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Abstract

Let (X, dx) be am-point metric space. We show that there exists a distrinuti@ver non-contractive
embeddings into trees: X — T such that for everx € X,

2. [ max A9 1)

< C(logn)?,
yexiix - dx(X,Y) (togn)

whereC is a universal constant. Conversely we show that the aboadrgtic dependence on lag
cannot be improved in general. Such embeddings, which wenzalimum gradient embeddingseld

a framework for the design of approximation algorithms favide range of clustering problems with
monotone costs, including fault-tolerant versiong-ohedian and facility location.

1 Introduction

Metric embeddings are an invaluable tool in analysis, Rmamen geometry, group theory, graph theory,
and the design of approximation algorithms. In most casdseddings are used to “simplify” a geometric
object that we wish to understand, or on which we need to parézrtain algorithmic tasks. Thus one tries
to faithfully represent a metric space as a subset of anstare with controlled geometry, whose structure
is well enough understood to successfully address thegmobt hand. There is some obvious flexibility in
this approach: Both the choice of target space and the notitaithfulness of an embedding can be adapted
to the problem that we wish to solve. Of course, once theseeh@re made, the mainfiiiculty is the
construction of the required embedding, and in the algmithcontext we have the additional requirement
that the embedding can be computdiicently.

In this paper we introduce a new notion of embedding, caifeimum gradient embeddingshich
turns out to be perfectly suited for approximating a widegeaof clustering problems. We then provide op-
timal maximum gradient embeddings of general finite mepaces, and use them to design approximation
algorithms for several clustering problems. These emimgdyield a generic approach to many problems,
and we give some examples that illustrate this fact.

Due to their special structure, it is natural to try to embegtria spaces into trees. This is especially
important for algorithmic purposes, as many hard probleragractable on trees. Unfortunately, this is too
much to hope for in the bi-Lipschitz category: As shown by iRabich and Raz[[35] th&-cycle incurs
distortion Q(n) in any embedding into a tree. However, one can relax thia med look for arandom
embedding into a tree which is faithful on average.

Randomized embeddings into trees via mappings which doamitact distances (also known as prob-
abilistic embeddings into dominating trees) became an itapbalgorithmic paradigm due to the work of
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Bartal [3[4] (see alsao [1, 16] for the related problem of eddieg graphs into distributions over spanning
trees). This work led to the design of many approximatiorortlgms for a wide range of NP hard prob-
lems. In some cases the best known approximation factorduwedo the “probabilistic tree” approach,
while in other cases improved algorithms have been subsdgueund after the original application of
probabilistic embeddings was discovered. But, in bothgéss clear that the strength of Bartal’s approach
is that it is generic: For a certain type of problem one cartlkiyiget a polylogarithmic approximation
using probabilistic embedding into trees, and then prote@shalyze certain particular cases if one desires
to find better approximation guarantees. However, proistibilembeddings into trees do not always work.
In [7] Bartal and Mendel introduced the weaker notion of reithbeddings, and used it to design improved
algorithms for special classes of metric spaces. Herstigagtherthis notion to maximum gradient embed-
dings, yielding a faithfulness measure which is neveriselgeaker than bi-Lipschitz, and use it to design
approximation algorithms for harder problems to which tagprobabilistic embeddings do not apply.

Let (X, dx) and (Y, dy) be metric spaces, and fix a mappifhg X — Y. We shall say thaf is non-
contractiveif for every x,y € X we havedy(f(x), f(y)) = dx(x,y). Themaximum gradiendf f at a point
x € X is defined as

_ dv(f(x), f(¥)
lVf(X)|OO - yesxti{x} dX(X’ y)

(1)

Thus theLipschitz constanof f is given by
I fllLip = SUPIVf(X)leo.
xeX

Note that in the mathematical literature, mostly in the eshtof the study of isoperimetry on general
geodesic metric measure spaces (see for example [8, 28]¢ninmon to define thenodulus of the gradient
of f atxe Xas

[VE(X)| = lim supw.

y—oX dx(x.y) @)

The definition in[(2) is very natural in the context of conmetmetric spaces, but in the context of finite
metric spaces it clearly makes more sense to deal with thenmiax gradient as defined inl(1).

In what follows when we refer to a tree metric we mean the sisoqpath metric on a graph-theoretical
tree with weighted edges. Recall that, ¢y) is an ultrametric if for every, v,w € U we havedy (u, v) <
maxXdy (u, w), dy (w, V)}. It is well known that ultrametrics are tree metrics. Thddweing result is due to
Fakcharoenphol, Rao and Talwar[[17], and is a slight impream over an earlier theorem of Bartal [4]. For
everyn-point metric spaceX, dx) there is a distributior®Z over non-contractive embeddings into ultramet-
rics f : X — U such that

dy(F(x), f(y) | _
Xr;g))(( Eg [W] = O(logn). 3)

The logarithmic upper bound ibl(3) cannot be improved in gane

Inequality [3) is extremely useful for optimization protrle whose objective function is linear in the
distances, since by linearity of expectation it reduces sasks to trees, with only a logarithmic loss in the
approximation guarantee. When it comes to non-linear prob| the use of{3) is very limited. We will
show that this issue can be addressed using the followirggehg which is our main result.



