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In Combinatorica 17(2), 1997, Kohayakawa, �Luczak and Rödl state a conjecture which
has several implications for random graphs. If the conjecture is true, then, for example,
an application of a version of Szemerédi’s regularity lemma for sparse graphs yields an
estimation of the maximal number of edges in an H-free subgraph of a random graph Gn,p.
In fact, the conjecture may be seen as a probabilistic embedding lemma for partitions
guaranteed by a version of Szemerédi’s regularity lemma for sparse graphs. In this paper
we verify the conjecture for H =K4, thereby providing a conceptually simple proof for the
main result in the paper cited above.

1. Introduction

In this paper we consider a conjecture by Kohayakawa, �Luczak, and Rödl [12]
which, if true, has several applications in random graph theory, see Conjec-
ture 1.3, Theorem 1.4 and the discussion thereafter. In fact, this conjecture
can be seen as a probabilistic embedding lemma for a partition guaranteed
by a version of Szemerédi’s regularity lemma for sparse graphs. To state the
conjecture we need the following definitions.

Definition 1.1. A bipartite graph B = (U ∪W,E) with |U |= |W |= n and
|E|=m is called (ε,n,m)-regular if for all U ′⊆U and W ′⊆W with |U ′|≥εn
and |W ′|≥εn, ∣∣∣∣ |E(U ′,W ′)|

|U ′| · |W ′| − m

n2

∣∣∣∣ ≤ ε
m

n2
,
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where E(U ′,W ′) denotes the set of edges with one endpoint in U ′ and one
endpoint in W ′.

If the number of edges and vertices is clear from the context, we sometimes
call an (ε,n,m)-regular graph simply ε-regular.

Definition 1.2. Let H = (V (H),E(H)) be a graph with V (H) = [�]. An
�-partite graph G = (V1 ∪ . . .∪V�,E) is called (H,n,m;ε)-regular if for all
{i,j}∈E(H), the graph G[Vi,Vj ] induced by Vi and Vj is (ε,n,m)-regular,
and for all {i,j} �∈E(H), the graph G[Vi,Vj ] is empty.

Note, that an (H,n,m;ε)-regular graph satisfies that |V1|= |V2|= . . .= |V�|=
n and that |E(Vi,Vj)|∈{0,m}.

Let S(H,n,m;ε) denote the set of (H,n,m;ε)-regular �-partite graphs,
and let

F(H,n,m; ε) := {G ∈ S(H,n,m; ε) : H �⊆ G}.
The following conjecture was first stated in [12]. Here, we cite a simplified

version from [13].

Conjecture 1.3 ([13]). Let H = (V (H),E(H)) be a fixed graph. For any
β>0, there exist constants ε0 >0,C >0,n0 >0 such that

|F(H,n,m; ε)| ≤ βm

(
n2

m

)|E(H)|

for all n≥n0, 0<ε≤ε0 and all m≥Cn2−1/d2(H), where

d2(H) := max
{ |E(F )| − 1
|V (F )| − 2

: F = (V (F ), E(F )) ⊆ H, |V (F )| ≥ 3
}

.

Since it is easily shown that the number of graphs in S(H,n,m;ε) is (1−
o(1))

(
n2

m

)|E(H)|
, Conjecture 1.3 states that all but a βm fraction of these

graphs contain a copy of H, and that one can choose β>0 arbitrarily small
provided ε is sufficiently small and n,m(n) are sufficiently large.

One might hope that all graphs in S(H,n,m;ε) contain a copy of H.
However, �Luczak showed that there are graphs in S(K3,n,m;ε) with m�
n2−1/d2(K3) not containing a copy of K3, see [13] where �Luczak is quoted.
Let us also remark that the statement of Conjecture 1.3 is not true if m	
n2−1/d2(H). Furthermore, it is essential to consider graphs in S(H,n,m;ε)
and not the class of graphs where the graphs G[Vi,Vj ] induced by Vi and
Vj for {i,j}∈E(H) are just arbitrary graphs with m edges (not necessarily
(ε,n,m)-regular). For example, it is easy to show that if H = K3 and m	
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n/2, then the number of graphs that do not contain a triangle is bigger than

cm
(
n2

m

)3
for a constant c≥1/(4e)3 which is obviously not arbitrarily small.

It is known that Conjecture 1.3 is true when H is a triangle [17]. In this
paper we prove the conjecture when H =K4. In the years since the submis-
sion of this paper, the ideas presented here have been further developed.
Now Conjecture 1.3 is also known to be true if H is a cycle [1,3] of arbitrary
length or a complete graph K5 on five vertices [6]. If m/n2 is approximately
the square-root of the conjectured value then the conjecture is true for all
complete graphs [4].

It was shown that the conjecture has the following implications for the
random graph Gn,p, that is, the graph on n vertices where each of the pos-
sible

(n
2

)
edges is present with probability p. The first theorem shows that

Conjecture 1.3 implies one of the long-standing open questions in the theory
of random graphs, namely the analogue of the Erdős–Stone theorem from
extremal graph theory.

Theorem 1.4 ([12]). Let ex(G,H) be the maximal number of edges a sub-
graph of G may have while avoiding the graph H. If Conjecture 1.3 is true,
then with probability tending to one as n tends to infinity

ex(Gn,p,H) =
(

1 − 1
χ(H) − 1

+ o(1)
)
|E(Gn,p)|,(1)

whenever pn−d2(H) →∞ as n →∞, where d2(H) is defined as in Conjec-
ture 1.3.

A proof of Theorem 1.4 can for example be found in [5]. Equation (1)
has been shown to be true for some special graphs H without using Conjec-
ture 1.3. It was shown to hold when H is a cycle [2,7,8,11,9,10,14,16] and
when H = K4 [12]. In the latter paper it was also suggested to prove the
result by means of Conjecture 1.3. Proofs for the case when H is a complete
graph and p is approximately the square-root of the conjectured value can
be found in [15] and [18].

In [17] �Luczak showed that for any graph H for which Conjecture 1.3
is true, almost all H-free graphs can be made (χ(H)−1)-partite by remov-
ing only a tiny fraction of the edges. More precisely, for every δ>0, there
exists c = c(δ,H) such that the probability that a graph chosen uniformly
at random from the family of all H-free labelled graphs on n vertices and
m≥cn2−1/d2(H) edges can be made (χ(H)−1)-partite by removing δm edges
tends to one as n tends to infinity.

In the same paper �Luczak showed that for any graph H for which Conjec-
ture 1.3 is true, for all sufficiently large n, and for all cn2−1/d2(H)≤m≤n2/c
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(with appropriately chosen constant c), the probability that a graph G(n,m)
drawn uniformly at random from all labelled graphs on n vertices and m
edges does not contain H is ((χ(H)−2)/(χ(H)−1)+δ)m for a small error δ.

As mentioned above the main result of this paper is the proof of Conjec-
ture 1.3 in the case when H =K4 is the complete graph K4 on four vertices.
We state this result in the next theorem.

Theorem 1.5. For any β>0, there exist constants ε0 >0,C >0,n0 >0 such
that

|F(K4, n,m; ε)| ≤ βm

(
n2

m

)6

for all m≥Cn8/5 =Cn2−d2(K4), n≥n0 and 0<ε≤ε0.

Since we concentrate on the case when H is the complete graph K4, we
write S(n,m;ε) :=S(K4,n,m;ε) and F(n,m;ε) :=F(K4 ,n,m;ε).

Outline of the paper. In Section 2 we give an outline of our proof strategy.
In Section 3 we introduce some notation and prove a few technical lemmas.
Section 4 presents the main concepts of the paper namely covers, multicovers
and triangle covers, and Section 5 discusses a counting lemma which is used
repeatedly thereafter. Section 6 contains the proof of the main theorem.

2. Outline of the Proof

The main idea to show that F(n,m;ε) is only a tiny fraction of S(n,m;ε)
is counting. In fact we will define appropriate classes Bi(β)⊆S(n,m;ε) that
satisfy F(n,m;ε)⊆⋃

iBi(β) and
∑

i |Bi(β)|≤βm|S(n,m;ε)|. This will prove
Theorem 1.5.

To define the sets Bi(β) we use that the graphs in S(n,m;ε) consist of
six (ε,n,m)-regular graphs, one for each edge in K4. We do not consider all
six of these graphs at once but consider them one by one. First we prove
some properties of a single such (ε,n,m)-regular graph. Then we consider
a second (ε,n,m)-regular graph and prove some properties about the union
of both graphs while using the properties we showed for the first one. We
then continue by considering the third (ε,n,m)-regular graph and so on. To
be more precise, consider a subgraph H of K4. Clearly, for every graph in
S(n,m;ε) we can just keep the (ε,n,m)-regular graphs that correspond to
edges in H to obtain a graph in S(H,n,m;ε). Vice versa, every graph in

S(H,n,m;ε) can be extended in at most
(n2

m

)|E(K4)|−|E(H)|
ways to a graph

in S(n,m;ε). Assume now that we can define a set G(H,β)⊆S(H,n,m;ε)
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in such a way that |G(H,β)| ≤ (βm/k)
(
n2

m

)|E(H)|
where k is the number

of sets Bi(β) we shall construct. Then we can define the set Bi(β) as
the set of all extensions of graphs in G(H,β), and proceed by consider-
ing only those graphs G in S(n,m;ε) with the property that the induced
graph in S(H,n,m;ε) does not belong to G(H,β), i.e. those graphs for
which the induced subgraph has some ‘nice’ properties. We can repeat this
process, by considering a subgraph H ′ of K4 such that H ⊆ H ′ ⊆ K4.

That is, we define a set G(H ′,β) such that |G(H ′,β)| ≤ (βm/k)
(n2

m

)|E(H′)|
,

where for counting the elements of G(H ′,β) we use the fact that the in-
duced subgraph of G that is an element of S(H,n,m;ε) does not belong
to G(H,β), and proceed in this way for larger and larger subgraphs H ′
until we finally reach K4. By then we shall have collected enough struc-
tural information to show that none of the remaining graphs belongs to
F(n,m;ε).

Next we give some more intuition for the ‘nice’ structures we are looking
for.

