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Abstract

Given a directed graph D = (V, A), a set of d specified vertices S = {s1, . . . , sd} ⊆ V and

a function f : S → N where N denotes the set of natural numbers, we present a necessary

and sufficient condition such that there exist
∑d

i=1 f(si) arc-disjoint in-trees denoted by

Ti,1, Ti,2, . . . , Ti,f(si) for every i = 1, . . . , d such that Ti,1, . . . , Ti,f(si) are rooted at si and each

Ti,j spans the vertices from which si is reachable. This generalizes the result of Edmonds [2],

i.e., the necessary and sufficient condition that for a directed graph D = (V, A) with a

specified vertex s ∈ V , there are k arc-disjoint in-trees rooted at s each of which spans V .

Furthermore, we extend another characterization of packing in-trees of Edmonds [1] to the

one in our case.
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1 Introduction

Let D = (V, A) be a directed graph which may have parallel arcs. A vertex v is said to be

reachable from a vertex u when there is a path from u to v. We denote by e = uv an arc e whose

tail and head are u and v, respectively. If e = uv has no parallel arc, we may simply write uv.

For X,Y ⊆ V , let δ(X,Y ; D) = {e = uv ∈ A : u ∈ X, v ∈ Y }. For W ⊆ V , we write δ+(W ;D)

and δ−(W ; D) instead of δ(W,V \ W ; D) and δ(V \ W,W ;D), respectively. For W ⊆ V , let

D[W ] be the subgraph of D induced by W . For u, v ∈ V , we denote by λ(u, v; D) the local

arc-connectivity from u to v in D, i.e.,

λ(u, v; D) = min{|δ−(W ; D)| : u /∈ W, v ∈ W,W ⊆ V }. (1)

Notice that λ(u, v; D) is equal to the maximum number of arc-disjoint paths from u to v in D

by Menger’s Theorem (see Corollary 9.1b in [6]). In this paper, we will not distinguish between

a singleton {x} and its element x.

Edmonds gave a constructive proof of the following theorem.

Theorem 1.1 ([2]) Given a directed graph D = (V, A) with a specified vertex s ∈ V , there exist

k arc-disjoint in-trees rooted at s each of which spans V if and only if λ(v, s;D) ≥ k holds for

every v ∈ V \ s.

Alternative proofs are found in [5, 7]. Furthermore, the following variant of Theorem 1.1 is

known. Given a directed graph D = (V, A) with a set of d specified vertices S = {s1, . . . , sd} ⊆ V

and a function f : S → N where N denotes the set of natural numbers, we use the following

notations.

• For each v ∈ V , R(v) denotes the set of vertices in S which are reachable from v.
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• For i = 1, . . . , d, Vi denotes the set of vertices in V from which si is reachable.

• D∗ = (V ∗, A∗) is a directed graph obtained from D by adding vertex s∗ and connecting si

to s∗ with f(si) parallel arcs (see Figure 1).

Moreover, we define f(S′) =
∑

si∈S′ f(si) for each S′ ⊆ S.

Theorem 1.2 (Corollary 53.1a in [6]) Given a directed graph D = (V, A) with a set of d

specified vertices S = {s1, . . . , sd} ⊆ V and a function f : S → N, there exist f(S) arc-disjoint

in-trees denoted by T ′i,1, . . . , T
′
i,f(si)

for every i = 1, . . . , d such that T ′i,1, . . . , T
′
i,f(si)

are rooted at

si and each T ′i,j spans V if and only if λ(v, s∗; D∗) ≥ f(S) holds for every v ∈ V .

In this paper, we generalize these theorems as follows. Given a set of d specified vertices

S = {s1, . . . , sd} ⊆ V and a function f : S → N, we will present a necessary and sufficient

condition that there exist f(S) arc-disjoint in-trees denoted by Ti,1, Ti,2, . . . , Ti,f(si) for every

i = 1, . . . , d such that Ti,1, . . . , Ti,f(si) are rooted at si and each Ti,j spans Vi.

For example, given a directed graph D in Figure 1(a) with S = {s1, s2, s3} and f(s1) =

2, f(s2) = 1, f(s3) = 1, the set of vertices from which si is reachable is equal to {u, v, w, s1},

the set of vertices from which s2 is reachable is equal to {u, v, w, s1, s2}, and the set of vertices

from which s3 is reachable is equal to {u, v, w, x, y, s3}. We can see that T1,1, T1,2, T2,1, and T3,1

shown in Figure 2 are arc-disjoint, and span the vertices from which s1, s2 and s3 are reachable,

respectively.

The main theorem which we will prove in this paper is described as follows.

Theorem 1.3 Given a directed graph D = (V, A) with a set of d specified vertices S = {s1, . . . , sd} ⊆

V and a function f : S → N, there exist f(S) arc-disjoint in-trees denoted by Ti,1, . . . , Ti,f(si) for

every i = 1, . . . , d such that Ti,1, . . . , Ti,f(si) are rooted at si and each Ti,j spans Vi if and only if

λ(v, s∗; D∗) ≥ f(R(v)) holds for every v ∈ V .
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Figure 1: (a) Directed graph D and function f . (b) Transformed graph D∗.
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Figure 2: (a) T1,1. (b) T1,2. (c) T2,1. (d) T3,1.

