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Abstrat

In [MZ04℄ Matou²ek and Ziegler ompared various topologial lower bounds for the

hromati number. They proved that Lovász's original bound [L78℄ an be restated as

χ(G) ≥ ind(B(G))+2. Sarkaria's bound [S90℄ an be formulated as

χ(G) ≥ ind(B0(G))+1.
It is known that these lower bounds are lose to eah other, namely the di�erene between

them is at most 1. In this paper we study these lower bounds, and the homotopy types of

box omplexes. Some of the results was announed in [MZ04℄.

1 Introdution

In [MZ04℄ Matou²ek and Ziegler ompared various topologial lower bound for the hromati

number. They reformulated Lovász's original bound [L78℄ and Sarkaria's bound [S90℄ in terms

of various box omplexes:

Theorem 1 (The Lovász bound [MZ04℄). For any graph G

χ(G) ≥ ind(B(G)) + 2.

Theorem 2 (The Sarkaria bound [MZ04℄). For any graph G

χ(G) ≥ ind(B0(G)) + 1.

We will study these lower bounds in this paper, whih is organized as follows.

Setion 2 ontains the de�nition of the box omplexes of graphs and we �x some notation.

In Setion 3 we prove that the box omplex B0(G) is Z2-homotopy equivalent to the

suspension of B(G). This makes the onnetion between these two bounds expliit. Sine

ind(X) ≤ ind(susp(X)) ≤ ind(X) + 1 the di�erene between the right side of Lovász and the

Sarkaria bound is at most one.

From topologial point of view it is possible that these two bounds are not the same. We

onstrut a Z2-spae X2h suh that ind(susp(X2h)) = ind(X2h) in Setion 6.

∗
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However we need a graph suh that its box omplex B(G) has this property. In Setion 4 we

show that the homotopy type of the box omplex B(G) (whih is homotopy equivalent to the

neighborhood omplex) an be "arbitrary"; in Setion 5 we extend this result to Z2-homotopy

equivalene. This allows us to onstrut a graph G suh that the gap between these two bounds

is 1. This means that the Lovász bound an be better than the Sarkaria bound, whih answers

a question of Matou²ek and Ziegler [MZ04℄.

Finally in Setion 7 we show that both of these topologial lower bounds an be arbitrarily

bad. Our examples are purely topologial.

2 Preliminaries

In this setion we reall some basi fats of graphs and simpliial omplexes and topology

to �x notation. The interested reader is referred to [M03℄ or [B95℄ and [H01℄ for details.

Graphs: Any graph G onsidered will be assumed to be �nite, simple, onneted, and undi-

reted, i.e. G is given by a �nite set V (G) of verties and a set of edges E(G) ⊆
(

V (G)
2

)

.

A graph oloring with n olors is a homomorphism c : G → Kn, where Kn is the omplete

graph on n verties and the hromati number

χ(G) of G is the smallest n suh that there

exists a graph oloring of G with n olors. The ommon neighbor of A ⊆ V (G) is CN(A) =
{v ∈ V (G) : {a, v} ∈ E(G) for all a ∈ A}. For two disjoint sets of verties A,B ⊆ V (G) we
de�ne G[A,B] as the (not neessarily indued) subgraph of G with V (G[A,B]) = A ∪ B and

E(G[A,B]) = {(a, b) ∈ E(G) : a ∈ A, b ∈ B}.
Simpliial Complexes: A simpliial omplex K is a �nite hereditary set system. We denote

its vertex set by V (K) and its baryentri subdivision by sd(K).
For sets A,B de�ne A ⊎B := {(a, 0) : a ∈ A} ∪ {(b, 1) : b ∈ B}.
Neighborhood Complex: The neighborhood omplex is N(G) = {S ⊆ V (G) : CN(S) 6= ∅}
Box Complex: The box omplex B(G) of a graph G (the one introdued by Matou²ek and

Ziegler [MZ04℄) is de�ned by

B(G) := {A⊎B : A,B ⊆ V (G), A∩B = ∅, G[A,B] is omplete bipartite, CN(A) 6= ∅ 6= CN(B)}

The verties of the box omplex are V1 := {v ⊎ ∅ : v ∈ V (G)} and V2 := {∅ ⊎ v : v ∈ V (G)} for

all verties of G. The subomplexes of B(G) indued by V1 and V2 are disjoint subomplexes

of B(G) that are both isomorphi to the neighborhood omplex N(G). We refer to these two

opies as shores of the box omplex. The box omplex is endowed with a Z2-ation whih

interhanges the shores.