Random graphs as a guide. Let G(n,m,4) be a chosen uniformly at random
from the set of all subgraphs of the complete 4-partite graph Kn,n,n,n with
n vertices in each partition class and with m edges between each pair of
partition classes. As an alternative we may consider a binomial random
subgraph G(n,m/n2,4) of Kn,n,n,n in which edges are present independently
with probability m/n2. It is not hard to see that for m=ω(n) such random
graphs are ε-regular with high probability. Thus, as ε-regular graphs in some
sense approximate the uniform distribution of random graphs of the same
density, random graphs are a guiding example to gain some intuition on the
structure of the latter. Note, however, that as remarked in the introduction,
it does not suffice to consider the class G(n,m/n2,4) instead of S(n,m;ε).
While random graphs G(n,m/n2,4) do exhibit similar phenomena as those
in S(n,m;ε), the probabilities with which certain events occur differ in both
classes. In particular, if one wants to show that only a βm fraction (for
arbitrary small β>0) of all graphs in S(n,m;ε) does not contain a K4, one
really has to use the regularity of the induced bipartite graphs. Nevertheless,
to get some intuition, it helps to look at random graphs first.

In a random graph G(n,m/n2,4), the neighbourhood of a vertex v∈Vi in
any one of the other partition classes Vj , j �= i, has expected size q :=m/n,
since (m/n2)n=q. We therefore expect that a set C⊂Vi of size |C|=n2/m
has a neighbourhood of size roughly n2/m ·m/n = n in each of the other
partition classes. We call a set C ⊂ Vi such that |Γ (C)∩ Vj| ≈ n a cover
for Vj. Note that the above observation implies that in a random graph
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G(n,m/n2,4) we expect that almost every set C⊂Vi of size |C|=n2/m is a
cover for Vj.

Next consider a set Q ⊂ Vi of size |Q| = m/n. We can partition Q into
m2/n3 sets of size n2/m, each of which we expect to be a cover for Vj . Let
us call such a set Q⊂ Vi a multicover for Vj . Note that almost all vertices
of Vj have roughly m2/n3 neighbours in a multicover Q for Vj. The above
remarks imply that we expect that in a random graph G(n,m/n2,4) almost
every set Q⊂Vi of size |Q|=m/n is a multicover for Vj .

Finally, let us call a set T ⊂Vi a triangle cover for Vj via Vk, if almost all
vertices w∈Vj have the property that there exist n2/m vertices in Vk such
that each of these vertices lies in a triangle containing w and a point in T .
How large do we have to choose t= |T | in order to expect that in a random
graph G(n,m/n2,4) almost every set T ⊂Vi of size |T |= t is a triangle cover
for Vj via Vk? Elementary calculations show that t=n7/m4 suffices.

Now let us see what this gives us. A typical vertex v∈V1 has neighbour-
hoods Qi :=Γ (v)∩Vi of size roughly m/n in V2,V3,V4, which we may assume
to be multicovers. Observe that for m ≥ Cn8/5 we have n7/m4 ≤ m/n, so
we may also assume that, for example, Q3 is a triangle cover for V2 via V4,
which in turn implies that we may assume that most of the vertices in Q2 are
‘good’ vertices in V2, i.e. vertices which have n2/m neighbours in V4 that
are contained in a triangle containing w and a vertex from Q3. In a ran-
dom graph we expect that, for different vertices w ∈ V2, the corresponding
n2/m neighbours in V4 are almost disjoint. Note that this implies that we
find roughly |Q2| ·(n2/m)=n vertices in V4 that lie in a triangle containing
a vertex from Q2 and a vertex from Q3. Note that this implies that if Q4

contains any of these vertices then there exists a K4. That is, in order to
avoid a K4, Q4 has to be contained within a tiny set (defined by v and Q2

and Q3). As Q4 is a random set, this is highly unlikely, implying that for
m≥Cn8/5 the random graph G(n,m/n2,4) contains with high probability
a K4. Of course, for the random graph there are more elegant ways to prove
this fact. The above approach, however, has the advantage that it can also
be used for graphs in S(n,m;ε).

(ε,n,m)-regular graphs. More precisely we shall show that all but a βp

fraction of sets of size p≈n2/m in an (ε,n,m)-regular graph have a neigh-
bourhood of size Θ(n) (and β→0 as ε→0), see

Graphs in S(n,m;ε) are not random. In the previous paragraph we consid-
ered random graphs as a guide for ε-regular graphs. Now we want to hint at
some difficulties that occur when considering graphs in S(n,m;ε) instead of
random 4-partite graphs. One of the main differences is that in the random
graph the disjointness of certain sets comes naturally whereas in ε-regular
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graphs one has to work for it. For example, consider a fixed set Q ⊆ Vj.
In a random graph we expect that most vertices see |Q| ·m/n2 vertices in
the set Q and this is independent of the choice of Q. In an ε-regular graph
this is different. There might be some small sets Q in Vj that see no ver-
tex in Vi since the definition of ε-regular graphs concerns only sets of linear
size.

We circumvent this difficulty by choosing our sets Q with foresight. For
example, we do not only insist that a cover in Vi sees roughly n of the vertices
in Vj but also demand that most vertices in a cover have neighbourhoods
that are pairwise rather disjoint. Also we introduce forbidden sets X which
allow us to select the vertices one after the other. This works as follows.
We show, for example, that for each fixed forbidden set X ⊂ V4 there are
linearly many vertices in Vj which behave as expected. If we now choose
the neighbourhood in Vj of a vertex v∈Vi one by one then it is very likely
that we first select a vertex w that behaves as expected. Now we fix the
neighbourhood of w in V4 and add it to the forbidden set X to obtain a
new forbidden set. Still there are linearly many vertices in Vj that behave as
expected with respect to this new forbidden set, and hence it is likely that
we pick a good vertex when choosing the next vertex of the neighbourhood
of v in Vj.1

Counting bad graphs. Let us return to the problem of counting the elements
in F(n,m;ε), or better the sets Bi(β). Our main tool to count these graphs
is Lemma 5.3 which states, roughly speaking, that for π 	 β, if only a πq̃

fraction of sets of size q̃≈q does not satisfy a property A then all but a βm

fraction of graphs in S(n,m;ε) contain linearly many vertices that contain a
set satisfying property A in their neighbourhood. Thus, for example, if one
has shown that all but a πq̃ fraction of sets of size q̃ are triangle covers then
it follows that almost all graphs in S(n,m;ε) have linearly many vertices in
V1 that have a triangle cover in their neighbourhood. Hence we have to show
that all but a πq̃ fraction of sets of size q̃ satisfy the properties we desire.

Things get slightly more complicated when considering neighbourhoods
of vertices in a set Q with |Q| 	 n because the expected size of such a
neighbourhood has size r= |Q|m/n2	q. Often we are able to show that at
most a πr fraction of all sets of size r in Q have an undesired property but
this is not enough to apply Lemma 5.3. To resolve this difficulty we consider

1 Since this paper was submitted (ε,n,m)-regular graphs have been far better under-
stood. Using the results of [3] (which are based on the ideas presented here) one can show
more directly (with the methods described in Section 7) that the desired structures exist
without using forbidden sets.
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n/|Q| disjoint sets of size |Q| at once and show that in most of these sets
most vertices have a neighbourhood of size r satisfying the desired property.
(We use this technique for example in Lemma 4.20.) This idea has been
further developed and simplified in [4].

3. Preliminaries

3.1. Conventions and notation

In order to increase the clarity of the presentation we make use of the follow-
ing conventions: All constants that are denoted by greek letters are tacitly
assumed to be smaller than, say, 10−3. Furthermore, ε will always be smaller
than all other constants.

We will not introduce floors and ceilings when we are talking about in-
tegral terms, e.g., cardinalities of sets. Since we are only interested in the
asymptotic behaviour of those quantities, this would merely introduce lower
order error terms which complicate the exposition. However, it would be a
standard but laborious task to modify the proofs such that the integrality
of all terms is respected.

The neighbourhood of a vertex v is denoted by Γ (v). We will use the
abbreviations Γi(v) :=Γ (v)∩Vi and di(v) := |Γi(v)|.

For technical reasons, i.e., as to gain control over the size of certain sets,
we will often need to deterministically fix a subset of a given cardinality
in a larger set of vertices. In order to do so we assume that the vertices
in Vi are ordered in an arbitrary but unique way (e.g. we may assume that
Vi ={1, . . . ,n}). By [A]x we denote the set B⊆A of size |B|=x that contains
the x smallest elements in A. If |A|<x, we define [A]x :=A.

3.2. Simple lemmas

This section contains a collection of auxiliary results with a rather technical
flavour. Hence, it may be skipped at first reading and then be consulted on
demand.

Lemma 3.1 (Technical inequalities for binomial coefficients).

(i) If 0≤a≤b≤n, then (
n

a

)(
n

b − a

)
≤

(
n

b

)
4b.
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(ii) If 0≤x≤1 then (
xa

b

)
≤

(
a

b

)
· xb.

Proof. Case (i) can be seen as follows: Instead of choosing a elements first
and then b−a elements, we can choose b elements and then mark each of the
b elements to belong either to the first set of a elements, or to the second
set of b − a elements, or to none of these sets, or to both of these sets.
Alternatively, one calculates:(

n

a

)(
n

b − a

)
=

n!
(n − a)!a!

n!
(b − a)!(n − (b − a))!

=
b!

a!(b − a)!
n!

(n − b)!b!
n!(n − b)!

(n − a)!(n − b + a)!
.

Now for 1≤ a≤ b≤n and 0≤ c≤ a−1, one easily verifies that (n− c)/(n−
b+a−c)≤ (b−c)/(a−c), and hence the last factor of the product above is
smaller than b!/((b−a)!a!). Thus(

n

a

)(
n

b − a

)
≤

(
b

a

)(
b

b − a

)(
n

b

)
≤ 4b

(
n

b

)
.

For the proof of (ii) we simply observe that(
xa

b

)
= xb · a(a − 1

x) · · · (a − b−1
x )

b!
≤ xb

(
a

b

)
.

The following lemma is inspired by a very simple observation: If in a
bipartite graph G=(U∪W,E) all vertices in U have large degree, then there
must be many vertices in W with large degree too. This is proved by an
easy counting argument.

Lemma 3.2 (Overlap lemma). Let α > 0, and let G = (U∪W,E) be a
bipartite graph with d(u)≥α|W | for all u∈U . Then for all β>0,

|{w ∈ W : d(w) ≥ β|U |}| ≥ α − β

1 − β
|W |.

Proof. Assume for a contradiction that there are less than α−β
1−β |W | vertices

in W with degree at least β|U |. It follows that

|E| <
α − β

1 − β
|W | · |U | +

(
1 − α − β

1 − β

)
|W | · β|U | = α|W | · |U |.
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On the other hand it is clear by the lower bound on the degree of the vertices
in U that |E|≥α|W | · |U | and we get a contradiction.

