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Abstract

We prove that for any partition of the plane into a closed set C and

an open set O and for any configuration T of three points, there is a

translated and rotated copy of T contained in C or in O.

Apart from that, we consider partitions of the plane into two sets whose

common boundary is a union of piecewise linear curves. We show that for

any such partition and any configuration T which is a vertex set of a non-

equilateral triangle there is a copy of T contained in the interior of one

of the two partition classes. Furthermore, we give the characterization of

these “polygonal” partitions that avoid copies of a given equilateral triple.

These results support a conjecture of Erdős, Graham, Montgomery,

Rothschild, Spencer and Straus, which states that every two-coloring of

the plane contains a monochromatic copy of any nonequilateral triple of

points; on the other hand, we disprove a stronger conjecture by the same

authors, by providing non-trivial examples of two-colorings that avoid a

given equilateral triple.

1 Introduction

Euclidean Ramsey theory addresses the problems of the following kind: assume
that a finite configuration X of points is given; for what values of c and d is it
true that every coloring of the d-dimensional Euclidean space by c colors con-
tains a monochromatic congruent copy of X? The first systematic treatise on
this theory appears in 1973 in a series of papers [2, 3, 4] by Erdős, Graham,
Montgomery, Rothschild, Spencer and Straus. Since that time, many strong
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results have been obtained in this field, often related to high-dimensional con-
figurations (see, e.g., [5, 7, 8, 9] or the survey [6]); however, there are basic
‘low-dimensional’ problems that remain open.

In this paper, we consider the special case when d = 2, c = 2 and |X | = 3; in
other words, we study the configurations of three points in the Euclidean plane
colored by two colors. We use the term triangle to refer to any set of three points,
including collinear triples of points, which we call degenerate triangles. An
(a, b, c)-triangle is a triangle whose edges, in anti-clockwise order, have respective
lengths a, b and c. A (1, 1, 1)-triangle is also called a unit triangle.

We say that a set of points X ⊆ R
2 is a copy of a set of points Y ⊆ R

2, if X
can be obtained from Y by translations and rotations in the plane. A coloring
is a partition of R2 into two sets B and W. The elements of B and W are
called black points and white points, respectively. We use the term boundary
of χ to refer to the common boundary of the sets B and W. Given a coloring
χ = (B,W), we say that a set of points X is monochromatic, if X ⊆ B or
X ⊆ W.

We say that a coloring χ contains a triangle T , if there exists a monochro-
matic set T ′ which is a copy of T ; otherwise, we say that χ avoids T .

A coloring that avoids the unit triangle is easy to obtain: consider a color-

ing χ∗ that partitions the plane into alternating half-open strips of width
√
3

2
;

formally, a point (x, y) is black if an only if n
√
3 < y ≤

(

n+ 1

2

)√
3 for some

integer n. It can be easily checked that χ∗ avoids the unit triangle. We can even
change the color of some of the points on the boundaries of the strips without
creating any monochromatic unit triangle. Erdős et al. [4, Conjecture 1] have
conjectured that this is essentially the only example of colorings avoiding a given
triangle:

Conjecture 1.1 (Erdős et al. [4]). For every triangle T and every coloring χ, if
χ avoids T , then T is an equilateral (l, l, l)-triangle and χ is equal to an l-times
scaled copy of the coloring χ∗ defined above, up to possible modifications of the
colors of the points on the boundary of the strips.

In Section 3 of this paper, we present a counterexample to this conjecture,
and define a general class of colorings (which includes χ∗ as a special case) that
avoid the unit triangle.

On the other hand, the following conjecture by Erdős et al. [4, Conjecture 3]
remains open:

Conjecture 1.2 (Erdős et al. [4]). Every coloring χ contains every nonequilat-
eral triangle T .

In the past, it has been shown that Conjecture 1.2 holds for special types
of triangles T (see, e.g., [4, 6, 10]). Our approach is different: we prove that
the conjecture is valid for a restricted class of colorings χ and arbitrary T . In
Section 2, we show that every coloring that partitions R2 into a closed set and
an open set contains every triangle T . Then, in Section 3, we consider polygonal
colorings, whose boundary is a union of piecewise linear curves (see page 6 for
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Figure 1: The illustration of the proof of Lemma 1.3

the precise definition). We show that Conjecture 1.2 holds for the polygonal col-
orings, but there are polygonal counterexamples to the stronger Conjecture 1.1.
In fact, we are able to characterize all these polygonal counterexamples.

The following lemma from [4] offers a useful insight into the topic of mono-
chromatic triangles in two-colored plane:

Lemma 1.3. Let χ be a coloring of the plane. The following holds:

(i) If χ contains an (a, a, a)-triangle for some a > 0, then χ contains an
(a, b, c)-triangle, for every b, c > 0 such that a, b, c satisfy the (possibly
degenerate) triangle inequality.

(ii) If χ contains an (a, b, c)-triangle, then χ contains an (x, x, x)-triangle for
some x ∈ {a, b, c}.

