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Abstract. Using results from extremal graph theory, we determine the
asymptotic number of string graphs with n vertices, i.e., graphs that can
be obtained as the intersection graph of a system of continuous arcs in
the plane. The number becomes much smaller, for any fixed d, if we
restrict our attention to systems of arcs, any two of which cross at most
d times. As an application, we estimate the number of different drawings
of the complete graph Kn with n vertices under various side conditions.

1 Introduction

Given a simple graph G, is it possible to represent its vertices by simply con-
nected regions in the plane so that two regions overlap if and only if the cor-
responding two vertices are adjacent? In other words, is G isomorphic to the
intersection graph of a set of simply connected regions in the plane? This de-
ceptively simple extension of propositional logic and its generalizations are of-
ten referred to in the literature as topological inference problems [CGP98a],
[CGP98b],[CHK99]. They have proved to be relevant in the area of geographic
information systems [E93], [EF91] and in graph drawing [DETT99]. In spite of
many efforts [K91a], [K98] (and false claims [SP92], [ES93]), until very recently
no algorithm was known for their solution. Two years ago, we showed [PT02]
that the problem is decidable. Shortly after a more elegant proof was found by
Schaefer and Stefankovic̆ [SS01a], who went on proving that the question is in
NP [SS01b].

Since each element of a finite system of regions in the plane can be replaced
by a simple continuous arc (“string”) lying in its interior so that the intersection
pattern of these arcs is the same as that of the original regions, it is enough
to restrict our attention to string graphs, i.e., to intersection graphs of planar
curves. As far as we know, these graphs were first studied in 1959 by S. Benzer
[B59], who investigated the topology of genetic structures. Somewhat later they
were also considered by F. W. Sinden [S66] in Bell Labs, who was interested in
electrical networks realizable by printed circuits. Sinden collaborated with R. L.
Graham, who popularized the notion among combinatorists at a conference in
Keszthely (Hungary), in 1976 [G78]. Soon after G. Ehrlich, S. Even, and R. E.
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Tarjan [EET76] studied string graphs (see also [K83] and [EPL72] for a special
case). The aim of this paper is to estimate the number of different string graphs
on n vertices.

To formulate our main result precisely, we have to agree on the terminology.
Let G be a simple graph with vertex set V (G) and edge set E(G). A string
representation of G is an assignment of simple continuous arcs to the elements of
V (G) such that two arcs cross each other if and only if the corresponding vertices
of G are adjacent. Graph G is a string graph if it has a string representation.
We assume that any two arcs share only finitely many points and that at each
common point the arcs properly cross, i.e., one arc passes from one side of the
other arc to the other side. An intersection point of two arcs is called a crossing.

For any d > 0, graph G is a string graph of rank d if it has a string represen-
tation with the property that any two strings have at most d crossings.

A class P of labeled graphs, which is closed under isomorphism, is said to
be a property. A property P is called hereditary if every induced subgraph of
every member of P belongs to P . Let Pn denote the set of all (labeled) graphs
on the vertex set {1, 2, . . . , n} that belong to P . In the combinatorics literature,

the function |Pn| ≤ 2(n

2) is often called the speed of property P , and there are
several well known estimates on its growth rate as n increases.

Let S and Sd denote the classes of all string graphs and all string graphs
of rank d, respectively. Clearly, these are hereditary properties and we have
S1 ⊆ S2 ⊆ · · · ⊆ S. Our first goal is to estimate their speeds.

Theorem 1. For the number |Sn| of all string graphs on n labeled vertices, we
have

2
3
4 (

n

2) ≤ |Sn| ≤ 2( 3
4+o(1))(n

2).

Theorem 2. For any d > 0, the number |Sn
d | of all string graphs of rank d

satisfies |Sn
d | ≤ 2o(n2).

We do not have any better lower bound on |Sn
d | than 2Ω(n log n), which follows

from the fact that the vertex set has this many different permutations.

A drawing of a graph is a mapping f which assigns to each vertex of G a
distinct point in the plane and to each edge uv a continuous arc between f(u)
and f(v), not passing through the image of any other vertex. For simplicity, the
point assigned to a vertex is also called a vertex and an arc assigned to an edge
is also called an edge of the drawing, and, if this leads to no confusion, it is also
denoted by uv. We assume that (a) two edges have only finitely many points in
common, and (b) if two edges share an interior point p, then they properly cross
at p. Two drawings of G are said to be essentially equivalent the set of crossing
pairs of edges is the same in the two drawings. Otherwise, they are essentially
different.