A di�erent box omplex B0(G):

B0(G) = {A ⊎ B : A,B ⊆ V (G), A ∩B = ∅, G[A,B] is omplete bipartite}

The ones over the sores omplex BC(G) (only for tehnial reason):

BC(G)=B(G) ∪ {(x,A ⊎ ∅) : A ⊆ V (G),CN(A) 6=∅} ∪ {(∅ ⊎B, y) : B ⊆ V (G),CN(B) 6=∅} ,

where we assume that x, y 6∈ V (G). (B(G),B0(G),BC(G) are Z2-spaes.)

Z2-spae: A Z2-spae is a pair (X, ν) where X is a topologial spae and ν : X → X , alled

the Z2-ation, is a homeomorphism suh that ν2 = ν ◦ ν = idX . If (X1, ν1) and (X2, ν2) are Z2-

spaes, a Z2-map between them is a ontinuous mapping f : X1 → X2 suh that f ◦ ν1 = ν2 ◦ f .
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The sphere Sn
is understood as a Z2-spae with the antipodal homeomorphism x → −x. We

will onsider only �nite dimensional free Z2-omplexes (free means that the Z2-ation ν has no

�xed point).

Z2-index: We de�ne the Z2-index of a Z2-spae (X, ν) by

ind(X) = min {n ≥ 0: there is a Z2-map (X, ν) → (Sn,−)}

(the Z2-ation ν will be omitted from the notation if it is lear from the ontext). The Borsuk�

Ulam Theorem an be re-stated as ind(Sn) = n.
Another index-like quantity of a Z2-spae, the dual index an be de�ned by

oind(X) = max
{

n ≥ 0: there is a Z2-map Sn Z2−→ X
}

.

The onsequene of the Borsuk�Ulam Theorem is that oind(X) ≤ ind(X). We all a free

Z2-spae tidy if oind(X) = ind(X). (In general ind(X) ≥ oind(X) ≥ onnetivity(X) + 1
[M03℄.)

A Z2-map f : X → Y is a Z2-equivalene if there exist a g : Y → X suh that g ◦f and f ◦ g
are homotopi to idX and idY respetively. A general referene for Z2-spaes is [B67℄.

3 The onnetion between BC(G), B0(G) and B(G)

In this setion we will prove that B0(G) and susp(B(G)) are Z2-homotopy equivalent. The

reason is that the box omplex is 'nearly' N(G)× [0, 1].

Remark 3. One an use Lovász's bound to prove Kneser's Conjeture [K55℄. The box omplexes

of Kneser graphs (Shrijver graphs) are tidy spaes [L78℄ (spheres up to homotopy [BdL03℄).

This means that one an prove Kneser's Conjeture by using Sarkaria's bound (or any higher

suspension) as well.

Lemma 4. BC(G) is Z2-homotopy equivalent to B0(G).

Proof. BC(G) was obtained from B(G) by attahing two ones C1, C2 over the shores, while

B0(G) is B(G) plus two simplies ∆1,∆2 overing the shores.

We onsider the following two quotient CW-omplexes. (BC(G)/C1)/C2 and (B0(G)/∆1)/∆2

(the order of the fatorization does not matter sine we ollapse disjoint subomplexes). It is

obvious that they are the same CW-omplexes and sine Ci,∆i are ontratible spaes BC(G)
and B0(G) are Z2-homotopy equivalent. �

Lemma 5. BC(G) is Z2-homotopy equivalent to susp(B(G)).