Although the proof of Lemma 3.2 is quite simple, the following corollary
will be vital in the proof of our main result.

Corollary 3.3. Let ε>0. If a bipartite graph G=(U∪W,E) satisfies d(u)≥
(1−ε)|W | for all u∈U , then

|{w ∈ W : d(w) ≥ (1 −√
ε)|U |}| ≥ (1 −√

ε)|W |.
Proof. Set α=1−ε and β=1−√

ε in Lemma 3.2.

The following lemma is a simple consequence of the definition of (ε,n,m)-
regularity.

Lemma 3.4 (Degree lemma). Consider an (ε,n,m)-regular graph B =
(U∪W,E) and a set W ′⊆W with |W ′|≥εn. For q :=m/n we define

X< :=
{

u ∈ U : |Γ (u) ∩ W ′| < (1 − ε)q · |W
′|

n

}
.

and X> analogously. Then max{|X<|, |X>|}<εn.

Proof. We only consider the case that |X<|≥ εn, since the case |X>|≥ εn
is almost identical. By the definition of X< we know that

|E(X<,W ′)| < (1 − ε)q · |W
′|

n
· |X<| = (1 − ε)

|X<| · |W ′|
n2

· m.

This obviously contradicts the (ε,n,m)-regularity of B.

4. Covering sets

4.1. Abbreviations

In this section we will need quite a few abbreviations, which we collect here
for easier reference. The following quantities are defined as functions of n,m
and a parameter λ>0. This parameter will later be replaced by one of several
constants, see Equations (12)–(20), and Equation (21) for the order of these
constants.

q :=
m

n
,(2)

pλ :=
2
λ

n2

m
,(3)
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qλ := (1 − λ)λq,(4)

tλ :=
1
λ

n2

m
,(5)

rλ(x) :=
x

2pλ
.(6)

The following quantities are also functions of one or two parameters ν,μ>
0. In order to avoid clumsy notation we will often drop these dependencies
when it will be clear from the context where the values for ν and μ come
from.

r̃1 = r̃1(ν, μ) := rν(μ2q) =
μ2ν

4
m2

n3
, r̃2 = r̃2(μ) := rμ(μ2q) =

μ3

4
m2

n3
,(7)

p̃ = p̃(μ) :=
pμ

4
=

1
2μ

n2

m
(8)

Note the redundancy in this notation, as for example pλ =2tλ. However,
this is just a coincidence as we will use these two abbreviations for com-
pletely different purposes. This redundant notation is intended to remind
the reader where the various quantities come from. Usually, sets of size qλ

are neighbourhoods, and sets of size r̃1, r̃2 are common neighbourhoods of
two vertices. Sets of size pλ will be essential because we expect that the
neighbourhood of a set of this size covers most of any other partition class.
At the threshold m=Cn8/5 and for fixed λ, ν, μ, we have that r̃i	pλ	qλ.

In the following three subsections we shall describe precisely the concepts
we sketched in Section 2, namely covers, multicovers and triangle covers.

4.2. Simple covers

In a random bipartite graph with two vertex sets of size n and edge
probability m/n2, we expect that a set of size n2/m has approximately
(n2/m)(m/n2)n = n neighbours. Hence, we may expect that a set P of
size Θ(n2/m) in partition class Vi covers a partition class Vj for j �= i, i.e.,
|Γj(P )|≈Vj . Such covering sets are important in our proof.

For technical reasons it is beneficial to concentrate on covers with a spe-
cial structure. Informally speaking, we say that P ={v1, . . . ,vp} covers Vj if
we can find disjoint sets W1, . . . ,Wp/2⊆Vj of equal size such that Wi⊆Γ (vi)
and

⋃p
i=1 Wi ≈ Vj. The concept of a cover is illustrated in Figure 1. The

following definition provides a formalisation of this approach.
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... ...

ViVi VjVj

pνpν qνqν

≤ νn≤ νn

W1W1

Wpν/2Wpν/2

Figure 1. A ν-cover

Definition 4.1 (Covers). Consider a graph G ∈ S(n,m;ε), {i,j} ⊆
{1, . . . ,4} and ν > 0. A set P ⊆ Vi is called a ν-cover of Vj if there ex-
ists a subset P ∗⊆P of size |P ∗|≥|P |/2 such that there are pairwise disjoint
sets (Wv ⊆Γj(v))v∈P ∗ with |Wv|= qν for all v ∈P ∗. The sets (Wv)v∈P ∗ are
called covering neighbourhoods.

Mostly we will be interested in ν-covers with cardinality |P |= pν . Note
that then

|Γj(P )| ≥
∣∣∣∣∣

⋃
v∈P ∗

Wv

∣∣∣∣∣ ≥ (pν/2) · qν = (1 − ν)n.(9)

Definition 4.2 (Sets of covers). Consider a graph G ∈ S(n,m;ε) and
{i,j} ⊆ {1, . . . ,4}. Let Pi,j(G;ν) ⊆ {P ⊂ Vi : |P | = pν} denote the family
of sets in Vi of cardinality pν that form a ν-cover of Vj . Furthermore, let
P̄i,j(G;ν) :={P ⊂Vi : |P |=pν}\Pi,j(G;ν).

The following lemma shows that almost all sets of size pν (up to a su-
perexponentially small fraction) are ν-covers. This lemma closely resembles
Lemma 11 in [11].

Lemma 4.3 (P̄ is small). For π,ν > 0, there exists a constant εCov =
εCov(π,ν) such that for any pair {i,j}⊆{1, . . . ,4}, any graph G∈S(n,m;ε)
with ε≤εCov, and any V ′⊆Vi with |V ′|≥√

εn, we have

|P̄i,j(G; ν) ∩ {P ⊂ V ′ : |P | = pν}| ≤ πpν

(|V ′|
pν

)
,

for sufficiently large n.
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Proof. Consider a set P ⊂ V ′
i that is not a ν-cover of Vj , and let P ′ ⊆ P

be a set of maximal size such that there exists a family of pairwise disjoint
sets (W ′

u)u∈P ′ with W ′
u⊂Γj(u) and |W ′

u|=qν for all u∈P ′. Since P is not a
ν-cover, |P ′|< pν/2 and hence |⋃u∈P ′ W ′

u|< (pν/2) · qν = (1−ν)n. Also, by
the maximality of P ′ all vertices v in P \P ′ satisfy∣∣∣∣Γ (v) ∩

(
Vj \

⋃
u∈P ′

W ′
u

)∣∣∣∣ < qν = (1 − ν)νq ≤ (1 − ε)q
|(Vj \

⋃
u∈P ′ W ′

u)|
n

provided ε≤ν. By Lemma 3.4 there are at most ε|Vi|≤
√

ε|V ′
i | such vertices

in Vi and thus in V ′
i . Hence the number of sets that are not ν-covers is

bounded from above by∑
0≤p̄≤pν/2

(|V ′|
p̄

)(√
ε|V ′|

pν − p̄

)
3.1(ii)

≤
∑

0≤p̄≤pν/2

(|V ′|
p̄

)( |V ′|
pν − p̄

)
(
√

ε)pν−p̄

3.1(i)

≤ pν

2
4pν

(|V ′|
pν

)
εpν/4 ≤ πpν

(|V ′|
pν

)
,

when ε is sufficiently small and n and thus pν is sufficiently large.

4.3. Multicovers

In the previous section we introduced simple covers of size pν = Θ(n2/m),
whereas in our proof we will often be concerned with sets of size Θ(q) =
Θ(m/n), i.e., neighbourhoods of vertices. The following definition therefore
transfers the notion of a cover to such (larger) sets.

Definition 4.4 (Multicovers). Consider a graph G ∈ S(n,m;ε), {i,j} ⊆
{1, . . . ,4} and ν >0. We call a set Q⊆Vi a ν-multicover of Vj if there exist
pairwise disjoint subsets P1, . . . ,Pr ⊆Q such that

(i) r=rν(|Q|) := |Q|
2pν

,
(ii) |Pi|=pν for all i=1, . . . ,r, and
(iii) Pi is a ν-cover of Vj for all i=1, . . . ,r.
For each ν-multicover Q we consider an arbitrary but fixed partition into
ν-covers and set Q∗(ν) :=

⋃r
k=1 P ∗

k , where the sets P ∗
k are defined as in

Definition 4.1.

Consider the case when Q is a multicover of size Θ(m/n). Observe
that for a vertex w ∈ Vj the average number of neighbours within Q is
Θ((m/n) · (m/n2)) = Θ(m2/n3) = Θ(rν(|Q|)). In the following definition we
consider the set Cj(Q;ν) of vertices in Vj that (up to an appropriately chosen
multiplicative constant) have at least as many neighbours in Q as expected.
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ViVi VjVj

QQ

P1P1

PrPr ≥ r/2≥ r/2 CjCj

≤ √
νn≤ √
νn

Figure 2. ν-multicover

Definition 4.5 (Covered neighbourhood of Q-sets). Consider a graph
G∈S(n,m;ε), {i,j}⊆{1, . . . ,4} and ν >0. For a ν-multicover Q⊆Vi of Vj,
we define

Cj(Q; ν) := {w ∈ Vj : |Γi(w) ∩ Q| ≥ rν(|Q|)/2}.
Figure 2 illustrates the structure of a ν-multicover and of the sets

Cj(Q;ν).

Lemma 4.6 (Large covered neighbourhoods). Given a graph G ∈
S(n,m;ε) let Q⊆Vi be a ν-multicover of Vj for some ν >0. Then

|Cj(Q; ν)| ≥ (1 −√
ν)n.

Proof. Let P1, . . . ,Pr with r := rν(|Q|) denote pairwise disjoint sets of
size pν in Q that are ν-covers of Vj. The following represents a typi-
cal application of Corollary 3.3. Consider the auxiliary bipartite graph
B = ({P1, . . . ,Pr}∪Vj ,EB), where {Pk,w} ∈ EB if and only if w ∈ Γj(Pk)
in G. The sets P1, . . . ,Pr can be interpreted as ‘super-vertices’ in G that are
obtained by merging the vertices in the sets Pi into a single vertex. By (9)
we have |Γj(Pk)|≥(1−ν)n, hence all vertices Pk have degree at least (1−ν)n
in B. Thus, we can apply Corollary 3.3 to obtain that

Z := {z ∈ Vj : dB(z) ≥ (1 −√
ν)r}(10)

satisfies |Z|≥(1−√
ν)n. If z∈Z, then

|{k = 1, . . . , r : z ∈ Γj(Pk)}| ≥ (1 −√
ν)r ≥ r/2 = rν(|Q|)/2,

and thus z∈Cj(Q;ν). Hence Z⊆Cj(Q;ν), which concludes the proof of the
lemma.

