
ar
X

iv
:m

at
h/

03
01

26
6v

1
 [

m
at

h.
O

C
]

 2
3

Ja
n

20
03 Computing the Integer Programming Gap

Serkan Hoşten

Department of Mathematics, San Francisco State University, San Francisco

Bernd Sturmfels∗

Department of Mathematics, University of California, Berkeley

Abstract

We determine the maximal gap between the optimal values of an inte-
ger program and its linear programming relaxation, where the matrix
and cost function are fixed but the right hand side is unspecified. Our
formula involves irreducible decomposition of monomial ideals. The
gap can be computed in polynomial time when the dimension is fixed.

1 Introduction

We consider the general integer programming problem in standard form,

Minimize c · u subject to A · u = b, u ≥ 0, u integral. (1)

Here A is a fixed d × n integer matrix, b ∈ Zd and c ∈ Qn. Its linear
programming relaxation is obtained by dropping the integrality constraints,

Minimize c · u subject to A · u = b, u ≥ 0. (2)

Suppose that the integer program (1) is feasible and bounded. Then the
linear program (2) is feasible and bounded as well, and the optimal value
of (1) is greater than or equal to the optimal value of (2). We define the
nonnegative rational number gap(A, c) to be the maximum difference of
the two optimal values as b ranges over vectors such that (1) is feasible

∗Partially supported by the National Science Foundation (DMS-0200729)

1

http://arxiv.org/abs/math/0301266v1

and bounded. It follows from known results [15, Theorem 17.2] that this
maximum is bounded.

Our main aim in this paper is to provide an exact formula for gap(A, c).
We express our results using the language of Gröbner bases, as in [4, Chapter
8], [9], [14, §4.4]. A nonnegative integer vector u = (u1, . . . , un) ∈ Nn is
called non-optimal if it is not an optimal solution of (1) with b = A · u.
We represent each non-optimal vector u by a monomial xu = xu1

1 xu2

2 · · ·xun
n ,

and we consider the ideal M(A, c) generated by these monomials in the
polynomial ring R[x1, . . . , xn]. The minimal generators of M(A, c) can be
read off from a Gröbner basis for (1). If c is generic then M(A, c) is an initial
ideal of the toric ideal of A; see [16]. If c is not generic then we can compute
M(A, c) using [14, Algorithm 4.4.2]. A monomial ideal I in R[x1, . . . , xn] is
called irreducible if it is generated by powers of the variables:

I = 〈 x
ui1

+1

i1
, x

ui2
+1

i2
, . . . , x

uir+1
ir 〉.

Every monomial ideal M in R[x1, . . . , xn] can be written uniquely as an
irredundant intersection of finitely many irreducible monomial ideals, which
are called the irreducible components of M . Suppose that I is an irreducible
component of M(A, c). We define the gap value of I with respect to A and
c to be the optimal objective function value of the auxiliary linear program

Maximize ui1ci1 + ui2ci2 + · · ·+ uircir − c · v
subject to A · v = ui1 · Ai1 + ui2 · Ai2 + · · ·+ uir · Air ,

and vi1 , . . . , vir ≥ 0.
(3)

Here A1, A2, . . . , An are the column vectors of the matrix A.

Theorem 1.1. The integer programming gap, gap(A, c), equals the maximum
gap value of any irreducible component I of the monomial ideal M(A, c).

We remark that gap(A, c) is zero if and only if the monomial ideal
M(A, c) is generated by squarefree monomials xj1xj2 · · ·xjr .

This paper is organized as follows. In Section 2 we rephrase our problem
in the more general setting of lattice programs, and we prove Theorem 1.1 in
this context. In Section 3 we apply the work of Barvinok and Woods [3] on
short rational generating functions to derive the following complexity result.

Theorem 1.2. For fixed d and n, the integer programming gap, gap(A, c),
can be computed in polynomial time in the binary encoding of A and c.

2

Section 4 concerns applications to the statistical theory of multidimen-
sional contingency tables. Here we are interested in the integer programming
gap of certain higher-dimensional transportation problems. These play an
important role in data security. For the statistical background see [5], [6].

In Section 5 we vary the cost vector c, and we prove that the function

gapA : Rn → R, c 7→ gap(A, c) (4)

is a piecewise-linear function on Rn. We show that gapA is linear on the
cones of a fan which refines the familiar Gröbner fan (cf. [11] and [17]).

We close the introduction with a small example. Let (1) be the problem of
making change using pennies, nickels, dimes and quarters, where the number
of coins is fixed, and nickels and quarters are used most sparingly. In symbols,

d = 2 , n = 4, A =

[

1 1 1 1
1 5 10 25

]

, c =
[

0 1 0 1
]

.

