we obtain µI =

∑
J∈H, J⊇I p|J |−|I|.

We now can state one of our principal results.

Theorem 3.10. Assume (H1). With notation as above, for every t > 0 and
r1, . . . , rk such that

r1 · · · rj · µj ≤ t, j = 1, . . . , k, (3.4)

we have, with c = 1/8k,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cr1

+
k−1∑
j=1

N j
(
1 +

t

r1 · · · rj µj

)−crj+1

. (3.5)

Proof. We apply Theorem 2.5 with r = r1/4k and obtain, letting t1 = t/r1 =
t/4kr,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−r/2

+
∑
i∈Γ

P(X{i} > 2t1). (3.6)

If k = 1, we have by (3.3) and (3.4), for every i ∈ Γ, X{i} ≤ µ1 ≤ t/r1 = t1,
and the result follows by (3.6). (Alternatively, use Corollary 2.9 with M = µ1

and ∆1 = 1).
If k ≥ 2 we use induction, assuming the theorem to hold for k − 1. Fix

i ∈ Γ and let Γ̃ = Γ \ {i}. Then X{i} =
∑

I∈H̃ ỸI , with ỸI = YI∪{i} and

H̃ = {I ⊆ Γ̃ : I ∪ {i} ∈ H} ⊆ [Γ̃]≤k−1. Conditioned on ξα, α ∈ A{i}, the

random variables ỸI satisfy the assumptions (H1), with Ã = A \ A{i} and

ÃJ = AJ∪{i} \A{i}; the numbers defined by (3.1) and (3.2) become µ̃I ≤ µI∪{i}
and µ̃l ≤ µl+1. Note further that, by (3.1), (3.2) and (3.4),

E(X{i} | ξα, α ∈ A{i}) ≤ µ{i} ≤ µ1 ≤ t/r1 = t1.

Consequently, still conditioning on ξα, α ∈ A{i}, we can apply the induction
hypothesis, with rj replaced by r̃j = rj+1 and t replaced by t1, noting that
(3.4) holds for these numbers because

r̃1 · · · r̃j · µ̃j ≤ r2 · · · rj+1 · µj+1 ≤ t/r1 = t1.
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This yields

P(X{i} > 2t1) ≤ P
(
X{i} ≥ E(X{i} | ξα, α ∈ A{i}) + t1

)

≤
(
1 +

t1
µ1

)−cr2

+
k−2∑
j=1

N j
(
1 +

t1
r2 · · · rj+1 µj+1

)−crj+2

=
(
1 +

t

r1µ1

)−cr2

+
k−1∑
j=2

N j−1
(
1 +

t

r1 · · · rj µj

)−crj+1

. (3.7)

The same estimate then holds unconditionally, and the result follows from (3.6)
and (3.7).

We still have the freedom, and burden, of choosing suitable values of r1, . . . rk

when applying Theorem 3.10. In the next section, we give several corollaries
that are suitable for immediate application, and the impatient reader may
proceed there directly.

In the remainder of this section we give some variants of Theorem 3.10 that
yield better results under some circumstances.

Stronger independence. In the case of random graphs treated as in Exam-
ple 3.5, we have the stronger independence property of Theorem 2.6, since we
need a common edge, i.e. two common vertices, to get dependence between two
variables YI (or families of such variables). This is expressed by the following
property.

(H2) AI = ∅ when |I| ≤ 1.

In such cases, we can improve the estimate above. Note that there is no r1 in
the following statement.

Theorem 3.11. Assume (H1) and (H2). Then, with notation as above, for
every t > 0 and r2, r3, . . . , rk such that

r2r3 · · · rj · µj ≤ t, j = 2, . . . , k, (3.8)

we have, with c = 1/4k2,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cr2

+
k−1∑
j=2

N j
(
1 +

t

r2r3 · · · rj µj

)−crj+1

. (3.9)

Proof. We apply Theorem 2.6 with r = r2/2k
2 and obtain, letting t1 = t/r2 =

t/2k2r,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−r/2

+
∑

{i,j}∈[Γ]2

P
(
X{i,j} > 2t1

)
. (3.10)