Let pν ≤ s ≤ q. Note that pν ≤ q for m ≥ √
(2/ν)n3 ≥ ν−1n3/2. In the

following we show that, analogously to Lemma 4.3, almost all sets of size s
in Vi form a ν-multicover of Vj .
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Definition 4.7 (Sets of multicovers). Let s∈N and ν >0, and consider
G ∈ S(n,m;ε) and {i,j} ⊆ {1, . . . ,4}. Let Qi,j(G;s,ν) denote the family of
sets of size s in Vi that form a ν-multicover of Vj. Furthermore, we define
Q̄i,j(G;s,ν) :={S⊆Vi : |S|=s}\Qi,j(G;s,ν).

Lemma 4.8 (Q̄ is small). For π,ν > 0, there exists a constant εMul =
εMul(π,ν) such that for any pair {i,j} ⊆ {1, . . . ,4}, and any graph G ∈
S(n,m;ε) with ε≤εMul, ν−1n3/2≤m≤n2/4, and any s with pν ≤s≤q,

|Q̄i,j(G; s, ν)| ≤ πs

(
n

s

)
,

for n sufficiently large.

Proof. We first count the number of ways to choose a family of r′ :=�s/pν�
pairwise disjoint sets P1, . . . ,Pr of size pν in such a way that at least r′/2
of the sets Pk belong to P̄i,j(G;ν), and an additional set of size s− r′pν .
By Lemma 4.3 with π̄ > 0 and ε < εCov(π̄,ν), and since n− r′pν ≥

√
εn for

sufficiently large n, we have at most

(
r′

r′/2

)
(π̄pν )r

′/2

( r′−1∏
i=0

(
n− ipν

pν

))(
n− r′pν

s− r′pν

)
≤ 2r′ π̄s/2 s!

(pν !)r
′(s− r′pν)!

(
n

s

)

ways to do so.
Now, consider a set Q∈Q̄i,j(G;s,ν). There are s!/((pν !)r

′
(s−pν)!) ways

to partition Q into r′ ordered disjoint sets of size pν and one additional set
of size s−r′pν , and since Q∈Q̄i,j(G;s,ν) all these partitions contain at least
r′/2 sets in P̄i,j(G;ν). In addition, two different sets Q′ �= Q ∈ Q̄i,j(G;s,ν)
never yield the same partition. It follows that there are at most

2r′π̄s/2

(
n

s

)

sets in Qi,j(G;s,ν) and by choosing π̄ sufficiently small the claim follows.

Before discussing further properties and applications of multicovers we
need the following simple definition which is used to control the overlap
between a family of sets.

Definition 4.9 (Quasidisjoint sets). A family of sets A1, . . . ,Ab ⊆ V is
called s-quasidisjoint if each v∈V belongs to at most s of these sets, that
is, if

|{i ∈ {1, . . . , b} : x ∈ Ai}| ≤ s for all x ∈ V .
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Note that sets that belong to a family of 1-quasidisjoint sets are disjoint.
Consider a ν-multicover Q with Q∗=

⋃r
k=1 P ∗

k and r=rν(|Q|). For a fixed P ∗
k ,

all neighbourhoods Wu for u∈P ∗
k are disjoint (see Definition 4.1). Since there

are only r sets P ∗
k , we conclude that the sets Wv, v∈Q∗ are r-quasidisjoint.

In our subsequent proofs we will often exclude a subset X of vertices
in a partition class. Later we want to choose (rather) disjoint sets and X
denotes the set of already chosen sets. Then we want to find the next set
in V \X. The following definition and lemma show that the structure of a
ν-multicover remains intact (up to constants) if this set X is smaller than
(1−2

√
ν)n (thus X can be quite large).

Definition 4.10 (Resistant multicovers). A ν-multicover Q⊆Vi of Vj is
called X-resistant for X⊆Vj if there exists a subset Q∗∗⊆Q with |Q∗∗|=ν2q
such that there exist rν(|Q|)-quasidisjoint sets (W ′

v ⊆ Γj(v)\X)v∈Q∗∗ with
|W ′

v|=ν2q. We call the sets W ′
v covering neighbourhoods.

Lemma 4.11 (All multicovers are resistant). Let ν >0 be a sufficiently
small constant, and consider a graph G∈S(n,m;ε), {i,j}⊆{1, . . . ,4}, X⊆Vj

with |X|≤ (1−2
√

ν)n. Then any ν-multicover Q⊆Vi of Vj with |Q|= qν is
also X-resistant.

Proof. We count the number of occurrences of vertices x∈ Vj in covering
neighbourhoods Wu of the ν-multicover Q. More precisely, if a vertex x
belongs to a covering neighbourhood Wu, such that u belongs to one of the
ν-covers P that make up the ν-multicover, then this corresponds to one such
occurrence.

Let us go back to the proof of Lemma 4.6. We showed there that Cj(Q;ν)
is large by examining the set Z⊆Cj(Q;ν) defined in (10). Now we consider
this set Z again. Every vertex z∈Z corresponds to at least (1−√

ν)rν(|Q|)≥
rν(|Q|)/2 occurrences of z in covering neighbourhoods.

Since |Z|≥(1−√
ν)n, it follows that |Z \X|≥√

νn. We conclude that at
least ∑

u∈Q∗
|Wu \ X| ≥ √

νn · rν(|Q|)/2 ≥ 1
8
ν3/2 m

n
|Q|(11)

occurrences remain if we restrict the sets Wu to vertices in Vj \X.
Let Q′ :={u∈Q∗(ν) : |Wu\X|≥ν2q} where Q∗(ν) is defined as in Defini-

tion 4.4, and assume that |Q′|≤ν2q. Then the number of these occurrences
is at most∑

u∈Q∗
|Wu \ X| ≤ |Q \ Q′| · ν2q + |Q′| · qν ≤ |Q|ν2q + ν2q|Q| ≤ 2ν2 m

n
|Q|.
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Vi

Vj

Vk

μ-multicover of Vj

μ-cover of Vj

covering neighbourhoods,
ν-multicovers of Vk

ν-cover of Vk

X

Figure 3. Qualified multicovers

This obviously contradicts (11) for ν sufficiently small.
Finally observe that the sets W ′

u are rν(|Q|)-quasidisjoint since they are
subsets of the covering neighbourhoods Wu which are already rν(|Q|)-quasi-
disjoint.

The concepts introduced so far – covers and (resistant) multicovers – are
only concerned with edges between two classes Vi and Vj . In order to get
closer to finding clique candidates we have to consider structures between
three classes, too. The following definition introduces multicovers where the
covering neighbourhoods are themselves multicovers, see Figure 3.

Definition 4.12 (Qualified resistant multicovers). An X-resistant μ-
multicover Q⊆Vi of Vj is called ν-qualified for Vk if the rμ(|Q|)-quasidisjoint
covering neighbourhoods W ′

1, . . . ,W
′
μ2q ⊆ Vj of cardinality μ2q are ν-multi-

covers of Vk.

4.4. Triangle covers

Informally speaking, a triangle cover is a set Q ⊆ V3 for which there are
many vertices w∈V2 such that each w spans many triangles between itself,
Q and V4 \X for some forbidden set X (see Figure 4).
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V1V1

V2V2V3V3

V4V4 tμtμ

QQ

≤ 3
√

δn≤ 3
√

δn

ww

TT

XX

Figure 4. (μ,δ)-triangle cover

Definition 4.13 (Resistant triangle covers). Let δ,μ>0. Consider G∈
S(n,m;ε), and X ⊆ V4. We call a set Q⊆ V3 an X-resistant (μ,δ)-triangle
cover of V2 via V4 if there exists a set T =T (Q)⊆V2 with |T (Q)|≥(1−3

√
δ)n

such that for all w∈T

|TRI4(w,Q) \ X| ≥ tμ,

where tμ :=μ−1 n2

m (as in (5)) and

TRI4(w,Q) := Γ4(w) ∩ Γ4(Γ3(w) ∩ Q).

Figure 4 illustrates the structure of triangle covers. Later in the proof we
will consider triangle covers Q with Q ⊆ Γ3(v) for a vertex v ∈ V1, and we
will be interested in finding vertices w∈T ∩Γ2(v).

Unfortunately, we are not able to prove directly that there exist many
triangle covers. Instead we are taking a little detour via so-called triangle
candidate covers Q, defined below (see also Figure 5). Given a set X ⊆V4,
we fix a set Q̃ ⊆ Q with the following property: Almost all vertices u ∈ Q̃
have a large common neighbourhood in V4 \X with almost all vertices w
in V2. Observe that a priori nothing is required about the edges between Q
and w.

Definition 4.14 (Resistant triangle candidate covers). Consider a
graph G ∈ S(n,m;ε), and X ⊆ V4. A set Q ⊆ V3 with |Q| = qμ is called
an X-resistant (ν,μ)-triangle candidate cover of V2 via V4 if there exist
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V1V1

V2V2V3V3

V4V4 RuRu

Q̃̃Q
T̃̃T

rμ(qμ)-quasidisjointrμ(qμ)-quasidisjoint

≤ ν1/4n≤ ν1/4n

Figure 5. (ν,μ)-triangle candidate cover

sets Q̃ ⊆ Q with |Q̃| = μ2q and T̃ = T̃ (Q) ⊆ V2 with |T̃ | ≥ (1 − ν1/4)n
such that the following condition is satisfied: For all w ∈ T̃ , there exists a
set Q̃∗(w) ⊆ Q̃, |Q̃∗(w)| ≥ (1− ν1/4)μ2q and an rμ(qμ)-quasidisjoint fam-

ily of sets (Ru ⊆
(
Γ4(u) ∩ Γ4(w)

)
\ X)u∈Q∗(w) with |Ru| ≥ r̃1/2, where

r̃1 :=rν(μ2q)= 1
4μ2ν m2

n3 as in (7).

While the above definition might lead the reader to believe that a triangle
candidate cover is a very sophisticated structure, the following lemma shows
that we have already encountered them.

Lemma 4.15 (Qualified multicovers are triangle candidate covers).
Consider a graph G ∈ S(n,m;ε), and X ⊆ V4 with |X| ≤ (1− 2

√
μ)n. Let

Q⊆V3 with |Q|=qμ be an X-resistant μ-multicover of V4 that is ν-qualified
for V2. Then Q is also an X-resistant (ν,μ)-triangle candidate cover of V2

via V4.

