Homotopy types of box complexes

Péter Csorba*
Institute of Theoretical Computer Science ETH Zürich, CH-8092 Zürich, Switzerland
E-mail: pcsorba@inf.ethz.ch

21st November 2018

Abstract

In MZ04 Matoušek and Ziegler compared various topological lower bounds for the chromatic number. They proved that Lovász's original bound L78 can be restated as $\chi(G) \geq \operatorname{ind}(\mathrm{B}(G))+2$. Sarkaria's bound [S90] can be formulated as $\chi(G) \geq \operatorname{ind}\left(\mathrm{B}_{0}(G)\right)+1$. It is known that these lower bounds are close to each other, namely the difference between them is at most 1 . In this paper we study these lower bounds, and the homotopy types of box complexes. Some of the results was announced in [MZ04].

1 Introduction

In MZ04 Matoušek and Ziegler compared various topological lower bound for the chromatic number. They reformulated Lovász's original bound [L78] and Sarkaria's bound [S90] in terms of various box complexes:

Theorem 1 (The Lovász bound [MZ04]). For any graph G

$$
\chi(G) \geq \operatorname{ind}(\mathrm{B}(G))+2
$$

Theorem 2 (The Sarkaria bound [MZ04]). For any graph G

$$
\chi(G) \geq \operatorname{ind}\left(\mathrm{B}_{0}(G)\right)+1 .
$$

We will study these lower bounds in this paper, which is organized as follows.
Section 2 contains the definition of the box complexes of graphs and we fix some notation.
In Section 3 we prove that the box complex $\mathrm{B}_{0}(G)$ is \mathbb{Z}_{2}-homotopy equivalent to the suspension of $\mathrm{B}(G)$. This makes the connection between these two bounds explicit. Since $\operatorname{ind}(X) \leq \operatorname{ind}(\operatorname{susp}(X)) \leq \operatorname{ind}(X)+1$ the difference between the right side of Lovász and the Sarkaria bound is at most one.

From topological point of view it is possible that these two bounds are not the same. We construct a \mathbb{Z}_{2}-space $X_{2 h}$ such that $\operatorname{ind}\left(\operatorname{susp}\left(X_{2 h}\right)\right)=\operatorname{ind}\left(X_{2 h}\right)$ in Section 6.

[^0]However we need a graph such that its box complex $\mathrm{B}(G)$ has this property. In Section 4 we show that the homotopy type of the box complex $\mathrm{B}(G)$ (which is homotopy equivalent to the neighborhood complex) can be "arbitrary"; in Section 5 we extend this result to \mathbb{Z}_{2}-homotopy equivalence. This allows us to construct a graph G such that the gap between these two bounds is 1 . This means that the Lovász bound can be better than the Sarkaria bound, which answers a question of Matoušek and Ziegler (MZ04].

Finally in Section 7 we show that both of these topological lower bounds can be arbitrarily bad. Our examples are purely topological.

2 Preliminaries

In this section we recall some basic facts of graphs and simplicial complexes and topology to fix notation. The interested reader is referred to [M03] or [B95] and [H01] for details.
Graphs: Any graph G considered will be assumed to be finite, simple, connected, and undirected, i.e. G is given by a finite set $V(G)$ of vertices and a set of edges $E(G) \subseteq\binom{V(G)}{2}$. A graph coloring with n colors is a homomorphism $c: G \rightarrow K_{n}$, where K_{n} is the complete graph on n vertices and the chromatic number $\chi(G)$ of G is the smallest n such that there exists a graph coloring of G with n colors. The common neighbor of $A \subseteq V(G)$ is $\operatorname{CN}(A)=$ $\{v \in V(G):\{a, v\} \in E(G)$ for all $a \in A\}$. For two disjoint sets of vertices $A, B \subseteq V(G)$ we define $G[A, B]$ as the (not necessarily induced) subgraph of G with $V(G[A, B])=A \cup B$ and $E(G[A, B])=\{(a, b) \in E(G): a \in A, b \in B\}$.
Simplicial Complexes: A simplicial complex \mathcal{K} is a finite hereditary set system. We denote its vertex set by $V(\mathcal{K})$ and its barycentric subdivision by $\operatorname{sd}(\mathcal{K})$.
For sets A, B define $A \uplus B:=\{(a, 0): a \in A\} \cup\{(b, 1): b \in B\}$.
Neighborhood Complex: The neighborhood complex is $\mathrm{N}(G)=\{S \subseteq V(G): \mathrm{CN}(S) \neq \emptyset\}$
Box Complex: The box complex $\mathrm{B}(G)$ of a graph G (the one introduced by Matoušek and Ziegler (MZ04) is defined by
$\mathrm{B}(G):=\{A \uplus B: A, B \subseteq V(G), A \cap B=\emptyset, G[A, B]$ is complete bipartite, $\mathrm{CN}(A) \neq \emptyset \neq \mathrm{CN}(B)\}$
The vertices of the box complex are $V_{1}:=\{v \uplus \emptyset: v \in V(G)\}$ and $V_{2}:=\{\emptyset \uplus v: v \in V(G)\}$ for all vertices of G. The subcomplexes of $\mathrm{B}(G)$ induced by V_{1} and V_{2} are disjoint subcomplexes of $\mathrm{B}(G)$ that are both isomorphic to the neighborhood complex $\mathrm{N}(G)$. We refer to these two copies as shores of the box complex. The box complex is endowed with a \mathbb{Z}_{2}-action which interchanges the shores.

A different box complex $\mathrm{B}_{0}(G)$:

$$
\mathrm{B}_{0}(G)=\{A \uplus B: A, B \subseteq V(G), A \cap B=\emptyset, G[A, B] \text { is complete bipartite }\}
$$

The cones over the sores complex $\mathrm{B}_{\mathcal{C}}(G)$ (only for technical reason):

$$
\mathrm{B}_{\mathcal{C}}(G)=\mathrm{B}(G) \cup\{(x, A \uplus \emptyset): A \subseteq V(G), \mathrm{CN}(A) \neq \emptyset\} \cup\{(\emptyset \uplus B, y): B \subseteq V(G), \mathrm{CN}(B) \neq \emptyset\},
$$

where we assume that $x, y \notin V(G) .\left(\mathrm{B}(G), \mathrm{B}_{0}(G), \mathrm{B}_{\mathcal{C}}(G)\right.$ are \mathbb{Z}_{2}-spaces.)
\mathbb{Z}_{2}-space: $\mathrm{A} \mathbb{Z}_{2}$-space is a pair (X, ν) where X is a topological space and $\nu: X \rightarrow X$, called the \mathbb{Z}_{2}-action, is a homeomorphism such that $\nu^{2}=\nu \circ \nu=\mathrm{id}_{X}$. If $\left(X_{1}, \nu_{1}\right)$ and $\left(X_{2}, \nu_{2}\right)$ are $\mathbb{Z}_{2^{-}}$ spaces, a $\mathbb{Z}_{2}-m a p$ between them is a continuous mapping $f: X_{1} \rightarrow X_{2}$ such that $f \circ \nu_{1}=\nu_{2} \circ f$.