Using notation as in [7, §I.5], this problem is solved by the Gröbner basis

G =
{

n3q − d4 , n6 − p5q , n3d4 − p5q2 , p5q3 − d8
}

.

The four underlined leading monomials generate the ideal

M(A, c) = 〈n3, p5 〉 ∩ 〈n3, q3 〉 ∩ 〈n6, d4, q 〉. (5)

The gap values of the three irreducible components are 76/15, 4 and 5. Hence

gap(A, c) = 76/15 = 5.0666666...

This gap is attained when expressing one dollar and 14 cents with ten coins.
The optimal solutions are (4, 2, 0, 4) and (0, 0, 136/15, 14/15) respectively.

2 The gap theorem for lattice programs

Lattice programs are defined as follows. Let L be a fixed lattice of rank m
in Zn. Then LR = L⊗Z R is an m-dimensional vector space in Rn. We also
fix a cost vector c ∈ Qn. Now, for every z ∈ Nn, we get a lattice program

Minimize c · v subject to v ≡ z mod L, v ∈ Nn, (6)

3

and its linear relaxation

Minimize c · v subject to v ≡ z mod LR, v ≥ 0. (7)

We define the lattice programming gap gap(L, c) to be maximum of the
differences between the optimal values of (6) and (7) as z runs over Nn.

Remark. The integer programs (1) are lattice programs with L = ker(A)∩Zn

and b = A·z. The linear programming relaxations (2) correspond to the linear
relaxations (7) of these lattice programs. Note that we have m = n− d.

Let M(L, c) be the ideal generated by all monomials xu where u ∈ Nn is
non-optimal for (6). Any irreducible component of M(L, c) has the form

I(u, τ) = 〈 x
ui1

+1

i1
, x

ui2
+1

i2
, . . . , x

uir+1
ir

〉,

where τ = {i1, . . . , ir} and u ∈ Nn with uj = 0 for j /∈ τ . The gap value of
I(u, τ) with respect to L and c is the optimal objective function value of

Maximize ui1ci1 + ui2ci2 + · · ·+ uircir − c · v
subject to v ≡ u mod LR and vi1 , . . . , vir ≥ 0

(8)

We restate Theorem 1.1 for the more general setting of lattice programs.

Theorem 2.1. The lattice programming gap, gap(L, c), equals the maximum
gap value of any irreducible component I(u, τ) of the monomial ideal M(L, c).

Example 2.2. (m = n) Let L be a finite index sublattice of Zn and c
a nonnegative vector. Since LR = Rn, the objective function value of (7)
is always zero, so gap(L, c) is the largest objective function value of (6).
The finite abelian group Zn/L is in bijection with the set of monomials
not in M(L, c). The irreducible components I(u, {1, . . . , n}) are indexed
by monomials xu1

1 xu2

2 · · ·xun
n which are maximal with respect to divisibility

among those not in M(L, c). The lattice programming gap is the maximum
of the corresponding values c1u1 + c2u2 + · · ·+ cnun.

Example 2.2 is called the group problem in the integer programming lit-
erature [15, §24.2]. More generally, every lattice program (6) has a natural
family of group relaxations which are indexed by subsets τ of {1, 2, . . . , n}:

Minimize c · v subject to v ≡ z mod L, v ∈ Zn, vi ≥ 0 ∀ i ∈ τ. (9)

4

If an optimal solution v∗ of (9) is a nonnegative vector then v∗ is also
feasible and optimal for (6). In this case we say that lattice program (6)
is solved by τ . The minimal collection of required subsets τ is studied in
[10]. The following result is well-known in the algebraic theory of integer
programming; see [9, §3]. The pairs (u, τ) in Proposition 2.3 are called
standard pairs. A combinatorial introduction can be found in [19].

Proposition 2.3. There is a unique minimal finite set S of irreducible ideals
I(u, τ) whose intersection is M(L, c) such that every optimal solution v∗ to
(6) has the form v∗ = u+ v′, with v′i = 0 for i ∈ τ , for some I(u, τ) ∈ S.

When a lattice program (6) has an optimal solution v∗ = u + v′ as in
Proposition 2.3, we shall say that it is solved by the standard ideal I(u, τ).
In this case the group relaxation (9) has the same optimal solution v∗.

Remark. The irreducible components of M(L, c) are a subset of S. In fact,
the irreducible components are the minimal elements of S when the standard
ideals are ordered with respect to inclusion. In the special case of Example
2.2, we have S =

{

I(u, {1, . . . , n}) : xu /∈ M(L, c)
}

.