Proof. We will show that Q∗∗, as given by Definition 4.10, satisfies the prop-
erties of Q̃ in Definition 4.14. There exist at least μ2q rμ(qμ)-quasidisjoint
covering neighbourhoods (W ′

v ⊆ V4 \X)v∈Q∗∗ with cardinality μ2q. As Q is
ν-qualified for V2 these sets are ν-multicovers of V2 and by Lemma 4.6 we
have |C2(W ′

v;ν)| ≥ (1−√
ν)n for all v ∈Q∗∗. By Corollary 3.3 we conclude

that there is a set T̃ ⊆V2 with |T̃ |≥(1−ν1/4)n such that every w∈ T̃ belongs
to at least (1−ν1/4)μ2q of the sets (C2(W ′

v;ν))1≤v≤μ2q.
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In other words, for every w ∈ T̃ the set Q̃∗(w) := {v ∈ Q∗∗ : w ∈
C2(W ′

v;ν)} ⊆ Q̃ = Q∗∗ satisfies |Q̃∗(w)| ≥ (1− ν1/4)μ2q. Now for every u ∈
Q̃∗(w) define Ru :=Γ4(w)∩W ′

u. As Ru⊆W ′
u, the family (Ru)u∈Q̃∗(w) is rμ(qμ)-

quasidisjoint. Observe that by definition of Q̃∗(w), we have w∈C2(W ′
u;ν),

hence, by definition of the latter, |Ru| = |Γ4(w)∩W ′
u| ≥ rν(μ2q)/2 = r̃1/2.

On the other hand, the definition of W ′
u implies that W ′

u ⊆ Γ4(u)\X, and
therefore Ru⊆(Γ4(u)∩Γ4(w))\X, which proves the claim.

Consider a triangle candidate cover Q and a vertex w∈ T̃ (Q). We expect
that w has a neighbourhood R of size Θ(m2/n3) in Q̃∗(w). Since every
vertex u ∈ Q̃∗(w) has r̃1/2 = Θ(m2/n3) common neighbours with w in V4,
we expect that R and w complete Θ(m2/n3 ·m2/n3) = Θ(m4/n6) triangles
in V4 assuming that all neighbourhoods are disjoint. Furthermore, note that
m4/n6 = Ω(n2/m) for m = Ω(n8/5). This leads to the following definition,
where we introduce bad sets R that are involved in significantly less than
the expected number of triangles. Note that the quasidisjointness of the sets
Ru in Definition 4.14 gives us the necessary control on the overlap of the
sets Ru for u∈R.

Definition 4.16 (Bad R-sets). Consider a graph G∈S(n,m;ε), X ⊆V4,
w∈V2 and a set Q⊆V3 that is an X-resistant (ν,μ)-triangle candidate cover
of V2 via V4. We define

R̄(w,Q;X,λ) := {R ⊂ Q̃ : |R| = r̃2/2, |(Γ4(R) ∩ Γ4(w)) \ X| < tλ},
where tλ := 1

λ · n2

m and r̃2 :=rμ(μ2q)= μ3

4
m2

n3 .

The following lemma shows that such bad R-sets indeed occur very rarely.

Lemma 4.17 (Few bad R-sets). Consider a graph G ∈ S(n,m;ε) with
m≥28(λμ5ν)−1n8/5 =:mTri(ν,μ,λ) and n sufficiently large. Let X⊆V4, and
let Q⊆V3 with |Q|=qμ be an X-resistant (ν,μ)-triangle candidate cover of

V2 via V4. For any w∈ T̃ (Q), we have

|R̄(w,Q;X,λ)| ≤
(
33ν1/4

)r̃2/4
(

μ2q

r̃2/2

)
≤ κr̃2

(
μ2q

r̃2/2

)
,

where κ :=3ν1/16.

Proof. Consider a set R∈R̄(w,Q;X,λ), and let R′⊂R be a set of maximal
size such that there exist pairwise disjoint sets (Tu⊂(Γ4(u)∩Γ4(w))\X)u∈R′
of size |Tu|= r̃1/4. Clearly,

|R′| <
16

λμ2ν

n5

m3
=: k0,
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since otherwise

|(Γ4(R) ∩ Γ4(w)) \ X| ≥ |(Γ4(R′) ∩ Γ4(w)) \ X|
≥ k0 · r̃1

4
=

16
λμ2ν

n5

m3
· 1
16

μ2ν
m2

n3
= λ−1 · n2

m
= tλ.

Consider the set Q̃∗(w) as defined in Definition 4.14 and the sets
(Ru)u∈Q̃∗(w). Since the sets (Ru)u∈Q̃∗(w) are rμ(qμ)-quasidisjoint, at most

|⋃u∈R′ Tu| · rμ(qμ)
r̃1/4

≤ tλ · rμ(qμ)
r̃1/4

≤ k0 · rμ(qμ) = Θ

(
n5

m3
· m2

n3

)
= Θ(n2/m)

vertices in Q̃∗(w) have less than r̃1/4 neighbours in Γ4(w)\(X ∪⋃
u∈R′ Tu).

Observe that n2/m=o(q) for m=Ω(n8/5). Also, |Q̃\Q̃∗(w)|≤ν1/4|Q̃|, and
thus for sufficiently large n, there are at most 2ν1/4|Q̃| vertices in Q̃\R′ that
have a neighbourhood in Γ (w)\(X ∪⋃

u∈R′ Tu) of size less than r̃1/4. Note
also that

r̃2/4 =
1
16

μ3 m2

n3
= k0 · 2−8μ5νλ

m5

n8
≥ k0,

by choice of m, and hence r̃2/2−k0≥ r̃2/4. Now

|R̄(w,Q;X,λ)| ≤
∑
k≤k0

(|Q̃|
k

)(
2ν

1
4 |Q̃|

r̃2/2 − k

)

3.1(ii)

≤
∑
k≤k0

(|Q̃|
k

)( |Q̃|
r̃2/2 − k

)(
2ν

1
4

)r̃2/2−k

3.1(i)

≤
∑
k≤k0

4r̃2/2

( |Q̃|
r̃2/2

)(
2ν

1
4

)r̃2/2−k

≤ k04r̃2/2

( |Q̃|
r̃2/2

)(
2ν

1
4

) r̃2
4 ≤

(
33ν

1
4

)r̃2/4
( |Q̃|

r̃2/2

)

for sufficiently large n.

Although we have already defined triangle covers we have not yet proved
their occurrence in typical graphs. Instead we have considered triangle can-
didate covers Q ⊆ V3 and showed that most sets of size Θ(m2/n3) inside
Q close Θ(n2/m) triangle candidates. Observe that a typical vertex w∈V2

has Θ(m2/n3) neighbours in Q. If these neighbours indeed close Θ(n2/m)
triangle candidates and this is true for most vertices in V2, this suffices to
show that Q is a triangle cover. Unfortunately, by considering one triangle
candidate cover alone we do not obtain a sufficiently small probability for
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bad graphs. This technical difficulty is overcome by considering a partition
of V3 into Θ(n2/m) triangle candidate covers Q.

Definition 4.18 (Resistant cover family). Let ν,μ>0 and p̃ :=pμ/4 as
in (8). A (ν,μ)-cover family that is resistant to (Xi ⊆V4)i=1,...,p̃ consists of
pairwise disjoint sets Q1, . . . ,Qp̃ ⊆V3 such that the following conditions are
satisfied for all i=1, . . . , p̃:

(i) |Qi|=qμ,
(ii) Qi is an Xi-resistant (ν,μ)-triangle candidate cover of V2 via V4,
(iii) Q̃i, which is given by Definition 4.14, is a μ-multicover of V2.

Moreover, we say that a set P ∗ = {v1, . . . ,vp̃} ⊆ V1 induces a (ν,μ)-cover
family (Qi)1≤i≤p̃ that is resistant to (Xi)1≤i≤p̃ if for i = 1, . . . , p̃, we have
Qi⊆Γ3(vi).

Our final aim of this section is to show that cover families contain many
triangle covers. A cover family consists of triangle candidate covers which we
would like to turn into triangle covers by showing that the necessary edges
between V3 and V2 do exist, i.e., that the sets T̃ (Qi) from Definition 4.14
can be turned into the sets T (Qi) from Definition 4.13. The following lemma
introduces certain ‘bad’ vertices in V2. If we can show that there are only
few such vertices, then the cover family behaves as desired and we can prove
that there exist many triangle covers. Before we can state the lemma, we
need one more definition.

Definition 4.19 (Non-spreading vertices). Let δ,ν,μ > 0, and let
Q1, . . . ,Qp̃ ⊆V3 be a (ν,μ)-cover family that is resistant to X1, . . . ,Xp̃ ⊆V4.
A vertex w∈V2 is called (δ)-non-spreading if there exist at least δp̃ sets Qi

such that

w ∈ T̃ (Qi) and ∃R ⊆ Γ3(w) ∩ Q̃i, |R| = r̃2/2 : R ∈ R̄(w,Qi;Xi, μ
2).

Lemma 4.20 (Cover families contain many triangle covers). Let 0<√
ν ≤ μ and 2μ1/4 ≤ δ. Consider a (ν,μ)-cover family Q1, . . . ,Qp̃ ⊆ V3 that

is resistant to X1, . . . ,Xp̃ ⊆ V4. If there are at most δn (δ)-non-spreading
vertices, then

|{i ∈ {1, . . . , p̃} : Qi is an Xi-resistant (μ2, δ)-triangle cover}| ≥ (1− 2
√

δ)p̃.

Proof. For i=1, . . . , p̃ consider the sets

C̃i := T̃ (Qi) ∩ C2(Q̃i;μ) ⊆ V2,

where T̃ (Qi) is defined according to Definition 4.14 and C2(Q̃i;μ) according
to Definition 4.5. The idea is that the vertices in T̃ (Qi) are guaranteed
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to share many common neighbours (inside V4) with the set Q̃i while the
set C2(Q̃i;μ) sees many vertices in Q̃i, hence their intersection is a good
way of getting closer to the set T (Qi) from Definition 4.13. By Lemma 4.6,
Definition 4.14 and Definition 4.18(iii) we conclude that

|C̃i| ≥ |T̃ (Qi)| − |V2 \ C2(Q̃i;μ)| ≥ (1 − ν1/4 −√
μ)n ≥ (1 − 2

√
μ)n.