Let ∆(n) and ∆̄(n) denote the number of essentially different drawings and
essentially different straight-line drawings, resp., of the complete graph Kn with
n vertices. For any d > 0, let ∆d(n) denote the number of drawings with the



property that any two edges have at most d points in common. Clearly, we have

∆̄(n) ≤ ∆1(n) ≤ ∆2(n) ≤ ∆3(n) ≤ . . . ≤ ∆(n),

for every n.
In Sections 2 and 3, we review the extremal graph theoretic tools used in this

paper and establish Theorem 1, respectively. In Section 4 we prove Theorem 2
in the special case d = 1. The proof in the general case is based on the same
ideas, but it is technically more complicated, and it is omitted in this extended
abstract. In Section 5, we deduce the following estimates.

Theorem 3. For the number of essentially different drawings of Kn under var-
ious restrictions, we have

(i) 2Ω(n log n) ≤ ∆̄(n) ≤ 2O(n log n);

(ii) 2Ω(n2) ≤ ∆1(n) ≤ 2O(n2 log n);

(iii) 2Ω(n2 log n) ≤ ∆d(n) ≤ 2o(n4), for any fixed d ≥ 2;

(iv) 2Ω(n4) ≤ ∆(n) ≤ 2O(n4).

2 Tools from extremal graph theory

One of the central questions in extremal graph theory [B78] is the following.
Given a graph H , what is the maximum number of edges that a graph of n ver-
tices can have if it does not contain H as a (not necessarily induced) subgraph?
This quantity is usually denoted by ex(n, H).

Obviously, the property that a graph is H-free, is hereditary. Let Forb(n, H)
denote the speed of this property, i.e., the number of graphs on n labeled vertices
that do not contain H as a subgraph. It turns out that the growth rate of these
functions crucially depends on the chromatic number χ(H) of H .

Theorem 2.1. (Erdős-Stone [ES46], Erdős-Simonovits [ES66]) For any graph
H, we have

ex(n, H) =

(

1 −
1

χ(H) − 1

)

n2

2
+ o(n2).

Theorem 2.2. (Erdős-Frankl-Rödl [EFR86]) For any graph H, we have

Forb(n, H) = 2(1+o(1))ex(n,H).

If we want to establish analogous results for graphs containing no induced
subgraph isomorphic to H , then the first difficulty we have to face is the follow-
ing: unless H is a complete graph, the maximum number of edges that a graph
of n vertices can have without containing an induced copy of H is

(

n
2

)

. Thus,
Theorem 2.1 does not have a direct analogue. Nevertheless, set

ex∗(n, H) :=

(

1−
1

τ(H) − 1

)

n2

2
+ o(n2),



where the relevant quantity, τ(H), taking the place of the chromatic number is
defined as follows.

We say that H is (r, s)-colorable for some 0 ≤ s ≤ r if there is an r-coloring
of the vertex set V (H), in which the first s color classes are cliques (i.e., induce
complete subgraphs) and the remaining r − s color classes are independent sets
(i.e., induce empty subgraphs). Let C(r, s) denote the class of all (r, s)-colorable
graphs, i.e.,

C(r, s) = {H : H is (r, s)–colorable} .

Let τ(H) be the minimum integer r such that H is (r, s)-colorable for all 0 ≤
s ≤ r. Clearly, we have τ(H) ≥ χ(H), for every H .

Let Forb∗(n, H) stand for the number of graphs on n labeled vertices which
does contain H as an induced subgraph.

Theorem 2.3. (Prömel-Steger [PS92]) For any graph H, we have

Forb∗(n, H) = 2(1+o(1))ex∗(n,H).

Using Szemerédi’s Regularity Lemma, Bollobás and Thomason [BT97] gen-
eralized this result to any nonempty hereditary graph property P . Define the
coloring number r(P) of P as the largest integer r for which there is an s such
that all (r, s)-colorable graphs have property P . That is,

r(P) = max{r : there exists 0 ≤ s ≤ r such that P ⊃ C(r, s)}.

Consequently, for any 0 ≤ s ≤ r(P) + 1, there exists an (r(P) + 1, s)-colorable
graph that does not have property P .

In the special case when P is the property that the graph does not contain
any induced subgraph isomorphic to H , we have r(P) = τ(H) − 1.