Theorem 1. Let (X, dx) be an n-point metric space. Then there exists a distribuffoover non-contractive
embeddings into ultrametrics :fX — U (thus both the ultrametri¢U, dy) and the mapping f are random)
such that for every x X,

Eg [[Vf(X)le] < C(logn)?,

where C is a universal constant.

On the other hand there exists a universal constantCand arbitrarily large n-point metric spaces,Y
such that for any distribution over non-contractive embegsd into trees f: Y, — T there is necessarily
some X Y, for which

Eg [IVf(Xle] > c(logn)?.

We call embeddings as in Theoréin 1, i.e. embeddings withl sxpécted maximum gradientaxi-
mum gradient embeddings into distributions over trgesvhat follows we will only deal with distributions
over trees, so we will drop the last part of this title whererghg to the embedding, without creating any
ambiguity). The proof of the upper bound in Theoifgm 1 is a fication of an argument of Fakcharoenphol,
Rao and Talwar [17], which is based on ideas from [3, 11]. #suthe same stochastic decomposition of
metric spaces as in [17], but it relies on properties of italhare well known to experts, yet have not been
exploited in full strength in previous applications. Thguanent appears in Sectibh 2. Alternative proofs of
the main technical step of the proof of the upper bound in Tl can be also deduced from the results
of [32] or an argument in the proof of Lemma 2.1(in[[20]. In boftthese references the required inequality
is deduced from an improved analysis of the specific stoithdstomposition of Calinescu, Kaffcand
Rabani [11] that was used in [17]. Here we presentfiedint approach, which shows that the “padding
inequality” proved by Fakcharoenphol, Rao and Talwal ir] fah be used as a “black box” to yield a max-
imum gradient embedding, and there is no need to recall hevgtitchastic decomposition was originally
defined.

The heart of this paper is the lower bound in Theorém 1. Theicset, in Theoreni 1 are the diamond
graphs of Newman and Rabinovich [34], which will be definedSiection[B. These graphs have been
previously used as counter-examples in several embeddoigems— see [10, 21, 29,134]. In particular,
we were inspired to consider these examples by the prooflihd2the fact that they require distortion
Q(logn) in any probabilistic embedding into trees. However, owoprof the Q((logn)?) lower bound in
Theoreni 1 is considerably more delicate than the pro6fih [Phis proof, together with other lower bounds
for maximum gradient embeddings, is presented in SeLtion 3.

1.1 A framework for clustering problemswith monotone costs

We now turn to some algorithmic applications of Theofdm 1e §kneral reduction in Theorém 2 below
should also be viewed as an explanation why maximum gradierteddings are so natural— they are
precisely the notion of embedding which allows such redustito go through.

A general setting of the clustering problem is as followst Xé&e ann-point set, and denote by MEXJ]
the set of all metrics oiX. A possible clustering solutiooonsists of sets of the forfiixs, C1), ..., (%, Ck)}
wherexy, ..., x € XandCy,...,Cx C X. We think ofC4, . . ., Ci as the clusters, ang as the “center” oC;.

In this general framework we do not require that the clustexser X, or that they are pairwise disjoint, or
that they contain their centers. Thus the space of posdiléecing solution isS := 2Xx2 (though the exact
structure ofS does not play a role in the proof of Theoréin 2 below). Assuraé fibr every pointx € X,
every metricd e MET(X), and every possible clustering solutiéne S, we are giveri'(x,d, P) € [0, o],
which we think of as a measure of the dissatisfactiox wfth respect tdP andd. Our goal is to minimize
the average dissatisfaction of the pointeXofFormally, given a measure of dissatisfaction (which we als
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call in what follows aclustering cost functionl” : X x MET(X) x S — [0, 0], we wish to compute for a
given metricd € MET(X) the value

Opt-(X, d) € min {Z I(xd,P):Pe s}

XeX

(Since we are mainly concerned with the algorithmic aspktttie problem, we assume from now on tiat
can be computedficiently.)

We make two natural assumptions on the cost funcliorFirst of all, we will assume that it scales
homogeneously with respect to the metric, i.e. for every 0, x € X, d € MET(X) andP € S we have
I'(x, Ad, P) = AI'(x,d, P). Secondly we will assume th&itis monotone with respecting to the metric, i.e.
if d,d € MET(X) andx € X satisfyd(x,y) < d(x,y) for everyy e X thenI'(x,d, P) < I'(x,d, P). In other
words, if all the points inX are further with respect td from x then they are with respect t) thenx is
more dissatisfied. This is a very natural assumption to makenost clustering problems look for clusters
which are small in various (metric) senses. We call clusteproblems witH" satisfying these assumptions
monotone clustering problem&ssentially all the algorithmic minimization problemstthave benefitted
from an application of((3) can be cast as monotone clustgminglems, but this framework also applies to
some “non-linear” clustering optimization problems, asskeall see presently.

The following theorem is a simple application of TheofgmtEhows that it is enough to solve monotone
clustering problems on ultrametrics, with only a polylatianic loss in the approximation factor.

Theorem 2 (reduction to ultrametrics)Let X be an n-point set and fix a homogeneous monotone chgpteri
cost functio" : X x MET(X) x S — [0, oo]. Assume that there is a randomized polynomial time algarith
which approximate©pt-(X, p) to within a factora(n) on any ultrametrico € MET(X). Then there is a
randomized polynomial time algorithm which approxima®gs-(X, d) on any metric dc MET(X) to within

a factor of O(a(n)(logn)?).