It apparently seems that Theorem 1.3 can be directly derived from Theorem 1.2 by trans-

forming a directed graph D = (V, A) by adding f(si) arcs from every vertex not in Vi to si.

But this is not the case. To see this, let us consider a directed graph D = (V, A) in Figure 3(a)

with S = {s1, s2} and f(s1) = 1, f(s2) = 1, where V1 = {u, v, w, s1} and V2 = {u, v, x, s2} hold.

Now we add arcs xs1, s2s1, ws2, and s1s2 to A so that R(v) = S holds for every v ∈ V (see

Figure 3(b)). Let D′ be the resulting graph. From Theorem 1.2, there exist two arc-disjoint

in-trees in D′ denoted by T ′1,1 and T ′2,1 which span V , and are rooted at s1 and s2, respectively.

However, removing arcs that are added to obtain D′ does not always produce the desired T1,1

and T2,1 such that T1,1 is rooted at s1 and spans V1, and T2,1 is rooted at s2 and spans V2. For

T ′1,1 and T ′2,1 which are respectively illustrated in the left side and the right side of Figure 4(a),

T1,1 and T2,1 obtained from T ′1,1 and T ′2,1 by simply removing arcs added to D (dotted arcs)

satisfy the statement of Theorem 1.3. However, it is not the case as is seen from Figure 4(b) for
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T ′1,1 and T ′2,1 which are respectively in the left side and the right side of Figure 4(b). Therefore,

we can see that Theorem 1.3 can not be immediately derived from Theorem 1.2.
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Figure 3: (a) Input directed graph D. (b) Transformed graph D′.
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Figure 4: (a) Arc disjoint in-trees T ′1,1 and T ′2,1 for which removing arcs added (dotted arcs)
results in T1,1 and T2,1 that satisfy the statement of Theorem 1.3. (b) Arc disjoint in-trees T ′1,1

and T ′2,1 for which removing arcs added results in T1,1 and T2,1 that do not satisfy the statement
of Theorem 1.3.

In our recent paper [4], we considered the evacuation problem defined on dynamic network

and showed that this problem can be efficiently solved if the following property holds for the

underlying acyclic graph D′ = (V ′, A′) and a sink s′ ∈ V ′ of a given dynamic network.

For P = {s1, . . . , sd} which is the set of vertices in V ′ incident to s′, there exists

|δ−(s′;D′)| arc-disjoint in-trees denoted by Ti,j , . . . , Ti,|δ(si,s′;D′)| for every i = 1, . . . , d

such that Ti,j , . . . , Ti,|δ(si,s′;D)| are rooted at si and each Ti,j spans the vertices from

which si is reachable.

This statement is the same as Theorem 1.3 by setting D = D′ \ s′, S = P , and f(si) =

|δ(si, s
′;D′)| for si ∈ P where D′ \ s′ denotes the directed graph obtained by removing s′ and

arcs incident to s′ from D′. In [4], we proved Theorem 1.3 only for the case where D is acyclic.

In this paper, we extend the result in [4] to the case where D′ is allowed to have cycles.
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This paper is organized as follows. Section 2 gives the proof of Theorem 1.3. In Section 3,

we extend another characterization of packing in-trees of Edmonds [1] to the one in our case by

using Theorem 1.3.

2 Proof of Theorem 1.3

It is not difficult to see that “only if-part” holds. We then prove the “if-part”. That is, we

assume that for every v ∈ V

λ(v, s∗; D∗) ≥ f(R(v)). (2)

We prove the theorem by induction on f(S). In the case of f(S) = 1, the theorem clearly holds

by |S| = 1.

Assuming that Theorem 1.3 holds for f(S) = l ≥ 1, we consider the case of f(S) = l + 1.

Let us fix i ∈ {1, . . . , d} and ei ∈ δ(si, s
∗; D∗). To prove the theorem by induction on f(S), we

will find an in-tree in D∗ denoted by T = (W,B) with W ⊆ Vi ∪ s∗ such that T is rooted at s∗

and satisfies (F0) and (F1).

(F0) δ−(s∗; T ) = {ei}, i.e., T has only one arc ei incident to s∗.

(F1) For every v ∈ V ,

λ(v, s∗; D∗ \B) ≥





f(R(v))− 1, if v ∈ Vi,

f(R(v)), if v ∈ V \ Vi,

where D\A′ denotes the directed graph obtained by removing A′ from D, i.e., D\A′ = (V, A\A′)

for each A′ ⊆ A.

If we can find an in-tree T rooted at s∗ which spans Vi and satisfies (F0) and (F1), T [Vi] is

an in-tree rooted at si since a path from every v ∈ Vi to s∗ in T contains si from (F0). Moreover,
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since T does not contain any arc e = sjs
∗ for j 6= i from (F0),

|δ(sj , s
∗; D∗ \B)| =





f(sj)− 1, if j = i,

f(sj), if j 6= i.

Hence we can regard D∗ \B as D∗ for the case of f(S) = l, and thus the proof is done.