Proof. BC(G) is a subomplex of susp(B(G)). The idea of the proof is to start with susp(B(G)),
and get rid of the extra simplexes one by one (using deformation retration) suh that �nally we

get BC(G). We will work with one one (half) of the suspension. Sine we want a Z2-retration,

on the other one we have to do the Z2-pair of eah step.

Let x be the apex of the one over the �rst shore in susp(B(G)) (y is the other apex). We

will de�ne (by indution) sequenes of simpliial omplexes suh that

susp(B(G)) =: X0 ⊃ X1 ⊃ · · · ⊃ XN = BC(G)

and Xi+1 is a Z2-deformation retration of Xi.

Let assume that we already de�ned Xn. We hoose a simplex σ ∈ Xn suh that
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1. x ∈ σ, and the rest of the verties of σ are from the seond shore,

2. no other simplex in Xn ontaining x has more vertex from the seond shore, and it has

at least one vertex from the seond shore.

The vertex set of σ will be {x, ∅ ⊎ bj1 , . . . , ∅ ⊎ bjl−1
} for some B = {bj1 , . . . , bjl−1

} ⊆ V (G). Let
A := CN(B) = {ai1 , . . . , aik} and σ̃ be the Z2-pair of σ with vertex set {y, bj1 ⊎∅, . . . , bjl−1

⊎∅}.
We are ready to de�ne Xn+1:

Xn+1 := Xn \ {τ ∈ Xn : σ ∈ τ or σ̃ ∈ τ}

We have to only show that Xn+1 is the defor-

mation retrat of Xn. We know the loal stru-

ture of our omplex Xn around σ. Let assume that

it is a fae of a bigger simplex ∆ with vertex set

{x, ∅ ⊎ bj1 , . . . , ∅ ⊎ bjl−1
, c}. c an not be the other

apex. If c were from the seond shore, then we would

hoose ∆ instead of σ to de�ne Xn+1. So c an be

only from the �rst shore and then c ∈ A. This means

PSfrag replaements
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that σ is on the boundary of Xn; it is on the boundary of the simplex s with vertex set

{x, ∅ ⊎ bj1 , . . . , ∅ ⊎ bjl−1
, ai1 ⊎ ∅, . . . , aik ⊎ ∅}. Moreover every simplex whih has σ as fae is

on the boundary of Xn. So what we delete to get Xn+1 is on the boundary (exept s). The

retration

1

to Xn+1 an be given as indiated on the piture. �

Remark 6. In the same way it an be proven that the neighborhood omplex N(G) (as one shore
of the box omplex) is a deformation retrat of (homotopy equivalent to) the box omplex B(G).

4 Neighborhood omplex

We onsider the following natural question about the neighbor-

hood omplex. Given a simpliial omplex K. Is there a graphG suh

that its neighborhood omplex is the given omplex, N(G) = K?
For example, if K is the omplex on Figure 1 then the answer

is no! The reason is that there is a topologial obstrution. The

neighborhood omplex is homotopy equivalent to the box omplex

whih is a free Z2-simpliial omplex so it has learly even Euler

Figure 1:

harateristi. But

χ(K) = −1 is odd.

1

This deformation retration of the simplex {v1 = ai1 ⊎ ∅, . . . , vk = aik ⊎ ∅, w1 = ∅ ⊎ bj1 , . . . , wl−1 =
∅ ⊎ bjl−1

, wl := x} an be expliitly given by:

ht

(

∑

tivi +
∑

sjwj

)

=
∑

(

l · t

k
+ ti

)

vi +
∑

(sj − t)wj ,

where

∑

ti +
∑

sj = 1. It starts with h0 = id, and ends (for a partiular point), just when the �rst oe�ient

of wj beome zero. This retration `kills' those simplies, whih has as a fae the simplex {w1, . . . , wl}, and
retrats the `interior' points to the remaining simplies.
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Another example if K is the omplex of Figure 2. Now the answer is no again,

but there is no topologial reason. With the usual antipodal map K beome a free

Z2-simpliial omplex. On the other hand the graph G with N(G) = K should

have 4 verties, and by brute fore one an hek that K is not a neighborhood

omplex.