Theorem 2.4. (Bollobás-Thomason [BT97]) Let P be a nontrivial hereditary
property of graphs, and let Pn denote the set of all graphs in P on the vertex set
{1, 2, . . . n}. Then the speed of property P satisfies

|Pn| = 2

(

1− 1
r(P)

+o(1)
)

(n

2),

where r(P) is the coloring number of P.



3 String graphs – Proof of Theorem 1

Figure 1.
Lower bound construction for the number of string graphs.

We start with the lower bound. Consider four pairwise tangent non-overlapping
disks Di, 1 ≤ i ≤ 4, in the plane (see Fig. 1). Assume for simplicity that n is
divisible by 4. The proof for other values of n is analogous. Replace the boundary
of each Di by n/4 slightly smaller concentric circles Cik , 1 ≤ k ≤ n/4, running
very close to it. Fix a pair (i, j), 1 ≤ i < j ≤ 4. By local deformation of every
Cik in a small neighborhood of the point of tangency of Di and Dj , we can
achieve that every Cik has a point lying outside every other Cih, h 6= k. For
every 1 ≤ l ≤ n/4 and for any predetermined set of indices Kl ⊆ {1, 2, . . . , n/4},
we can now slightly modify Cjl so that it would intersect a curve Cik if and
only if k ∈ Kl. In other words, we can arbitrarily specify the bipartite crossing
pattern between the curves Cik and Cjl, 1 ≤ k, l ≤ n/4. Repeating the same
procedure for every pair (i, j), we can obtain any 4-partite crossing pattern
between the 4 classes, each containing n/4 curves. Note that every Cik is a
closed curve, but deleting any point of it which does not belong to another curve
it becomes a string. Thus, the number of essentially different string graphs is at

least 2
6n

2

16 > 2
3
4 (

n

2).

Next, we establish the upper bound. For any r ≥ 2, let Gr be a graph with
vertex set

V (Gr) = {vij : 1 ≤ i, j ≤ r}

and edge set

E(Gr) = {vijvik : 1 ≤ i, j, k ≤ r, j 6= k} ,

where vij = vji, for every i and j. In other words, the vertices of Gr repre-
sent the vertices and the edges of the complete graph Kr, two vertices of Gr

being connected if the corresponding two edges of Kr share an endpoint or the
corresponding edge and vertex of Kr are incident.

Lemma 3.1. We have τ(Gr) = r.



Proof. The vertices v1j , 1 ≤ j ≤ r form a clique of size r. Therefore, we have
τ(Gr) ≥ χ(Gr) ≥ r.

Now we show by induction on r that τ(Gr) = r. This is true for r = 2. Let
r > 2 be fixed and assume τ(Gr−1) = r − 1. We have to show that, for any
0 ≤ s ≤ r, the vertices of Gr can be colored by r colors so that s color classes
induce cliques and the remaining r − s color classes are independent sets.

For s = 0, the following coloring will satisfy the requirements. For any 1 ≤
k ≤ r, color a vertex vij with color k if and only if i+ j ≡ k mod r. Clearly, each
vertex of Gr receives a color and each color class is an independent set.

If s > 0, color each vertex of the clique {v1j : 1 ≤ j ≤ r} with color 1. The
uncolored vertices induce a subgraph isomorphic to Gr−1, for which we have
τ(Gr−1) = r − 1, by the induction hypothesis. So the remaining vertices can be
colored by r − 1 colors so that s − 1 color classes induce cliques and the other
r − s are independent sets. 2

Lemma 3.2. G5 is not a string graph.

Proof. Suppose that G5 has a string representation. Continuously contract each
of string (arc) representing vii (1 ≤ i ≤ 5) to a point pi, without changing the
crossing pattern. For every pair i 6= j, consider the portion of the arc representing
vij between the points pi and pj . These arcs define a drawing of K5, in which
no two independent edges cross each other. However, K5 is not a planar graph,
hence, by a well known theorem of Hanani and Tutte [Ch34], [T70], no such
drawing exists. 2

Now we can complete the proof of Theorem 1. By Lemma 3.2, a string graph
cannot have an induced subgraph isomorphic to G5. Thus, in view of Lemma
3.1, Theorem 1 directly follows from Theorem 2.3:

|Sn| ≤ Forb∗n(G5) = 2( 3
4+o(1))(n

2).