Here we remark that, in general, every in-tree rooted at s∗ which spans Vi dose not satisfy

(F0) and (F1). For example, an in-tree in Figure 5(b) satisfies (F0) and (F1) in a directed graph

D∗ in Figure 5(a) and spans V1, while an in-tree in Figure 5(c) denoted by T = (W,B) does not

satisfy (F1) since λ(v, s∗; D∗ \B) = 0 holds.
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Figure 5: (a) D∗ with S = {s1, s2} and f(s1) = 1, f(s2) = 1. (b) Feasible in-tree. (c) Infeasible
in-tree.

We call an in-tree T = (W,B) with W ⊆ Vi ∪ s∗ feasible if T is rooted at s∗ and satisfies

(F0) and (F1). For a feasible in-tree T = (W,B), we call an arc e = xy eligible when e satisfies

(E0) x ∈ Vi \W and y ∈ W ,

(E1) T ′ = (W ∪ x,B ∪ e) is feasible.

That is, if there exists an eligible arc e for a feasible in-tree T , we can extend T by adding e

while maintaining feasibility.

We will prove the existence of a feasible in-tree T which spans Vi by induction on the number

of vertices of T . First we prove that for the basis of induction that T = ({s∗, si}, ei) is feasible.

Then, we prove that for any feasible in-tree which does not span Vi there always exists an eligible
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arc. For this, we introduce the notion of a critical set which is a vertex set containing s∗ such

that any arc entering the critical set is not eligible.

Our proof that we can construct a feasible in-tree that spans Vi is based on the proof of

Theorem 1.1 of Lovász [5]. However, recall that in Theorem 1.1, the local arc-connectivity from

every v ∈ V \s to s is assumed to be at least a constant k which does not depend on v. Thus, given

an in-tree T = (W,B) rooted at s such that λ(v, s;D \B) ≥ k− 1 holds and T does not span V ,

we can determine whether an arc e can be added to T while maintaining λ(v, s; D\(B∪e)) ≥ k−1

for every v ∈ V \ s by simply testing whether |δ−(V ′;D \ (B ∪ e))| is at least k − 1 for every

V ′ ( V with s ∈ V ′. But in our case, the condition of the local arc-connectivity from each v ∈ V

to s∗ in D∗ is not uniform. Hence, given a feasible in-tree T = (W,B) which does not span Vi,

to determine whether an arc e is eligible, we have to test whether |δ−(V ′;D∗ \ (B ∪ e))| is at

least min{f(R(v))− 1: v ∈ Vi \V ′} and min{f(R(v)) : v ∈ V \ (Vi∪V ′)} for every V ′ ( V ∗ with

s∗ ∈ V ′. This makes the proof of Theorem 1.3 much harder. To cope with this hardness, we

prove that if we choose an appropriate set Xmax, f(R(v)) takes the same value for every vertex

v ∈ Vi \ (Xmax ∪W ). This clearly holds for the case of Theorem 1.1 and Theorem 1.2. However

it is not trivial in our case.

2.1 Construction of feasible in-tree

The following inequality can be derived from the definition of (1), which is frequently used in

the subsequent discussion. For every u, v ∈ V and W ⊆ V with u /∈ W and v ∈ W ,

λ(u, v; D) ≤ |δ−(W ; D)|. (3)

We first prove the following lemma.
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Lemma 2.1 For every subset A′ of arcs in D∗[Vi ∪ s∗] and v ∈ V \ Vi, λ(v, s∗; D∗ \ A′) =

λ(v, s∗; D∗) holds. That is, the local arc-connectivity from v to s∗ does not change by removing

arcs in A′ from D∗.

Proof. In D∗, any path from v ∈ V \ Vi to s∗ does not pass through any vertex in Vi from the

definition of Vi. Thus, removing arcs of D∗[Vi ∪ s∗] does not reduce the local arc-connectivity

from v ∈ V \ Vi to s∗. ¥

Now we will prove that there exists a feasible in-tree T = (W,B) which spans Vi by induc-

tion on |W |. For the basis of induction, it holds that T is feasible for T = ({s∗, si}, ei) from

Lemma 2.1.

Suppose that we have a feasible in-tree T = (W,B) which does not span Vi. Then, we will

prove that there always exists an eligible arc for T . Since T has to satisfy (F0), an arc whose

head is s∗ is not eligible. Furthermore, since δ(V \ Vi, Vi;D∗) = ∅ follows from the definition of

Vi and W \ s∗ ⊆ Vi holds, we have for every e = xy ∈ δ−(W \ s∗; D∗ \B)

x ∈ Vi \W, (4)

i.e., every e ∈ δ−(W \ s∗;D∗ \B) satisfies (E0). Thus, to prove that there exists an eligible arc

for T , it is sufficient to prove that there exists an arc e = xy ∈ δ−(W \ s∗; D∗ \ B) such that

T ′ = (W ∪ x,B ∪ e) satisfies (F1).

It is obvious that δ−(W \ s∗;D∗ \B) 6= ∅ since T does not span Vi and si is reachable from

every v ∈ Vi \ W in D. However, in general, every arc in δ−(W \ s∗; D∗ \ B) is not eligible.