Unfortunately we an not answer this question, but we will show that up to

Figure 2:

homotopy everything is possible.

Theorem 7. Given a free Z2-simpliial omplex (K, ν), there is a graph G suh that its neigh-

borhood omplex is homotopy equivalent to the given omplex, N(G) ≃ K.

In order to prove it we will use the following onstrution of a graph from a Z2-simpliial

omplex.

Constrution 8 (K → GK). Let K be a Z2-simpliial omplex. The verties of GK are the

verties of K, and eah vertex is onneted to its Z2-pair and the neighbors

2

of the Z2-pair.

Thus if x, y ∈ V (GK) = V (K) then there is an edge between them if and only if ν(x) = y or

{x, ν(y)} ∈ K (or {y, ν(x)} ∈ K). An example is in Figure 3.

PSfrag replaements
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Figure 3: Example for the onstrution.

We need the nerve theorem as well.

De�nition 9 (Nerve). Let F be a set-system. The nerve N (F) of F is de�ned as the sim-

pliial omplex whose verties are the sets in F , and {X1, . . . , Xr} ∈ N (F) if and only if

X1, . . . , Xr ∈ F and X1 ∩X2 ∩ · · · ∩Xr 6= ∅.

Theorem 10 (Nerve theorem [B95℄). Let K be a simpliial omplex and Ki (i ∈ I) a family

of subomplexes suh that K =
⋃

i∈I Ki. Assume that every nonempty �nite intersetion Ki1 ∩
· · · ∩ Kir is ontratible. Then K and the nerve N (

⋃

Ki) are homotopy equivalent.

Proof of Theorem 7. For tehnial reason we need the �rst baryentri subdivision sd(K) of K.
The free simpliial Z2-ation on sd(K) will be denoted by ν as well.

We use Constrution 8 with sd(K) to obtain G
sd(K). Beause of the baryentri subdivision

the verties of G
sd(K) denoted by subsets of V (K). If A,B ∈ V (G

sd(K)) then there is an edge

between them if and only if ν(A)=B or ν(A)⊂B or ν(A)⊃B.

We denote the verties of K by 1, 2, . . . , n. Let star
sd(K)(A) be the star

3

of the vertex A in

sd(K). The nerve of the set system

{

star

sd(K)(A) : A ∈ V (G
sd(K))

}

is learly the neighborhood

omplex of G
sd(K). (This is even true without any subdivision: N(GK) = N (S) where S is the

set of the vertex stars in K.)
2

in the 1-skeleton of K
3

The star of σ ∈ K: starK(σ) = {τ ∈ K : τ ∪ σ ∈ K}
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We want to use the nerve theorem so we should prove that if B ∈ star

sd(K)(A1) ∩ · · · ∩
star

sd(K)(Ar) 6= ∅ then this intersetion is ontratible. We show that this is a one. We have

two ases:

1. If Ai ⊂ B for all i = 1, 2, . . . , r.
In this ase ∪Ai is a vertex of the baryentri subdivision sine it is a subset of B, and it is

in the intersetion as well. We show that the intersetion an be ontrated to this point.

We onstrut this deformation retration by letting eah vertex to travel towards ∪Ai with

uniform speed. The only thing that we have to hek is that whenever B1 ⊂ B2 ⊂ · · · ⊂ Bq

is a simplex in the intersetion, then with the speial vertex X := ∪Ai they form a simplex

as well. First observe that there is an edge between X and Bl, l ∈ {1, . . . , q}. If Bl ⊂ Ai

for some i then Bl ⊂ X as well. Otherwise X ⊂ Bl. For the simplex B1 ⊂ B2 ⊂ · · · ⊂ Bq

if X ⊂ B1 or X ⊃ Bq then they form a simplex with X . Otherwise there is an index k
suh that Bk ⊂ X ⊂ Bk+1. This means that B1, B2, . . . , Bq, X form a simplex.