Each term in the sum is estimated as in the proof of Theorem 3.10; this time

we fix two indices i, j ∈ Γ, let Γ̃ = Γ \ {i, j} d have X{i,j} =
∑

I∈H̃ ỸI with

ỸI = YI∪{i,j} and H̃ = {I ⊆ Γ̃ : I ∪ {i, j} ∈ H} ⊆ [Γ̃]≤k−2. Conditioned

on ξα, α ∈ A{i,j}, the random variables ỸI satisfy (H1), with Ã = A \ A{i,j}
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and ÃJ = AJ∪{i,j} \ A{i,j}; the numbers defined by (3.1) and (3.2) become
µ̃I ≤ µI∪{i,j} and µ̃l ≤ µl+2. Moreover, by (3.1), (3.2) and (3.8),

E(X{i,j} | ξα, α ∈ A{i,j}) ≤ µ{i,j} ≤ µ2 ≤ t/r2 = t1.

Consequently, still conditioning on ξα, α ∈ A{i,j}, we obtain by Theorem 3.10
with k replaced by k − 2, rj replaced by r̃j = rj+2 and t replaced by t1,

P(X{i,j} > 2t1) ≤ P(X{i,j} ≥ µ{i,j} + t1)

≤
(
1 +

t1
µ2

)−cr3

+
k−3∑
j=1

N j
(
1 +

t1
r3 · · · rj+2 µj+2

)−crj+3

. (3.11)

The same estimate then holds unconditionally, and the result follows from
(3.10) and (3.11).

Note that unlike the proof of Theorem 3.10, this proof does not use induc-
tion, since the additional independence hypothesis (H2) does not have to be

satisfied by the variables ỸI . Instead, we combine Theorem 2.6 and Theo-
rem 3.10, i.e. we combine one application of Theorem 2.6 and repeated appli-
cations of Theorem 2.5. This is thus a kind of combination of edge exposure
and vertex exposure.

As remarked in Remark 2.11, we sometimes may have even stronger inde-
pendence properties. For example, for random hypergraphs as in Example 3.6,
we need ` common vertices to get dependence; more precisely, the following
generalization of (H2) holds. (Here ` is any integer with 2 ≤ ` ≤ k.)

(H`) AI = ∅ when |I| ≤ `− 1.

We then have the following generalization of Theorem 3.11.

Theorem 3.12. Assume (H1) and (H`), for some ` ≥ 2. Then, with notation
as above, for every t > 0 and r`, . . . , rk such that

r` · · · rj · µj ≤ t, j = `, . . . , k, (3.12)

we have, with c = c(k, `),

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cr`

+
k−1∑

j=`

N j
(
1 +

t

r` · · · rj µj

)−crj+1

. (3.13)

Proof. We apply Theorem 2.1 with I ∼ J when |I ∩ J | ≥ `, estimate X̃I ≤∑
J∈[I]` XJ and use conditioning and Theorem 3.10 as in the proof of Theo-

rem 3.11 to estimate P(XJ > t/2r
(

k
`

)
) for |J | = `; we omit the details.

Further refinements. We define, for 1 ≤ j ≤ k,

Mj := max
|J |=j

sup XJ . (3.14)

Hence Mk = µk by (3.3). We then have the following extension of Theorem 3.10
(which is the case k0 = k). It sometimes yields better bounds, but often there
is no advantage in taking k0 < k because typically then Mk0 is much larger
than µk0 .
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Theorem 3.13. Assume (H1), and let k0 be an integer with 1 ≤ k0 ≤ k.
Then, with notation as above, for every t > 0 and r1, . . . , rk0 such that

r1 · · · rj · µj ≤ t, j = 1, . . . , k0 − 1,

r1 · · · rk0 ·Mk0 ≤ t,
(3.15)

we have, with c = 1/8k,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cr1

+

k0−1∑
j=1

N j
(
1 +

t

r1 · · · rj µj

)−crj+1

.

Proof. If k0 = 1, we have by (3.15), for every i ∈ Γ, X{i} ≤ M1 ≤ t/r1, and
the result follows by taking r = r1/2k in Theorem 2.5.