Hence by Corollary 3.3 there are at least(
1 −

√
2
√

μ
)
n ≥ (1 − 2μ1/4)n ≥ (1 − δ)n

vertices w∈V2 such that w belongs to at least (1−2μ1/4)p̃≥(1−δ)p̃ sets C̃i.
Let S denote the set of these vertices. If w∈S satisfies w∈ C̃i, we say that
Qi is apt for w. Recall that in this case we know that w∈C2(Q̃i;μ), hence
by Definition 4.5 we have that

|Q̃i ∩ Γ3(w)| ≥ rμ(μ2q)/2 = r̃2/2.

So we fix a set Ri(w)⊆ Q̃i∩Γ3(w) with |Ri(w)|= r̃2/2 for every set Qi that
is apt for w. Now we remove all (δ)-non-spreading vertices from S, and call
the resulting set S′. Note that |S′|≥|S|−δn≥(1−2δ)n.

For any vertex w∈S′ there are at least (1−δ)p̃ apt sets Qi. Recall that
since w∈S′ we have that w∈ T̃ (Qi) but also that w is (δ)-spreading. These
two conditions together imply that there exist at least (1−δ−δ)p̃=(1−2δ)p̃
sets Qi for which

∀R ⊆ Γ3(w) ∩ Q̃i, |R| = r̃2/2 : R �∈ R̄(w,Qi;Xi, μ
2).

Letting R :=Ri(w) this shows that by Definition 4.16 of R̄, we have

|(Γ4(Ri(w)) ∩ Γ4(w)) \ Xi| ≥ tμ2 .

Now recall that

TRI4(w,Qi) := Γ4(Γ3(w) ∩ Qi) ∩ Γ4(w) ⊇ Γ4(Ri(w)) ∩ Γ4(w)

to obtain that |TRI4(w,Qi)\Xi|≥ tμ2. Let T (Qi) :={w∈S′ : |TRI4(w,Qi)\
Xi| ≥ tμ2}. It remains to show that |T (Qi)| ≥ (1− 3

√
δ)n. To do so, note

that for any vertex w∈S′ we have w∈T (Qi) for at least (1−2δ)p̃ sets Qi.
We apply Corollary 3.3 one more time and obtain that there are at least
(1−√

2δ)p̃ sets Qi such that

|T (Qi)| ≥ (1 −
√

2δ)|S′| ≥ (1 −
√

2δ)(1 − 2δ)n ≥ (1 − 3
√

δ)n.

Hence these sets Qi are Xi-resistant (μ2,δ)-triangle covers and the proof is
complete.
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5. General counting lemma

Recall from Section 2 that in order to prove our main theorem we want to
define bad classes Bi(β). In Section 4 we showed that in a graph belonging
to S(n,m;ε) there are only very few sets that are not covers, multicovers
or triangle candidate covers. Thus if we for example fix the (ε,n,m)-regular
graph between V2 and V3 and we want to construct an (ε,n,m)-regular
graph between V1 and V2 then there are only very few possibilities to con-
struct graphs that have many vertices in V1 that have no mulitcover in their
neighbourhood as there are only very few sets in V2 that are no multicov-
ers. The aim of this section is to provide a rather general counting lemma
to count sets Bi(β) that consists of graphs with a linear number of vertices
that have an unlikely neighbourhood.

We will construct and thus count the number of atypical graphs Bi(β)
by first fixing their edges up to E[B,Vj ], where B ⊆ Vi for i �= j denotes a
set of atypical vertices that have an unlikely neighbourhood. We will require
that |B| = Θ(n). If there are only very few ‘bad’ sets in Vj , then one can
construct only very few graphs such that all the vertices in B have a bad
set as their neighbourhood in Vj. Of course it will be important that we can
identify the bad sets in Vj without looking at the edges between B and Vj.
The next definitions formalise this idea.

Definition 5.1 (Neighbourhood function). Consider a 4-partite graph
G = (V1 ∪ ·· · ∪V4,E) and a set B⊆Vi. We denote by G \Bj the graph G
without the edges between B and Vj . Given the set B⊂Vi, a graph G\Bj ,
a value dv and a vertex v ∈B a neighbourhood function N (B,G\Bj ,dv,v)
returns a set of sets S ⊆ Vj of size dv . We often simply write N (v) if it is
clear which set B, which graph and which value dv are relevant.

In other words, all of the graph G except for the edges between B and
Vj is given to N , even the degree of the vertex v is specified. The function
N then proposes a list of possible neighbourhoods for v. We say that there
exists a bad neighbourhood function N for Bi(β) if N proposes only a very
limited number of neighbourhoods for the vertices of a set B of linear size and
still guarantees that every graph in Bi(β) cannot choose a neighbourhood
for the vertices in B outside the proposed list.

Definition 5.2 (Bad neighbourhood function). Let δ,π > 0 and let
G ⊆ S(n,m;ε). A neighbourhood function N is called a bad neighbourhood
function for the set G and the parameters δ,π if the following condition
holds:
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For each G=(V,E)∈G, there exist 1≤ i,j≤4, i �= j, and set B⊆Vi with
|B|≥δn and dv :=dj(v)≥q/2 for all v∈B, such that for each v∈B

Γj(v) ∈ N (B,G \ Bj, dv , v) and |N (B,G \ Bj, dv , v)| ≤ πdv

(
n

dv

)
.

Lemma 5.3 (Counting bad graphs). Let β,δ>0, and let π :=π(β,δ)>0
be sufficiently small such that 8 · πδ/2 ≤ β. If N is a bad neighbourhood
function for G⊆S(n,m;ε) and parameters δ,π, then

|G| ≤ βm

4

(
n2

m

)6

for n sufficiently large and any m = ω(n logn) (that is m/(n logn)→∞ as
n→∞).

Proof. We construct all graphs in G as follows: We start by choosing i,j
with i �= j, the set B ⊆ Vi and the degree values dv := |Γj(v)| for v ∈ Vi.
Observe that there are at most 4·3·n!·nn ≤2m possibilities to do that, with

lots of room to spare. Then we fix the edges in E \E(Vi,Vj) (at most
(n2

m

)5

possibilities). For the vertices v∈Vi \B we have at most
(

n
dv

)
choices to fix

their remaining neighbourhood Γj(v). For each vertex v∈B we choose a set
from N (B,G\Bj ,dv ,v) as its neighbourhood Γj(v). From the assumption
that N is a bad neighbourhood function it follows that there are at most
πdv

( n
dv

)
possibilities to do so. Hence, we obtain that the total number of

possibilities for choosing the edges between Vi and Vj is bounded by⎛
⎝ ∏

v∈Vi\B

(
n

dv

)⎞
⎠ ·

(∏
v∈B

πdv

(
n

dv

))
≤ π|B|·minv∈B{dv} ∏

v∈Vi

(
n

dv

)

≤ πδn·q/2

(
n2

m

)
= πδm/2

(
n2

m

)
.

Thus it follows that

|G| ≤ 2m ·
(

n2

m

)5

· πδm/2

(
n2

m

)
≤ βm

4
·
(

n2

m

)6

,

which proves the claim.

A relatively easy application of Lemma 5.3 can be seen in the proof of
Lemma 6.4.
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6. Proof of the Main Theorem

6.1. Constants

For the proof of Theorem 1.5 we will need the following constants which
depend on β:

δ, δr, δc, νq, μq, εq > 0.

The constant ε0 which we need for Theorem 1.5 will be much smaller than all
other constants. We characterise these constants by means of the following
inequalities (The function π(β,δ) is given in Lemma 5.3.) Here, we do not
collect the inequalities that involve ε0 as there are quite a few and as ε0

always needs to be small with respect to all other constants one can choose
it last.

2μ1/2
q ≤ π(β, δc),(12)

εq ≤ μ2
q,(13)

ν1/2
q ≤ μq,(14)

2μ1/4
q ≤ δr,(15)

200δ ≤ δc,(16)

200δ ≤ μq,(17)

4δ1/2
r ≤ δc,(18)

60δ1/4
r ≤ π(β, δc),(19)

(16νq)
δrμ2

q/160 ≤ π(β, δr/2)(20)

It can be seen that suitable values for the constants exist by fixing them
in the following order:

δc � δr � μq � εq � δ � νq � ε0.(21)

Furthermore, we fix a sufficiently large constant C ≥ 1 such that the con-
ditions of Lemma 4.17 are satisfied, i.e., Cn8/5 ≥ mTri(νq,μq,μ

2
q). In the

remainder we will assume that Cn8/5 ≤m≤n2/4 and that n is sufficiently
large. Furthermore 0<ε≤ε0.
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6.2. Counting bad graphs

As mentioned before we want to investigate properties of a typical graph in
S(n,m;ε). In this subsection we show that for nearly all graphs in S(n,m;ε)
the neighbourhoods of most vertices have roughly their expected sizes and
are multicovers. The next step will then be to prove that in these graphs
only very few vertices are non-spreading, which by Lemma 4.20 gives rise to
many triangle covers. Finally, this implies that a typical graph in S(n,m;ε)
contains a linear number of vertices in V1 which have many clique candidates.

6.2.1. Vertices with atypical degree. We say that a vertex v∈Vi sat-
isfies the degree property if the following condition (D) is met:

(D) ∀j �= i : (1 − ε)q ≤ dj(v) ≤ (1 + ε)q.

Definition 6.1 (Graphs with vertices of wrong degree).

BD(n,m; ε) := {G ∈ S(n,m; ε) :
∃i s.t. at least 6εn vertices in Vi do not satisfy (D)}.

Lemma 6.2 (BD is very small indeed).

BD(n,m; ε) = ∅.
Proof. It follows from Lemma 3.4 that |{v ∈Vi : |dj(v)− q|>εq}|< 2εn for
all i �=j.

6.2.2. Vertices without multicovers in their neighbourhood. By
Lemma 4.8 we know that almost all sets of size αq for some 0<α<1 are ν-
multicovers. Using Lemma 5.3 we conclude that almost all vertices have mul-
ticovers in their neighbourhood for an overwhelming proportion of graphs.
The following definition and lemma formalise this intuitive argument.

We say that a vertex v∈Vi satisfies the multicover property if the follow-
ing condition (MCν) is met:

(MCν) ∀j �= i ∀Q ⊆ Γj(v) s.t. εqq ≤ |Q| ≤ q ∀k �= i, j : Q ∈ Qj,k(G; |Q|, ν),

where Qj,k was defined in Definition 4.7.

Definition 6.3 (Vertices with a bad Q-set).