Lemma 2.4. Fix I(u, τ) ∈ S. The gap value of I(u, τ) equals the maximum
difference between the optimal values of (6) and (7) as z ranges over all
vectors in Nn such that the program (6) is solved by the standard ideal I(u, τ).

Proof. Suppose a lattice program (6) is solved by the standard ideal I(u, τ)
and has the optimal solution x∗ = u+x′ where x′

i = 0 for all i ∈ τ . Let y∗ be
an optimal solution for the linear relaxation (7). Then the difference between
the optimal values is c · x∗ − c · y∗. Since y∗ − x′ is a feasible solution for (8),
the optimal value of this program is at least c ·u− c · (y∗−x′) = c ·x∗− c · y∗.

Hence we only need to find a vector z ∈ Nn whose associated lattice
program (6) is solved by I(u, τ), and such that the difference of the optimal
values of (6) and (7) is greater than or equal to the optimal value of (8).
Let v∗ be an optimal solution to (8) and define a vector v′ ∈ Nn by v′i =
max

{

0,−⌊v∗i ⌋
}

. Then the lattice program (6) with z = u + v′ is solved by
I(u, τ). In fact, z is the optimal solution, and v∗+ v′ is a feasible solution for
the linear relaxation (7). The difference between the optimal solution values
of the two programs is at least c · (u+ v′)− c · (v∗ + v′) = c · u− c · v∗.

Proof of Theorem 2.1: In light of Lemma 2.4 and Proposition 2.3, we just need
to show that if I(u, τ) and I(u′, τ) are two standard ideals with u ≤ u′, then

5

the optimal value of (8) is at most that of (8) with u replaced by u′. In order to
do this we will reformulate these programs. Let B be an n×m matrix whose
columns form a lattice basis of L, and let {b1, . . . , bn} ⊂ Zm be the rows of B.
The feasible solutions to (8) are in bijection with {t ∈ Rm : bi ·t ≤ ui, i ∈ τ}
via t 7→ v = u−Bt. If we let w :=

∑n
i=1 cibi, then the following linear program

is equivalent to (8) and has the same objective function value:

Maximize w · t subject to bi · t ≤ ui ∀i ∈ τ (10)

The cost vector w is independent of u. If we replace u by u′ in (10) then the
feasible region increases but the objective function is unchanged. Hence the
optimal value of (10) can only increase when replacing u by u′. ✷

Example 2.5. Theorem 2.1 suggests that we compute gap(L, c) by solving
finitely many linear programs (8), one for each irreducible component I(u, τ)
of M(L, c). One difficulty is that the number of irreducible components can
be exponential in the problem size. We illustrate this phenomenon with an
example taken from [18, §4]. For r ≥ 4 let Lr be the lattice generated by

(r, r, r), (r − 1, r + 1, r − 1) and (0, 0, r − 2) in Z3.

The index of Lr in Z3 is 2r(r − 2), so we are in the situation of Example
2.2. Let c be a cost vector that chooses the degree lexicographically smallest
solution of (6). From the Gröbner basis in [18, Lemma 4.5] we find that

M(Lr, c) =
⋂

1≤a≤r−2
b=2r+1−a

〈xa, yb, z〉 ∩
⋂

1≤a≤r−3
b=r−1−a

〈x, ya, zb〉.

The number of irreducible components is 2r − 5. This is exponential in
O(log(r)), the bit complexity of the data. In the next section we demonstrate
how the monomial ideals M(L, c) can be encoded more efficiently.

3 Gap function as a short rational function

In this section we prove Theorem 1.2. The result extends easily to the lattice
programs of Section 2, but for the sake of notational convenience, we present
the relevant generating functions in the original setting of integer programs
(1). Throughout the section we assume that d and n are fixed integers.

6

Let NA denote the semigroup in Zd spanned by the columns A1, . . . , An

of the matrix A. The elements of NA are the feasible right-hand-side vectors
of the integer programs we consider. Let µIP : NA 7→ Q be the function
whose value at b is the optimal value of the integer program (1), and let
µLP : NA 7→ Q be the corresponding optimal value function for the linear
program (2). Since c is assumed to have rational coordinates, we can com-
pute (in polynomial time) a global denominator ∆ ∈ N by multiplying the
least common multiple of the maximal minors of A with the least common
denominator of c1, c2, . . . , cn. This choice of ∆ ensures that every value of
the functions µIP or µLP is an integer multiple of ∆.