The sphere S^{n} is understood as a \mathbb{Z}_{2}-space with the antipodal homeomorphism $x \rightarrow-x$. We will consider only finite dimensional free \mathbb{Z}_{2}-complexes (free means that the \mathbb{Z}_{2}-action ν has no fixed point).
\mathbb{Z}_{2}-index: We define the \mathbb{Z}_{2}-index of a \mathbb{Z}_{2}-space (X, ν) by

$$
\operatorname{ind}(X)=\min \left\{n \geq 0: \text { there is a } \mathbb{Z}_{2} \text {-map }(X, \nu) \rightarrow\left(S^{n},-\right)\right\}
$$

(the \mathbb{Z}_{2}-action ν will be omitted from the notation if it is clear from the context). The BorsukUlam Theorem can be re-stated as $\operatorname{ind}\left(S^{n}\right)=n$.

Another index-like quantity of a \mathbb{Z}_{2}-space, the dual index can be defined by

$$
\operatorname{coind}(X)=\max \left\{n \geq 0: \text { there is a } \mathbb{Z}_{2} \text {-map } S^{n} \xrightarrow{\mathbb{Z}_{2}} X\right\} .
$$

The consequence of the Borsuk-Ulam Theorem is that $\operatorname{coind}(X) \leq \operatorname{ind}(X)$. We call a free \mathbb{Z}_{2}-space tidy if $\operatorname{coind}(X)=\operatorname{ind}(X)$. (In general $\operatorname{ind}(X) \geq \operatorname{coind}(X) \geq \operatorname{connectivity}(X)+1$ [M03].)

A \mathbb{Z}_{2}-map $f: X \rightarrow Y$ is a \mathbb{Z}_{2}-equivalence if there exist a $g: Y \rightarrow X$ such that $g \circ f$ and $f \circ g$ are homotopic to id_{X} and id_{Y} respectively. A general reference for \mathbb{Z}_{2}-spaces is [B67].

3 The connection between $\mathrm{B}_{\mathcal{C}}(G), \mathrm{B}_{0}(G)$ and $\mathrm{B}(G)$

In this section we will prove that $\mathrm{B}_{0}(G)$ and $\operatorname{susp}(\mathrm{B}(G))$ are \mathbb{Z}_{2}-homotopy equivalent. The reason is that the box complex is 'nearly' $\mathrm{N}(G) \times[0,1]$.

Remark 3. One can use Lovász's bound to prove Kneser's Conjecture K55. The box complexes of Kneser graphs (Schrijver graphs) are tidy spaces [778 (spheres up to homotopy [BdL03]). This means that one can prove Kneser's Conjecture by using Sarkaria's bound (or any higher suspension) as well.

Lemma 4. $\mathrm{B}_{\mathcal{C}}(G)$ is \mathbb{Z}_{2}-homotopy equivalent to $\mathrm{B}_{0}(G)$.
Proof. $\mathrm{B}_{\mathcal{C}}(G)$ was obtained from $\mathrm{B}(G)$ by attaching two cones C_{1}, C_{2} over the shores, while $\mathrm{B}_{0}(G)$ is $\mathrm{B}(G)$ plus two simplices Δ_{1}, Δ_{2} covering the shores.

We consider the following two quotient CW-complexes. $\left(\mathrm{B}_{\mathcal{C}}(G) / C_{1}\right) / C_{2}$ and $\left(\mathrm{B}_{0}(G) / \Delta_{1}\right) / \Delta_{2}$ (the order of the factorization does not matter since we collapse disjoint subcomplexes). It is obvious that they are the same CW-complexes and since C_{i}, Δ_{i} are contractible spaces $\mathrm{B}_{\mathcal{C}}(G)$ and $\mathrm{B}_{0}(G)$ are \mathbb{Z}_{2}-homotopy equivalent.

Lemma 5. $\mathrm{B}_{\mathcal{C}}(G)$ is \mathbb{Z}_{2}-homotopy equivalent to $\operatorname{susp}(\mathrm{B}(G))$.
Proof. $\mathrm{B}_{\mathcal{C}}(G)$ is a subcomplex of $\operatorname{susp}(\mathrm{B}(G))$. The idea of the proof is to start with $\operatorname{susp}(\mathrm{B}(G))$, and get rid of the extra simplexes one by one (using deformation retraction) such that finally we get $\mathrm{B}_{\mathcal{C}}(G)$. We will work with one cone (half) of the suspension. Since we want a \mathbb{Z}_{2}-retraction, on the other cone we have to do the \mathbb{Z}_{2}-pair of each step.

Let x be the apex of the cone over the first shore in $\operatorname{susp}(\mathrm{B}(G))(y$ is the other apex). We will define (by induction) sequences of simplicial complexes such that

$$
\operatorname{susp}(\mathrm{B}(G))=: X_{0} \supset X_{1} \supset \cdots \supset X_{N}=\mathrm{B}_{\mathcal{C}}(G)
$$

and X_{i+1} is a \mathbb{Z}_{2}-deformation retraction of X_{i}.
Let assume that we already defined X_{n}. We choose a simplex $\sigma \in X_{n}$ such that

1. $x \in \sigma$, and the rest of the vertices of σ are from the second shore,
2. no other simplex in X_{n} containing x has more vertex from the second shore, and it has at least one vertex from the second shore.