If k0 ≥ 2 we use induction; this time on k0. The same argument as in the
proof of Theorem 3.10 completes the proof; we leave the verification to the
reader.

With the stronger independence property (H2), or more generally (H`), we
similarly get the following extension of Theorem 3.12.

Theorem 3.14. Assume (H1) and (H`), for some ` ≥ 2. Then, with notation
as above, for every t > 0, ` ≤ k0 ≤ k and r` . . . , rk0 such that

r` · · · rj · µj ≤ t, j = `, . . . , k0 − 1,

r` · · · rk0 ·Mk0 ≤ t,

we have for some c > 0,

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cr`

+

k0−1∑

j=`

N j
(
1 +

t

r` · · · rj µj

)−crj+1

.

Remark 3.15. In most applications, all summands YI have |I| = k, but we
allow the possibility that different cardinalities occur. In that case, we can
make another improvement of the estimates above.

Let X ′
I :=

∑
J)I YJ , thus omitting the term YI , and define

µ′I := supE(X ′
I | ξα, α ∈ AI),

µ′l := max
|I|=l

µ′I .

Conditioned on ξα, α ∈ AI , the difference XI − X ′
I = YI is a constant, and

thus we can in the induction step (3.7) in the proof of Theorem 3.10 use X ′
{i}

instead of X{i}. This leads to the following result; we omit the details: We
may replace µj by µ′j in (3.5) (keeping µj in (3.4)), and similarly in Theorems
3.11, 3.12, 3.13 and 3.14.

4. Corollaries

We give in this section several corollaries of the theorems in the preceding
section, obtained by suitable choices of ri. These corollaries are more conve-
nient for applications, and are often as powerful as the theorems. They have,
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however, more restricted applicability, so we give several different versions to
cover different situations. We continue with the notation of Section 3.

We begin with a consequence of Theorem 3.10. The following explicit bounds
are widely applicable and form one of our principal results.

Corollary 4.1. Assume (H1). With notation as above, and c = 1/12k, for
every t > 0,

P(X ≥ µ + t) ≤ 2Nk−1 exp
(
−c min

1≤j≤k

(t lg(1 + t/µ)

µj

)1/j)

≤





2Nk−1 exp
(
−c min1≤j≤k

(
t2

µµj

)1/j)
, t ≤ µ;

2Nk−1 exp
(
−c min1≤j≤k

(
t

µj

)1/j)
, t ≥ µ.

(4.1)

Proof. We estimate the terms in the sum in (3.5) using (3.4), which implies

1 +
t

r1 · · · rj µj

≥ 2. (4.2)

Hence, (3.5) yields, writing τ = lg(1 + t/µ) and c1 = 1/8k

P(X ≥ µ + t) ≤ 2−c1r1τ +
k∑

j=2

N j−12−c1rj . (4.3)

We choose r1 = r/τ and r2, . . . , rk = r, where r is the largest number that
makes (3.4) hold, i.e.

r = min
1≤j≤k

( tτ

µj

)1/j

.

This makes all exponents of 2 in (4.3) equal to −c1r, and the right hand side
of (4.2) can be bounded by

2−c1r

k∑
j=1

N j−1 < e−(c1 ln 2)r(2Nk−1).

The first estimate follows using c1 ln 2 > 2c1/3 = 1/12k = c. The second
estimate follows because lg(1 + t/µ) ≥ min(1, t/µ) by concavity.

Remark 4.2. It is easily seen that the choice of rj in the proof of Corollary 4.1
is essentially optimal in (4.3); any other choice would make one of the expo-
nents of 2 smaller in absolute value, and thus the corresponding term larger;
hence the resulting estimate differs from the optimum in (4.3) by at most the
factor 2Nk−1.