Consider the case where there exists v ∈ Vi with λ(v, s∗; D∗ \ B) = f(R(v)) − 1. In this case,

from (1), there must exist X ⊆ V ∗ with s∗ ∈ X, v /∈ X, and |δ−(X;D∗ \ B)| = f(R(v)) − 1,

i.e., δ−(X;D∗ \B) is a minimum v-s∗ cut in D∗ \B. Then, an arc e = xy ∈ δ−(W \ s∗; D∗ \B)
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such that e ∈ δ−(X; D∗ \B) is not eligible since T ′ = (W ∪ x,B ∪ e) violates (F1) for v.

Here we give the precise description of the above discussion. A vertex set X ⊆ V ∗ with

s∗ ∈ X is called critical when X satisfies the following conditions.

(C0) Vi \ (X ∪W ) 6= ∅.

(C1) |δ−(X; D∗ \B)| = f(R(v))− 1 for some v ∈ Vi \X.

Lemma 2.2 An arc e = xy ∈ δ−(W \s∗; D∗ \B) is eligible if there exists no critical set X ⊆ V ∗

with e ∈ δ−(X; D∗ \B).

Proof. It is sufficient to prove that T ′ = (W ∪ x,B ∪ e) satisfies (F1). Suppose that for an arc

e = xy that satisfies the lemma assumption, T ′ does not satisfy (F1). Since from Lemma 2.1

the local arc-connectivity from every w ∈ V \Vi to s∗ does not change by removing arcs in D[Vi]

(notice that e is an arc in D[Vi] from (4)), there exists v ∈ Vi such that λ(v, s∗; D∗ \ (B ∪ e)) ≤

f(R(v))− 2. From (1), there exists Y ⊆ V ∗ with s∗ ∈ Y and v /∈ Y such that

|δ−(Y ;D∗ \ (B ∪ e))| ≤ f(R(v))− 2. (5)

We will show that Y satisfies (C0) and (C1), and e ∈ δ−(Y ; D∗ \ B) holds, which contradicts

that e satisfies the lemma assumption.

Since T satisfies (F1), |δ−(Y ; D∗\B)| ≥ f(R(v))−1 follows from (3). Thus, since |δ−(Y ;D∗\

B)| − |δ−(Y ;D∗ \ (B ∪ e))| is at most one, |δ−(Y ; D∗ \ B)| must be equal to f(R(v)) − 1 (i.e.,

Y satisfies (C1)) and e ∈ δ−(Y ; D∗ \B) holds by (5).

Since x ∈ Vi \W follows from (4) and x /∈ Y follows from e ∈ δ−(Y ;D∗ \B), x ∈ Vi \ (Y ∪W )

holds. Thus, Y satisfies (C0). This completes the proof. ¥

We now consider the case where there exists a critical set. From now on, we prove that in
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this case, there always exists an eligible arc e ∈ δ−(W \ s∗; D∗ \ B), too. To prove this, let us

fix Xmax as a critical set which satisfies

|Xmax| = max{|X| : X is critical}, (6)

and let vmax ∈ Vi \Xmax be a vertex satisfying (C1) for Xmax, i.e., vmax satisfies

|δ−(Xmax; D∗ \B)| = f(R(vmax))− 1. (7)

From (1) and (F1),

λ(vmax, s
∗; D∗ \B) = f(R(vmax))− 1. (8)

The following lemma concerning Xmax and vmax plays a crucial role in our proof.

Lemma 2.3 For Xmax and vmax defined above, f(R(w)) = f(R(vmax)) holds for every w ∈

Vi \ (Xmax ∪W ).

Since the proof of Lemma 2.3 is long, we prove the theorem by using this lemma before giving

its proof. The proof of this lemma is given in the following subsection.

First we prove the following lemma.

Lemma 2.4 There exists an arc e = xy with x ∈ Vi \ (Xmax∪W ) and y ∈ W \Xmax in D∗ \B.

Proof. Since both of a tail and a head of every arc in B are contained in W ,

δ−(Xmax ∪W ; D∗ \B) = δ−(Xmax ∪W ; D∗). (9)

Next we prove

|δ−(Xmax ∪W ; D∗)| ≥ f(R(vmax)). (10)
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From (C0), there exists w ∈ Vi \ (Xmax ∪W ). From (3), w /∈ Xmax ∪W and (2),

|δ−(Xmax ∪W ;D∗)| ≥ λ(w, s∗; D∗)︸ ︷︷ ︸
from (3)

≥ f(R(w))︸ ︷︷ ︸
from (2)

.

Thus, (10) follows from Lemma 2.3. Hence,

|δ−(Xmax ∪W ; D∗ \B)| = |δ−(Xmax ∪W ; D∗)| (from (9))

≥ f(R(vmax)) (from (10))

> |δ−(Xmax; D∗ \B)| (from (7)). (11)

From this inequality, we can see that there exists at least one arc e = xy with x ∈ V ∗\(Xmax∪W )

and y ∈ W \Xmax. Hence, the lemma holds since x ∈ Vi \W follows from (4). ¥

Let an arc satisfying Lemma 2.4 be ê = x̂ŷ with x̂ ∈ Vi \ (Xmax ∪W ) and ŷ ∈ W \Xmax (see

Figure 6). From Lemma 2.2, if there exists no critical set Y such that ê ∈ δ−(Y ; D∗ \ B), ê is

eligible.

sã

Vi

Xmax

W

eê

xê

yê

Figure 6: Illustration of ê.