The vertex set of σ will be $\left\{x, \emptyset \uplus b_{j_{1}}, \ldots, \emptyset \uplus b_{j_{l-1}}\right\}$ for some $B=\left\{b_{j_{1}}, \ldots, b_{j_{l-1}}\right\} \subseteq V(G)$. Let $A:=\operatorname{CN}(B)=\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}$ and $\tilde{\sigma}$ be the \mathbb{Z}_{2}-pair of σ with vertex set $\left\{y, b_{j_{1}} \uplus \emptyset, \ldots, b_{j_{l-1}} \uplus \emptyset\right\}$. We are ready to define X_{n+1} :

$$
X_{n+1}:=X_{n} \backslash\left\{\tau \in X_{n}: \sigma \in \tau \text { or } \tilde{\sigma} \in \tau\right\}
$$

We have to only show that X_{n+1} is the deformation retract of X_{n}. We know the local structure of our complex X_{n} around σ. Let assume that it is a face of a bigger simplex Δ with vertex set $\left\{x, \emptyset \uplus b_{j_{1}}, \ldots, \emptyset \uplus b_{j_{l-1}}, c\right\} . c$ can not be the other apex. If c were from the second shore, then we would choose Δ instead of σ to define X_{n+1}. So c can be
 only from the first shore and then $c \in A$. This means that σ is on the boundary of X_{n}; it is on the boundary of the simplex s with vertex set $\left\{x, \emptyset \uplus b_{j_{1}}, \ldots, \emptyset \uplus b_{j_{l-1}}, a_{i_{1}} \uplus \emptyset, \ldots, a_{i_{k}} \uplus \emptyset\right\}$. Moreover every simplex which has σ as face is on the boundary of X_{n}. So what we delete to get X_{n+1} is on the boundary (except s). The retraction ${ }^{1}$ to X_{n+1} can be given as indicated on the picture.

Remark 6. In the same way it can be proven that the neighborhood complex $\mathrm{N}(G)$ (as one shore of the box complex) is a deformation retract of (homotopy equivalent to) the box complex $\mathrm{B}(G)$.

4 Neighborhood complex

We consider the following natural question about the neighborhood complex. Given a simplicial complex \mathcal{K}. Is there a graph G such that its neighborhood complex is the given complex, $\mathrm{N}(G)=\mathcal{K}$?

For example, if \mathcal{K} is the complex on Figure then the answer is no! The reason is that there is a topological obstruction. The neighborhood complex is homotopy equivalent to the box complex which is a free \mathbb{Z}_{2}-simplicial complex so it has clearly even Euler

Figure 1: characteristic. But $\chi(\mathcal{K})=-1$ is odd.

[^1]Another example if \mathcal{K} is the complex of Figure 2. Now the answer is no again, but there is no topological reason. With the usual antipodal map \mathcal{K} become a free \mathbb{Z}_{2}-simplicial complex. On the other hand the graph G with $\mathrm{N}(G)=\mathcal{K}$ should have 4 vertices, and by brute force one can check that \mathcal{K} is not a neighborhood complex.

Unfortunately we can not answer this question, but we will show that up to

Figure 2: homotopy everything is possible.

Theorem 7. Given a free \mathbb{Z}_{2}-simplicial complex (\mathcal{K}, ν), there is a graph G such that its neighborhood complex is homotopy equivalent to the given complex, $\mathrm{N}(G) \simeq \mathcal{K}$.

In order to prove it we will use the following construction of a graph from a \mathbb{Z}_{2}-simplicial complex.

Construction $8\left(\mathcal{K} \rightarrow G_{\mathcal{K}}\right)$. Let \mathcal{K} be a \mathbb{Z}_{2}-simplicial complex. The vertices of $G_{\mathcal{K}}$ are the vertices of \mathcal{K}, and each vertex is connected to its \mathbb{Z}_{2}-pair and the neighbors ${ }^{2}$ of the \mathbb{Z}_{2}-pair. Thus if $x, y \in V\left(G_{\mathcal{K}}\right)=V(\mathcal{K})$ then there is an edge between them if and only if $\nu(x)=y$ or $\{x, \nu(y)\} \in \mathcal{K}($ or $\{y, \nu(x)\} \in \mathcal{K})$. An example is in Figure ,

Figure 3: Example for the construction.
We need the nerve theorem as well.
Definition 9 (Nerve). Let \mathcal{F} be a set-system. The nerve $\mathcal{N}(\mathcal{F})$ of \mathcal{F} is defined as the simplicial complex whose vertices are the sets in \mathcal{F}, and $\left\{X_{1}, \ldots, X_{r}\right\} \in \mathcal{N}(\mathcal{F})$ if and only if $X_{1}, \ldots, X_{r} \in \mathcal{F}$ and $X_{1} \cap X_{2} \cap \cdots \cap X_{r} \neq \emptyset$.

Theorem 10 (Nerve theorem [B95]). Let \mathcal{K} be a simplicial complex and $\mathcal{K}_{i}(i \in I)$ a family of subcomplexes such that $\mathcal{K}=\bigcup_{i \in I} \mathcal{K}_{i}$. Assume that every nonempty finite intersection $\mathcal{K}_{i_{1}} \cap$ $\cdots \cap \mathcal{K}_{i_{r}}$ is contractible. Then \mathcal{K} and the nerve $\mathcal{N}\left(\bigcup \mathcal{K}_{i}\right)$ are homotopy equivalent.

Proof of Theorem \square For technical reason we need the first barycentric subdivision $\operatorname{sd}(\mathcal{K})$ of \mathcal{K}. The free simplicial \mathbb{Z}_{2}-action on $\operatorname{sd}(\mathcal{K})$ will be denoted by ν as well.

We use Construction 8 with $\operatorname{sd}(\mathcal{K})$ to obtain $G_{\text {sd }}(\mathcal{K})$. Because of the barycentric subdivision the vertices of $G_{\mathrm{sd}(\mathcal{K})}$ denoted by subsets of $V(\mathcal{K})$. If $A, B \in V\left(G_{\mathrm{sd}(\mathcal{K})}\right)$ then there is an edge between them if and only if $\nu(A)=B$ or $\nu(A) \subset B$ or $\nu(A) \supset B$.

We denote the vertices of \mathcal{K} by $1,2, \ldots, n$. Let $\operatorname{star}_{\operatorname{sd}(\mathcal{K})}(A)$ be the star^{3} of the vertex A in $\operatorname{sd}(\mathcal{K})$. The nerve of the set system $\left\{\operatorname{star}_{\mathrm{sd}(\mathcal{K})}(A): A \in V\left(G_{\mathrm{sd}(\mathcal{K})}\right)\right\}$ is clearly the neighborhood complex of $G_{\text {sd }(\mathcal{K})}$. (This is even true without any subdivision: $N\left(G_{\mathcal{K}}\right)=\mathcal{N}(\mathcal{S})$ where \mathcal{S} is the set of the vertex stars in \mathcal{K}.)