When the stronger independence hypothesis (H2) holds, we obtain a stronger
result using Theorem 3.11. This is another of our principal results.
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Corollary 4.3. Suppose that (H1) and (H2) hold. With notation as above,
and c = 1/6k2, for every t > 0,

P(X ≥ µ + t) ≤ 2Nk−1 exp
(
−c min

2≤j≤k

(t lg(1 + t/µ)

µj

)1/(j−1))

≤





2Nk−1 exp
(
−c min2≤j≤k

(
t2

µµj

)1/(j−1))
, t ≤ µ;

2Nk−1 exp
(
−c min2≤j≤k

(
t

µj

)1/(j−1))
, t ≥ µ.

(4.4)

Proof. We use Theorem 3.11 with (4.2), now without r1, choosing r2 = r/τ
and r3, . . . , rk = r, where

r = min
2≤j≤k

( tτ

µj

)1/(j−1)

.

More generally, we similarly obtain from Theorem 3.12 the following. (As
above, we can replace t lg(1 + t/µ) by t2/µ when t ≥ µ.)

Corollary 4.4. Assume (H1) and (H`), for some ` ≥ 2. With notation as
above, for every t > 0,

P(X ≥ µ + t) ≤ 2Nk−1 exp
(
−c min

`≤j≤k

(t lg(1 + t/µ)

µj

)1/(j−`+1))
.

If we compare Corollaries 4.1 and 4.3, we see that the power in the exponent
in Corollary 4.3 is larger. For example, it is often the case that the terms with
j = k are the minimum ones; if, for simplicity, further t = µ and µk = 1, then
the estimates are, ignoring the factor 2Nk−1, exp(−cµ1/k) and exp(−cµ1/(k−1)),
respectively. The difference between the two corollaries stems from the fact
that the basic estimate Theorem 2.1 is used (unravelling the induction) k times
in the proof of Theorem 3.10 and thus of Corollary 4.1, but only k − 1 times
in the proof of Theorem 3.11 and Corollary 4.3, since we there jump by two
in the first step. (Corollary 4.4 with ` > 2 is even better.)

This is typical for this kind of induction; if we apply the basic estimate
inductively m times, and want a final estimate of exp(−λ), we need to choose
r1, . . . , rm roughly equal to λ, at least, and for the final step we need something
like t/(r1 · · · rm) ≥ 1; hence, again for t = µ, typically λm ≤ µ. Although this
is not completely rigorous, it shows that often it is advantageous to avoid too
many induction steps.

One way to cut down the number of induction steps is to use Theorems 3.13
and 3.14. Again using (4.2) and choosing rj as in the proofs above, for the
largest r now allowed, we obtain the following corollaries. They are sometimes
better than Corollaries 4.1, 4.3 and 4.4, but as remarked above, the advantage
gained by taking k0 < k (and thus reducing the number of induction steps) is
often lost because Mk0 may be much larger than µk0 . We omit the proofs.
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Corollary 4.5. Assume (H1). With notation as above, and c = 1/12k, for
every k0 ≤ k and t > 0,

P(X ≥ µ + t)

≤ 2Nk0−1 exp
(
−c min

(
min

1≤j≤k0−1

(t lg(1 + t/µ)

µj

)1/j

,
(t lg(1 + t/µ)

Mk0

)1/k0
))

.

Corollary 4.6. Assume (H1) and (H`), for some ` ≥ 2. With notation as
above and some c > 0, for every t > 0 and ` ≤ k0 ≤ k,

P(X ≥ µ + t)

≤ 2Nk0−1 exp

(
−c min

(
min

`≤j≤k0−1

(t lg(1 + t/µ)

µj

)1/(j−`+1)

,

(t lg(1 + t/µ)

Mk0

)1/(k0−`+1)))
.

All the corollaries above are useful only when the exponents in them are
large. Consider, for simplicity, the case t ≤ µ. The factor Nk−1 in Corollary 4.1
is harmless when the exponent is much larger than (k − 1) ln N , i.e. if t2/µ ≥
Cµj lnj N for some large constant C and all 1 ≤ j ≤ k. On the other hand,
the corollary is useless if t2/µ ≤ cµj lnj N for some small constant c and some
j ≤ k. In such cases, the following version is better; it yields non-trivial results
when t2/µ ≥ Cµj lnj−1 N , 1 ≤ j ≤ k.