We are interested in the generating function

G(t1, . . . , td; s) :=
∑

b∈NA

tbsµIP (b)−µLP (b) ∈ Q[s1/∆][[NA]].

The ambient ring is the completion of the semigroup algebra of NA with
coefficients in the univariate polynomial ring Q[s1/∆]. We shall see that G is
a rational series which can be represented by an element of

Q(t1, . . . , td)[s
1/∆] ⊂ Q(t1, . . . , td, s

1/∆).

Thus G is a polynomial in s1/∆ whose coefficients are rational functions in
t1, . . . , td. The degree of that univariate polynomial is the integer program-
ming gap gap(A, c). We shall prove the following complexity result.

Theorem 3.1. The rational function G(t1, . . . , td; s) can be computed in poly-
nomial time in the binary encoding of the matrix A and the cost vector c.

What we are claiming is thatG(t; s) is a short rational generating function
in the sense of Barvinok and Woods [3], and our proof is a direct applica-
tion of their work. A different approach to the integer programming gap
using generating functions and integer programming duality is presented by
Lasserre in [13]. We illustrate the main point of Theorem 3.1 in an example.

Example 3.2. Let d = 1, n = 2, a, b ∈ N and consider the integer program

minimize u1 subject to u1 + au2 = b, u1, u2 ≥ 0.

The optimal values are µLP (b) = 0 and µIP (b) = b mod a. Hence

G(t, s) =
∑

b∈N

tbsbmod a =

a−1
∑

i=0

∞
∑

j=0

ti+jasi =

a−1
∑

i=0

(ti/(1− ta)) · si.

7

This is a polynomial in s with a terms. Its expansion requires exponential
space in the bit size O(log(a)) of the given data A = [1 a] and c = [1 0].
On the other hand, clearly this gap polynomial is a short rational function

G(t, s) =
1− sata

(1− ta)(1− st)
.

Our strategy is to compute G(t, s) in polynomial time and then to extract
gap(A, c) = degrees

(

G(t, s)
)

= a− 1.

One ingredient in the proof of Theorem 3.1 is the Hadamard product
∗ of two generating functions: if g1(x) =

∑

u βux
u and g2(x) =

∑

v γvx
v

then g1(x) ∗ g2(x) is the generating function
∑

βuγux
u. The proof of [3,

Lemma 3.4] tells us that, if g1(x) and g2(x) are short rational functions, then
their Hadamard product g1(x) ∗ g2(x) can be computed in polynomial time.
Another ingredient is the following lemma which is of independent interest.

Lemma 3.3. The generating function for all the optimal points,

H(x) =
∑

{

xu : u is optimal for (1) with b = Au
}

.

can be computed in polynomial time, in the binary encoding of A and c.

Proof. The proof is an adaptation of [3, §7.3]. Without loss of generality we
assume that c ∈ Zn. Let S = {u : xu ∈ M(A, c)} be the set of non-optimal
points, and let f(S; x1, . . . , xn) =

∑

u∈S x
u be the generating function of S.

This generating function is a rational function; in particular, we have

f(S;x)

n
∏

i=1

(1− xi) = g(S;x)

where g(S;x) is a polynomial. In view of the identity

H(x) =
1− g(S;x)
∏n

i=1(1− xi)
,

it suffices to show that g(S;x) can be computed in polynomial time.
We let L := (n − d)D(A) where D(A) is the maximum of the absolute

values of the maximal minors of A. Since we fix d and n, the bit size of L is a
polynomial in the bit size of the data. Theorem 4.7 of [16] implies that if xm

8

is a term in g(S;x) then mi ≤ L for i = 1, . . . , n. We let Λ := {(u1, . . . , un) ∈
Nn : ui ≤ L , ∀ i} and f(Λ;x) its generating function. Furthermore let

C := {(u, v) ∈ N2n : Au = Av, cu ≥ cv + 1, and ui ≤ L, vi ≤ 2L, ∀ i}

The projection of C onto the first n coordinates will be denoted by S ′, and
we claim that S ′ = S ∩ Λ. The inclusion S ′ ⊆ S ∩ Λ is clear. For the other
inclusion let u ∈ S∩Λ. The theory of Gröbner bases of toric ideals [16] implies
that there exists (u′, v′) ∈ N2n with u′ ≤ u, Au′ = Av′ and cu′ ≥ cv′ +1, and
where u′

iv
′
i = 0, u′

i ≤ L and v′i ≤ L for i = 1, . . . , n. Now we let v = u−u′+v′

and observe that (u, v) ∈ C. Since S ′ is the projection of all lattice points in
a polytope, Theorem 1.7 in [3] implies that f(S ′;x) =

∑

u∈S′ x
u, and hence

g(S ′;x) = f(S ′;x)
∏n

i=1(1 − xi), can be computed in polynomial time. The
claim we proved above says that

f(S;x) = f(S ′;x) +
∑

u∈S\Λ

xu,

and this implies g(S;x) = g(S ′;x) + h(x), where h(x) is a series none of
whose terms has its exponent vector in Λ. Now we conclude that

g(S;x) = g(S;x) ∗ f(Λ;x) = g(S ′;x) ∗ f(Λ;x).