2. If B ⊂ Aij for some j = 1, . . . , k (k ≥ 1), and Ai ⊂ B for the rest.

In this ase B ⊂
k
∩
j=1

Aij 6= ∅ 4

is a vertex of the baryentri subdivision and the intersetion

as well. We show that the intersetion an be ontrated to this point. We onstrut this

deformation retration by letting eah vertex to travel towards ∩Aij with uniform speed.

We have to show that whenever B1 ⊂ B2 ⊂ · · · ⊂ Bq is a simplex in the intersetion,

then with the speial vertex X := ∩Aij they form a simplex as well. First observe that

there is an edge between X and Bl, l ∈ {1, . . . , q}. If Bl ⊃ Aij for some ij then Bl ⊃ X
as well. Otherwise X ⊃ Bl. For the simplex B1 ⊂ B2 ⊂ · · · ⊂ Bq if X ⊂ B1 or X ⊃ Bq

then it is true. Otherwise there is an index k suh that Bk ⊂ X ⊂ Bk+1 whih means

that B1, B2, . . . , Bq, X form a simplex.

This ompletes the proof. �

5 Box omplex

In this setion we prove our main theorem. It is the Z2-extension of Theorem 7. Later it

was proven by Rade T. �ivaljevi¢ [Z04℄.

Theorem 11. Given a free Z2-simpliial omplex (K, ν), there is a graph G suh that its box

omplex B(G) is Z2-homotopy equivalent to the given omplex.

First we need the Z2-arrier lemma.

De�nition 12 (arrier). Let (K, ν) be a Z2-simpliial omplex and (T, µ) a Z2-spae. A fun-

tion C taking faes σ of K to subspaes C(σ) of T , satisfying C(ν(σ)) = µ(C(σ)), is a Z2-arrier

if C(σ) ⊆ C(τ) for all σ ⊆ τ .

Lemma 13 (Z2-arrier lemma). Assume that for a Z2-arrier C for any σ ∈ K C(σ) is

ontratible. Then any two Z2-maps f, g : K → T that are both arried by C are Z2-homotopi.

4B ⊃ ∪
Ai⊂B

Ai would be good as well, but it an be the emptyset.
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Proof. The proof is straightforward from the de�nitions. For details see the proof of Theorem

II.9.2 in [LW69℄. �

Proof of Theorem 11. We will use the same notations as in the proof of Theorem 7. Similarly

we obtain G
sd(K) by using Constrution 8. with sd(K). We need to show that the box omplex

B(G
sd(K)) and (K, ν) are Z2-homotopy equivalent. In order to prove it we will de�ne Z2-maps

f : sd(B(G
sd(K))) → sd(K) and g : sd(K) → B(G

sd(K)). To omplete the proof we will show that

f (and g) is a Z2-homotopy equivalene.

The de�nition of g: This is an embedding. We map a vertex A ∈ sd(K) to A⊎∅ ∈ B(G
sd(K))

and of ourse it's Z2-pair ν(A) ∈ sd(K) to ∅⊎A ∈ B(G
sd(K)). Here we had to hoose! If we pik

ν(A) �rst than we mapped ν(A) to ν(A)⊎∅ and A to ∅⊎ν(A). So we have 2 hoies for any Z2-

pair A, ν(A). This de�nes a Z2-map g on the vertex level. We have to show that g is simpliial.

Let A1 ⊂ · · · ⊂ Al be a simplex σ in sd(K). Sine A1⊎∅, . . . , Al⊎∅, ∅⊎ν(A1), . . . , ∅⊎ν(Al) form
a simplex in B(G

sd(K)) the image of σ is a simplex. (In G
sd(K) Ai is onneted to ν(Ai) and sine

Ai ⊂ Aj or Ai ⊃ Aj it is onneted to ν(Aj) as well. So Gsd(K)[{A1, . . . , Al}; {ν(A1), . . . , ν(Al)}]
is omplete bipartite.)

The de�nition of f : Let A1⊎∅, . . . , Al⊎∅, ∅⊎B1, . . . , ∅⊎Bk be the verties of a simplex σ in

B(G
sd(K)). Gsd(K)[A;B] is omplete bipartite where A := {A1, . . . , Al} and B := {B1, . . . , Bk}.