Corollary 4.7. Assume (H1). With notation as above and some c > 0, for
every t > 0,

P(X ≥ µ + t) ≤ 2 exp

(
−c min

(
min

1≤j≤k

(t lg(1 + t/µ)

µj

)1/j

, min
2≤j≤k

t lg(1 + t/µ)

µj lnj−1 N

))
.

Proof. As in the proof of Corollary 4.1, we use (4.3), where τ = lg(1 + t/µ)
and c1 = 1/8k, but now choose r1 = r/τ and rj = r + kc−1

1 lg N , j ≥ 2, with

r = min
(

1
2

min
1≤j≤k

( tτ

µj

)1/j

, min
1≤j≤k

cj−1
1 tτ

µj(2k)j−1 lgj−1 N

)
.

(This yields c = 2−(4k−1)k−(2k−1) lnk−1 2 for k > 1, which certainly can be
improved.)

Again we obtain a stronger result when (H`) holds.

Corollary 4.8. Assume (H1) and (H`), for some ` ≥ 2. With notation as
above and some c > 0, for every t > 0,

P(X ≥ µ + t)

≤ 2 exp

(
−c min

(
min

`≤j≤k

(t lg(1 + t/µ)

µj

)1/(j−`+1)

, min
`+1≤j≤k

t lg(1 + t/µ)

µj lnj−` N

))
.
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Proof. We choose r` = r/τ and rj = r + C lg N , j > `, in Theorem 3.12 and
optimize r; we leave the details as an exercise.

Similarly, we obtain from Theorems 3.13 and 3.14 the following more general
results, here condensed into one statement; we omit the proof.

Corollary 4.9. Let 1 ≤ ` ≤ k0 ≤ k. If ` = 1, assume (H1), and if ` ≥ 2,
assume (H1) and (H`). With notation as above, let µ̄j = µj for j < k0 and
µ̄k0 = Mk0. Then, for every t > 0,

P(X ≥ µ + t)

≤ 2 exp

(
−c min

(
min

`≤j≤k0

(t lg(1 + t/µ)

µ̄j

)1/(j−`+1)

, min
`+1≤j≤k0

t lg(1 + t/µ)

µ̄j lnj−` N

))
.

We have so far used (4.2) and (4.3), and the corresponding estimates ob-
tained from the other theorems, but in some situations with t2/µ small, the
full strength of (3.5) etc. is needed. In the following result, we assume that
µ1, . . . , µk−1 are small, while µk may be 1.

Corollary 4.10. Assume (H1). For every α, β > 0, there is a constant c =
c(k, α, β) > 0 such that, with notation as above, if µj ≤ N−α for 1 ≤ j ≤ k−1
and µk ≤ 1, then for 0 < t ≤ µ,

P(X ≥ µ + t) ≤ e−ct2/µ + N−β.

Proof. Let A ≥ 1 be a constant, and choose r2, . . . , rk = A and r1 = A1−kt.
Then (3.4) is satisfied, and Theorem 3.10 yields

P(X ≥ µ + t) ≤
(
1 +

t

µ

)−cA1−kt

+
k−1∑
j=1

N j(Nα)−cA.

The result follows by choosing A so that cαA = β + k.

We obtain two immediate corollaries by letting one of the terms on the right
hand side dominate the other.

Corollary 4.11. Assume (H1). For every α, β, ε > 0, there is a constant
Q = Q(k, α, β, ε) > 0 such that, with notation as above, if µj ≤ N−α for
1 ≤ j ≤ k − 1, µk ≤ 1, and µ ≥ Q ln N , then

P
(
X ≥ (1 + ε)µ

) ≤ N−β.

Corollary 4.12. Assume (H1). For every α > 0, there is a constant c =
c(k, α) > 0 such that, with notation as above, if µj ≤ N−α for 1 ≤ j ≤ k − 1,
µk ≤ 1, 0 < ε ≤ 1 and µ ≤ ln N , then

P
(
X ≥ (1 + ε)µ

) ≤ 2e−cε2µ.