Proof. Let (X, d) be ann-point metric space and l&? be the distribution over random ultrametrie®n X
from Theoreni 1L (which is computable in polynomial time, diofes directly from our proof of Theoreim 1
in Sectior 2). In other wordg(x, y) = d(x,y) for all x,y € X and

p(X.y)
max
yex\(xt d(X, y)

max E@
xeX

] < C(logn)2.

Let P € S be a clustering solution for which

Opt(X, d) = Z I(x, d, P).

XeX

Using the monotonicity and homogeneityIofve see that

Oopt-(X,p) < ZF(X,p, P) < ZF(X,[ max px y)] -d, P) = Z [ max p(x,y)] -T(x,d, P).

xeX xeX yex\ix) d(X, y) S yex\ix d(x,y)
Taking expectation we conclude that

max p(xy)

Efj [Optl"(x’ p)] S Z (E”@ yeX\{x} d(Xa Y)

XeX

D I'(x,d, P) < C(logn)? - Opt-(X, d).
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Hence, with probability at Iea%( we have
Opt(X. p) < 2C(logn)? - Opi(X, d).
For sucho compute a clustering solutio € S satisfying

> I(%.0. Q) < a(MOP(X. p) < 2Ca(n)(logn)? - Opi(X, d).

XeX

Sincep > d it remains to use the monotonicity Bfonce more to deduce that

2, T(xp.Q > > T(xd.Q > Opi(X.d).

XeX XeX
ThusQ is a0 (a(n)(log n)?) approximate solution to the clustering problem ¥nd) with costr" O

Theoreni 2 is a generic reduction, and in many particularsciageight be possible use a case-specific
analysis to improve th@((log n)2) loss in the approximation factor. However, as a general atsaiu
paradigm for clustering problems, Theorem 2 makes it cldgrmvaximum gradient embeddings are natural.

We shall now demonstrate the applicability of the monotdnetering framework to two concrete ex-
amples calledault-tolerant k-median clusteringndX/,, clustering We are not aware of a previous inves-
tigation of these problems, but we believe that they areequatural. It also seems plausible that, just as in
the problems for which Bartal's method originally yielddgktfirst non-trivial algorithmic results, a better
approximation factor might be obtainable via more probkgmeeific tools.

Fault-tolerant k-median and facility location. The k-median problem is as follows. Given arpoint
metric spaceX, dx) andk € N, find x,, ..., X € X that minimize the objective function
Z _min - dy(x, ;). (4)
e JEIXt, e X}

This very natural and well studied problem can be easily aashonotone clustering problem by defining
I'(x,d, {(X1,C1),...,(Xm, Cm)}) to beco if m# k, and otherwise

I(xd, {(x1,C1), ..., (Xm, Cm)}) =
JE{Xt,e X}

The linear structure of{4) makes it a prime example of a mwbWhich can be approximated using
Bartal’'s probabilistic embeddings. Indeed, the first navial approximation algorithm fok-median clus-
tering was obtained by Bartal ihl[4] (another such exampMiis-Sum clustering— see [5]). Since then
this problem has been investigated extensively: The finsstamt factor approximation for it was obtained
in [13] using LP rounding, and the first combinatorial (prlrdaal) constant-factor algorithm was obtained
in [24]. In [2] an analysis of a natural local search heurigields the best known approximation factor for
k-median clustering.

Here we study the following fault-tolerant version of tkenedian problem. LetX, d) be ann-point
metric space and fik € N. Assume that for everx € X we are given an integej(x) € X (which we
call the fault-tolerant parameter @f. Givenxy,...,Xc andx € X let x’j‘(x; d) be thej-th closest point to
Xin {X4,...,%}. In other words,{x]-*(x; d)}'j‘=1 is a re-ordering olxj}'j‘=1 such thatd(x, xj(x;d)) < --- <
d(x, x:(x; d)). Our goal is to minimize the objective function

2 d(x X6 ). (5)

xeX



To understand {5) assume for the sake of simplicity &t = j for all x € X. If {Xj}lj(:l minimize [8)
and j — 1 of them are deleted (due to possible noise), then we aressiired that on average every point
in X is close to one of the;. In this sense the clustering problem[in (5) is fault-taheran other words, the
optimum solution of[(b) is insensitive to (controlled) nmiObserve that foy = 1 we return to thé&-median
clustering problem.