Lemma 2.5 There exists no critical set Y ⊆ V ∗ such that ê = x̂ŷ ∈ δ−(Y ;D∗ \B).

Proof. We will show that if there exists such Y , Xmax ∪ Y is critical and x̂ satisfies (C1) for
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Xmax ∪ Y . This implies that |Xmax| < |Xmax ∪ Y | holds since ŷ ∈ Y \ Xmax follows from

ŷ ∈ W \Xmax and ŷ ∈ Y , which contradicts the maximality of Xmax in (6).

From ê ∈ δ−(Y ;D∗ \ B), x̂ /∈ Y holds. Thus, x̂ ∈ Vi \ (Xmax ∪ Y ∪ W ) holds since x̂ ∈

Vi\(Xmax∪W ) follows from the definition of ê. Hence, Xmax∪Y satisfies (C0) for X = Xmax∪Y .

What remains is to prove that |δ−(Xmax ∪ Y ; D∗ \B)| = f(R(x̂))− 1, i.e., (C1) holds. From

x̂ /∈ Xmax ∪ Y , (3) and (F1),

|δ−(Xmax ∪ Y ; D∗ \B)| ≥ λ(x̂, s∗; D∗ \B)︸ ︷︷ ︸
from (3)

≥ f(R(x̂))− 1︸ ︷︷ ︸
from (F1)

.

Thus, to prove that (C1) holds, it is sufficient to show

|δ−(Xmax ∪ Y ; D∗ \B)| ≤ f(R(x̂))− 1. (12)

Since Y is critical, there exists wcr ∈ Vi \ Y satisfying (C1) for Y , i.e,

|δ−(Y ; D∗ \B)| = f(R(wcr))− 1. (13)

Then, from the submodularity of |δ−(·; D∗ \B)|,

f(R(vmax))− 1 + f(R(wcr))− 1 = |δ−(Xmax; D∗ \B)|+ |δ−(Y ; D∗ \B)| (by (7) and (13))

≥ |δ−(Xmax ∩ Y ;D∗ \B)|+ |δ−(Xmax ∪ Y ; D∗ \B)|. (14)
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Since vmax, wcr /∈ Xmax ∩ Y follows from vmax /∈ Xmax and wcr /∈ Y , we have

|δ−(Xmax ∩ Y ; D∗ \B)| ≥max{λ(vmax, s
∗;D∗ \B), λ(wcr, s

∗;D∗ \B)} (from (3))

≥max{f(R(vmax)), f(R(wcr))} − 1 (from (F1)). (15)

In the case of f(R(wcr)) ≥ f(R(vmax)), we straightforwardly have

|δ−(Xmax ∪ Y ; D∗ \B)| ≤ f(R(vmax))− 1 (from (14) and (15)). (16)

In the case of f(R(wcr)) < f(R(vmax)), we have |δ−(Xmax ∪ Y ; D∗ \ B)| ≤ f(R(wcr)) − 1 from

(14) and (15), and hence (16) follows from f(R(wcr)) < f(R(vmax)).

Since x̂ ∈ Vi \ (Xmax ∪ W ) from the definition of ê, f(R(x̂)) = f(R(vmax)) follows from

Lemma 2.3. Thus, (12) follows from (16). This completes the proof. ¥

Proof of Theorem 1.3. Assuming that there exists a feasible in-tree T = (W,B) such that

|W | ≥ 2 and |W | < |Vi|, we will prove that there exists a feasible in-tree T ′ = (W ′, B′) such that

|W ′| = |W | + 1, i.e., there exists an eligible arc for T . If there exists no critical set, it follows

from Lemma 2.2 that any e ∈ δ−(W \s∗, D∗ \B) is eligible. Otherwise, letting Xmax be a critical

set satisfying (6), we can see from Lemmas 2.4 and 2.5 that there exists an eligible arc e = xy

with x ∈ Vi \ (Xmax ∪W ) and y ∈ W \Xmax. Hence, repeating this process, we eventually have

a feasible in-tree T = (W,B) which spans Vi. This completes the proof. ¥

2.2 Proof of Lemma 2.3

In this subsection, we prove Lemma 2.3.

From the definition of a feasible in-tree, λ(w, s∗; D∗ \ B) is at least f(R(w)) − 1 for every

w ∈ Vi. However, we can see from the following lemma that in fact, λ(w, s∗; D∗ \B) is equal to
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f(R(w))− 1 for every w ∈ Vi.

Lemma 2.6 For every w ∈ Vi, λ(w, s∗; D∗ \B) = f(R(w))− 1 holds.