4 String graphs of a fixed rank – Proof of Theorem 2

In order to show that there are 2o(n2) string graphs of rank d, in view of Theorem
2.4, it is enough to exhibit a (2, 0)-colorable, a (2, 1)-colorable, and a (2, 2)-
colorable graph such that none of them is a string graph of rank d.

Here we present the argument only in the special case d = 1.

Let H3,3 denote a graph with vertices ui, vj , and wij , 1 ≤ i, j ≤ 3 and
edges uiwij , wijvj , for every i and j. In other words, H3,3 is the graph obtained
from K3,3, the complete bipartite graph with three vertices in its classes, by
subdividing each of its edges by an extra vertex.

For any k, let Tk denote a graph with vertices vi, (1 ≤ i ≤ k) and uI , for
every I ⊆ {1, 2, . . . , k}. Let vi and vj be connected by an edge of Tk, for any
1 ≤ i < j ≤ k, and let vi be connected to uI if and only if i ∈ I . Let T ′

k denote
the graph obtained from Tk by adding the edges uIuJ , for every I 6= J .



Clearly, H3,3 is (2, 0)-colorable (bipartite), Tk is (2, 1)-colorable, and T ′
k is

(2, 2)-colorable, for every k. Therefore, if P = P(H3,3, Tk, T ′
k) denotes the prop-

erty that a graph does not contain H3,3, Tk, or T ′
k as an induced subgraph, then

P is a hereditary property with coloring number r(P) = ∞. Hence, by Theorem
2.4, for the number of graphs on n labeled vertices, satisfying property P , we
have |Pn| = 2o(n2).

It remains to prove the following statement, which implies that Sn
1 ⊆ Pn if

k is large enough.

Lemma 4.1. A string graph of order 1 cannot contain H3,3, Tk, or T ′
k as an

induced subgraph, provided that k is sufficiently large.

Proof. It is well known that a string graph cannot contain H3,3 as an induced
subgraph (see e.g. [EET76],

Using the notation in the definition of Tk (and T ′
k), let vi, 1 ≤ i ≤ k and uI ,

I ⊆ {1, 2, . . . , k} stand for the vertices of Tk (and T ′
k, resp.), and suppose that

Tk (and T ′
k, resp.) has a string representation in which any two strings cross at

most once. For simplicity, we use the same notation for the strings as for the
corresponding vertices.

Fix arbitrarily an orientation of each string. For any triple (x, y, z), 1 ≤ x <
y < z ≤ k, let fxyz = 1 if along vy the crossing with vx follows the crossing with
vz . Otherwise, set fxyz = 0.

By Ramsey’s theorem, there exists a “homogeneous” subset J ⊆ {1, 2, . . . , k},
|J | ≥ log log k, such that fxyz is constant over all triples (x, y, z), 1 ≤ x <
y < z ≤ k, x, y, z ∈ J . We can assume without loss of generality that J =
{1, 2, . . . , m}, where m ≥ log log k.

For any 1 ≤ i ≤ m, the string vi crosses all other vj , 1 ≤ j ≤ m, i 6= j
exactly once. Since fxiz is constant over all triples (x, i, z), 1 ≤ x < i < z ≤ k,
one can find a non-crossing point on vi that divides vi into two parts, v<

i and
v>

i , containing all crossings between vi and vx with x < i and between vi and vz

with z > i, respectively. The arcs v<
i and v>

i are called the lower part and the
upper part of vi, respectively.

Construct two 42-uniform hypergraphs, H< and H>, both on the vertex set
{1, 2, . . . , m}, as follows. For any 1 ≤ x1 < x2 < · · · < x83 ≤ m, there exists
a string u = u{x1,x2,...,x83} that crosses vx1 , vx2 , . . . , vx83 , but no other vj . The
string u crosses either the lower or the upper part of each vxi

, so for at least 42
indices 1 ≤ i ≤ 83 it will cross, say, the lower (resp., upper) part. Suppose, for
example, that u crosses the lower (resp., upper) parts of vx1 , vx2 , . . . , vx42 . Then
add the hyperedge {x1, x2, . . . , x42} to H< (resp., to H>).

Repeating the above procedure for every 83-tuple 1 ≤ x1 < x2 < · · · <
x83 ≤ m, the total number of hyperedges in H< and H> with repetitions is

(

m
83

)

.