We remark that another fault-tolerant versionkefnedian clustering was introduced in_[25]. In this
problem we connect each poirtin the metric spac& to j(X) centers, but the objective function is the
sum overx € X of the sum of the distances frorto all the j(X) centers. Once again, the linearity of the
objective function seems to make the problem easier, ai¥irg]constant factor approximation is achieved
(this immediately implies that our version of fault-tolet&-median clustering, i.e. the minimization éf (5),
has a0 (maxcx j(X)) approximation algorithm). In particular, the LP that was\ypously used fok-median
clustering naturally generalizes to this setting. Thisas$ the case for our fault-tolerant version [d (5).
Moreover, the local search techniquesKemedian clustering (see for examglé [2]) do not seem to bibyeas
generalizable to the cage- 1, and in any case seem to requifé)) time, which is not polynomial even for
moderate values gf

Arguing as above in the case kimedian clustering we see that the fault-tolermbhedian clustering
problem in [5) is a monotone clustering problem. In Sediidhwle show that it can be solved exactly in
polynomial time on ultrametrics. Thus, in combination witheoreni 2, we obtain @((Iog n)2) approxi-
mation algorithm for the minimization of (5) on general netr

Remarkl. Facility location type problems have been studied extehgisince the 1960’'s— we refer to the
book [33], and specifically to the chapter on uncapacitadedlify location [15], for a discussion of such
problems. The uncapacitated metric facility location peabis closely related tk-median problem (indeed
k-median can be reduced to it via Lagrangian relaxation—|[249,[and has been studied extensively in
recent years (seé [12,119]/23] 24,26, 36]). In the contexBlpive can also consider the following fault-
tolerant version of the facility location problem. Assumeaddition that we are given non-negative facility
costs{ fy}xex. Then the goal is to minimize over adl, . . ., Xx € X the objective function

K
Zl fu, + Z d (x, X0 (% d)) . (6)
i=

XeX

The casej(X) = 1 reduces to the classical un-capacitated metric facitgtion problem. The techniques
presented here can be easily generalized to yiélt@(wg n)2) approximation algorithm for the minimization
of (@) as well.

X, clustering. Another problem which illustrates the usefulness of Theniés theX(,, clustering problem
which we now describe. Our argument for this problem is qyetieeral, and it applies to more cost functions,
but it is beneficial to concentrate on a concrete example. pFei{1, «o] the ¢, clustering problem is as
follows: For a metric spaceX(d) andk € N the goal is to findky, . .., xx € X and a partition o into k sets
Ci,...,Cx € X which minimize the objective function

K 1/p
Z [Z d(x, x,-)p] . 7)
j=1 \xeC;j

When p = 1 this becomes thk-median problem, and whep = o this is the “sum of the cluster
radii” problem, which has been studied in [14]. In both ofdbheextreme cases there is a constant factor
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approximation algorithm known, so we automatically ge&d émin{nl/ P nt-Y ID}) approximation algorithm

for (). Here we shall use the framework of Theoifedm 2 to gi@(éog n)2) approximation algorithm for
this problem for genergp.

Observe that th&/,, clustering problems are monotone clustering problemseddgdall we need to do
is definel'(x, d, {(X1, C1), ..., (Xm, Cy)}) to beco if {Cq,...,Cn} is not a partition ofX or m # k. Otherwise
setl'(x, d, {(X1,C1),..., (%, Ck)}) = 0if x¢ {x1,..., %} and forj € {1,...,k},

1/p
F(xj.d. (%2, Ca). ... (% C)) = [Z d(x, xj)p] .

xeCj

This definition clearly make§ a homogeneous monotone clustering cost function for @ny [1, co].
The following lemma, combined with Theordmh 2, therefore liegpthat thex¢, clustering problem has a
O((logn)?) approximation algorithm.

Lemma 3. TheX{, clustering problem has a constant factor polynomial tim@ragimation algorithm
(even a FPTAS) on ultrametrics.

Lemmd 3B will be proved via dynamic programming in Sectfion 4.1

2 Proof of the upper bound in Theorem(1]

We start by recalling some terminology and results conogrrandom partitions of metric spaces. Given a
partition &2 of a finite metric spaceX, dx) andx € X we denote by??(x) the unique element o to which

X belongs. FoA > 0 the partitionZ? is said to beA-bounded if for every € X we have diam{?(x)) < A.

We also fix a positive measugeon X. The following fundamental result is due o [17] wheis the uniform
measure oX. The case of general measures was observed in [27, 30], asgdicific numerical constants
used below are taken from [32].

Lemma4. For everyA > Othere exists a distribution oveY-bounded partitions? of X such that for every
xe X and evenp <t < A/8,

H(Bx(x, A))
H(Bx(x A/8))

We also recall the notion of guotient of a metric spacgsee [9, 18, 31]). Le¥ = {W4,...,Wy} be a
partition of X. ForW, W’ € % write dx(W, W) = min{dx(x,y) : X € W, y € W'}. The quotient metric space
(X/# ,dx,») is define as follows. As a s&/# coincides with#”". The metricdy,y is the maximal metric
on# which is majorized bydy(, -). In other words, folN, W' € 7,

Pr[Bx(x,t) ¢ 2(X)] < % -log (8)

m-1
dy/ v (W, W) = min{z dx(Vj-1.Vj): Vo,....Vim1€#, Vo =W, Vip_1 = W'}-
-1

Note that theV;'s in the definition above need not be distinct.

The following lemma is a well known “quotient version” of Lemal4. The argument dates back at least
to Bartal [3], and appeared in various guises in severalrgitaees— see for example [22/32]. Since we
couldn’t locate the formulation that we need in the literafwe include a proof here.