Proof. The essence of the proof is the configuration in Figure 1. The configu-
ration consists of two (a, a, a)-triangles ABC and A′B′C′, two (b, b, b)-triangles
ADB′ and A′D′B and two (c, c, c)-triangles BDC′ and B′D′C. To prove the
first part of the lemma, assume, for a given χ, that there is a monochromatic
(a, a, a)-triangle ABC, and choose arbitrary b and c satisfying triangle inequal-
ity with a. Assume that A, B and C are all black. Furthermore, assume for
contradiction that no (a, b, c)-triangle is monochromatic. Considering the con-
figuration in Fig. 1, we deduce that the points B′, D and D′ are all white,
otherwise one of the (a, b, c)-triangles BAD, CAB′ and CBD′ would be mono-
chromatic. Then, A′ is black, due to B′A′D′, and C′ is white, due to C′A′B.
It follows that C′B′D is monochromatic, a contradiction.

The second part is proved by an analogous argument: assume that BAD

is an all-white monochromatic triangle and that the statement does not hold.
Then B′, C and C′ are all black, due to ADB′, ABC and BDC′. A′ is white,
due to A′B′C′; D′ is black, due to A′D′B, and B′D′C is monochromatic.

3



This concludes the proof.

From Lemma 1.3, we obtain directly the following facts:

Corollary 1.4. For every coloring χ the following holds:

(i) χ contains every triangle if and only if χ contains every equilateral triangle.

(ii) χ contains every non-equilateral triangle if and only if there is an a0 > 0
such that χ contains the equilateral (a, a, a)-triangle for all values of a > 0
different from a0.

(iii) χ contains an (a, b, c)-triangle if and only if χ contains a (b, a, c)-triangle.

2 Coloring by closed and open sets

The aim of this section is to prove the following result:

Theorem 2.1. Let χ = (B,W) be a coloring such that B is closed and W is
open. Then χ contains every triangle T .

By Corollary 1.4, it suffices to prove Theorem 2.1 for the case when T is
an arbitrary equilateral triangle. Moreover, since scaling does not affect the
topological properties of B and W, we only need to consider the case when T is
the unit triangle. Before stating the proof, we introduce a definition and prove
an auxiliary result.

Definition 2.2. Let ε > 0. An (a, b, c)-triangle whose edge-lengths satisfy
1− ε ≤ a, b, c ≤ 1 + ε is called an ε-almost unit triangle.

Suppose that an orthogonal coordinate system is given in the plane. For a >

0, let Q(a) be the closed square with vertices (a, a), (−a, a), (−a,−a), (a,−a).

Proposition 2.3. Let Q(3) = B ∪ W be a decomposition of the square Q(3)
into two disjoint sets such that there is no monochromatic unit triangle in Q(3).
Then for every ε > 0 both B and W contain an ε-almost unit triangle.

Proof. Let ε be a given positive number. Assume that we are given a partition
B∪W = Q(3) such that Q(3) does not contain any monochromatic unit triangle.
For contradiction, assume that one of the classes, wlog the class B, does not
contain any ε-almost unit triangle.

There is a white point S and a black point R in Q(1) such that |R− S| < ε

(otherwise the whole square Q(1) would be monochromatic). Let C be the unit
circle centered at S. For every α ∈ R, let K(α) denote the point of C with
coordinates (xS + cos(α), yS + sin(α)), where (xS , yS) are the coordinates of S.

Note that the distance between R and any point on C is always in the interval
(1−ε, 1+ε); thus, for every α, the points K(α) andK(α+ π

3
) must have different

colors, otherwise they would form a monochromatic white unit triangle with S

or a monochromatic black ε-almost unit triangle with R.
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Figure 2: Illustration of the proof of Proposition 2.3

Let K(α0) be a white point, then K(α0 + π
3
) is black (see Fig. 2). Note

that for every α ∈ (α0 − ε, α0 + ε) the distance between K(α) and K(α0 +
π
3
)

is in the interval (1 − ε, 1 + ε), so the whole arc {K(α);α ∈ (α0 − ε, α0 + ε)}
is white. Let A = {K(α);α ∈ (β1, β2)} be the maximal open white arc of C
containing the point K(α0). Then the whole arc {K(α);α ∈ (β1+

π
3
, β2+

π
3
)} is

black. By definition of A, there exists β ∈ (β2, β2 +
ε
2
) such that K(β) is black.

There also exists γ ∈ (β2 +
π
3
− ε

2
, β2 +

π
3
) such that K(γ) is black. But then

(γ − β) ∈ (π
3
− ε, π

3
), so the distance between the black points K(β) and K(γ)

is in the interval (1 − ε, 1), hence the three points R,K(β),K(γ) form a black
ε-almost unit triangle—a contradiction.

We are now ready to prove the main result of this section.

Proof of Theorem 2.1. Let χ = (B,W) be a coloring, with B closed. By Corol-
lary 1.4, it is sufficient to show that χ contains the unit triangle. Assume,
for contradiction, that this is not the case. Let B0 = Q(3) ∩ B and let
W0 = Q(3) ∩ W. Clearly, neither B0 nor W0 contain the unit triangle, so
by Proposition 2.3, both these sets contain ε-almost unit triangles for every
ε > 0. In particular, the set B0 contains, for every n ∈ N, a 1

n
-almost unit

triangle XnYnZn.
SinceB0 is a compact set, the setB3

0 = B0×B0×B0 is compact as well. The
sequence {(Xn, Yn, Zn);n ∈ N} is an infinite sequence of points in B

3
0, so there

exists a convergent subsequence {(Xnk
, Ynk

, Znk
); k ∈ N}. Let (X,Y, Z) ∈ B

3
0

be its limit. Then X,Y, Z ∈ B are limits of the sequences {Xnk
; k ∈ N},

{Ynk
; k ∈ N}, and {Znk

; k ∈ N}, respectively. The Euclidean distance is a
continuous function of two variables, so |X − Y | = limk→∞ |Xnk

− Ynk
| = 1,

similarly |Y − Z| = |Z − X | = 1. Thus, {X,Y, Z} is a black unit triangle in
Q(3), which is a contradiction.
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3 Polygonal colorings

Throughout this section, C(A) denotes the unit circle with center A, and D(A)
denotes the closed unit disc with center A.