However, the multiplicity of each hyperedge is at most
(

m−42
41

)

. Thus, the total
number of distinct hyperedges in H< and H> is Ω(m42) (i.e., at least constant
times m42). Suppose without loss of generality that H< has Ω(m42) distinct
hyperedges.

We can now apply a well known result of Erdős [E65] (see also [B78] and



[PA95], p. 151) to conclude that, for any fixed l and sufficiently large m, our hy-
pergraph H< contains a complete 42-partite, 42-uniform subhypergraph K42

l,...,l

with l elements in each of its classes. (That is, K42
l,...,l has 42l vertices, divided

into 42 classes of size l, and it consists of all 42-tuples that contain one vertex
from each class.)

For simplicity, denote by sj
i , 1 ≤ i ≤ 42, 1 ≤ j ≤ l the lower parts v<

xk
of

the strings vxk
corresponding to the vertices of K42

l,...,l. By the construction, for
each 42-tuple (j1, . . . , j42), 1 ≤ j1, . . . , j42 ≤ l, there exists a string uj1,...,j42 that

crosses sj1
1 , . . . , sj42

42 , but no other string sj
i .

321

1 2 3

2 31s s

sss

1 1 1s

22 2

s 42 ss 4242

Figure 2.
Some of the strings representing a K42

3,...,3.

Color the 42-tuples (j1, . . . , j42) with 42! colors, according to order in which
the crossings with sj1

1 , . . . , sj42
42 occur along uj1,...,j42 . Thus, we can find at least

Ω(l42) 42-tuples of the same color (say, white). Suppose without loss of generality
that, for each such 42-tuple (j1, . . . , j42), the string uj1,...,j42 first crosses sj1

1 , then

sj2
2 ,..., and finally sj42

42 . Applying Erdős’s result again, if l is sufficiently large, we
can find a subhypergraph K42

3,...,3 ⊂ K42
l,...,l, all of whose 42-tuples are white.

Again, we can assume without loss of generality that the strings corresponding
to the vertices of K42

3,...,3 are sj
i , 1 ≤ i ≤ 42, 1 ≤ j ≤ 3. Recall that each sj

i is

the lower part of an original string vx, therefore, no two sj
i can cross each other.

(Indeed, the intersection of vx and vy, x < y, must belong to the upper part of
vx and at to the lower part of vy.)

Summarizing: we have 3 · 42 = 126 strings sj
i , 1 ≤ i ≤ 42, 1 ≤ j ≤ 3, no two

of which intersect. Moreover, for each 42-tuple (j1, . . . , j42), 1 ≤ j1, . . . , j42 ≤ 3,
there is a string uj1,...,j42 that intersects the strings sj1

1 , . . . , sj42
42 in this order,

and does not intersect any other sj
i . (See Fig. 2.) We would like to show that

there are two different strings of the type uj1,...,j42 that cross more than once.



First, we give a lower bound for the number of crossings cr(u, u) between strings
of type uj1,...,j42 .

Let 1 ≤ x ≤ 41 be fixed. For any pair y, z, 1 ≤ y, z ≤ 3, consider all strings
uj1,...,j42 with jx = y and jx+1 = z, and let Γy,z denote the set of their portions
between their intersections with sy

x and sz
x+1. Clearly, we have |Γy,z| = 340.

Pick one element from each Γy,z, 1 ≤ y, z ≤ 3, and notice that at least one
pair among these 9 arcs must be crossing, otherwise, together with the strings
s1

x, s2
x, s3

x, s1
x+1, s

2
x+1, s

3
x+1, they would give a string representation of H3,3, which

is impossible (see the first paragraph of this proof). Thus, for a fixed x, the total
number of crossings between the elements of Γy,z and Γy′,z′ over all y, z, y′, z′,
1 ≤ y, z, y′, z′ ≤ 3, (y, z) 6= (y′, z′) is at least

∏

1≤y,z≤3 |Γy,z|

37·40
=

39·40

37·40
= 380.

Here the denominator, 37·40, is the number of 9-tuples of arcs, one from each
set Γy,z, 1 ≤ y, z ≤ 3, in which a crossing pair of arcs is fixed. Repeating this
count for every x, 1 ≤ x ≤ 41 and noticing that every time we count different
crossings, we obtain that

cr(u, u) ≥ 41 · 380.