[^2]We want to use the nerve theorem so we should prove that if $B \in \operatorname{star}_{\operatorname{sd}(\mathcal{K})}\left(A_{1}\right) \cap \cdots \cap$ $\operatorname{star}_{\operatorname{sd}(\mathcal{K})}\left(A_{r}\right) \neq \emptyset$ then this intersection is contractible. We show that this is a cone. We have two cases:

1. If $A_{i} \subset B$ for all $i=1,2, \ldots, r$.

In this case $\cup A_{i}$ is a vertex of the barycentric subdivision since it is a subset of B, and it is in the intersection as well. We show that the intersection can be contracted to this point. We construct this deformation retraction by letting each vertex to travel towards $\cup A_{i}$ with uniform speed. The only thing that we have to check is that whenever $B_{1} \subset B_{2} \subset \cdots \subset B_{q}$ is a simplex in the intersection, then with the special vertex $X:=\cup A_{i}$ they form a simplex as well. First observe that there is an edge between X and $B_{l}, l \in\{1, \ldots, q\}$. If $B_{l} \subset A_{i}$ for some i then $B_{l} \subset X$ as well. Otherwise $X \subset B_{l}$. For the simplex $B_{1} \subset B_{2} \subset \cdots \subset B_{q}$ if $X \subset B_{1}$ or $X \supset B_{q}$ then they form a simplex with X. Otherwise there is an index k such that $B_{k} \subset X \subset B_{k+1}$. This means that $B_{1}, B_{2}, \ldots, B_{q}, X$ form a simplex.
2. If $B \subset A_{i_{j}}$ for some $j=1, \ldots, k(k \geq 1)$, and $A_{i} \subset B$ for the rest.

In this case $B \subset \bigcap_{j=1}^{k} A_{i_{j}} \neq \emptyset^{4}$ is a vertex of the barycentric subdivision and the intersection as well. We show that the intersection can be contracted to this point. We construct this deformation retraction by letting each vertex to travel towards $\cap A_{i_{j}}$ with uniform speed. We have to show that whenever $B_{1} \subset B_{2} \subset \cdots \subset B_{q}$ is a simplex in the intersection, then with the special vertex $X:=\cap A_{i_{j}}$ they form a simplex as well. First observe that there is an edge between X and $B_{l}, l \in\{1, \ldots, q\}$. If $B_{l} \supset A_{i_{j}}$ for some i_{j} then $B_{l} \supset X$ as well. Otherwise $X \supset B_{l}$. For the simplex $B_{1} \subset B_{2} \subset \cdots \subset B_{q}$ if $X \subset B_{1}$ or $X \supset B_{q}$ then it is true. Otherwise there is an index k such that $B_{k} \subset X \subset B_{k+1}$ which means that $B_{1}, B_{2}, \ldots, B_{q}, X$ form a simplex.

This completes the proof.

5 Box complex

In this section we prove our main theorem. It is the \mathbb{Z}_{2}-extension of Theorem $\mathbf{7}$ Later it was proven by Rade T. Živaljević $\overline{Z 04}$.

Theorem 11. Given a free \mathbb{Z}_{2}-simplicial complex (\mathcal{K}, ν), there is a graph G such that its box complex $\mathrm{B}(G)$ is \mathbb{Z}_{2}-homotopy equivalent to the given complex.

First we need the \mathbb{Z}_{2}-carrier lemma.
Definition 12 (carrier). Let (\mathcal{K}, ν) be a \mathbb{Z}_{2}-simplicial complex and (T, μ) a \mathbb{Z}_{2}-space. A function C taking faces σ of \mathcal{K} to subspaces $C(\sigma)$ of T, satisfying $C(\nu(\sigma))=\mu(C(\sigma))$, is a \mathbb{Z}_{2}-carrier if $C(\sigma) \subseteq C(\tau)$ for all $\sigma \subseteq \tau$.

Lemma 13 (\mathbb{Z}_{2}-carrier lemma). Assume that for $a \mathbb{Z}_{2}$-carrier C for any $\sigma \in \mathcal{K} C(\sigma)$ is contractible. Then any two \mathbb{Z}_{2}-maps $f, g: \mathcal{K} \rightarrow T$ that are both carried by C are \mathbb{Z}_{2}-homotopic.

[^3]Proof. The proof is straightforward from the definitions. For details see the proof of Theorem II.9.2 in LW69.

Proof of Theorem 11 We will use the same notations as in the proof of Theorem 7 . Similarly we obtain $G_{\mathrm{sd}(\mathcal{K})}$ by using Construction 8 , with $\operatorname{sd}(\mathcal{K})$. We need to show that the box complex $\mathrm{B}\left(G_{\mathrm{sd}(\mathcal{K})}\right)$ and (\mathcal{K}, ν) are \mathbb{Z}_{2}-homotopy equivalent. In order to prove it we will define \mathbb{Z}_{2}-maps $f: \operatorname{sd}\left(\mathrm{B}\left(G_{\mathrm{sd}(\mathcal{K})}\right)\right) \rightarrow \operatorname{sd}(\mathcal{K})$ and $g: \operatorname{sd}(\mathcal{K}) \rightarrow \mathrm{B}\left(G_{\mathrm{sd}(\mathcal{K})}\right)$. To complete the proof we will show that f (and g) is a \mathbb{Z}_{2}-homotopy equivalence.

The definition of g : This is an embedding. We map a vertex $A \in \operatorname{sd}(\mathcal{K})$ to $A \uplus \emptyset \in \mathrm{~B}\left(G_{\operatorname{sd}(\mathcal{K})}\right)$ and of course it's \mathbb{Z}_{2}-pair $\nu(A) \in \operatorname{sd}(\mathcal{K})$ to $\emptyset \uplus A \in \mathrm{~B}\left(G_{\mathrm{sd}(\mathcal{K})}\right)$. Here we had to choose! If we pick $\nu(A)$ first than we mapped $\nu(A)$ to $\nu(A) \uplus \emptyset$ and A to $\emptyset \uplus \nu(A)$. So we have 2 choices for any $\mathbb{Z}_{2^{-}}$ pair $A, \nu(A)$. This defines a \mathbb{Z}_{2}-map g on the vertex level. We have to show that g is simplicial. Let $A_{1} \subset \cdots \subset A_{l}$ be a simplex σ in $\operatorname{sd}(\mathcal{K})$. Since $A_{1} \uplus \emptyset, \ldots, A_{l} \uplus \emptyset, \emptyset \uplus \nu\left(A_{1}\right), \ldots, \emptyset \uplus \nu\left(A_{l}\right)$ form a simplex in $\mathrm{B}\left(G_{\mathrm{sd}(\mathcal{K})}\right)$ the image of σ is a simplex. (In $G_{\mathrm{sd}(\mathcal{K})} A_{i}$ is connected to $\nu\left(A_{i}\right)$ and since $A_{i} \subset A_{j}$ or $A_{i} \supset A_{j}$ it is connected to $\nu\left(A_{j}\right)$ as well. So $G_{\mathrm{sd}(\mathcal{K})}\left[\left\{A_{1}, \ldots, A_{l}\right\} ;\left\{\nu\left(A_{1}\right), \ldots, \nu\left(A_{l}\right)\right\}\right]$ is complete bipartite.)