In this section, we consider polygonal colorings of the plane, defined as fol-
lows:

Definition 3.1. A coloring χ = (B,W) is said to be polygonal, if it satisfies
the following conditions (see an example in Fig. 3):

Figure 3: Example of a polygonal coloring

• Each of the two sets B and W is contained in the closure of its interior.

• The boundary of χ (denoted by ∆) is a union of straight line segments
(called boundary segments). Two boundary segments may only intersect
at their endpoints. We allow these segments to be unbounded, i.e., a
boundary segment may in fact be a half-line or a line. An endpoint of
a boundary segment is called a boundary vertex. We may assume that
if exactly two boundary segments meet at a boundary vertex, then the
two segments do not form a straight angle, because otherwise they could
be replaced with a single boundary segment. Note that with this condi-
tion, the boundary segments and boundary vertices of χ are determined
uniquely.

• Every bounded region of the plane is intersected by only finitely many
boundary segments (which implies that every bounded region contains
only finitely many boundary vertices).

Note that these conditions imply that a sufficiently small disc around an
interior point of a boundary segment is separated by the boundary segment
into two halves, one of which is colored black and the other white. Note also
that we make no assumptions about the colors of the points on the boundary ∆.

We say that a coloring χ′ is a twin of a coloring χ if the two colorings have
the same boundary and they assign the same colors to the points outside this
boundary.
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The main aim of this section is to prove that every polygonal coloring con-
tains every nonequilateral triangle, and to characterize the polygonal colorings
that avoid an equilateral triangle. To achieve this, we need the following defi-
nition:

Definition 3.2. A coloring χ = (B,W) is called zebra-like if it has the following
form: the boundary of χ is a disjoint union of infinitely many continuous curves
Li; i ∈ Z with the following properties (see Fig. 4):

(a) There is a unit vector ~x such that for every i ∈ Z, Li + ~x = Li. In other
words, the Li are invariant upon a translation of length 1.

(b) For every i ∈ Z, the curve Li+1 is a translated copy of Li. Moreover, there
is a unit vector ~y orthogonal to ~x, so that

Li+1 = Li +
1

2
~x+

√
3

2
~y.

In other words, for an arbitrary boundary point X ∈ Li, the points Y =

X + ~x and Z = X + 1

2
~x +

√
3

2
~y belong to the boundary as well. Note that

XY Z is a unit triangle, and that Y ∈ Li and Z ∈ Li+1.

(c) For every i ∈ Z, the interior of the region delimited by Li ∪Li+1 is colored
with a different color than the interior of the region delimited by Li−1 ∪Li.

(d) For two points A and B, let θAB denote the size of the acute angle formed
by the segment AB and the vector ~x. For every i ∈ Z and every two
points A ∈ Li and B ∈ Li+1, the following holds: ‖AB‖ > 1 if and only if
θAB < π

3
.

This last condition can also be stated in the following equivalent form: Let

A ∈ Li be an arbitrary point on the boundary. Let B1 = A − 1

2
~x +

√
3

2
~y

and B2 = A + 1

2
~x +

√
3

2
~y (the two points B1, B2 belong to Li+1 by the

previous conditions), and let A′ = A +
√
3~y (so that A′ ∈ Li+2). Under

these assumptions, the portion of Li+1 between B1 and B2 is contained
inside of the closed lens-shaped region D(A) ∩D(A′) and no other point of
Li+1 is inside this region.

We stress that a zebra-like coloring is not necessarily polygonal.

3.1 The result

The following theorem is the main result of this section:

Theorem 3.3. For a polygonal coloring χ, the following conditions are equiv-
alent:

(C1) The coloring χ is a zebra-like polygonal coloring.

(C2) The coloring χ has a twin χ′ which avoids the unit triangle.

7
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Figure 4: The boundary of a zebra-like coloring

(C3) For every monochromatic unit triangle ABC, at least one of the three
points A,B and C belongs to the boundary of χ.

Clearly, the condition (C2) of Theorem 3.3 implies the condition (C3), so we
only need to prove that (C1) implies (C2) and that (C3) implies (C1).

The proof is organized as follows: we first prove that (C3)⇒(C1). This part
of the proof proceeds in several steps: first of all, we use the condition (C3) to
describe the set ∆(χ) ∩ C(A), where A is a boundary point. Then we apply a
continuity argument to extend this information into a global description of χ.

Next, in Theorem 3.19, we prove that every (not necessarily polygonal)
zebra-like coloring has a twin that avoids the unit triangle, which shows that
(C1)⇒(C2), completing the proof of Theorem 3.3.

In the last part of this section, we show that Theorem 3.3 implies that every
polygonal coloring contains a monochromatic copy T of a given non-equilateral
triangle, with the vertices of T avoiding the boundary.