Remark 4.13. Remark 3.15 implies that in Corollaries 4.10–4.12, the as-
sumptions on µj may be weakened to µ′j ≤ N−α, 1 ≤ j ≤ k − 1, and YI ≤ 1,
I ∈ H.
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5. Relations with Kim and Vu’s results
Better as a long
remark than a
section?

As said earlier, the results in Sections 3 and 4 are inspired by the results
and methods in Kim and Vu [8] and Vu [13, 15, 16], where similar induction
arguments are used. One difference, which does not matter for many applica-
tions, is that Kim and Vu study sums of variables of a special structure,while
we focus on the independence properties of the summands.

The general setting of Kim and Vu in these papers is to consider a random
variable X which is a polynomial X(ξ1, . . . , ξN) of degree k in N indepen-
dent random variables ξ1, . . . , ξN . (We change their notation to correspond to
ours.) It is furthermore assumed that the polynomial has only non-negative
coefficients and that 0 ≤ ξi ≤ 1; sometimes it is further assumed that the
variables ξi are binary, i.e. ξi ∈ {0, 1}. This setting is an instance of (H1) as in
Example 3.1; we take Γ = A = {1, . . . , N} and let YI be the sum of all terms
ai1···ijξi1 · · · ξij in X such that {i1, . . . , ij} = I. (If no variable occurs to higher
power than 1, YI is just a single term. Example 3.2 is a special case of this
case.)

It is easily verified that a suitable choice of ri in Theorem 3.10 yields the
upper tail part of the main theorem in Kim and Vu [8], see also [16, Theorem
3.1], apart from the numerical value of the constants. (Corollary 4.1 yields a
somewhat better estimate.)

This result by Kim and Vu is superseded by later results by Vu [14, 16].
Indeed, Vu [16] inspired us to both Theorem 3.13 and Corollaries 4.7–4.9. It
can be checked that Corollary 4.7 yields the upper tail parts of Theorem 2.3
in [14] and, together with Corollary 4.9 (with ` = 1), Theorem 3.2 in [16].

These results all use, in our version, A = Γ as in Example 3.1. The more
general setting in (H1) is inspired by Vu [15], which studies the subgraph count
XG in G(n, p), where G is a fixed graph with k vertices (see Section 6 below)
and the corresponding, more general, problem of counting extensions of a given
type with a fixed set of roots. In particular, our Theorems 3.10 and 3.11 and
the corresponding Corollaries 4.1 and 4.3, owe much to Theorems 2 and 1,
respectively, in [15]. (The upper tail parts of these theorems by Vu follow from
our Corollaries 4.1 and 4.3; similarly, the upper tail part of Theorem 6 in [15]
follows from our Corollary 4.4.) Note that the subgraph case is an instance of
our Example 3.5 where (H2) holds, while the extension case is an instance of
Example 3.8 where (H2) fails; thus we (and Vu) obtain better bounds for the
subgraph case.

Corollaries 4.10–4.12 are inspired by and strongly related to results in Vu
[13]; we have not been able to derive Theorem 1.3 in [13] by our method, but
the upper tail parts of its corollaries Theorem 1.2 and Theorem 1.4 follow
immediately from our Corollaries 4.11 and 4.12, respectively, together with
Remark 4.13. Also Remark 3.15 is inspired by Vu [13].

6. Applications to random graphs

We give in this section an application of the general results developed in this
paper to subgraph counts of random graphs.
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We denote the numbers of vertices and edges of a graph G by v(G) and
e(G), respectively. Let G be a fixed graph, and let XG be the number of
copies of G in the random graph G(n, p). As explained in Example 3.5, we
have XG =

∑
I∈[Γ]k YI , where k = v(G) and YI is the number of copies of G

in G(n, p) with vertex set I, so we are in the setting of Sections 2 and 3. We
have (for n ≥ k)

EXG =
k!

aut(G)

(
n

k

)
pe(G) ³ nkpe(G),

where aut(G) is the number of automorphisms of G and ³ means that the
quotient of the two sides is bounded from above and below by positive con-
stants, i.e. it has the same meaning as the Θ() notation, but reflects better its
symmetric nature.