The definition of f : Let $A_{1} \uplus \emptyset, \ldots, A_{l} \uplus \emptyset, \emptyset \uplus B_{1}, \ldots, \emptyset \uplus B_{k}$ be the vertices of a simplex σ in $\mathrm{B}\left(G_{\mathrm{sd}(\mathcal{K})}\right) . G_{\mathrm{sd}(\mathcal{K})}[\mathcal{A} ; \mathcal{B}]$ is complete bipartite where $\mathcal{A}:=\left\{A_{1}, \ldots, A_{l}\right\}$ and $\mathcal{B}:=\left\{B_{1}, \ldots, B_{k}\right\}$. This means that $\mathcal{A} \subset \operatorname{star}_{\operatorname{sd}(\mathcal{K})} \nu\left(B_{j}\right)$ for any $j \in\{1, \ldots, k\}$ so $\mathcal{A} \subset \bigcap_{j=1}^{k} \operatorname{star}_{\operatorname{sd}(\mathcal{K})} \nu\left(B_{j}\right)$. From the proof of Theorem 7 we know that $\bigcap_{j=1}^{k} \operatorname{star}_{\text {sd }(\mathcal{K})} \nu\left(B_{j}\right)$ is a cone with apex X. Since $\mathcal{A}, \nu(\mathcal{B}) \subset$ $\operatorname{star}_{\operatorname{sd}(\mathcal{K})} X$ we have that $Y:=\bigcap_{i=1}^{l} \operatorname{star}_{\operatorname{sd}(\mathcal{K})} A_{i} \bigcap \bigcap_{j=1}^{k} \operatorname{star}_{\mathrm{sd}(\mathcal{K})} \nu\left(B_{j}\right) \neq \emptyset$. From the proof of Theorem [7] we know that Y is a cone. We denote its apex by $X_{\mathcal{A}}^{\mathcal{B}}$ which can be chosen to be $\bigcap_{i=1}^{l} A_{i} \bigcap \bigcap_{j=1}^{k} \nu\left(B_{j}\right)$ if it is not the emptyset. Now we are able to define f.

$$
f(\mathcal{A} \uplus \mathcal{B}):=\left\{\begin{array}{lc}
\bigcap_{i=1}^{l} A_{i} \bigcap \bigcap_{j=1}^{k} \nu\left(B_{j}\right) & \text { if exist } \\
X_{\mathcal{A}}^{\mathcal{B}} & \text { otherwise. }
\end{array}\right.
$$

By the construction it is \mathbb{Z}_{2} on the vertex level. (We can choose $X_{\mathcal{B}}^{\mathcal{A}}:=\nu\left(X_{\mathcal{A}}^{\mathcal{B}}\right)$.) It is simplicial. An edge with two vertices $\mathcal{A} \uplus \mathcal{B}$ and $\tilde{\mathcal{A}} \uplus \tilde{\mathcal{B}}(\tilde{\mathcal{A}} \subset \mathcal{A}, \tilde{\mathcal{B}} \subset \mathcal{B})$ is mapped to two vertices $S \subset R$ since $X_{\mathcal{A}}^{\mathcal{B}}$ is in the cone of $X_{\tilde{\mathcal{A}}}^{\tilde{\mathcal{A}}}$. Now a simplex is mapped to a chain (since every two vertex is comparable by inclusion).

Next we prove that $f \circ \operatorname{sd}(g): \operatorname{sd}(\operatorname{sd}(\mathcal{K})) \rightarrow \operatorname{sd}(\mathcal{K})$ is \mathbb{Z}_{2}-homotopic to $\mathrm{id}_{\mathcal{K}}$. We will use the \mathbb{Z}_{2}-carrier lemma. We have to construct 'only' a contractible \mathbb{Z}_{2}-carrier for $f \circ \operatorname{sd}(g)$ and id. The image of the vertex $v=\left\{A_{1}, \ldots, A_{l}\right\}, A_{1} \subset \cdots \subset A_{l}$ is $\operatorname{sd}(g)(v)=\left\{A_{i_{1}}, \ldots, A_{i_{s}}\right\} \uplus$ $\left\{\nu\left(A_{j_{1}}\right), \ldots, \nu\left(A_{j_{r}}\right)\right\}$. And now $f(\operatorname{sd}(g)(v))=A_{1} \cap \cdots \cap A_{l}=A_{1}$ in this case! The image of a simplex with vertex set $\left\{A_{i_{1}}\right\},\left\{A_{i_{1}}, A_{i_{2}}\right\}, \ldots,\left\{A_{i_{1}}, \ldots, A_{i_{l}}\right\}$ is a face of the simplex $A_{1} \subset$ $\cdots \subset A_{l}$. So for a simplex $\sigma \in \operatorname{sd}(\operatorname{sd}(\mathcal{K}))$ with its maximal vertex $\left\{A_{1}, \ldots, A_{l}\right\}$ we define $C(\sigma):=\left\{A_{1}, \ldots, A_{l}\right\} \in \operatorname{sd}(\mathcal{K})$. This C is a contractible \mathbb{Z}_{2}-carrier what we need. $f \circ \operatorname{sd}(g)$ and $\mathrm{id}_{\mathcal{K}}$ are \mathbb{Z}_{2}-homotopic.