BMC(n,m; ε, ν) := {G ∈ S(n,m; ε) : ∃i s.t. at least
3δn vertices in Vi do satisfy (D) but not (MCν)}.
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Lemma 6.4 (BMC is small). There is a constant εMC =εMC(εq,β,δ,ν)>0
such that

|BMC(n,m; ε, ν)| ≤ βm

4

(
n2

m

)6

for n sufficiently large and 0<ε≤εMC .

Proof. By Lemma 5.3 it suffices to show that there exists an appropriate
bad neighbourhood function N . In order to define N , observe first that for
each graph G∈BMC(n,m;ε,ν) there exist i and j such that the set B⊆Vi

of those vertices that satisfy (D) but fail (MCν) for the given value of j and
at least one set Q⊆Γj(v) has cardinality |B|≥δn.

Therefore, we let

N (v) :=
{
U ∈

(
Vj

dv

)
: ∃Q ⊆ U s.t. Q ∈ Q̄j,k(G; t, ν)

for some k �= i, j and εqq ≤ t ≤ q
}

and apply it to graphs G∈BMC(n,m;ε,ν) with i, j, B as indicated above
and dv := |Γj(v)| for v ∈ B. Note that it is not necessary to consider the
edges between Vi and Vj in order to determine the sets Q̄j,k(G;t,ν).

Let π = π(β,δ) be as in Lemma 5.3, choose γ > 0 sufficiently small such
that 5γεq/2 ≤ π and assume that ε < εMul(γ,ν), where the latter is as in
Lemma 4.8. By Lemma 4.8 and Lemma 3.1 (i) we have for sufficiently large n,

|N (v)| 4.8≤ 2
∑

εqq≤t≤q

[
γt

(
n

t

)
·
(

n − t

dv − t

)]
3.1(i)

≤ 2q · γεqq4dv

(
n

dv

)

(D)

≤ 2
dv

1 − ε
γεq

dv
1+ε 4dv

(
n

dv

)
≤ (5γεq/(1+ε))dv

(
n

dv

)
≤ πdv

(
n

dv

)
.

This concludes the proof of the lemma.

6.2.3. Vertices without ‘good’ neighbourhoods. In the preceding
lemmas we have shown that most vertices in a typical graph G∈S(n,m;ε)
satisfy properties (D) and (MC). For the remainder of this paper we con-
centrate our attention on good vertices, which are denoted by

GVi := {v ∈ Vi : v satisfies (D), (MCνq), and (MCμq )}.
Let

SDM (n,m; ε) := S(n,m; ε) \
[
BD(n,m; ε) ∪

⋃
ν∈{νq ,μq}

BMC(n,m; ε, ν)
]
.
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The notation for the ‘bad’ sets B and the ‘good’ sets S follows the convention
that the superscript indicates the property respectively properties which
characterise this set of graphs. For bad sets the given property is violated
by a significant number of vertices, whereas for good sets the properties
indicated by the superscript are satisfied by almost all vertices.

Consider a graph G∈SDM (n,m;ε). From Lemma 6.2, Lemma 6.4 we can
immediately conclude that, say,

|GVi| ≥ (1 − 99δ)n for all i = 1, . . . , 4

with lots of room to spare. We say that a vertex v ∈ Vi satisfies the good
degree property if the following condition (D′) is met:

(D′) ∀j : |Γj(v) \ GVj | ≤ 100δq.

The subset of GVi which consists of all vertices satisfying (D′) is denoted
by GV ′

i , i.e.,

GV ′
i := {v ∈ GVi : v satisfies (D′)}.

Lemma 6.5 (GV ′
i is big). There exists εG = εG(δ) > 0 such that for all

0<ε<ε0 and any G∈SDM (n,m;ε), we have for all i=1, . . . ,4,

|GV ′
i | ≥ (1 − 100δ)n.

Proof. Let j∈{1, . . . ,4}, j �= i, and consider any set F ⊆Vj with F ⊇Vj\GVj

and |F |=99δn. By Lemma 3.4 we obtain that |Γj(v)∩F |≤(1+ε)99δq≤100δq
for all but at most εn vertices in vi. As ε≤ 100δ, the lemma immediately
follows.

6.2.4. Vertices without triangle covers. Due to Lemma 4.20 we find
the desired triangle covers if we are able to prove that there are few non-
spreading vertices. The following definition and lemma show that this is
indeed the case for most graphs.

Definition 6.6 (Too many non-spreading vertices).

BR(n,m; ε) :={G ∈ S(n,m; ε) : ∃X1, . . . ,Xp̃ ⊆ V4 where
p̃ = p̃(μq) = n2/(2μqm) ∃(νq, μq)-cover family
Q1, . . . , Qp̃ ⊆ V3 resistant to (Xl)l=1,...,p̃ :
there exist at least δrn (δr)-non-spreading vertices w ∈ V2}
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Lemma 6.7 (BR is small). There exist εR =εR(νq,μq,δr,β)>0 such that

|BR(n,m; ε)| ≤ βm

4

(
n2

m

)6

,

whenever 0 < ε < εR, m ≥ mTri(νq,μq,μ
2
q) (where mTri is defined as in

Lemma 4.17) and n sufficiently large.

Proof. There are at most 2n·p̃ ≤ 2m choices for the sets Xl and at most
(p̃+1)n choices for the cover family Q1, . . . ,Qp̃. Hence we have at most, say,
3m possibilities for fixing the (νq,μq)-cover family with the forbidden sets Xl,
and, consequently, it suffices to count the number of graphs which are bad
with respect to a specific cover family.

To this end we apply Lemma 5.3, where the set of bad vertices B corre-
sponds to δrn/2 (δr)-non-spreading vertices which satisfy (D). Observe that
there are at least δrn−6εn≥δrn/2 such vertices. We define the neighbour-
hood function

N (w) :=
{

X ∈
(

V3

dw

)
: ∃I ⊆ {1, . . . , p̃}, |I| = δr p̃

∀i∈ I ∃R ⊆ X ∩ Q̃i, |R| = r̃2/2 : R ∈ R̄(w,Qi;Xi, μ
2
q)

}
.

Now let us estimate |N (w)|. First we choose the set I (at most 2p̃ pos-
sibilities). Then we fix the δr p̃ bad R-sets. Recall from Definition 4.19
that w ∈ T̃ (Qi). Thus, by Lemma 4.17 there are at most κr̃2

( μ2
qq

r̃2/2

)
pos-

sibilities for each bad R-set. Observe that δr p̃ · μ2
qq = δrμqn/2 and that

δrp̃ ·r2/2= 1
16μ2

qδrq. This leads to the bound

|N (w)| ≤ 2p̃ ·
(

κr̃2

(
μ2

qq

r̃2/2

))δr p̃

·
(

n − r̃2/2 · δrp̃

dv − r̃2/2 · δrp̃

)

≤ 2p̃ · κr̃2·δrp̃ ·
(

δrμqn/2
r̃2δrp̃/2

)
·
(

n − r̃2δrp̃/2
dv − r̃2δrp̃/2

)

≤ (2κ)r̃2·δr p̃ ·
(

n

r̃2δrp̃/2

)
·
(

n− r̃2δrp̃/2
dv − r̃2δrp̃/2

)
3.1(i)

≤ (2κ)δrμ2
qq/8 · 4dv

(
n

dv

)
(D)

≤ (2κ)δrμ2
qdv/10 · 4dv

(
n

dv

)
4.17=

(
6ν1/16

q

)δrμ2
qdv/10 · 4dv

(
n

dv

)

≤
(
420/(δrμ2

q)ν1/16
q

)δrμ2
qdv/10

(
n

dv

)
(20)

≤ π(β, δr/2)dv

(
n

dv

)

Hence we can apply Lemma 5.3.
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Let
SDMR(n,m; ε) := SDM (n,m; ε) \ BR(n,m; ε).

For graphs in SDMR we deduce from Lemma 4.20 that cover families contain
many triangle covers. In order to find many cover families we will consider p̃
vertices in V1. The following lemma shows that such vertices induce a cover
family which was defined in Definition 4.18.

Lemma 6.8 (Induced cover families). Let P ⊆GV ′
1 be a 2μq-cover of V3

with P ∗ =: {v1, . . . ,vp̃}, and for i = 1, . . . , p̃, let X1, . . . ,Xp̃ ⊆ V4 be sets with
|Xi|≤ (1−2√μq)n. Then P ∗ induces a (νq,μq)-cover family Q1, . . . ,Qp̃ ⊆V3

that is resistant to X1, . . . ,Xp̃.

Proof. Denote the covering neighbourhoods of the vertices in P ∗ by
W1, . . . ,Wp̃, where |Wi| = q2μq = (1− 2μq)2μqq for i = 1, . . . , p̃. Recall that
we denote by [A]x the set B⊆A of size |B|=x that contains the x smallest
elements in A. If |A|<x, we define [A]x :=A. Let

Q′
i := [Wi ∩ GV3]qμq

.

Note that |Wi \GV3|≤100δq, since vi∈GV ′
1 . Hence

|Wi ∩ GV3| ≥ (1 − 2μq)2μqq − 100δq
(17)

≥ qμq

and |Q′
i|=qμq

(13)

≥ εqq.
It suffices to show that the sets Q′

1, . . . ,Q
′
p̃ satisfy the requirements of

Definition 4.18.
Condition (i) has already been shown.
Since P ∗⊆GV ′

1 it follows from (MCμq) that Q′
i is a μq-multicover of V4

for i = 1, . . . , p̃. As |Xi| ≤ (1− 2√μq)n, Lemma 4.11 implies that Q′
i is also

Xi-resistant. The Xi-resistant covering neighbourhoods of Q′
i in V4 have size

μ2
qq

(13)

≥ εqq.

Hence Q′
i⊆GV3 implies that the covering neighbourhoods are νq-multicovers

of V2. Consequently, Q′
i is νq-qualified for V2. By Lemma 4.15 we conclude

that Q′
i is an Xi-resistant (νq,μq)-triangle candidate cover, which shows (ii).

Finally, consider the sets Q̃′
i from Definition 4.14. We have |Q̃′

i|≥μ2
qq

(13)

≥
εqq and vi ∈ GV ′

1 . Hence Q̃′
i is a μq-multicover of V2 and condition (iii) is

satisfied.
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Now we are finally in a position to construct many triangle covers. To
this aim we first characterise the ‘good’ vertices v∈V1 which we are looking
for. A vertex v∈V1 is said to satisfy the triangle cover property (R) if

(R) ∀X ⊆ V4, |X| ≤ (1 − 2√μq)n ∃Qv ⊆ Γ3(v) :
Qv is an X-resistant (ν2

q , δr)-triangle cover.