The Hadamard product on the right can be computed in polynomial time.

Proof of Theorem 3.1: We replace each variable xi by tAisci in the rational
function H(x). This monomial substitution can be done in polynomial time
[3, Theorem 2.6]. The result is the short rational generating function

HIP (t1, . . . , td; s) =
∑

b∈NA

tbsµIP (b).

The last series that is left to compute is

HLP (t1, . . . , td; s) =
∑

b∈NA

tbs−µLP (b),

since G(t; s) = HIP (t; s) ∗t HLP (t; s). Let σ = {i1, . . . , id} ⊂ {1, . . . , n} be
an optimal basis of (2) for some b in NA. The number of optimal bases σ is
constant since n and d are fixed. The union of Sσ := NA ∩ R≥0{Ai : i ∈ σ}
as σ varies over all optimal bases is equal to NA. The generating function

9

f(Sσ; t) =
∑

b∈Sσ
tb can be computed in polynomial time since Sσ is the

set of lattice points in a rational polyhedral cone [2]. We let ĉ ∈ Rd be the
unique vector such that (At · ĉ)i = ci for i ∈ σ. Now the generating func-
tion gσ(t; s) =

∑

b∈Sσ
tbs−µLP (b) is obtained from f(Sσ; t) by the monomial

substitution ti = tis
−ĉi for i = 1, . . . , d. Finally, we use [3, Corollary 3.7] to

compute HLP (t; s) by patching the series gσ(t; s) for the various bases σ. ✷

We now show that gap(A, c), which is the degree ofG(t; s) as a polynomial
in s, can be extracted in polynomial time. This uses the following lemma.

Lemma 3.4. Let f(t; s) ∈ Q(t1, . . . , td)[s] be a short non-zero rational func-
tion and K a known upper bound on degs(f(t; s)). Then this degree can be
computed with log(K) Hadamard products of f(t; s) with polynomials in s.

Proof. Without loss of generality we assume K = 2k for some k ∈ N. Let

g[p,r](s) =

r
∑

i=p

si =
sp − sr+1

1− s
,

and use the following binary search algorithm:
findDegree(f(t; s), p, r)

0. If p = r return p.

1. If f(t; s) ∗ g[p,r](s) is not identically zero then
findDegree(f(t; s), ⌊(r + p)/2⌋, r).

2. If f(t; s) ∗ g[p,r](s) is identically zero then
findDegree(f(t; s), ⌊p/2⌋, p− 1).

The call findDegree(f(t; s), 0, K) takes at most log(K) steps to find the
degree. Zero testing is done by substituting a positive vector (z1, . . . , zd;w)
where 0 < zi ≪ 1 and 0 < w ≪ 1 which is not a pole of f(t; s) ∗ g[p,r](s).
Note that this Hadamard product is a polynomial in s whose coefficients
have expansions of the form

∑

b∈Γ t
b for some set Γ. This means that the

substitution of the above positive vector gives a positive number unless the
Hadamard product is identically zero.

Proof of Theorem 1.2: By Theorem 3.1 we can compute the rational function
G(t; s) in polynomial time. The degree of G(t; s) viewed as a polynomial in s
is gap(A, c). Theorem 17.2 of [15] implies that gap(A, c) ≤ nD(A)

∑n
i=1 |ci|.

Let K be this upper bound. We observe that log(K) is a polynomial in the
bit size of the data. We can hence use Lemma 3.4 to find gap(A, c).

10

4 An Application to Algebraic Statistics

We present an application to the statistical theory of disclosure limitation.
See [5] and [6] and the references therein. Suppose we are given data in
the form of an n-dimensional table of nonnegative integers. The aim is to
release some marginals of the table but not the table’s entries themselves.
If the range of possible values that a particular entry can attain in any
table satisfying the released marginals is too narrow, or even worse, consists
of the unique value of that entry in the actual table, then this entry may
be exposed. This shows the importance of determining tight integer upper
and lower bounds for each entry in a given table. A choice of marginals
corresponds to a simplicial complex on {1, 2, . . . , n} and can be represented
by a zero-one matrix A, as described in [8, §1]. In statistical language, the
matrix A specifies a hierarchical model for a contingency table with n factors.