Proof. From the way of construction of D∗ and the definition of R(·), every set of f(R(w)) arc-

disjoint paths from w to s∗ in D∗ use all arcs in δ(R(w), s∗;D∗). From (F0), |δ(R(w), s∗; D∗ \

B)| = f(R(w))− 1 follows. Thus, λ(w, s∗; D∗ \B) ≤ f(R(w))− 1 holds since λ(w, s∗; D∗ \B) is

equal to the maximum number of arc-disjoint paths from w to s∗ in D∗ \ B. Then, the lemma

follows from (F1). ¥

To prove Lemma 2.3, we will prove λ(w, s∗; D∗ \ B) = λ(vmax, s
∗; D∗ \ B) for every w ∈

Vi \ (Xmax ∪W ). For this, we prove some lemmas.

Lemma 2.7 For Xmax and vmax defined above, λ(w, s∗; D∗ \B) ≤ λ(vmax, s
∗;D∗ \B) for every

w ∈ Vi \ (Xmax ∪W ).

Proof. Since w /∈ Xmax follows from w ∈ Vi \ (Xmax ∪W ),

f(R(vmax))− 1= |δ−(Xmax;D∗ \B)|︸ ︷︷ ︸
from (7)

≥ λ(w, s∗; D∗ \B)︸ ︷︷ ︸
from (3)

.

This inequality and (8) imply the lemma. ¥

We will prove by contradiction that there exists no vertex w ∈ Vi \ (Xmax ∪W ) such that

λ(w, s∗; D∗ \B) < λ(vmax, s
∗; D∗ \B). (17)
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Assuming that there exists a vertex w̃ ∈ Vi \ (Xmax ∪W ) satisfying (17), let

U := {u ∈ V ∗ \Xmax : R(u) ⊆ R(w̃)}, (18)

P := V ∗ \ U. (19)

Notice that w̃ ∈ U follows from (18).

Lemma 2.8 For P and vmax defined above, vmax ∈ P holds.

Proof. It is sufficient to prove vmax /∈ U from vmax /∈ Xmax and the definition of (19). To

prove vmax /∈ U , we will show R(vmax) 6⊆ R(w̃) since this implies vmax /∈ U from (18). If

R(vmax) ⊆ R(w̃),

f(R(vmax)) ≤ f(R(w̃)) (20)

follows from the definition of f(·). Hence

λ(w̃, s∗; D∗ \B)≥ f(R(w̃))− 1︸ ︷︷ ︸
from (F1)

≥ f(R(vmax))− 1︸ ︷︷ ︸
from (20)

= λ(vmax, s
∗; D∗ \B)︸ ︷︷ ︸

from (8)

.

This contradicts (17), and completes the proof. ¥

Lemma 2.9 For P and Xmax defined above, δ−(P ; D∗ \B) ⊆ δ−(Xmax; D∗ \B) holds.

Proof. From (19), it is sufficient to prove

δ(U, V ∗ \ (Xmax ∪ U);D∗ \B) = ∅, (21)

(see Figure 7). If there exists an arc e = xy in the arc set of the left hand side of (21), x ∈ U

and y /∈ Xmax ∪U hold. From (18), x ∈ U is equivalent to R(x) ⊆ R(w̃), and also y /∈ Xmax ∪U
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is equivalent to R(y) 6⊆ R(w̃). However, this contradicts R(y) ⊆ R(x) which follows from the

definition of R(·). This completes the proof. ¥

P

V
ã n (Xmax [ U)

Xmax

V
ã nXmax

s
ã

U

Figure 7: Illustration of (21). There exists no arc whose tail is in U and whose head is in
V ∗ \ (Xmax ∪ U).

Let H be the set of heads of all arcs in δ−(P ; D∗ \B).

Lemma 2.10 For w̃ and H defined above,
⋃

h∈H R(h) ⊆ R(w̃) holds.

Proof. Assume that there exist sj ∈ (
⋃

h∈H R(h)) \R(w̃) and e = xy ∈ δ−(P ;D∗ \B) such that

sj ∈ R(y). Notice that e ∈ δ−(P ; D∗ \ B) implies x /∈ P , which implies x ∈ U by (19). Thus,

R(x) ⊆ R(w̃) follows from x ∈ U and (18). Hence, since R(y) ⊆ R(x) follows from the definition

of R(·), sj ∈ R(y) implies sj ∈ R(w̃). This contradicts sj ∈ (
⋃

h∈H R(h)) \R(w̃). ¥

Lemma 2.11 For P and w̃ defined above, there exist at most f(R(w̃)) − 1 arc-disjoint paths

from vmax to s∗ in D∗ \B that use arcs in δ−(P ; D∗ \B).

Proof. Since a path from vmax to s∗ in D∗ \ B that uses an arc in δ−(P ; D∗ \ B) can not pass

through sj ∈ S \ (
⋃

h∈H R(h)) for H defined above, the maximum number of arc-disjoint paths

from vmax to s∗ in D∗\B that use arcs in δ−(P ; D∗\B) is at most |δ(⋃h∈H R(h), s∗; D∗\B)|. Since

(
⋃

h∈H R(h)) ⊆ R(w̃) follows from Lemma 2.10, |δ(⋃h∈H R(h), s∗;D∗\B)| ≤ |δ(R(w̃), s∗; D∗\B)|

holds. Thus, since |δ(R(w̃), s∗; D∗ \ B)| = f(R(w̃)) − 1 follows from the definition of D∗ and
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(F0), the lemma follows (see Figure 8(a)). ¥

Lemma 2.12 For P and w̃ defined above, |δ−(P ; D∗ \B)| = f(R(w̃))− 1 holds.