3.2 The proof

We begin with an auxiliary lemma:

Lemma 3.4. Let q1, q2, q3 be (not necessarily distinct) lines in the plane, not
all three parallel. Then exactly one of the following possibilities holds:

1. The lines q1, q2, q3 intersect at a common point and every two of them
form an angle π

3
.

2. There exist only finitely many unit triangles ABC such that A ∈ q1, B ∈ q2
and C ∈ q3.

Proof. It can be easily checked that the two conditions cannot hold simultane-
ously: in fact, if the three lines satisfy the first condition, then for every point
A ∈ q1 whose distance from the other two lines is at most 1 there are points
B ∈ q2 and C ∈ q3 such that ABC is a unit triangle. We now show that at
least one of the two conditions holds.

Since the three lines are not all parallel, we may assume that neither q1 nor
q2 is parallel to q3. Consider a Cartesian coordinate system whose y-axis is

8



q3. There exist real numbers a1, a2, b1, b2 such that for i ∈ {1, 2} we have qi =
{(x, y) ∈ R

2; y = aix+ bi}. Let ABC be a unit triangle with A = (x1, y1) ∈ q1,
B = (x2, y2) ∈ q2 and C ∈ q3, and assume that A,B,C are in the counter-
clockwise order (the other case is symmetric). Then C = (x1+x2

2
, y1+y2

2
) +

√
3

2
(y1−y2, x2−x1). The point C lies on q3, which implies the following equality:

x1 + x2

2
+

√
3(y1 − y2)

2
= 0 (1)

Points A and B are at the distance 1, from which we get

(x1 − x2)
2 + (y1 − y2)

2 = 1 (2)

By combining (1) and (2) and eliminating y1, y2 we get

(

x1 + x2

2

)2

=
3

4

(

1− (x1 − x2)
2
)

,

which yields

x2
1 + x2

2 − x1x2 =
3

4
. (3)

Substituting y1 = a1x1 + b1 and y2 = a2x2 + b2 into (1) gives

1 +
√
3a1

2
x1 +

1−
√
3a2

2
x2 +

√
3

2
(b1 − b2) = 0 (4)

If both 1+
√
3a1

2
and 1−

√
3a2

2
are equal to zero, then the equality (4) degenerates

and we get that a1 = − 1√
3
, a2 = 1√

3
and b1 = b2, so the first case of the

statement holds.
In the other case, suppose (wlog) that 1+

√
3a1

2
6= 0. From (4) we can obtain

that x1 = cx2 + d for some reals c, d. By substituting it into (3) we get a
quadratic equation for the variable x2, where the leading coefficient is equal to
c2 − c+ 1 = (c− 1

2
)2 + 3

4
> 0, so there exist at most two possible values for x2,

thus at most two possible locations of B and at most four possible unit triangles
ABC.

Throughout the rest of this section, we assume that χ is a fixed polygonal
coloring satisfying the condition (C3) of Theorem 3.3. Every boundary segment
can be regarded as a common edge of two (possibly unbounded) polygonal re-
gions, one of which is white and the other black. We choose an orientation of the
boundary segments in the following way: a boundary segment with endpoints
A and B is directed from A to B if the white region adjacent to this segment
is on the left hand side from the point of view of an observer walking from A

to B.

Definition 3.5. A boundary point A ∈ ∆ is called feasible, if A is not a
boundary vertex, and the unit circle C(A) does not contain any boundary vertex.
An infeasible point is a point on the boundary that is not feasible.

9



We may easily see that every bounded subset of the plane contains only
finitely many infeasible points.

The first step in the proof of the main result is the description of the set of
all the boundary points at the unit distance from a given feasible point A.

Let A be a fixed feasible point, let s be the boundary segment containing
A. The set ∆ ∩ C(A) is finite, by the definition of polygonal coloring; on the
other hand, this set is nonempty, otherwise we could find two points B,C of
C(A) such that ABC is a unit triangle, with B and C in the interior of the
same color class. By shifting the triangle ABC slightly in a suitable direction,
we would obtain a monochromatic unit triangle avoiding the boundary, which
is forbidden by the condition (C3).

In the following arguments, we will use a Cartesian coordinate system whose
origin is the point A, and whose x-axis is parallel to s and has the same orienta-
tion. We shall assume that the x-axis and the segment s is directed left-to-right
and the y-axis is directed bottom-to-top. Assuming this coordinate system, we
let P (α,A) denote the point of C(A) with coordinates (cos(α), sin(α)). If no
ambiguity arises, we write P (α) instead of P (α,A).

Lemma 3.6. Let B = P (α) be an arbitrary element of ∆ ∩ C(A), let t be the
boundary segment containing B (the segment t is determined uniquely, because
A is a feasible point). Then the segments s and t are parallel.

Proof. For contradiction, assume that s and t are not parallel, let σ ∈ (0, π) be
the angular slope of t with respect to the coordinate system established above,
i.e., σ is the angle formed by the lines containing s and t.

First of all, note that the point C = P (α + π
3
) lies on the boundary ∆;

otherwise, a sufficiently small translation of the unit triangle ABC in a suit-
able direction would yield a counterexample to condition (C3) (here we use the
assumption that s and t are not parallel). Let u be the boundary segment
containing C, and let τ be the angular slope of u.