Lemma 5. Let (X,dx) be an n-point metric space amtl > 0. Then there exists a distribution ovar
bounded partitions? of X such that for every,¥ € X, if dx(X,y) < % then2(x) = Z(y), and for every
xe Xand0 <t < A/16,

3 H(Bx(x A))

< — . LI A S A
PriBx(x ) ¢ #(9] < 7 -log - = Sress
Proof. Define an equivalence relation ofiby x ~ y if there existsk € N andXo,...,x € X such that
Xo = X X = y anddx(X_1, %) < % foralli € {1,...,k}. Let# = {Wy,...,Wq} be the equivalence
classes of this relation, and consider the quotient mepcaX/?” . We also denote by : X —» # the
induced quotient map, i.e. fore Wj, n(x) = W;. Letu o n~! be the measure o’ given forW € # by
wo Y W) = u(r~1(W)). Observe that for every,y € X,

dx(Y) - 5 < g (X, 70) < c(xY) ©

Indeed, the upper bound inl (9) is immediate from the defimitiba quotient metric. The lower bound [d (9)
is proved as follows. There are points= Xg, X1, ..., Xm-1 = Y in X such that the sel{s.r(xj)}”Fl are distinct
(and hence disjoint), and, (7(X), 7(y)) = Z’j“: dx(n(xj_l) n(x;)). Forje{l,...,m-1}leta; € n(Xj-1)
andb; € n(x;) be such thatx(a;, bj) = dx(7(xj-1),7(X;)). Since, by the definition of the equivalence
relation~, for all ze X we have diamt(2)) = maxqpex(z) dx(a, b) < W we get that

m-1

dx(xY) < dx(x a) + Z dx(ay, by) + Z dx (b, ajs1) + dx(bm-1,Y)
j=1 =1
A

5t dx/y (m(X), (y)),

\Z('“(X’)' D2 ¢ b (9. 70) <

implying the lower bound ir{9).
Let 2 be a distribution oveA/2-bounded partitions oK/%# such that for every’V € # and every
0<t< A/16 we have

32t wo By (W, A/2))
Pr[Bx»(Wt) ¢ 2(W)] < — -lo 10 7By (W A/16))

(10)

The existence of2 follows from Lemmd%. Let? be the partition oiX given by & = (71(A) : Ae 2).
Note that[[®) implies that for every € X we haver= (By,» (7(X), A/2)) € Bx(x, A) and for everyt > 0,
771 By, (m(X), t)) 2 Bx(x1). Thus [I0) implies that for everye X and O< t < A/16,

32| u(Bx(x )

Pr[Bx(x,t) ¢ Z(X)] < Pr[Bx;» (7(x),t) ¢ 2(n(x))] < A 2(Bx(% A/16))

It remains to note that9) implies tha? is A-bounded and ifix(x,y) < % thenx ~ y, which means that
n(X) = n(y), so that#(x) = L2(y). m|

Proof of the upper bound in Theorém Eor everyk € Z let & be a random partition sampled from the
distribution over partitions oK from Lemma% withA = 16¢, whereyu is the counting measure ot (we
assume in what follows that the distributions foffeient values ok are independent). Fogy € X letk
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be the largest integer for whicl(X) # Zk(y) (such ak must exists since for small enoughwe have
P2 = {z) for all z € X). Denotep(x,y) = 161, Thenp is a (random) ultrametric oiX. Indeed, if
X,y,z € Xandp(x y) = 161 then 2 (x) # Z(y). It follows that eitherZ(2) # Z(X) or Z(2) # Zk(Y).
Thus by the definition ob we have that may(x, 2), p(y, 2)} > p(x, y). Note also that ip(x,y) = 161 then
Pri1(X) = Prer(y), so thatdy(x, y) < diam(Z(x)) < 161 = p(x,y). It follows that the identity mapping
on X is a random non-contractive embeddingfinto the ultrametric X, p). Finally, since whenever
dx(x,y) < we haveZ«(x) = Zk(y), we are ensured tha{x, y) < 32ndx(x, y) for everyx,y € X.

Denote forx € X andi e Z, Ai(X) = Bx(x, 16)\Bx(x, 16~1). For everyj € N andk € Z if Bx(x, 16<1) ¢
Z(X) then for everyy € By(x, 16<1) we haveZ(x) = Zk(y), and therefore by the definition p{x, y)
we havep(x,y) < 16¢. Thus, ify € A j(X) we havep(x,y) < 16¢ < 16/*1dy(x,y). This establishes the
following inclusion of events:

p(X y) j+1 —j

hence

PORY) | gt [Bx(x, 16
et gy > 19 <P 18 2 ) < 5o

Thus, sinceX = | Jiez Ai(X), we see that

p(%.y) ] { p(%y) } [ o« POCY)
Pr| max ——= > 16/ = Pr max >16 3| < ) Pr[ ma
[yex\{X} dx(%.y) [U yeA ) dx(x.y) é JeAD) Ox(XY) ~
32 IBx(x, 16+i-1)] 512
<2151 9o <18 9 4D

i€z

It follows that there exists a universal constént 0 such that for alb > 0 we have

p(%.Y) u] Clogn
yex\ix) dx(X, y) u

Hence, using the a priori boundx, y) < 32ndx(X,Y), it follows that

32n 32n
Py) f - { Clogn} 2

= Pr| max ——— > u|du< min<1, du=0O(1+ (logn)*).
jc: [YGX\ dx(xy) ~ 0 u ( (log ))

This completes the proof of the upper bound in Thedrém 1. m]

p(X.)
max ———
[yeX\{x} dx(x.y)

Remark2. The above argument also shows that for ewepoint metric spaceX, dx) there exists a distri-
bution over non-contractive embeddings into ultrametficsX — U such that

B [IVF(¥l] = O(L+ (logn) log &(X)).

where®(X) is the aspect ratio ok, which is defined by

diamX  maxcex dx(X.Y)
O(X) =
Minkyex dx(X,y) ~ Minyyex dx(X,y)
X£Y X£Y



3 Tight lower boundsfor cycles, paths, and diamond graphs

As mentioned in the introduction, the metri¥s in Theoren{ 1L are the diamond graphs of Newman and
Rabinovich [34], which will be defined presently. Before fiag to this more complicated (and strongest)
lower bound, we will analyze the simpler examples of cycled paths, which are of independent interest.