The table entry security problem can be formally stated as follows: sup-
pose u is a table with nonnegative integer entries, where the marginals are
computed according to a fixed hierarchical model A and let ui1i2···in be a par-
ticular cell for such tables. Compute optimal lower and upper bounds L and
U such that L ≤ ui1i2···in ≤ U for all tables with the same marginals as u.

This problem is an integer program (1): minimize (or maximize) ui1i2···in

over all tables with nonnegative integer entries subject to fixing the marginals.
In view of the difficulty of solving integer programs exactly, various re-
searchers resorted to solving the linear programming relaxation (2) instead:
minimize (or maximize) ui1i2···in over all tables with nonnegative real entries
subject to fixing the marginals. This relaxation is tractable, but it usually
fails to deliver the exact integers L and U . One faces the problem of esti-
mating the integer programming gap for the table security problem.

We give the precise definition of the relevant matrices A. Consider d1 ×
· · · × dn-tables with entries ui1i2···in where 1 ≤ ij ≤ dj. We fix a hierarchical
model by specifying a collection of subsets F1, . . . , Fk of {1, . . . , n}. The
marginals of our table are computed with respect to these subsets. If Fi =
{j1, . . . , js} then the Fi-marginal is a dj1 × · · · × djs table b with entries

bk1···ks =
∑

ij1=k1,...,ijs=ks

ui1···in . (11)

Example 4.1. The classical transportation problem corresponds to d1 × d2-
tables where the marginals are computed with respect to F1 = {1} and F2 =

11

{2}. The three-dimensional transportation problem concerns d1 × d2 × d3-
tables with F1 = {1, 2}, F2 = {1, 3}, and F3 = {2, 3}. The marginals are

bij =
∑

k

uijk, bik =
∑

j

uijk, bjk =
∑

i

uijk.

For a discussion from the Gröbner basis perspective see [16, §14.C].

We define A to be the zero-one matrix with d1d2 · · · dn columns that
corresponds to the linear map that computes the marginals of tables. We
let u be the vector of variables representing the cell entries. Then A · u is
the vector of the k lower-dimensional tables computed as in (11). There is
a transitive symmetry group acting on the columns of A, so it suffices to
examine the particular cell entry u11···1 which corresponds to the first column
of A. The table entry security problem is the pair of integer programs

Minimize (Maximize) u11···1 subject to A·u = b, u ≥ 0, u integral. (12)

Our Theorem 1.1 gives an exact formula for the integer programming gap
of these problems, which we abbreviate by gap−(A) and gap+(A) respectively.
Thus gap+(A) is the worst error one gets when using linear programming in
computing the bound U for any d1×· · ·× dn-table with any fixed margins b.

We illustrate our results for 2× 2× 2× 2-tables (uijkl). The K4-model is
specified by taking all six two-dimensional margins F1 = {1, 2}, F2 = {1, 3},
F3 = {1, 4}, F4 = {2, 3}, F5 = {2, 4}, F6 = {3, 4}. The zero-one matrix A
for the K4-model has 24 rows and 16 columns:

A =

































































1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

































































12

Here the cell entries are ordered lexicographically, u1111, u1112, . . . , u2222.
We have the following computational result.

Proposition 4.2. Every hierarchical model for 2× 2× 2× 2-tables satisfies

gap+(A) ≤ 5/3 = 1.666666...,

and this bound is attained for the K4-model, that is, for the matrix A above.

Proof. We show that gap+(A) = 5/3 for theK4-model. Similar computations
show that gap+(A) < 5/3 for all other simplicial complexes on {1, 2, 3, 4}.

The monomial ideal M(A, c) where A is the above matrix and c =
[−1, 0, . . . , 0] has 61 minimal generators. Two of them are

x3
1112x1221x1222x2121x2122x2211x2212 and x1122x1212x1221x2111x

2
2222.

This ideal has 139 irreducible components. One of these components is

I(u, τ) = 〈x2
1112, x

2
1121, x1122, x

2
1211, x1212, x1221, x1222,

x2
2111, x2112, x2121, x2122, x2211, x2212, x2221, x

2
2222〉.