Secondly, we may deduce that {σ, τ} = {π
3
, 2π

3
}, and the three lines contain-

ing s, t and u all meet at one point. If this were not the case, then by Lemma 3.4
there would be only finitely many unit triangles with vertices belonging to the
three segments s, t and u. Thus, we could find a unit triangle A′B′C′ with
A′ ∈ s, B′ ∈ t and C′ 6∈ ∆, which is impossible, by the argument presented in
the previous paragraph. By repeating this argument with {α+ iπ

3
; i = 1, . . . , 5}

in place of α, we obtain the following conclusions:

• The six points {P (α+ iπ
3
); i = 1, . . . , 6} all belong to the boundary ∆.

• The lines passing through the boundary segments containing these six
points all meet at one point.

• The boundary segments containing P (α), P (α + 2π
3
) and P (α + 4π

3
) all

have the same slope.

This is a contradiction, because three parallel segments intersecting a circle in
three distinct points cannot belong to a single line, and two parallel lines do not
intersect.

10



Lemma 3.7. P (π
2
) 6∈ ∆, P (−π

2
) 6∈ ∆.

Proof. For contradiction, assume that B = P (π
2
) ∈ ∆ (the case of P (−π

2
) is

symmetric), let t denote the boundary segment containing B. Let C = P (π
6
).

We distinguish the following cases:

• The segment t has the same orientation as the segment s. In this case, by
applying a rotation around the center C and then, if C ∈ ∆, a suitable
translation, we may transform the triple ABC into a monochromatic triple
with vertices avoiding the boundary, contradicting (C3).

• The segments s and t have opposite orientations (i.e., t is oriented right-
to-left, which means that there is a white region touching t from below);
furthermore, either C ∈ ∆ or C is in the interior of the white color. In
such case, we may rotate the configuration ABC around the center of the
segment AB to obtain a unit triangle in the interior of the white color.

• The segments s and t have opposite orientations and the point C is in the
interior of the black color. Let θ be the maximal angle with the properties
that for every α ∈ (π

2
, π
2
+ θ) the point P (α) lies in the interior of the

white color and for every α ∈ (π
6
, π
6
+ θ) the point P (α) lies in the interior

of the black color. The value of θ is well defined, and by the previous
assumptions, 0 < θ < π

3
. Let B′ = P (π

2
+ θ) and C′ = P (π

6
+ θ). By the

maximality of θ, at least one of the two points lies on the boundary, and
the boundary segment passing through this point is directed left-to-right
(see Fig. 5). As in the first case of this proof, we may rotate and translate
the configuration AB′C′ to obtain a monochromatic unit triangle.

In all cases we get a contradiction.

A

B

C

C(A)

C ′

B′

θ

θ

Figure 5: Illustration of the proof of Lemma 3.7

The previous two lemmas imply that if A is a feasible point, then no bound-
ary segment is tangent to C(A).

11



As

C(A)
B = P (α)

C = P (α + π

3
)

t

Figure 6: Illustration of the proof of Lemma 3.9

Lemma 3.8. Let B = P (α) ∈ ∆ be a point on the boundary, let t be the
boundary segment containing this point. If α ∈ (π

6
, 5π

6
) or α ∈ (7π

6
, 11π

6
), then s

and t have opposite orientation. If |α| < π
6
or |α − π| < π

6
, then s and t have

the same orientation.

Proof. We first consider the case α ∈ (π
6
, 5π

6
) or α ∈ (7π

6
, 11π

6
). The proof is

analogous to the proof of the first part of Lemma 3.7: if t had the same orien-
tation as s, we could take C = P (π

3
+ α) and then by rotating and translating

the unit triangle ABC we would get a contradiction. Note that the condition
α ∈ (π

6
, 5π

6
)∪ (7π

6
, 11π

6
) guarantees that C is either the leftmost or the rightmost

point of the triangle ABC, so whenever we start rotating the triangle ABC

around C, the two points A,B move into the interior of the same color.
The case |α| < π

6
or |α− π| < π

6
can be proven analogously.

Lemma 3.9. P (α) ∈ ∆ if and only if P (α+ π
3
) ∈ ∆.

Proof. It suffices to prove one implication, the other case is symmetric. Assume
that for some α we have P (α) ∈ ∆ and P (π

3
+ α) 6∈ ∆. Let B = P (α),

C = P (π
3
+ α), and let t be the boundary segment containing B. We consider

the following cases:

• If s and t have opposite orientation, we may rotate ABC around the
center of AB to obtain a monochromatic unit triangle in the interior of
one color (see Fig. 6). Here we use the fact that α 6= π

2
, which follows

from Lemma 3.7.

• If s and t have the same orientation, a small translation in a suitable
direction transforms ABC into a monochromatic unit triangle.

In both cases we get a contradiction.

Lemma 3.10. For every θ there is exactly one value of α ∈ [θ, θ+ π
3
) such that

P (α) ∈ ∆.

12



α

P0(A)

P1(A)

P2(A)

P4(A)

P5(A)

A

P3(A)

Figure 7: Illustration of Claim 3.11

Proof. By Lemma 3.9, if the statement holds for some value of θ, it holds for
all other values of θ as well. Thus, it is enough to prove the lemma for θ = π

2
.