Proof. Recalling that w̃ /∈ P follows from w̃ ∈ U and (19),

|δ−(P ; D∗ \B)| ≥ λ(w̃, s∗; D∗ \B)︸ ︷︷ ︸
from (3)

≥ f(R(w̃))− 1︸ ︷︷ ︸
from (F1)

.

Now suppose |δ−(P ; D∗ \B)| > f(R(w̃))− 1. Then,

|δ−(Xmax; D∗ \B) \ δ−(P ;D∗ \B)|

=|δ−(Xmax; D∗ \B)| − |δ−(P ; D∗ \B)| (by Lemma 2.9)

=(f(R(vmax))− 1)− |δ−(P ; D∗ \B)| (by (7))

<(f(R(vmax))− 1)− (f(R(w̃))− 1) (by the assumption made above)

=f(R(vmax))− f(R(w̃)). (22)

V
ã n (Xmax [ U)

Xmax

s
ã

vmax

P

U

R(wà)

(a)

V
ã n (Xmax [ U)

Xmax

s
ã

vmax

P

U

(b)

Figure 8: (a) Arc-disjoint paths that use arcs in δ−(P ; D∗ \ B). Bold lines represent arcs in
δ−(P ; D∗ \B). (b) Arc-disjoint paths that use arcs in δ−(Xmax; D∗ \B) \ δ−(P ; D∗ \B). Bold
lines represent arcs in δ−(Xmax;D∗ \B) \ δ−(P ; D∗ \B).

Let us consider the maximum number of arc-disjoint paths from vmax to s∗ in D∗ \ B. A
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path from vmax to s∗ in D∗ \ B uses at least one arc in δ−(Xmax; D∗ \ B). Here we partition

δ−(Xmax; D∗ \ B) into δ−(P ; D∗ \ B) and δ−(Xmax; D∗ \ B) \ δ−(P ; D∗ \ B). The maximum

number of arc-disjoint paths from vmax to s∗ in D∗ \ B that use an arc in δ−(P ; D∗ \ B) is at

most f(R(w̃)) − 1 from Lemma 2.11 (see Figure 8(a)). Furthermore, the maximum number of

arc-disjoint paths from vmax to s∗ in D∗ \B that use an arc in δ−(Xmax;D∗ \B) \ δ−(P ; D∗ \B)

is at most f(R(vmax)) − f(R(w̃)) − 1 from (22) (see Figure 8(b)). This implies that there can

not exist f(R(vmax)) − 1 arc-disjoint paths from vmax to s∗ in D∗ \ B, which contradicts (F1).

This completes the proof. ¥

We are now ready to prove the following lemma.

Lemma 2.13 For Xmax and vmax defined above, λ(w, s∗; D∗\B) = λ(vmax, s
∗; D∗\B) for every

w ∈ Vi \ (Xmax ∪W ).

Proof. For P defined in (19), |Xmax| < |P | holds since vmax ∈ P \Xmax follows from Lemma 2.8

and the definition of vmax and Xmax ⊆ P holds by (19).

Here we prove that P is a critical set. From s∗ /∈ U , s∗ ∈ P follows. Since w̃ /∈ W follows

from w̃ ∈ Vi \ (Xmax∪W ), and w̃ /∈ P follows from w̃ /∈ Xmax, w̃ ∈ U and (19), w̃ ∈ Vi \ (P ∪W ),

i.e., P satisfies (C0). Moreover, from Lemma 2.12 and w̃ /∈ Vi \ P , P satisfies (C1) for w̃. This

contradicts the maximality of Xmax in (6). Thus, the lemma follows from Lemma 2.7. ¥

Proof of Lemma 2.3. For every w ∈ Vi \ (Xmax ∪W ),

f(R(w))− 1= λ(w, s∗; D∗ \B)︸ ︷︷ ︸
from Lemma 2.6

= λ(vmax, s
∗; D∗ \B)︸ ︷︷ ︸

from Lemma 2.13

.

The lemma follows from this equality and (8). ¥
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3 Another Characterization of Packing In-trees

Edmonds [1] showed the following another characterization of packing in-trees. For directed

graphs D1 = (W1, B1) and D2 = (W2, B2), the union of D1 and D2 is defined as D3 = (W1 ∪

W2, B1 ∪B2). We call a subgraph T of D a tree when T has no cycle in the graph obtained by

ignoring the direction of arcs of D. Here we define a feasible set of k trees T in D = (V, A) with

specified vertex s ∈ V as a set of k arc-disjoint trees such that each tree spans V and for every

v ∈ V

|δ+(v;F )| =





k, if v ∈ V \ s,

0, if v = s,

where F is the union of the k arc-disjoint trees in T .