LetC,, n > 3, be the unweighted path onvertices. We will identifyC,, with the groupZ, of integers
modulon. We first observe that in this special case the upper bounch@o®Eni Il can be improved to
O(logn). This is achieved by using Karp’s embedding of the cycle sganning paths— we simply choose
an edge ofC, uniformly at random and delete it. Ldt: C, — Z be the randomized embedding thus
obtained, which is clearly non-contractive.

As Karp observed, one can readily verify that as a probaiciksmbedding into tree$ has distortion at
most 2. We will now show that as a maximum gradient embeddirtggs distortion®(logn). Indeed, fix
x € Cp, and denote the deleted edgefhya + 1}. Assume thatlc,(X,a) =t < n/2 — 1. Then the distance
froma+ 1 toxchanged front+ 1inC,ton—t -1 in the path. Itis also easy to see that this is where the
maximum gradient is attained. Thus

BV~ 2 Y T
O<t<n/2

= O(logn).

We will now show that any maximum gradient embeddinggfnto a distribution over trees incurs distor-
tion Q(logn). For this purpose we will use the following lemma from|[35].

Lemma 6. For any tree metric T, and any non-contractive embedding@y, — T, there exists an edge
(x, x+ 1) of G, such that g(g(x),g(x+ 1)) > § - 1.

Now, let 2 be a distribution over non-contractive embedding€,pinto treesf : C,, » T. By Lemmd6
we know that there exists € C,, such thaidt(f(x), f(x + 1)) > ”;33 Thus for everyy € C,, we have that
max(dr (f(y), f(x), dr(f(y), f(x+1))} > 2. On the other hand médc, (v, X), dc, (¥, X+ 1)} < de, (X y) + 1.

It follows that
n-3

Summing this inequality over e C, we see that

Z VYo > Z (?k;ji = Q(nlogn).

yeCp O<ksn/2
Thus
1
MaxEy [V (Y)lo] > = " EolV(y)lo = Q(ogn),
yeCn n
yeCn
as required.

We will now deal with the more complicated case of maximundgmat embeddings of the unweighted
path onn-vertices, which we denote W, into ultrametrics. The following proposition shows thdieb-
rem[1 is optimal when one considers embeddings into ultnaesefThis is weaker than the lower bound in
Theorenti 1L, which deals with embeddings into arbitrary t(eete thatP, is a tree).

Proposition 7. LetZ be a distribution over non-contractive embeddings giirffo ultrametrics f: P, — U.
Then there exists & P, such thatE [|V f(X)|.] = Q((logn)?).
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Before proving Proposition] 7 we record the following nuroatinequalities.
Lemma 8. The following elementary inequalities hold true:

1. Foreveryabe{0,1,2,...},

a(loga)? + b(logb)? > (a+ b) (log(a + b))2 -2 alog(a+ b).

1+ Iog(a%ab)

2. Forevery x> 1, (1 +logx) log x < 4+/x.

Proof. The first inequality is trivial ifa = 0 orb = 0, so assume that b > 1. Denote fort > 0, y(t) =
t(logt)2. Then

a+b
(a+ b) (log(a+ b))? - b(logh)? = f ¢/ (t)dt
b

a+b
f [(logt)? + 2logt| dt
b

a(log(a+ b)) + 2alog(a + b)

N

a(loga)? + a[log(a + b) + loga] - log (a%ab) + 2alog(a + b)

a(loga)® + 2|1 + log (a%ab)

N

alog(a+ b),

proving the first assertion in Lemrha 8.
The second assertion in Clalh 8 follows from the inequalityX < 2+/x — 1, which is true since the
minimum of the functiory — 24/ — 1 -logy, which is attained & = 16, is positive. O

Proof of Propositiori l7.We think of P, as the interval of integers= {0, ...,n - 1} C R. Arguing the same
as in the case of the cycle,, it is enough to prove that iff, dy) is an ultrametric and : P, — U is
non-contractive then

1 n-1
= DIVl > cllogn)?, (12)
x=0

wherec > 0 is a universal constant.

Given asub-interval = {a,a+1,...,a+t} € {0,...,n—1} letm; be the largest poinh € {a+1,...,a+t}
for whichdy (f(m— 1), f(m)) = [IflsllLip = Max<i<t du(f(a+i—1), f(a+i)) (if t = 0 then we sein; = a).
Since the distortion of in any embedding into an ultrametric is at legt- 1 (see Lemma 2.4 in [31]), we
know thatdy (f(m; — 1), f(my)) > t = |J| - 1. We shall denote in what followd; to be the shorter of the two
intervals{a,a+1,...,my— 1} and{m;,...,a+ t} (breaking ties arbitrarily), and, will denote the longer of
these two intervals (wheld| = 1 we use the conventiody = Jp). Thusd = Js U Jp and|J4 < |Jp|. Finally,
let x; be the point inJs which is closest ta), (so thatx; € {m, my_1}).