Here the non-zero components of u are u1112 = u1121 = u1211 = u2111 =
u2222 = 1. The gap value of I(u, τ) is 5/3. We also give the optimal solution
v for the linear program (2) with b = A · u:

v1112 = v1121 = v1211 = v2111 = v2222 = 0,

v1122 = v1212 = v1221 = v1222 = v2112 = 1/3,

v2121 = v2122 = v2211 = v2212 = v2221 = 1/3, v1111 = 5/3.

The following corollary was pointed out to us by Rekha Thomas.

Corollary 4.3. Let M(A, c) be the monomial ideal corresponding to the min-
imization problem (12). Then gap−(A, c) + 1 is at least the maximum degree
of x11···1 in any minimal generator of M(A, c).

13

Proof. This statement is equivalent to

gap−(A) ≥ max{u11···1 : I(u, τ) irreducible component of M(A, c)}.

Let I(u, τ) be an irreducible component such that u11···1 ≥ 1. Since c =
[1, 0, . . . , 0], the objective function of the program (10) corresponding to this
component would be b11···1·t. Moreover, by Theorem 2.5 in [10], the inequality
b11···1 · t ≤ u11···1 is a facet of the feasible region of (10). Hence the optimal
solution value is u11···1. Now Theorem 1.1 gives the result.

Remark. In the statistics literature there are various approaches to estimate
L and U of the table security problem. For general hierarchical models an
iterative algorithm for such an estimation is given in [1]. A detailed analysis
for decomposable models is given by Dobra and Fienberg [6].

5 The gap fan

In this section we allow the cost function c to vary in the programs (1) or
(6). For each fixed matrix A (resp. fixed lattice L) we thus get a function

gapA : Rn −→ R , c 7→ gap(A, c). (13)

Our goal is to show that this function is piecewise linear, and the natural
pieces on which the function is linear form a fan which we call the gap fan.

Consider the Gröbner fan of the matrix A. Following [16] and [17], this
is the coarsest polyhedral fan in Rn on which the map c 7→ M(A, c) is
constant. Efficient software packages for computing the Gröbner fan are de-
scribed in [11] and [12]. The gap fan will be a refinement of the Gröbner fan.
Hence it suffices to describe the gap fan on each Gröbner cone K separately.

We fix a maximal cone K of the Gröbner fan. By the results of [17], the
polyhedral cone K consists of cost vectors such that the optimal solutions of
all integer programs (1) are constant as the right-hand-side vector b varies.
There exists a monomial ideal M in R[x1, . . . , xn] such that

K =
{

c ∈ Rn : M(A, c) = M
}

.

Let
{

I(u, τ)
}

be the finite set of all irreducible components of the monomial
ideal M . For each such component let vu,τ be the optimal solution to the

14

linear program (3). It is not hard to see that these optimal solutions are also
constant as c varies in K. Now we define the following polyhedral cone:

G :=
{

(c, t) ∈ Rn+1 : c ∈ K and c · (u− vu,τ) ≤ t ∀ I(u, τ)
}

(14)

Theorem 5.1. The projection of the lower envelope of G onto K is a poly-
hedral subdivision of K. The gap function is linear on each face of this
subdivision.

Proof. The facets of the lower envelope of G are of the form {(c, t) ∈ Rn+1 :
c · (u − vu,τ) = t} where t is the optimal value of the program (3) for all c
such that (c, t) is on this facet. For such pairs (c, t) we have t = gap(A, c), by
Theorem 1.1. Hence the lower envelope of G is the graph of the gap function
(13) over K. Now, clearly, the projection of the lower envelope onto K is a
polyhedral subdivision of K, and by its construction, the gap function (13)
is linear on each cone in this subdivision of K.

We define the gap fan as the refinement of the Gröbner fan of A, where
each Gröbner coneK is subdivided as in Theorem 5.1. Our discussion implies:

Corollary 5.2. The gap function (13) is a piecewise linear function on Rn.
It is linear on the cones of the gap fan, but generally not on the Gröbner fan.

Example 5.3. Let us return to the example in the Introduction but now with
varying cost function. Our problem is to make change using pennies, nickels,
dimes and quarters, where the number of coins is fixed. The Gröbner fan of
the corresponding 2×4-matrix A has seven maximal cones. These cones and
the corresponding ideals can be computed using TiGERS [11] or CaTS [12].

The gap fan has eight cones. Exactly one cone of the Gröbner fan is
divided into two cones. It is the one corresponding to the ideal in (5). This
Gröbner cone is defined by the inequalities

3n+ q ≥ 4d and 8d ≤ 5p+ 3q.