The following lemma shows that most vertices satisfy (R).

Lemma 6.9 (Construct triangle covers). Let ε be sufficiently small.
For a graph G ∈ SDMR(n,m;ε) there exist (1− 2δc)n vertices v ∈ V1 that
satisfy property (R).

Proof. First we will show a similar property, namely,

(R′) ∀ families
(
Xv ⊆ V4, |Xv | ≤ (1 − 2√μq)n

)
v∈V1∃RV1 ⊆ V1, |RV1| ≥ (1 − 2δc)n ∀v ∈ RV1 ∃Qv ⊆ Γ3(v) :

Qv is an Xv-resistant (μ2
q, δr)-triangle cover.

In order to prove (R′) we construct 2μq-covers P1, . . . ,Pq̃ ⊆ GV ′
1 of

size p2μq , where q̃ := (1− δc)n/p̃(μq), such that the sets P ∗
1 , . . . ,P ∗

q̃ are dis-
joint. Note that P ∗

i is of size p2μq/2=n2/(2μqm)= p̃(μq)= p̃. We construct
the 2μq-covers inductively. Assume that P1, . . . ,Pl have already been chosen.
Note that by Lemma 6.5

|GV ′
1 \ (P ∗

1 ∪ · · · ∪ P ∗
l )| ≥ (1 − 100δ)n − l · p̃ ≥ (1 − 100δ)n − q̃ · p̃

= (δc − 100δ)n
(16)

≥ δcn/2.

Thus Lemma 4.3 implies that there exist 2μq-covers Pl+1⊆GV ′
1\(P ∗

1∪·· ·∪P ∗
l )

as δc/2≥
√

ε, and we can choose one an arbitrary one of these.
Now consider arbitrary sets

(
Xv⊆V4, |Xv |≤(1−2√μq)n

)
v∈V1

. Using
Lemma 6.8 we conclude that the sets P ∗

l induce (νq,μq)-cover families for
l=1, . . . , q̃. By Definition 6.6 it follows that for these cover families at most
δrn non-spreading vertices w ∈ V2 exist. Hence, due to Lemma 4.20 there
exist at least (1− 2

√
δr)p̃ vertices v ∈ P ∗

l such that Γ3(v) contains an Xv-
resistant (μ2

q,δr)-triangle cover. Observe that the constants νq, μq and δr

satisfy the requirements of Lemma 4.20 due to (14) and (15).
If we combine these vertices for all sets P1, . . . ,Pq̃, we obtain q̃·(1−2

√
δr)p̃≥

(1−2δc)n vertices for which a triangle cover exists. This completes the proof
of (R′).

Now assume that (R′) holds but the claim of the lemma is not true. Thus
there exist more than 2δcn vertices v∈V1 for which (R) is not satisfied. For
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every such vertex v there exists a set Xv =X ⊆V4 with |Xv |≤ (1−2√μq)n
such that Γ3(v) does not contain an Xv-resistant (ν2

q ,δr)-triangle cover. But
this is a contradiction to (R′). Note that the existence of a triangle cover for
a vertex v∈V1 depends only on ‘its own’ X-set.

6.2.5. Vertices without clique candidates. Now that we have found
triangle covers we intend to finally find clique candidates. As described in
Section 2 we want to show that for almost every vertex v ∈ V1 there exist
many clique candidates x∈V4 such that adding the edge {v,x} would result
in a K4.

Definition 6.10 (Clique candidates). For v∈GV ′
1 and a set A⊆V2 we

define the set CC(v,A)⊆V4 by

CC(v,A) := {x ∈ V4 : ∃w ∈ A ∃u ∈ Γ3(v) s.t. {u,w}, {x, u}, {x,w} ∈ E}.

Definition 6.10 allows us to construct the set of clique candidates iter-
atively. Note that CC(v,Γ2(v)) contains all possible clique candidates. We
will now show how we can construct a set A⊆Γ2(v), adding vertex by ver-
tex until CC(v,A) is large enough. The set A will be called the processed
neighbourhood of v. For the remainder of the paper we restrict our attention
to sets with |A|≤μ2

qq.
A vertex v∈V1 is said to satisfy the clique candidate property (C) if

(C) ∀A ⊆ Γ2(v), |A| ≤ μ2
qq

∀Q ⊆ Γ3(v) s.t. Q is a CC(v,A)-resistant (μ2
q , δr)-triangle cover :

(Γ2(v) \ A) ∩ T (Q) �= ∅.

Definition 6.11 (Vertices without clique candidates).

BCC(n,m; ε) := {G ∈ SDMR(n,m; ε) :
at least δcn vertices v ∈ V1 satisfy (D) but not (C)}

Lemma 6.12 (BCC is small).

|BCC(n,m; ε)| ≤ βm

4

(
n2

m

)6

for sufficiently small ε and sufficiently large n and Cn8/5≤m≤n2/4.
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Proof. Once again we will use Lemma 5.3 to prove that BCC(n,m;ε) is
small. For the δcn bad vertices indicated by Definition 6.11 we define the
neighbourhood function

N (v) :=
{

X ∈
(

V2

dv

)
: ∃A ⊆ X, |A| ≤ μ2

qq :

∃Q ⊆ Γ3(v) s.t. Q is a CC(v,A)-resistant

(μ2
q, δr)-triangle cover and (X \ A) ∩ T (Q) = ∅

}
.

In order to estimate |N (v)| we first choose the set Q⊆ Γ3(v) (at most 22q

possibilities as v satisfies (D)). Then we fix av := |A| for v∈B. There are at
most μ2

qq <n choices for the value av. For a vertex v, denote by dv the size
of the neighbourhood of v in V2. Note that dv ≥ (1−ε)q as v satisfies (D).
Recall that |T (Q)| ≥ (1− 3

√
δr)n, therefore we choose av vertices for the

set A, and then dv−av in V2 \(A∪T (Q)). Thus

|N (v)| ≤ n22q

(
n

av

)
·
(

3
√

δrn

dv − av

)
3.1(ii)

≤ 5dv

(
n

av

)
· (3δ1/2

r )dv−av

(
n

dv − av

)

≤ 5dv

(
n

av

)
· (3δ1/2

r )dv/2

(
n

dv − av

)
3.1(i)

≤ 20dv (3δ1/4
r )dv

(
n

dv

)
(19)

≤ π(β, δc)dv

(
n

dv

)
,

for n sufficiently large.

Let SDMRC(n,m;ε) := SDMR(n,m;ε) \ BCC(n,m;ε). Furthermore, we
define

GV ′′
1 := {v ∈ V1 : v satisfies (R) and (C)}.

For a graph G∈SDMRC(n,m;ε) observe that |GV ′′
1 |≥ (1−2δc −δc−6ε)n=

(1−4δc)n due to Lemma 6.2, Lemma 6.9 and Definition 6.11.
The following lemma states that it is possible to successively construct

clique candidates CC(v,Γ2(v)) using a processed neighbourhood A⊆Γ2(v).

Lemma 6.13 (Many candidates for a K4). For every vertex v ∈ GV ′′
1

there exists a processed neighbourhood A⊆Γ2(v) such that

|CC(v,A)| ≥ (1 − 2
√

μq)n.(22)

Proof. We show that as long as |A|≤μ2
qq and |CC(v,A)|<(1−2√μq)n we

can find a vertex w∈Γ2(v)\A such that |CC(v,A∪{w})\CC(v,A)|≥ tμ2
q
.

This suffices to prove the claim, since μ2
qq · tμ2

q
= n ≥ (1− 2√μq)n and we
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may thus iteratively add the vertices w to the set A until CC(v,A) is large
enough.

Let X :=CC(v,A) and recall that |X|≤ (1−2√μq)n. Thus we conclude
by the definition of (R) that there exists an X-resistant (ν2

q ,δr)-triangle
cover Q ⊆ Γ3(v). Due to property (C) it follows that there exists a vertex
w∈(Γ2(v)\A)∩T (Q). Clearly, this vertex satisfies the necessary properties
and may be added to A.

6.2.6. Vertices without a K4. Let

CCv := CC(v, Γ2(v)).

Now that we know that CCv comprises almost all vertices in V4, we are
basically done. A final (simple) argument shows that Γ4(v) and CCv must
overlap.

We say that a vertex v ∈ Vi satisfies the clique property if the following
condition (K) is met:

(K) Γ4(v) ∩ CCv �= ∅.
Definition 6.14 (Vertices with no K4).

BK(n,m; ε) := {G ∈ SDMRC(n,m; ε) :
at least δcn vertices in GV ′′

1 do not satisfy (K)}
Lemma 6.15 (BK is small).

|BK(n,m; ε)| ≤ βm

4

(
n2

m

)6

for sufficiently small ε and sufficiently large n and Cn8/5≤m≤n2/4.

Proof. A simple (and final) application of Lemma 5.3 proves the claim. The
bad set B with |B|≥δcn is defined as indicated by Definition 6.14. Let

N (v) :=
{

X ∈
(

V4

dv

)
: X ∩ CCv = ∅

}
.

From Lemma 6.13 it follows that

|N (v)| ≤
(

2√μqn

dv

)
3.1(ii)

≤ (4μq)dv/2

(
n

dv

)
(12)

≤ π(β, δc)dv

(
n

dv

)
,

which completes the proof.
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This also completes the proof of Theorem 1.5: for any graph G ∈
SDMRC(n,m;ε) \ BK(n,m;ε) all but δcn vertices v ∈ GV ′′

1 have a vertex
x∈Γ4(v)∩CCv that builds a K4 containing v. Hence

F(n,m; ε) ⊆ BD(n,m; ε) ∪ BMC(n,m; ε) ∪ BR(n,m; ε) ∪
BCC(n,m; ε) ∪ BK(n,m; ε)

and the result follows from the bounds on the sets B∗(n,m;ε).
Note that our proof actually yields a somewhat stronger result than The-

orem 1.5. The condition (K) could be strengthened to

(K ′) |Γ4(v) \ CCv| ≤ εnq

for a suitable constant εn > 0 which is large in comparison to 2√μq. Then
Lemma 6.15 is still satisfied. Using this we obtain that almost all neighbours
x∈Γ4(v) of a vertex in v∈GV ′′

1 which satisfies conditions (K ′) are part of
a subgraph K4 together with v.
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Schweiz

sgerke@inf.ethz.ch

H. J. Prömel
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