We define a functiony; : J — R inductively as follows. If 1< |J¢ < V|J| then

93,(X) if x € Js\ {x3},
900 = {3 [1+log(5)]9dlogldl if x=x;, (13)
93,(X) if x e Jp.

11



If, on the other handJs| > +/]J] then

g3.(%) if xe Jsand|x — x3| > V]I,
W) =y if xe Jsandix— x| < VI3, (14)

93,(X) if xe Jp.

The following claim summarizes the crucial properties @& these mappings. Recall that we are using
the notationl = {0,...,n-1}.

Claim 9. The following assertions hold true for every sub-intervat 0.

du(f(9.f0))

1. For every xe J we have g(X) < [V(f|3)(X)|e = MaXe\(x Fay

2. Forevery xe J, g3(X) < |J] —
3. If 3¢ > VI and|x - x3| < V[Jd then g (X) < 4V[Js

Proof. The proofs of all of the assertions in Clalith 9 will be by indanton J. To prove the first assertion
assume first that X |Jg] < V[J]. From the recursive definition if {1L3) it follows that we skbshow
that & [1+ Iog(%)]ng log|J| < IV(fl3)(X))le. Sincex; € {my — 1, my} the definition ofm; implies that
IV(f]3)(X3)leo = |J| = 1. Thus it is enough to show thét(l +log|J)) Vidllog|J| < |J] - 1, which follows
from the second assertion in Lemfda 8. If, on the other hglgdy> +]J] then from the recursive definition
in (I4) it follows that it is enough to show that for everg Js we have-2=1_ < |V(f|;)(X)|.. But sinceU

X=x3[+1
is an ultrametric we know that
1] = L < dy(f(my = 1), f(my)) < maxdy (f(x), f(my — 1)), dy (f(x), f(my))},

which implies the required lower bound ¢W(f|;)(X)|. Sincex; € {my — 1, m3}. The second assertion in
Claim[9 is proved similarly.

It remains to prove the third assertion in Lemia 9. Ketc Js be the sub-interval ofg in which
the value ofg; (x) was first set. In other wordd{ C Js is the smallest interval for whick € Ks and
gk (X) = g3.(X). It follows in particular thatx — xk| < VK4 Also, by construction it is always the case that
eitherKs or Ky, is contained in the interval [mimy, X3}, maxX X, X3}]. SinceKs is shorter tharky, we are
assured that

Kl < I = Xl < Ixx = X+ 1x = X3l < VIKdl + V13l < 24134, (15)
If |Ks| < VIK] then necessarily = xx andgk (X) was determined by the second line[in](13). Hence
00 = 96 = 5|1 +109( g || Kal0g K1 < 5 1.+ Iog3s] {Tlog 3 < 4y, (19)

S

where we used (15) and the last inequality(in (16) followsfiitne second assertion of Lemfia 8.
OtherwisgKg| > VIK] andgk (x) was determined by the second line[inl(14), i.e.

= =——<|K Kgl® < 4+/|J4,
93,(X) = gk (X) X— x| + 1 < K| < [Kg |Jsl
where we used (15). This completes the proof of Cldim 9. i
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With Claim[@ at hand we are in position to conclude the prooPadposition V. We will prove by
induction on|J| that

>9300 > clJi(log 13))2. (17)
xed

This will prove [12), and hence imply Propositioh 7, sincetliy first assertion of Claild 9 we get that

Z VFO)lo > D 91(X) > enllogn)*

x=0 xel

Inequality [I7) trivially holds true with small enough coastc if |J] < 2%°, so assume th&d| > 2%°. To
prove [17) we distinguish between two cases$Jdf< +/[J| then sincey;, (x;) < |34 (by the second assertion
in Claim[9) we see by induction that

Do) = D050+ D950+ a(x0) - u, (%)

Xed XeJs XeJp

> c(13d(Iog 134)? + 1pl(log 136))?) + 2 1+Iog(|'J'|)]|Js|log|J| 13 (18)

> cJ|(log|J))? - 2¢ 1+Iog(|| ||) 1J¢|log|J] + 1+Iog(|| ||)]|Js| log |J| (19)
S S

> clJ|(log|J))>, (20)

where in [18) we used the inductive hypothesis and the inductefinition in [13) , in [(IB) we used
Lemma8, and(20) holds far< 4
On the other hand iflg > V|J] then

~ 19— 1
Yam = Yumryans Y (et -ae) (1)
xeJ XeJs XeJp XeJs
[X=X3]< V6]
| i3]
> cJ(log|J))? - 2¢ 1+Iog LA |35/ log 3] + M—SUSF/“ (22)
13¢//] K+ 1

k=0
131\]
13|
131\]
13l /.
> clJl(log|J))>, (24)

v

1
cJl(log|JN)? - 2¢ 1+Iog( |Js|log|J|+Z(|J|—1)Iog|Js|—8|J|3/4

v

1
> clJl(logl)* - 2c|1+ |09( 13l log|J| + é(IJI —1)log|Js| (23)