Clearly, there is at least one α ∈ [π
2
, 5π

6
) such that P (α) ∈ ∆; otherwise, the

set C(A) ∩∆ would be empty, which is impossible.
Assume that there are α and α′ such that π

2
≤ α < α′ < 5π

6
with P (α) ∈ ∆

and P (α′) ∈ ∆. Let us fix α and α′ as small as possible. Let t and t′ be
the boundary segments containing P (α) and P (α′). The circle C(A) consists of
alternating black and white arcs and one of these arcs has P (α) and P (α′) for
endpoints. It follows that one of the segments t, t′ has the same orientation as
the segment s, contradicting Lemma 3.8.

Before we proceed with the proof of the main result, we summarize the
lemmas proved so far (and introduce some related notation) in the following
claim (see Fig. 7):

Claim 3.11. Let A ∈ ∆ be an arbitrary feasible point. The circle C(A) in-
tersects the boundary ∆ at exactly six points, which form the vertex set of a
regular hexagon. These six points will be denoted by P0(A), . . . , P5(A), where
Pi(A) = P (α+ iπ

3
, A) with α ∈

(

−π
6
, π
6

)

(this determines Pi(A) uniquely). The
boundary segments containing the six points Pi(A) are all parallel to the bound-
ary segment s containing the point A. The boundary segments containing the
points P0(A) and P3(A) have the same orientation as s, whereas the boundary
segments containing P1(A), P2(A), P4(A) and P5(A) have opposite orientation.

Now we use Claim 3.11 to get more global information about the boundary.

Lemma 3.12. Let u1 and u2 be two boundary segments that share a common
endpoint X. The size of the convex angle formed by these two segments is greater
than 2π

3
.

13



A(t)

A′(t)

u1

u2

X

C(A′(t))

Figure 8: Illustration of the proof of Lemma 3.12

Proof. For contradiction, assume that for some u1, u2 and X , the statement of
the lemma does not hold (see Fig. 8). We may assume that the convex angle
determined by u1 and u2 does not contain any other boundary segment with
endpoint X . Furthermore, we may assume that the segment u1 is directed from
X to the other endpoint.

For 0 < t < |u1|, let A(t) ∈ u1 denote the point with |A(t) −X | = t and let
A′(t) = P4(A(t)). There exists ε > 0 such that for all 0 < t < ε the points A(t)
are feasible, the points A′(t) are feasible as well and lie on a common boundary
segment. By our assumption, the convex angles between the ray A(t)A′(t) and
the segments u1, u2 directed from X are both greater than π

2
. It follows that if

t is sufficiently small, the tangent to the circle C(A(t)) at A(t) intersects both
segments u1, u2 and so does the circle C(A(t)), contradicting Claim 3.11.

An important consequence of Lemma 3.12 is that no three boundary seg-
ments share a common endpoint. Hence, every connected component of the
boundary is either an infinite piecewise linear curve, or a simple closed piece-
wise linear curve (i.e. the boundary of a simple polygon). We will call these
cuves boundary components or simply components.

Definition 3.13. Let A be a point on the boundary. For t ∈ R, let A(t) denote
the point of the same boundary component as A, such that the directed length
of the part of the boundary starting at A and ending at A(t) is equal to t.
A(t) is clearly a continuous function of t. If A(t) is a feasible point, we let
pi(t) = Pi(A(t)), for i = 0, . . . , 5.

It is easy to see that the functions pi are continuous on a sufficiently small
neighborhood of every value of t for which A(t) is a feasible point. Our next aim
is to show that these functions can be extended into continuous functions by
suitably defining the values of pi(t) when A(t) is not feasible. It is not obvious
that the functions pi can be extended in this way: the definition of Pi(A(t))
uses the Cartesian system whose x-axis is parallel with the boundary segment
containing A(t). Hence, if A1 and A2 are two feasible points belonging to two
distinct boundary segments of the same boundary component, it might not
be immediately clear that Pi(A1) belongs to the same boundary component as
Pi(A2). The next lemma shows that these technical difficulties can be overcome.

14



Lemma 3.14. Let A(t0) be an infeasible point. For every i = 0, . . . , 5, there is
a point Pi ∈ ∆ such that

lim
t→t0−

pi(t) = Pi = lim
t→t0+

pi(t)

This means that if we define pi(t0) = Pi, then pi is continuous at t0.

Proof. It is sufficient to prove the lemma for i = 0, because pi(t) is clearly a
continuous function of A(t) and p0(t). Since every boundary segment contains
only finitely many infeasible points, we may choose a sufficiently small ε > 0,
such that for every t from the open interval (t0 − ε, t0) the points A(t) are
feasible and they all belong to a single boundary segment u1, and similarly,
for every t′ ∈ (t0, t0 + ε) the points A(t′) are feasible, and they belong to a
single boundary segment u2. If the segments u1 and u2 are distinct, then A(t0)
is their common endpoint. Note that for t ∈ (t0 − ε, t0), the points p0(t) all
belong to a single boundary segment v1, otherwise some of the A(t) would not
be feasible. By Claim 3.11, the segment v1 is parallel and consistently oriented
with u1. Similarly, for t′ ∈ (t0, t0 + ε) the points p0(t

′) belong to a single
boundary segment v2, parallel and consistently oriented with u2. We do not
know yet whether v1 and v2 appear consecutively on the same component of
the boundary.

LetB = limt→t0− p0(t) (clearly, the limit exists, because the points {p0(t); t∈
(t0 − ε, t0)} form an open segment whose endpoint is B). See Fig. 9.