Now we show that $g \circ f: \operatorname{sd}\left(\mathrm{B}\left(G_{\operatorname{sd}(\mathcal{K})}\right)\right) \rightarrow \mathrm{B}\left(G_{\mathrm{sd}(\mathcal{K})}\right)$ is \mathbb{Z}_{2}-homotopic to id. Again we construct a contractible \mathbb{Z}_{2}-carrier for $g \circ f$ and id. A vertex $\mathcal{A} \uplus \mathcal{B}$ is mapped to $X_{\mathcal{A}}^{\mathcal{B}}$ by f and to $X_{\mathcal{A}}^{\mathcal{B}} \uplus \emptyset$ or $\emptyset \uplus \nu\left(X_{\mathcal{A}}^{\mathcal{B}}\right)$ by $g \circ f$. Let $\mathcal{A}_{1} \uplus \mathcal{B}_{1}, \ldots, \mathcal{A}_{n} \uplus \mathcal{B}_{n}$ the vertex set of a simplex σ in $\operatorname{sd}\left(\mathrm{B}\left(G_{\mathrm{sd}(\mathcal{K})}\right)\right) .\left(\mathcal{A}_{1} \subset \cdots \subset \mathcal{A}_{n}, \mathcal{B}_{1} \subset \cdots \subset \mathcal{B}_{n}, \mathcal{A}_{n}:=\left\{A_{1}, \ldots, A_{l}\right\}\right.$ and $\left.\mathcal{B}_{n}:=\left\{B_{1}, \ldots, B_{k}\right\}\right)$.

We consider the subgraph H of $G_{\operatorname{sd}(\mathcal{K})}$ spanned by $A_{1}, \ldots, A_{l}, B_{1}, \ldots, B_{k}$, their \mathbb{Z}_{2}-image under ν and $X_{\mathcal{A}_{i}}^{\mathcal{B}_{i}}, \nu\left(X_{\mathcal{A}_{i}}^{\mathcal{B}_{i}}\right)$ for any $i \in\{1, \ldots, n\}$. We will use H (actually $\mathrm{B}(H)$) to define the desired carrier. First of all $\mathrm{B}(H)$ contains the simplex with vertex set $A_{1} \uplus \emptyset, \ldots, A_{l} \uplus \emptyset, \emptyset \uplus B_{1}, \ldots, \emptyset \uplus B_{k}$ which contains σ. Moreover we defined H in such a way that $\mathrm{B}(H)$ contains $(g \circ f)(\sigma)$ as well. Observe that H is bipartite. The neighbors of the vertices $X_{\mathcal{A}_{n}}^{\mathcal{B}_{n}}$ and $\nu\left(X_{\mathcal{A}_{n}}^{\mathcal{B}_{n}}\right)$ provides a partition of the vertex set of H. The neighborhood complex $\mathrm{N}(H)$ is the disjoint union of two simplices corresponding to this partition. So the box complex $\mathrm{B}(H) \subset \mathrm{B}\left(G_{\mathrm{sd}(\mathcal{K})}\right)$ contains two disjoint contractible sets (since it is homotopy equivalent to $\mathrm{N}(H)$). One of these sets covers σ and $(g \circ f)(\sigma)$, so we define our contractible \mathbb{Z}_{2}-carrier $C(\sigma)$ to be this 'half' of $\mathrm{B}(H)$.

Remark 14. For any free \mathbb{Z}_{2}-simplicial complex (\mathcal{K}, ν) there is a graph G such that its Hom complex BK03 $\operatorname{Hom}\left(K_{2}, G\right)$ is \mathbb{Z}_{2}-homotopy equivalent to the given complex since the box complex $\mathrm{B}(G)$ is \mathbb{Z}_{2}-homotopy equivalent to $\operatorname{Hom}\left(K_{2}, G\right)$. (The \mathbb{Z}_{2}-maps $f: \operatorname{sd}(\mathrm{B}(G)) \rightarrow$ $\operatorname{sd}\left(\operatorname{Hom}\left(K_{2}, G\right)\right)$ defined by

$$
A \uplus B \rightarrow \begin{cases}(A, \mathrm{CN}(A)) & \text { if } B=\emptyset, \\ (\mathrm{CN}(B), B) & \text { if } A=\emptyset, \\ (A, B) & \text { otherwise },\end{cases}
$$

and $g: \operatorname{sd}\left(\operatorname{Hom}\left(K_{2}, G\right)\right) \rightarrow \operatorname{sd}(\mathrm{B}(G))$ given by $(A, B) \rightarrow A \uplus B$ are \mathbb{Z}_{2}-homotopy equivalences. $f \circ g=\mathrm{id}$ and $g \circ f$ is carried by id.)

6 The suspension and the index

In this section we will construct a \mathbb{Z}_{2}-space X such that $\operatorname{ind}(X)=\operatorname{ind}(\operatorname{susp}(X))$. This example is based on an earlier construction by Matoušek, Živaljević and the author M03, page 100]. Such examples are probably well known for experts (see e.g. [CF60]), but we will give a simple and explicit example.

We proceed in the following way. Let $h: S^{3} \rightarrow S^{2}$ be the Hopf map ${ }^{5}$.
We choose a map $2 h: S^{3} \rightarrow S^{2}$ and we attach two 4-cells (the boundary of the 4-cell is S^{3}) to S^{2} via $2 h$ and $-2 h$. We denote this \mathbb{Z}_{2}-space by

$$
X_{2 h}:=S^{2} \cup \cup_{2 h}^{4} B_{-2 h}^{\cup} B^{4}
$$

The \mathbb{Z}_{2}-action on $S^{n} \subset X_{2 h}$ is the antipodality and interchanges the two 4-cells.
Now we compute the \mathbb{Z}_{2}-index of $X_{2 h}$ and $\operatorname{susp}\left(X_{2 h}\right)$. It is easy to see that $1 \leq \operatorname{ind}\left(X_{2 h}\right) \leq 3$. A \mathbb{Z}_{2}-map $S^{2} \subset X_{2 h} \xrightarrow{\mathbb{Z}_{2}} S^{1}$ would contradict to the Borsuk-Ulam Theorem. Let B^{i} be the unit ball in \mathbb{R}^{i} centered at the origin. We assume that $2 h: S^{3} \rightarrow S^{2}$ maps the unit sphere, the boundary of the unit ball, into the unit sphere. We define a map $b: B^{4} \rightarrow B^{3}$ such that it maps the origin of \mathbb{R}^{4} into the origin of \mathbb{R}^{3} and if $x \in B^{4},\|x\| \neq 0$ then $b(x):=2 h\left(\frac{x}{\|x\|}\right) \cdot\|x\|$. Now we are ready to construct a \mathbb{Z}_{2}-map $f: X_{2 h} \xrightarrow{\mathbb{Z}_{2}} S^{3}$. f maps $S^{2} \subset X_{2 h}$ into the equator of S^{3}. The remaining two 4-cells of $X_{2 h}$ are mapped to the upper and lower hemisphere of S^{3} by b and $-b$.