This means that A ⊂ star

sd(K)ν(Bj) for any j ∈ {1, . . . , k} so A ⊂
k
∩
j=1

star

sd(K)ν(Bj). From the

proof of Theorem 7. we know that

k
∩
j=1

star

sd(K)ν(Bj) is a one with apex X . Sine A, ν(B) ⊂

star

sd(K)X we have that Y :=
l
∩
i=1

star

sd(K)Ai

⋂ k
∩
j=1

star

sd(K)ν(Bj) 6= ∅. From the proof of The-

orem 7. we know that Y is a one. We denote its apex by XB
A whih an be hosen to be

l
∩
i=1

Ai

⋂ k
∩
j=1

ν(Bj) if it is not the emptyset. Now we are able to de�ne f .

f(A⊎ B) :=







l
∩
i=1

Ai

⋂ k
∩
j=1

ν(Bj) if exist,

XB
A otherwise.

By the onstrution it is Z2 on the vertex level. (We an hoose XA
B := ν(XB

A).) It is simpliial.

An edge with two verties A⊎B and Ã ⊎ B̃ (Ã ⊂ A, B̃ ⊂ B) is mapped to two verties S ⊂ R

sine XB
A is in the one of X B̃

Ã
. Now a simplex is mapped to a hain (sine every two vertex is

omparable by inlusion).

Next we prove that f ◦ sd(g) : sd(sd(K)) → sd(K) is Z2-homotopi to idK. We will use

the Z2-arrier lemma. We have to onstrut 'only' a ontratible Z2-arrier for f ◦ sd(g) and
id. The image of the vertex v = {A1, . . . , Al}, A1 ⊂ · · · ⊂ Al is sd(g)(v) = {Ai1 , . . . , Ais} ⊎
{ν(Aj1), . . . , ν(Ajr)}. And now f(sd(g)(v)) = A1 ∩ · · · ∩ Al = A1 in this ase! The image

of a simplex with vertex set {Ai1}, {Ai1, Ai2}, . . . , {Ai1, . . . , Ail} is a fae of the simplex A1 ⊂
· · · ⊂ Al. So for a simplex σ ∈ sd(sd(K)) with its maximal vertex {A1, . . . , Al} we de�ne

C(σ) := {A1, . . . , Al} ∈ sd(K). This C is a ontratible Z2-arrier what we need. f ◦ sd(g) and
idK are Z2-homotopi.

Now we show that g ◦ f : sd(B(G
sd(K))) → B(G

sd(K)) is Z2-homotopi to id. Again we

onstrut a ontratible Z2-arrier for g ◦ f and id. A vertex A⊎B is mapped to XB
A by f and

to XB
A ⊎ ∅ or ∅ ⊎ ν(XB

A) by g ◦ f . Let A1 ⊎ B1, . . . ,An ⊎ Bn the vertex set of a simplex σ in

sd(B(G
sd(K))). (A1 ⊂ · · · ⊂ An, B1 ⊂ · · · ⊂ Bn, An := {A1, . . . , Al} and Bn := {B1, . . . , Bk}).
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We onsider the subgraph H of G
sd(K) spanned by A1, . . . , Al, B1, . . . , Bk, their Z2-image under

ν and XBi

Ai
, ν(XBi

Ai
) for any i ∈ {1, . . . , n}. We will use H (atually B(H)) to de�ne the desired

arrier. First of all B(H) ontains the simplex with vertex set A1⊎∅, . . . , Al⊎∅, ∅⊎B1, . . . , ∅⊎Bk

whih ontains σ. Moreover we de�ned H in suh a way that B(H) ontains (g ◦ f)(σ) as well.
Observe that H is bipartite. The neighbors of the verties XBn

An
and ν(XBn

An
) provides a partition

of the vertex set of H . The neighborhood omplex N(H) is the disjoint union of two simplies

orresponding to this partition. So the box omplex B(H) ⊂ B(G
sd(K)) ontains two disjoint

ontratible sets (sine it is homotopy equivalent to N(H)). One of these sets overs σ and