A(t0)
u1

u2

B

α

v1

w

A′

B′

C(A(t0))

Figure 9: Illustration of the proof of Lemma 3.14

For t ∈ (t0 − ε, t0), let us fix α ∈ (−π
6
, π
6
) such that p0(t) = P (α,A(t)), i.e.,

α is the (signed) measure of the angle between the segment u1 and the segment
A(t)p0(t). Note that α does not depend on the choice of t. The circle C(A(t0))
intersects the boundary at B. Let w be the boundary segment starting at B

and directed away from B. By Lemma 3.12, the convex angles determined by
v1 and w and by u1 and u2 have size at least 2π

3
, which implies that the convex

angle α′ between u2 and BA(t0) is acute and the convex angle between w and
BA(t0) is obtuse. Thus, for t

′ ∈ (t0, t0 + ε) the circle C(A′) (where A′ = A(t′))
intersects the segment w at a point B′ = pi(t

′). From Claim 3.11 it follows that
w is parallel to u2. Also, the segment A′B′ is parallel to the segment A(t0)B,
which is in turn parallel to any of the segments A(t)p0(t), for t ∈ (t0 − ε, t0).
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To finish the proof of this lemma, we need to show that B′ = p0(t
′) (as

opposed to B′ = pi(t
′) for some i 6= 0), i.e., we need to prove that the angle α′

determined by the segment u2 and the segment A′B′ falls into the range (−π
6
, π
6
).

We have observed that α′ ∈ (−π
2
, π
2
). This leaves us with the following three

possibilities: either B′ = p5(t
′), or B′ = p1(t

′), or B′ = p0(t
′). However, the

former two possibilities are ruled out by the fact that the segment w is oriented
consistently with the segment u2. This concludes the proof.

Lemma 3.15. Let i ∈ {0, . . . , 5}, let A ∈ ∆ be an arbitrary boundary point.
All the unit segments of the form A(t)pi(t) have the same slope, independently
of the choice of t.

Proof. The slope of A(t)pi(t) (as a function of t) is constant in a neighborhood of
every t for which A(t) is feasible. Moreover, this slope is a continuous function
of t, which follows from Lemma 3.14. Hence the function is constant on the
whole range.

Lemma 3.15 shows that every translation that maps a feasible point A to the
point Pi(A) also maps the boundary component containing A onto the boundary
component containing Pi(A) (which may be the same component). Composing
such translations (or their inverses) we conclude that the translations that send
Pi(A) to Pj(A) have the same component-preserving property.

For the proof of Lemma 3.17, we will need a slight extension of Claim 3.11
to infeasible points:

Claim 3.16. Let A ∈ ∆ be an arbitrary infeasible point.

(i) At each of the six points P0(A), P1(A), . . . , P5(A) the circle C(A) properly
crosses the corresponding boundary component, i.e., in a sufficiently small
neighborhood of such point, the circle C(A) separates the boundary com-
ponent into two portions, one lying inside C(A) and the other one lying
outside C(A).

(ii) There are no more proper crossings of C(A) with boundary components.
(However, C(A) may touch the boundary at some other points.)

(iii) The boundary components containing the points P0(A) and P3(A) have
the same orientation as the component containing A, whereas the bound-
ary components containing P1(A), P2(A), P4(A) and P5(A) have opposite
orientation.

Proof. The first two statements follow from the fact that C(A) has the same
number of proper crossings with the boundary as the circle C(A(t)), where A(t)
is a feasible point sufficiently close to A. The third statement follows from
Claim 3.11 applied to the point A(t).

Lemma 3.17. Let A ∈ ∆ be an arbitrary boundary point. For the sake of
brevity, let us write Pi instead of Pi(A), C instead of C(A) and D instead of
D(A) in the statement and proof of this lemma. The point P1 belongs to the
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same boundary component as P2, the point P0 belongs to the same boundary
component as A and P3, and the point P4 belongs to the same boundary com-
ponent as P5. The four portions of the boundary that connect P1 with P2, P0

with A, A with P3, and P4 with P5 are all translated copies of a single piecewise
linear curve. These four portions of the boundary are all contained in the closed
unit disc with center A.

Proof. It suffices to show that the boundary component that enters inside D at
P1 leaves D at P2. The rest of the statement follows from Lemma 3.15.

Let L be the boundary component that contains P1. Let us follow L from
P1 in the direction of its orientation, i.e., into the interior of the unit disc D,
and let X be the first point where L leaves C. We observe the following:

• X is neither P3 nor P5, because in these points, the boundary is oriented
into the interior of the disc D.

• X is not the point P0: if X = P0, then the translation P0 7→ A would map
the fragment of the boundary between P1 and P0 onto a fragment directed
from P2 to A. Similarly, the translation P1 7→ A would map the fragment
P1P0 onto a fragment directed from P5 to A. This is impossible, because
two different boundary fragments of equal length cannot both end at A.

• X is not P4: if X were equal to P4, we would consider the boundary
component that enters into the interior of C at the point P3. Since this
boundary component cannot intersect the boundary fragment between P1

and P4, it must leave the interior of C at the point P2. However, this
is symmetric to the previous case and leads to contradiction in the same
way.

• Having excluded all other possibilities, we know that X = P2.