On the other hand, the number of strings of type uj1,...,j42 is 342. If any two
of them cross at most once, than cr(u, u) < 384/2, which is a contradicts the
above inequality. This completes the proof of the lemma. 2

5 Drawings of complete graphs – Proof of Theorem 3

(i) It is easy to see that the order type on the vertices of Kn (i.e., the orientation
of its triples) determines the set of crossing pairs of edges, So the upper bound
follows from a result of Goodman and Pollack [GP86], that there are at most n6n

different order types on n points. On the other hand, we can place the vertices
of Kn on a circle, in (n − 1)! different cyclic order, and each placement gives a
different list of crossing pairs of edges. It is also easy to come up with a list of
nΩ(n) drawings such that by relabelling the vertices of any one of them, we do
not obtain a drawing essentially the same as another.

(ii) Suppose n is divisible by 4, and let vi = (−1, i), uj = (1, j), and wk =
(0, k/2), for any 1 ≤ i, j ≤ n/4 and 1 ≤ k ≤ n/2. For every 1 ≤ k < n/2,
connect wk and wk+1 by a straight-line segment. Furthermore, connect every
vi to every uj by a line segment so that each such segment passes through
some point wk . By slightly bending each edge viuj , but keeping its endpoints
fixed, we can achieve that it passes either slightly above or slightly below wi+j .

At each edge viuj , we have two choices, so there are 2n2/16 possibilities. In
each drawing, any two edges cross at most once, and different choices give rise
to different crossing patterns. (Indeed, viuj passes above wi+j if and only if
it crosses the edge wi+jwi+j+1.) Finally, one can slightly perturb the vertices
so that no three of them would be collinear, and connect the missing pairs by



straight-line segments without creating more than one crossing between any pair
of edges. Therefore, the number of different crossing patterns is at least 2n2/16.

v1 v1

v3

v4 v3

v4 v2v2

v2

v4v3

v1 v1 v2

vv

v1

v2

v

v3v2

v1v3

v

v1

v

v3

v4

v

v

v1

v3

4

4 2 2

34

4

Figure 3.
The eight combinatorially different drawings of K4.

As for the upper bound, for a fixed drawing, for each vertex vi, list the edges
incident to vi in clockwise order around vi. For every vertex, we have (n − 2)!

possibilities, so there are ((n − 2)!)n < 2n2 log n different sets of lists. We claim
that this set of lists uniquely determines the crossing pattern. To see this take two
edges, v1v2 and v3v4, and consider the drawing of K4 induced by these vertices,
as a drawing on the sphere. Two spherical drawings of K4 are combinatorially
equivalent if the corresponding maps are isomorphic. There are 8 combinatorially
different drawings of K4, with the property that any two edges have at most one
point in common (see Fig. 3), and these drawings can be distinguished by looking
at the cyclic orders of edges incident to a vertex. Hence, the cyclic order of edges
at the vertices determines whether v1v2 and v3v4 cross each other.

(iii) Suppose n is divisible by 3. For i = 1, 2, . . . , n/3, let vi = (−1, i), wi = (0, i),
and ui = (1, i). Connect every vi to every uj , as follows. Choose a number k,
0 ≤ k < n/3, and connect both vi and uj to (0, k+ε) by a segment. Also connect
any two consecutive wi’s by a segment. In the resulting drawing, any two have at
most two common points, and a different choice for any viuj results a different

crossing pattern. Therefore, the number of different crossing patterns is n/3n2/9.
Clearly, each of these drawings can be extended to a drawing of the complete



graph such that still any two have at most two common points. For instance,
slightly perturb the points together with the existing edges, so that the points
are in general position, and add the missing edges as segments.

For the upper bound, apply Theorem 2 for the edges of Kn regarded as
(

n
2

)

strings.

(iv) Suppose n is even, and let vi = (−1, i), ui = (1, i), for 1 ≤ i ≤ n/2. For
any i, j, 1 ≤ i < j ≤ n/2, connect vi with (0, ni + j) and connect (0, ni + j)
with vj . Now, all vertices vi and all edges connecting them are on the left side
of the line x = 0 such that each of the edges has exactly one point on that line,
and all these points are different. On the other hand, all vertices ui, are on the
right-hand side of the line x = 0. So, for any p, q, 1 ≤ p < q ≤ n/2, and for
any set Kpq ⊆ {(i, j) : 1 ≤ i < j ≤ n/2}, we can draw the edge vpvq so that it
crosses uiuj (i < j) if and only if (i, j) ∈ Kpq (cf. proof of Theorem 1). 2
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