It is slightly more difficult to prove that the index is 3 . We will use the following:

[^4]Definition 15 (H01] Page 427, Section 4.B). Let $f: S^{2 n-1} \rightarrow S^{n},(n \geq 2)$, and let $C_{f}=$ $S^{n} \cup_{f} B^{2 n}$ (we attach a $2 n$-cell to S^{n} via f). The Hopf invariant of f (denoted by $\mathcal{H}(f)$) can be defined such that $\alpha \cup \alpha=\mathcal{H}(f) \cdot \beta$, where $\alpha \in H^{n}\left(C_{f}\right)=\mathbb{Z}$ and $\beta \in H^{2 n}\left(C_{f}\right)=\mathbb{Z}$ are the generators of the corresponding cohomology groups and \cup is the cup product.

We will use the following property of the Hopf invariant (see H01).

- $\mathcal{H}: \pi_{2 n-1}\left(S^{n}\right) \rightarrow \mathbb{Z}$ is a homomorphism. For $n=2$ it is an isomorphism.

Theorem 16 ([HW60] Theorem 9.5.9). Let $f: S^{2 n-1} \rightarrow S^{n}$ and $g: S^{n} \rightarrow S^{n}$ be continuous maps. Then: $\mathcal{H}(g \circ f)=\operatorname{deg}(g)^{2} \cdot \mathcal{H}(f)$.

Theorem 17 ([|H01] Proposition 2B.6). Every $\mathbb{Z}_{2}-\operatorname{map} f: S^{n} \xrightarrow{\mathbb{Z}_{2}} S^{n}$ has odd degree.
Lemma 18. $\operatorname{ind}\left(X_{2 h}\right)=3$.
Proof. By contradiction assume that $\operatorname{ind}\left(X_{2 h}\right) \leq 2$ which means that there is a \mathbb{Z}_{2}-map $f: X_{2 h} \xrightarrow{\mathbb{Z}_{2}} S^{2}$. We restrict this map to $S^{2} \subset X_{2 h}$ obtaining $g: S^{2} \rightarrow S^{2}$. We claim that $g \circ 2 h: S^{3} \rightarrow S^{2}$ is null-homotopic. In $X_{2 h}$ we attached a 4-cell to S^{2} via $2 h$. This gives us a map $i: B^{4} \rightarrow X_{2 h}$ and $f \circ i: B^{4} \rightarrow S^{2}$. The restriction of $f \circ i$ into $S^{3}=\partial B^{4}$ is $g \circ 2 h$. So the map $g \circ 2 h$ extends into B^{4} which proves that $g \circ 2 h$ is null-homotopic.

On the other hand Theorem 17 tells us that $\operatorname{deg}(g)$ is odd. (We need now only that it is non-zero.) Using Theorem 16 we have that $\mathcal{H}(g \circ 2 h)=\operatorname{deg}(g)^{2} \cdot \mathcal{H}(2 h)$. Since $\operatorname{deg}(g) \neq 0$ and $\mathcal{H}(2 h)=2$ we have that $\mathcal{H}(g \circ 2 h) \neq 0$. This means that $g \circ 2 h$ is not null-homotopic, contradiction.
Lemma 19. $\operatorname{ind}\left(\operatorname{susp}\left(X_{2 h}\right)\right)=3$.
Proof. $\operatorname{susp}\left(X_{2 h}\right)$ can be obtained similarly as $X_{2 h}$: we attach two 5 -cells (the boundary of the 5 -cell is S^{4}) to S^{3} via $\operatorname{susp}(2 h)$ and $-\operatorname{susp}(2 h)$. The Freudenthal Theorem ([H01] Corollary 4.24.) tells us that susp: $\pi_{3}\left(S^{2}\right) \rightarrow \pi_{4}\left(S^{3}\right)$, which is actually $\mathbb{Z} \rightarrow \mathbb{Z}_{2}$, is surjective. So susp(2h) is null-homotopic which means that $\operatorname{susp}\left(X_{2 h}\right)$ is \mathbb{Z}_{2}-homotopy equivalent to S^{3} so its index is 3.

The generalization of this construction provides infinitely many examples of $\operatorname{ind}(X)=$ $\operatorname{ind}(\operatorname{susp}(X))$.

Using a simplicial model for $2 h: S_{12}^{3} \rightarrow S_{4}^{2}$ MS00, M02 one can obtain a simplicial complex model for $X_{2 h}$ as well.

7 The topological lower bound can be arbitrarily bad

It is well known (see [W83]) that the topological lower bound for the chromatic number can be arbitrarily bad. But now we are able to give purely topological examples.

Definition 20. For a graph G let G^{+}be the graph obtained from G by adding an extra vertex w and connecting it by edges to all the vertices of G, i.e., $V\left(G^{+}\right)=V(G) \cup\{w\}$ and $E\left(G^{+}\right)=$ $E(G) \cup\{(v, w): v \in V(G)\}$.

Lemma 21. $\mathrm{B}\left(G^{+}\right)$is \mathbb{Z}_{2}-homotopy equivalent to $\operatorname{susp}(\mathrm{B}(G))$.
Proof. $\operatorname{susp}(\mathrm{B}(G))$ is a subcomplex of $\mathrm{B}\left(G^{+}\right)$. The difference is only two big simplices (and some of their faces) $V(G) \uplus w$ and $w \uplus V(G)$. We will get rid of the extra simplices one by one using deformation retraction. We will work with one shore, on the other shore we have to do the \mathbb{Z}_{2}-pair of each step.

We will define (by induction) sequences of simplicial complexes such that

$$
\mathrm{B}\left(G^{+}\right)=: X_{0} \supset X_{1} \supset \cdots \supset X_{N}=\operatorname{susp}(\mathrm{B}(G))
$$

and X_{i+1} is a \mathbb{Z}_{2}-deformation retraction of X_{i}.
Let assume that we already defined X_{n}. We choose $A \subseteq V(G)$ such that $A \uplus w \in X_{n}$, and there is no $A \subset B \subseteq V(G)$ such that $B \uplus w \in X_{n}$. We define X_{n+1} :

$$
X_{n+1}:=X_{n} \backslash\{A \uplus w, w \uplus A, A \uplus \emptyset, \emptyset \uplus A\}
$$

By the definition of X_{n+1} it is clearly a \mathbb{Z}_{2}-deformation retract of X_{n} since $A \uplus \emptyset$ is on the boundary of X_{n}. (Map the barycenter of $A \uplus \emptyset$ to $\emptyset \uplus w$.)