Theorem 3.1 ([1]) Given a directed graph D = (V, A) with a specified vertex s ∈ V , there exist

k arc-disjoint in-trees rooted at s each of which spans V if and only if there exists a feasible set

of k trees.

Gabow [3] presented an efficient algorithm to find arc-disjoint in-trees defined in Theorem 1.1

by using Theorem 3.1. We extend this characterization to the one in our case as follows. Here

we define a feasible set of f(S) subtrees T ∗ in D∗ = (V ∗, A∗) as a set of f(S) arc-disjoint trees

denoted by T ∗i,1, T
∗
i,2, . . . , T

∗
i,f(si)

for every i = 1, . . . , d such that each T ∗i,j spans Vi ∪ s∗ and for

every v ∈ V

|δ+(v; F ∗)| =





f(R(v)), if v ∈ V,

0, if v = s∗,

where F ∗ is the union of the f(S) arc-disjoint trees in T ∗. Figures 9(a), (b), (c), and (d) show

T ∗1,1, T ∗1,2, T ∗2,1, and T ∗3,1 respectively which compose a feasible set of four subtrees in D∗ shown

in Figure 1(b).
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Figure 9: (a) T ∗1,1. (b) T ∗1,2. (c) T ∗2,1. (d) T ∗3,1.

The proof of the following theorem is based on the proof of Theorem 3.1 of Gabow (see

Corollary 2.1 in [3]).

Theorem 3.2 Given a directed graph D = (V, A) with a set of d specified vertices S = {s1, . . . , sd} ⊆

V and a function f : S → N, there exist f(S) arc-disjoint in-trees denoted by Ti,1, . . . , Ti,f(si) for

every i = 1, . . . , d such that Ti,1, . . . , Ti,f(si) are rooted at si and each Ti,j spans Vi if and only if

there exists a feasible set of f(S) subtrees.

Proof. Only if-part. Since T ∗i,1, T
∗
i,2, . . . , T

∗
i,f(si)

for every i = 1, . . . , d which compose a feasible

set of f(S) subtrees T ∗ can be straightforwardly constructed from Ti,1, Ti,2, . . . , Ti,f(si) for every

i = 1, . . . , d which satisfy the condition of the theorem.

If-part. Suppose that there exist T ∗i,1, . . . , T
∗
i,f(si)

for every i = 1, . . . , d which compose a feasible

set of f(S) subtrees T ∗. From Theorem 1.3, it is sufficient to prove that λ(v, s∗; D∗) ≥ f(R(v))

holds for every v ∈ V .

From (1), the statement that λ(v, s∗;D∗) ≥ f(R(v)) holds for every v ∈ V is equivalent to

(i) δ+(W ; D∗) ≥ f(R(v)) holds for every v ∈ V and W ⊆ V with v ∈ W .

Thus, we will prove the statement (i). Let us fix v ∈ V and W ⊆ V with v ∈ W . Recall that F ∗

is the union of the f(S) arc-disjoint trees in T ∗. Thus, precisely
∑

w∈W f(R(w)) arcs of F ∗ have

their tails in W from the definition of T ∗ and s∗ /∈ W . Here let IW be the set of i ∈ {1, . . . , d}

such that W ∩ Vi 6= ∅. Here we consider the sum of the number of arcs of T ∗i,1, T
∗
i,2, . . . , T

∗
i,f(si)
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which have both ends in W for i ∈ IW . Since T ∗i,j is a tree and spans Vi, the number of arcs of

T ∗i,j which have both ends in W is at most |W ∩Vi|−1. Thus, at most
∑

i∈IW
(|W ∩Vi|−1) ·f(si)

arcs of F ∗ have both ends in W . Thus, to prove the statement (i), since

δ+(W ; D∗) ≥
∑

w∈W

f(R(w))−
∑

i∈IW

(|W ∩ Vi| − 1) · f(si)

follows from the above discussion, it is sufficient to prove

∑

w∈W

f(R(w))−
∑

i∈IW

(|W ∩ Vi| − 1) · f(si) ≥ f(R(v)). (23)

Recalling that f(R(w)) =
∑

si∈R(w) f(si) holds,

∑

w∈W

f(R(w)) =
∑

w∈W

∑

si∈R(w)

f(si). (24)

Since si ∈ R(w) is equivalent w ∈ Vi,

∑

w∈W

∑

si∈R(w)

f(si) =
∑

i∈{1,...,d}

∑

w∈W∩Vi

f(si)

=
∑

i∈IW

∑

w∈W∩Vi

f(si) (from W ∩ Vi = ∅ for i /∈ IW )

=
∑

i∈IW

|W ∩ Vi| · f(si). (25)

Thus, the left hand side of (23) is equal to
∑

i∈IW
f(si) from (24) and (25). Hence what remains

is to prove that
∑

i∈IW
f(si) ≥ f(R(v)) holds. To prove this inequality, it is sufficient to prove

that R(v) ⊆ {si : i ∈ IW } holds. Since si ∈ R(v) is equivalent to v ∈ Vi, |W ∩ Vi| 6= ∅ holds, i.e.,

i ∈ IW . This completes the proof. ¥
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