(g ◦ f)(σ), so we de�ne our ontratible Z2-arrier C(σ) to be this 'half' of B(H). �

Remark 14. For any free Z2-simpliial omplex (K, ν) there is a graph G suh that its Hom

omplex [BK03℄ Hom(K2, G) is Z2-homotopy equivalent to the given omplex sine the box

omplex B(G) is Z2-homotopy equivalent to Hom(K2, G). (The Z2-maps f : sd(B(G)) →
sd(Hom(K2, G)) de�ned by

A ⊎ B →







(A,CN(A)) if B = ∅,
(CN(B), B) if A = ∅,
(A,B) otherwise,

and g : sd(Hom(K2, G)) → sd(B(G)) given by (A,B) → A ⊎ B are Z2-homotopy equivalenes.

f ◦ g = id and g ◦ f is arried by id.)

6 The suspension and the index

In this setion we will onstrut a Z2-spae X suh that ind(X) = ind(susp(X)). This

example is based on an earlier onstrution by Matou²ek, �ivaljevi¢ and the author [M03, page

100℄. Suh examples are probably well known for experts (see e.g. [CF60℄), but we will give a

simple and expliit example.

We proeed in the following way. Let h : S3 → S2
be the Hopf map

5

.

We hoose a map 2h : S3 → S2
and we attah two 4-ells (the boundary of the 4-ell is S3

)

to S2
via 2h and −2h. We denote this Z2-spae by

X2h := S2 ∪
2h
B4 ∪

−2h
B4.

The Z2-ation on Sn ⊂ X2h is the antipodality and interhanges the two 4-ells.
Now we ompute the Z2-index ofX2h and susp(X2h). It is easy to see that 1 ≤ ind(X2h) ≤ 3.

A Z2-map S2 ⊂ X2h
Z2−→ S1

would ontradit to the Borsuk�Ulam Theorem. Let Bi
be the

unit ball in Ri
entered at the origin. We assume that 2h : S3 → S2

maps the unit sphere, the

boundary of the unit ball, into the unit sphere. We de�ne a map b : B4 → B3
suh that it maps

the origin of R
4
into the origin of R

3
and if x ∈ B4

, ‖x‖ 6= 0 then b(x) := 2h
(

x

‖x‖

)

· ‖x‖. Now

we are ready to onstrut a Z2-map f : X2h
Z2−→ S3

. f maps S2 ⊂ X2h into the equator of S3
.

The remaining two 4-ells of X2h are mapped to the upper and lower hemisphere of S3
by b

and −b.

It is slightly more di�ult to prove that the index is 3. We will use the following:

5

Considering S3
as the unit sphere in C

2
and S2 = CP

1
, the Hopf map h : S3 → S2

de�ned by (z1, z2) →
[z1, z2] ∈ CP1

[H01, Example 4.45℄. h is a generator of π3(S
2) = Z.
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De�nition 15 ([H01℄ Page 427, Setion 4.B). Let f : S2n−1 → Sn
, (n ≥ 2), and let Cf =

Sn ∪
f
B2n

(we attah a 2n-ell to Sn
via f). The Hopf invariant of f (denoted by H(f)) an

be de�ned suh that α ∪ α = H(f) · β, where α ∈ Hn(Cf) = Z and β ∈ H2n(Cf) = Z are the

generators of the orresponding ohomology groups and ∪ is the up produt.

We will use the following property of the Hopf invariant (see [H01℄).

• H : π2n−1(S
n) → Z is a homomorphism. For n=2 it is an isomorphism.

Theorem 16 ([HW60℄ Theorem 9.5.9). Let f : S2n−1 → Sn
and g : Sn → Sn

be ontinuous

maps. Then: H(g ◦ f) = deg(g)2 · H(f).

Theorem 17 ([H01℄ Proposition 2B.6). Every Z2-map f : Sn Z2−→Sn
has odd degree.

Lemma 18. ind(X2h) = 3.