Now we are ready to construct a graph such that $\chi(G) \geq \operatorname{ind}(\mathrm{B}(G))+2+k$. First we need a \mathbb{Z}_{2}-space (actually a simplicial complex) X such $\operatorname{ind}(X)=\operatorname{ind}\left(\operatorname{susp}^{k}(X)\right)$. Now let $G:=G_{s d(X)}$. For G we have that $\chi(G) \geq \operatorname{ind}(\mathrm{B}(G))+2=\operatorname{ind}(X)+2$. We claim that G^{+k} is good for us. Clearly $\chi(G)+k=\chi\left(G^{+k}\right)$ and $\operatorname{ind}\left(\mathrm{B}\left(G^{+k}\right)\right)=\operatorname{ind}\left(\operatorname{susp}^{k}(\mathrm{~B}(G))\right)=\operatorname{ind}\left(\operatorname{susp}^{k}(X)\right)=\operatorname{ind}(X)$. So $\chi\left(G^{+k}\right) \geq \operatorname{ind}\left(\mathrm{B}\left(G^{+k}\right)\right)+2+k$.

8 Acknowledgments

The author would like to thank Jiří Matoušek and Günter M. Ziegler for bringing the problems studied in this paper to my attention and for helpful discussions.

References

[BK03] E. Babson, D. N. Kozlov: Complexes of graph homomorphisms, preprint, 2003 (arXiv:math.CO/0310056)
[B95] A. Björner: Topological methods. In R. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics Vol. II, Chapter 34, pp. 1819-1872. North-Holland, Amsterdam, 1995.
[BdL03] A. Björner, M. de Longueville: Neighborhood complexes of stable Kneser graphs, Combinatorica 23 (2003), no. 1, 23-34.
[B67] G. E. Bredon: Equivariant Cohomology Theories, 34. Springer-Verlag, Berlin etc., 1967
[CF60] P. E. Conner, E. E. Floyd: Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 1960, 416-441.
[H01] A. Hatcher: Algebraic Topology, Cambridge University Press, 2001/02, electronic version available at http://www.math.cornell.edu/~hatcher/AT/ATpage.html
[HW60] P. J. Hilton, S. Wylie: Homology Theory: An Introduction to Algebraic Topology, Cambridge University Press, 1960.
[K55] M. Kneser: Aufgabe 360, Jahresbericht der DMV, 58 (1955), pp. 2. Abteilung, S. 27.
[L78] L. Lovász: Kneser's conjecture, chromatic number and homotopy, J. Combinatorial Theory, Ser. A, 25 (1978), pp. 319-324.
[LW69] A. T. Lundell, S. Weingram: Topology of CW Complexes, Van Nostrand, New York, 1969.
[M02] K. V. Madahar: Simplicial maps from the 3-sphere to the 2-sphere, Adv. Geom. 2 (2002), no. 2, 99-106.
[MS00] K. V. Madahar, K. S. Sarkaria: A minimal triangulation of the Hopf map and its application, Geom. Dedicata 82 (2000), no. 1-3, 105-114.
[M03] J. Matoušek: Using the Borsuk-Ulam Theorem; Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag Heidelberg, 2003.
[MZ04] J. Matoušek, G. M. Ziegler: Topological lower bounds for the chromatic number: A hierarchy, preprint, 2004, to appear in Jahresbericht der DMV (arXiv:math.CO/0208072)
[S90] K. S. Sarkaria: A generalized Kneser conjecture, J. Comb. Theory, Ser. B, 49, pp. 236-240, 1990.
[W83] J. W. Walker: From graphs to ortholattices and equivariant maps, J. Comb. Theory, Ser. B, 35, pp. 171-192, 1983.
[Z04] R. T. Živaljević: WI-posets, graph complexes and \mathbb{Z}_{2}-equivalences, preprint, 2004, (arXiv:math.CO/0405419)

[^0]: * Supported by the joint Berlin/Zürich graduate program Combinatorics, Geometry, and Computation, financed by ETH Zürich and the German Science Foundation (DFG).

[^1]: ${ }^{1}$ This deformation retraction of the simplex $\left\{v_{1}=a_{i_{1}} \uplus \emptyset, \ldots, v_{k}=a_{i_{k}} \uplus \emptyset, w_{1}=\emptyset \uplus b_{j_{1}}, \ldots, w_{l-1}=\right.$ $\left.\emptyset \uplus b_{j_{l-1}}, w_{l}:=x\right\}$ can be explicitly given by:

 $$
 h_{t}\left(\sum t_{i} v_{i}+\sum s_{j} w_{j}\right)=\sum\left(\frac{l \cdot t}{k}+t_{i}\right) v_{i}+\sum\left(s_{j}-t\right) w_{j}
 $$

 where $\sum t_{i}+\sum s_{j}=1$. It starts with $h_{0}=i d$, and ends (for a particular point), just when the first coefficient of w_{j} become zero. This retraction 'kills' those simplices, which has as a face the simplex $\left\{w_{1}, \ldots, w_{l}\right\}$, and retracts the 'interior' points to the remaining simplices.

[^2]: ${ }^{2}$ in the 1 -skeleton of \mathcal{K}
 ${ }^{3}$ The star of $\sigma \in \mathcal{K}: \operatorname{star}_{\mathcal{K}}(\sigma)=\{\tau \in \mathcal{K}: \tau \cup \sigma \in \mathcal{K}\}$

[^3]: ${ }^{4} B \supset \underset{A_{i} \subset B}{\cup} A_{i}$ would be good as well, but it can be the emptyset.

[^4]: ${ }^{5}$ Considering S^{3} as the unit sphere in \mathbb{C}^{2} and $S^{2}=\mathbb{C P} \mathbb{P}^{1}$, the Hopf map $h: S^{3} \rightarrow S^{2}$ defined by $\left(z_{1}, z_{2}\right) \rightarrow$ $\left[z_{1}, z_{2}\right] \in \mathbb{C P}^{1}$ [H01, Example 4.45]. h is a generator of $\pi_{3}\left(S^{2}\right)=\mathbb{Z}$.