In 1990, Janson [1] proved that the lower tail of the distribution of XG

decays exponentially in the expectation of the least expected subgraph of G.
Namely, let ΨH := nvHpeH , which is roughly the expected number of copies of
H in G(n, p). Then, for every ε > 0,

P(XG ≤ (1− ε)EXG) ≤ exp
(
−Θε

(
min
H⊆G

ΨH

))
.

This is best possible, as by the FKG inequality, log P(XG = 0) is of the same
order.

Assume in the sequel, for simplicity, that p ≥ n−1/m(G), the threshold forClumsy but
necessary? XG > 0, where m(G) = maxH⊆G e(H)/v(H). Recently, it was proved in [5]

that, for every ε > 0,SJ

pΘε(M∗
G) ≤ P(XG ≥ (1 + ε)EXG) ≤ exp {−Θε(M

∗
G)} , (6.1)

where,SJ

M∗
G =

{
Θ(minH⊆G Ψ

1/α∗H
H ) if p ≤ n−1/∆G ,

Θ(n2p∆G) if p ≥ n−1/∆G ,

α∗H is the fractional independence number of H, that is the largest value of∑
v αv over all assignments of nonnegative weights αv ∈ [0, 1] satisfying the

condition αv +αu ≤ 1 for all edges uv of H, while ∆G is the maximum degree.
You must have
used an old version
of [5].

Note that the upper tail decays to zero much slower than the lower tail.
Also, unlike the lower tail, the exponents of the above estimates for the upper
tail of XG are a logarithmic factor apart. Hence the following problem remains
(narrowly) open.

Problem 6.1. What are the asymptotics of − lnP
(
XG ≥ (1 + ε)EXG

)
?

We will now see that our deletion method yields in general estimates on the
upper tail of XG which are weaker than those established in [5]. However, in
two particular cases (G = K4 and G = C4), with an additional argument, we
are able to improve the above upper bound on the upper tail of XG.

For simplicity we take ε = 1. Any constant ε ≤ 1 would give the same
results with, at most, an extra factor ε2 in the exponent. Provided that for
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each H ⊆ G with v(H) ≥ 2, the expectation EXH is at least some large

constant times lnv(H)−1 n, Corollary 4.3 yields that SJ

P
(
XG ≥ 2EXG

) ≤ exp
(
−Θ

(
min

H⊆G:v(H)≥2

(
EXH

)1/(v(H)−1)
))

. (6.2)

Recall that the graph G is said to be balanced if e(H)/v(H) ≤ e(G)/v(G)
for every H ⊆ G, see [3]. For balanced graphs, estimate (6.2) assumes quite a

simple form: if EXG ≥ C lnv(G)−1 n, then

P
(
XG ≥ 2EXG

) ≤ exp
(−Θ

(
(EXG)1/(v(G)−1)

))
. (6.3)

which is essentially the same bound as in Vu [15, Theorem 3].
When p is large, the bound in (6.2) is surpassed by a simple application of

Corollary 2.10, which immediately yields that

P
(
XG ≥ 2EXG

) ≤ exp
(−Θ(n2pe(G))

)
. (6.4)

This, however, except for stars, is still weaker than the bound in (6.1).
Before turning to our next example, let us notice that for k-regular graphs

G we have M∗
G = Θ(n2pk) (see [5]).

Example 6.2. Let us now consider the case when G = K4. This graph is
balanced, and assuming µ ³ n4p6 ≥ C ln3 n, (6.3) yields

P(XK4 ≥ 2EXK4) ≤ exp
(−cµ1/3

) ≤ exp
(−c′n4/3p2

)
,

while (6.4) yields

P(XK4 ≥ 2EXK4) ≤ exp
(−cn2p6

)
,

which is better when p > n−1/6.
For some p, we can do substantially better by using Theorem 2.6 directly

and the following argument to estimate the term P(X{i,j} > t/12r), where
recall X{i,j} is, in this case, the number of copies of K4 containg the edge ij.