The hyperplane defined by

305p− 135n− 308d+ 138q = 0

splits this cone into two pieces. On the positive side of the hyperplane the
gap(A, c) is given by the irreducible component 〈p5, n3〉, and on the negative

15

side it is given by 〈n6, d4, q〉. We list the irreducible components of all seven
initial ideals and the winning irreducible component for each of them:

M(A, c) Winning component(s)
〈p5, d4〉 〈p5, d4〉

〈p5, q〉 ∩ 〈p5, n3〉 ∩ 〈d4, q〉 〈p5, n3〉
〈p5, n3〉 ∩ 〈n9, q〉 〈p5, n3〉

〈p5, n3〉 ∩ 〈n6, q〉 ∩ 〈n3, q2〉 〈p5, n3〉
〈p5, n3〉 ∩ 〈n6, d4, q〉 ∩ 〈n3, q3〉 〈p5, n3〉

〈n6, d4, q〉
〈n6, d4, q〉 ∩ 〈n3, d8〉 〈n6, d4, q〉

〈n6, d4〉 〈n6, d4〉

References

[1] L. Buzzigoli and A. Gusti: An algorithm to calculate the lower and upper
bounds of the elements of an array given its marginals, in Statistical Data

Protection Proceedings, Eurostat, Luxembourg (1999) pp. 131–147.

[2] A. Barvinok and J. E. Pommersheim: An algorithmic theory of lattice
points in polyhedra, in New Perspectives in Algebraic Combinatorics,
MSRI Publications 38 (1999) pp. 91–147.

[3] A. Barvinok and K. Woods: Short rational generating functions for lattice
point problems, Preprint, 2002, math.CO/0211146.

[4] D. Cox, J. Little and D. O’Shea: Using Algebraic Geometry, Graduate
Texts in Mathematics, 185. Springer-Verlag, New York, 1998.

[5] L. Cox and J. George: Controlled rounding for tables with subtotals,
Annals of Operations Research 20 (1989) 141–157.

[6] A. Dobra and S. Fienberg: Bounds for cell entries in contingency tables
given marginal totals and decomposable graphs, Proc. Natl. Acad. Sci.
USA 97 (2000) 11885–11892.

[7] D. Eisenbud, D. Grayson, M. Stillman and B. Sturmfels: Mathematical
Computations with Macaulay2, Algorithms and Computation in Mathe-
matics, Vol. 8, Springer Verlag, Heidelberg, 2001.

16

http://arxiv.org/abs/math/0211146

[8] S. Hoşten and S. Sullivant: Gröbner bases and polyhedral geometry of
reducible and cyclic models, J. Combinatorial Theory, Ser. A 100 (2002)
277–301.

[9] S. Hoşten and R. Thomas: Standard pairs and group relaxations in inte-
ger programming, J. Pure Appl. Algebra 139 (1999) 133–157.

[10] S. Hoşten and R. Thomas: The associated primes of initial ideals of
lattice ideals, Math. Res. Lett. 6 (1999) 83–97.

[11] B. Huber and R. Thomas: Computing Gröbner fans of toric ideals,
Experimental Mathematics 9 (2000) 321–331.

[12] A. Jensen: CaTS - A computer program for computing the Gröbner fan
of a toric ideal, http://www.daimi.au.dk/∼u950710/cats.html

[13] J. B. Lasserre: Generating functions and duality for integer programs,
Preprint, 2002.

[14] M. Saito, B. Sturmfels and N. Takayama: Gröbner Deformations of
Hypergeometric Differential Equations, Algorithms and Computation in
Mathematics 6, Springer-Verlag, Berlin, 2000.

[15] A. Schrijver: Theory of Linear and Integer Programming, Wiley Inter-
science, Chichester, 1986.

[16] B. Sturmfels: Gröbner Bases and Convex Polytopes, University Lecture
Series 8, American Mathematical Society, 1995.

[17] B. Sturmfels and R. Thomas: Variation of cost functions in integer
programming, Mathematical Programming 77 (1997) 357–387.

[18] B. Sturmfels, R. Weismantel and G. Ziegler: Gröbner bases of lattices,
corner polyhedra, and integer programming, Beiträge zur Algebra und

Geometrie 36 (1995) 281–298.

[19] R. Thomas: The structure of group relaxations, to appear in Handbook
of Discrete Optimization [eds: K. Aardal, G. Nemhauser, R. Weismantel],
2002, http://www.math.washington.edu/∼thomas/articles.html.

17

http://www.daimi.au.dk/~u950710/cats.html
http://www.math.washington.edu/~thomas/articles.html

	Introduction
	The gap theorem for lattice programs
	Gap function as a short rational function
	An Application to Algebraic Statistics
	The gap fan