Proof. By ontradition assume that ind(X2h) ≤ 2 whih means that there is a Z2-map

f : X2h
Z2−→ S2

. We restrit this map to S2 ⊂ X2h obtaining g : S2 → S2
. We laim that

g ◦ 2h : S3 → S2
is null-homotopi. In X2h we attahed a 4-ell to S2

via 2h. This gives us a

map i : B4 → X2h and f ◦ i : B4 → S2
. The restrition of f ◦ i into S3 = ∂B4

is g ◦ 2h. So the

map g ◦ 2h extends into B4
whih proves that g ◦ 2h is null-homotopi.

On the other hand Theorem 17 tells us that deg(g) is odd. (We need now only that it is

non-zero.) Using Theorem 16 we have that H(g ◦ 2h) = deg(g)2 · H(2h). Sine deg(g) 6= 0
and H(2h) = 2 we have that H(g ◦ 2h) 6= 0. This means that g ◦ 2h is not null-homotopi,

ontradition. �

Lemma 19. ind(susp(X2h)) = 3.

Proof. susp(X2h) an be obtained similarly as X2h: we attah two 5-ells (the boundary of the

5-ell is S4
) to S3

via susp(2h) and −susp(2h). The Freudenthal Theorem ([H01℄ Corollary

4.24.) tells us that susp : π3(S
2) → π4(S

3), whih is atually Z → Z2, is surjetive. So susp(2h)
is null-homotopi whih means that susp(X2h) is Z2-homotopy equivalent to S3

so its index is

3. �

The generalization of this onstrution provides in�nitely many examples of ind(X) =
ind(susp(X)).

Using a simpliial model for 2h : S3
12 → S2

4 [MS00℄,[M02℄ one an obtain a simpliial omplex

model for X2h as well.

7 The topologial lower bound an be arbitrarily bad

It is well known (see [W83℄) that the topologial lower bound for the hromati number an

be arbitrarily bad. But now we are able to give purely topologial examples.

De�nition 20. For a graph G let G+
be the graph obtained from G by adding an extra vertex

w and onneting it by edges to all the verties of G, i.e., V (G+) = V (G) ∪ {w} and E(G+) =
E(G) ∪ {(v, w) : v ∈ V (G)}.
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Lemma 21. B(G+) is Z2-homotopy equivalent to susp(B(G)).

Proof. susp(B(G)) is a subomplex of B(G+). The di�erene is only two big simplies (and

some of their faes) V (G)⊎w and w ⊎ V (G). We will get rid of the extra simplies one by one

using deformation retration. We will work with one shore, on the other shore we have to do

the Z2-pair of eah step.

We will de�ne (by indution) sequenes of simpliial omplexes suh that

B(G+) =: X0 ⊃ X1 ⊃ · · · ⊃ XN = susp(B(G))

and Xi+1 is a Z2-deformation retration of Xi.

Let assume that we already de�ned Xn. We hoose A ⊆ V (G) suh that A ⊎ w ∈ Xn, and

there is no A ⊂ B ⊆ V (G) suh that B ⊎ w ∈ Xn. We de�ne Xn+1:

Xn+1 := Xn \ {A ⊎ w,w ⊎ A,A ⊎ ∅, ∅ ⊎A}

By the de�nition of Xn+1 it is learly a Z2-deformation retrat of Xn sine A ⊎ ∅ is on the

boundary of Xn. (Map the baryenter of A ⊎ ∅ to ∅ ⊎ w.) �

Now we are ready to onstrut a graph suh that

χ(G) ≥ ind(B(G))+2+k. First we need a

Z2-spae (atually a simpliial omplex) X suh ind(X) = ind(suspk(X)). Now let G := Gsd(X).

For G we have that

χ(G) ≥ ind(B(G)) + 2 = ind(X) + 2. We laim that G+k
is good for us.

Clearly

χ(G) + k = χ(G+k) and ind(B(G+k)) = ind(suspk(B(G))) = ind(suspk(X)) = ind(X).
So

χ(G+k) ≥ ind(B(G+k)) + 2 + k.
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