Let U denote the fragment of L between P1 and P2. By definition, this fragment
properly crosses C only at its endpoints. Applying a symmetric argument, we
find that the boundary fragment from P5 to P4 (which is a translated copy of U)
properly crosses C only in its endpoints. Translating U appropriately, we obtain
the boundary fragments connecting P3 with A and A with P0. This concludes
the proof.

From the previous lemmas, we readily obtain the following claim.

Claim 3.18. The condition (C3) of Theorem 3.3 implies the condition (C1).

Proof. We check that the coloring χ satisfies the conditions of Definition 3.2.

Let ~x denote the unit vector
−−→
AP0 and let ~y be a unit vector orthogonal to ~x. By

Lemma 3.17, every component of the boundary is a piecewise linear ~x-periodic
curve and if L is a boundary component, then any other component is a translate

of L by an integral multiple of the vector
−−→
AP1 = 1

2
~x +

√
3

2
~y. Let ~z denote this

last vector and let Li = L0 + i~z, i ∈ Z, where L0 is a boundary component
chosen arbitrarily. We have ∆ =

⋃

i∈Z
Li. The condition (d) of Definition 3.2

follows from Lemma 3.17.
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It remains to show that the condition (C1) implies (C2). This is the easier
part of the proof. In fact, we prove a more general claim:

Theorem 3.19. Every zebra-like coloring has a twin that avoids the unit tri-
angle.

Proof. Let χ be a zebra-like coloring, let Li, ~x and ~y be as in Definition 3.2.

Let ~z = 1

2
~x+

√
3

2
~y. Let χ′ be the twin coloring of χ such that the points of Li

are black in χ′ if i is even and white if i is odd.
Observe that by the definition of the coloring, the color of a point P is equal

to the color of P + ~x and different from the color of P + ~z. Now assume that
ABC is a monochromatic unit triangle, wlog the three points are black. By the
previous observation, no edge of the triangle forms an angle of size π

3
(or 2π

3
)

with the vector ~x. It follows that exactly one of the three edges (wlog the edge
AB) forms with ~x an angle whose size falls into the range (π

3
, 2π

3
).

We claim that the three points A,B,C all belong to a single connected
component of the black color: otherwise one of the two edges AC and BC

would have to intersect (at least) two curves Li and Li+1. By the definition
of the coloring, the distance between the two points of intersection is greater
than 1, contradicting the fact that ABC is a unit triangle.

We now deduce that ‖AB‖ < 1: let ℓ be the line containing the segment
AB. Note that the line ℓ, as well as any other line not parallel with ~x, must
intersect all the curves Li. Let A′B′ be the segment obtained as the convex
hull of the intersection of ℓ with the closure of the black component containing
A and B. By the definition of the coloring, ‖A′B′‖ ≤ 1. Moreover, since the
two points A′ and B′ belong to two adjacent boundary curves Li and Li+1,
they have different colors. Hence, the segment AB is a proper subset of the
segment A′B′, and ‖AB‖ < 1. This shows that ABC is not a unit triangle—
a contradiction.

This concludes the proof of Theorem 3.3. Next, we present a simple corollary,
which shows that every polygonal coloring of the plane contains any nonequi-
lateral triangle.

3.3 Nonequilateral triangles

The following result is a direct consequence of Theorem 3.3, by an easy modifi-
cation of the proof of Lemma 1.3.

Theorem 3.20. Let XY Z be a nonequilateral triangle, let χ be a polygonal
coloring. There is a monochromatic copy X ′Y ′Z ′ of the configuration XY Z,
such that none of the three points X ′, Y ′ and Z ′ belongs to the boundary of χ.

Proof. Let a, b and c be the lengths of the three edges of XY Z. Wlog, assume
that a 6= b. From Theorem 3.3 it follows that no polygonal coloring can simul-
taneously avoid copies of equilateral triangles of two different sizes. Hence, we
may assume that χ contains a monochromatic equilateral triangle ABC with
edges of length a whose vertices avoid the boundary of χ. Assume that the three
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points A, B and C are all black. Consider the configuration of eight points on
Fig. 1. As discussed in the proof of the first part of Lemma 1.3, every coloring
of the five points D, A′, B′, C′ and D′ yields a monochromatic (a, b, c)-triangle.
Furthermore, we may assume that the eight points all avoid the boundary of
χ, otherwise we might shift the configuration slightly to move the points away
from the boundary, without changing the color of ABC (recall that A,B and C

already belong to the interior of the black color). This concludes the proof.

4 Concluding remarks

The Conjecture 1.2 remains wide open, despite the indirect support from the
results of this paper, as well as from earlier research. It might happen that
the validity of this conjecture would depend on the particular choice of set-
theoretical axioms. Such issues do not arise in this paper, since our proof
techniques are very elementary. Unfortunately, these elementary techniques
do not offer much hope for broad generalizations. It might nevertheless be
possible to extend our results about polygonal colorings to some broader class of
colorings, e.g., the colorings by monochromatic regions bounded by continuous
curves. Colorings of this kind have already been studied in the context of the
related problem of the chromatic number of the plane (see [11]).

The zebra-like colorings provide a hitherto unknown example of colorings
that avoid an equilateral triangle. We are not aware of any other examples of
colorings avoiding a given triangle, but we do not dare to make any conjectures
about the uniqueness of our construction, because our understanding of non-
polygonal colorings is rather limited.
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