Fix i and j, and let W be the number of subgraphs of G(n, p) on 4 vertices,
including i and j, that are complete except possibly for the edge ij. Each such
subgraph thus contains, besides i and j, two other vertices that are common
neighbours of i and j, and further are joined by an edge. Clearly, W ≥ X{i,j}
(W = X{i,j} if i and j are adjacent, and X{i,j} = 0 otherwise).

Expose first all edges in G(n, p) adjacent to i or j. Let Z ∼ Bi(n − 2, p2)
be the number of common neighbors of i and j. Then expose the remaining
edges. Conditioned on Z = z, there are

(
z
2

)
possible edges that would complete

a subgraph counted by W , so W ∼ Bi
((

z
2

)
, p

)
. Hence, for any t, r, a > 0 we

have

P(X{i,j} > t/12r) ≤ P(Z > a) + P(W > t/12r, Z ≤ a)

≤ P(
Bi(n− 2, p2) > a

)
+ P

(
Bi

((bac
2

)
, p

)
> t/12r

)
.

Assume that p ≤ n−1/2−γ, for some γ > 0, and µ ≥ C ln n, for some large
C > 0, and choose t = µ, a = n2p3 and r = n2p3 ln1/2 n. We will apply the SJ
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Chernoff bound in the form

P(Bi(n, p) ≥ x) ≤ exp
(
−x ln

x

enp

)
,

where x/enp > 1 (see [3, Corollary 2.4]), to both Z and W .SJ

Since a/np2 = np > n1/3 and t/12ra2p > c2n
γ, this yields, by Theorem 2.6

P(XK4 ≥ 2EXK4) ≤ e−r/3 + n2(e−c3a ln n + e−c4γ(ln n)t/12r) (6.5)

and thus

P(XK4 ≥ 2EXK4) ≤ e−c(γ)n2p3 ln1/2 n, (6.6)

getting away from the upper bound in (6.1).

Example 6.3. The case G = C4 was treated in detail in [7] where for p ≤
n−2/3 an upper bound equivalent to that in (6.1) was established. Here we show
how to improve it similarly to Example 6.2. In this case we have µ ³ n4p4

and M∗
G ³ n2p2. Let us assume that 1/n ≤ p ≤ n−2/3−γ for some γ > 0. For

fixed i and j, Xi,j counts copies of C4 containing the edge ij. Let W be the
number of paths of length 3 connecting i and j, Z – the number of neighbors
of i or j different from i and j (set N), and U – the number of edges with both
endpoints in N . Then

Xi,j ≤ W ≤ 2U,

where Z ∼ Bi(n − 2, 2p− p2) and, given Z = z, U ∼ Bi
((bzc

2

)
, p

)
. Hence, for

any t, r, a > 0 we have

P(X{i,j} > t/12r) ≤ P(
Bi(n− 2, 2p) > a

)
+ P

(
Bi

((bac
2

)
, p

)
> t/24r

)
.

Setting t = µ, and a = r = n2p2 ln1/2 n, and applying twice the same Chernoff
bound as in Example 6.2 we arrive at

P(XC4 ≥ 2EXC4) ≤ e−c(γ)n2p2 ln1/2 n. (6.7)

(Here we need the extra factor ln1/2 n in a, since for p close to 1/n the term

ln(a/EZ) is of order smaller than ln1/2 n.)

Remark 6.4. At the moment we are unable to obtain such a good upper
bound as (6.6) in other ranges of p and for other graphs G. The complete
graph K4 and the 4-cycle C4 both seem to be exceptionally suited for our
method because itheir vertex set can be broken into two pairs, allowing us
to use the natural independence of the edges of G(n, p) twice, together with
the independence of the common neighbors. Moreover, luckily, for these two
graphs EXG is roughly the square of M∗

G. As for the range, we need p small
in order to gain the ln n term in the last exponent of (6.5) and, respectively,
in its analog for C4.

Remark 6.5. The arguments and results in this section apply to counts of
induced subgraphs too; note that our method does not require the summands
YI to be increasing functions of the underlying variables ξα.
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Remark 6.6. For detailed proofs of the estimates (6.2) and (6.3), as well as
for more examples of the application of the deletion method to other small
subgraphs, see the preprint version of the present paper [6]. SJ
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