\_/

where in [[21) we used the inductive definition [in](14),[in] (#8 used the inductive hypothesis, Lema 8
and Claim[®, and inequalitie§ (23) arid](24) hold fdr > 2%° and small enougte, respectively, since
B <134 > VIJI. This completes the proof of Propositioh 7. O

We now pass to the proof of the lower bound in Thedrém 1 in lisftength, i.e. in the case of maximum
gradient embeddings into trees. We start by describingidreahd graphs$Gy},” ;, and a special labelling
of them that we will use throughout the ensuing arguments. firkt diamond grapf®; is a cycle of length
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4, andGy, 1 is obtained fromGy by replacing each edge by a quadrilateral. TBuhas 4 edges ane?”‘é—*"’
vertices. As we have done before, the required lower bounghaximum gradient embeddings Gf into

trees will be proved if we show that for every tréeand every non-contractive embeddihg Gy — T we
have

F 2 DI = a(@). (25)
ecE(Gk) xee

Note that the inequality (25) is fierent from the inequalities that we proved in the case of yae@and
the path in that the weighting on the verticesGpfthat it induces is not uniform— high degree vertices get
more weight in the average in the left-hand side of (25).

We will prove [2%) by induction ork. In order to facilitate such an induction, we will first stgghen
the inductive hypothesis. To this end we need to introduceeduli labelling ofGx. For 1 < i < k the
graphGy contains 4 canonical copies of5;, which we index by elements ¢l 2, 3,4}, and denote
{GE?]}QE (L234)1" These graphs are defined as follows—see Figures 1 and 2 ¢beenatic description.

a2

Figure 1: The grapks, and the labelling of the canonical copies®f contained in it.

A
N

Figure 2: The grapks; and the induced labelling of canonical copiessafandG,.

Formally, we seGE;% = Gy, and assume inductively that the canonical subgraptGyof have been
defined. LetH1, Ho, H3, Hy be the top-right, top-left, bottom-right and bottom-lefiptes ofGy_;1 in Gy,
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respectively. For € {1,2 3,4}k 17" and|j € {1, 2,3, 4} we denote the copy d&; in H; corresponding to

(k1) 1 (0
G~ bY Gpjar-

Forevery I< i < kanda € {1,2,3, 4% |et Tfﬁ BE';)] LE?] R%ckl)] be the topmost, bottom-most, left-most,

and right-most vertices (ﬁ(?], respectively. We will construct inductively a set of simplyclessj,; in GE?]
and for eaclC € 4}, an edlgeac € E (%]a), With the following properties.

1. The cycles irs],) are edge-disjoint, and they all pass through the verfrﬁ%sBE';)], LE';)] (z)] There
are 2-1 cycles in%j,), and each of them contain&2edges. Thus in particular the cyclesdfy; form

a disjoint cover of the edges (EE?]

2. I C € % andec = {x.y} thendr (f(x), F(y)) > 25 - 1.

3. DenoteEj,) = {ec : C € ) and A = Uoer,2341 Efa]- The edges im\; will be called the
designated edgesf leveli. Fore € {1,2,3,4}¢1 C ¢ Gl andj < iletAj(C) = Ajn E(C) be the
designated edges of levglon C. Then we require that each of the two paﬂfﬁg - L® - B® and

[a] [a]
® _ K (®) i i9j-1 .
T[a] - R[a] - B[a] in C contains exactly '2)~* edges from\(C).
The construction is done by induction arFori = 1 anda € {1, 2, 3, 41 we let ¢}, contain only the
K = i (k) i —
4—cycIeG[a] itself. Moreover by Lemmal6 there is and edQ%)] € E(G[a]) such that |st§?] = {x,y} then
dr (f(x), f(y)) = % This completes the construction for 1. Assuming we have completed the construction
for i — 1 we construct the cycles at leves follows. Fix arbitrary cycle€; € 4[14], Co € G241, C3 € {341,
Cy4 € Claq1- We will use these four cycles to construct two cycleséip. The first one consists of the

T[(g - R%ckl)] path inC; which contains the edge:,, the R%ckl)] - BE';)] path inCs which does not contain the

edgesc,, the BE';)] - LE?] path inC4 which contains the edge:,, and theL(';)] - Tfﬁ path inC, which does
not contain the edgec,. The remaining edges iB(C;) U E(Cy) U E(ng U E(C4) constitute the second
cycle that we extract fron€y, Cy, C3z, C4. Continuing in this manner by choosing cycles fr@a,; \ {C1},
C12a) \ {C2}, G391 \ {C3}, Claa) \ {C4} and repeating this procedure, and then continuing until xuest
the cycles ir6[14] U €201 U 6[34] U €Jaa, We ODbtain the set of cycles,. For everyC € ¢, we then apply
Lemmd. 6 to obtain an edgg with the required property.

For each edge € E(Gy) leta € {1,2,3, 4 be the unique multi-index such thate E(Gﬁ?]) We
denote byC;j(e) the unique cycle ir¢j,) containinge. We will also denotég(e) = c,g. Finally we let
a;(e) € eandb;(e) € €(e) be vertices such that

dr (f(ai(€), f(bi(€))) = maxdr(f(a), f(b)).
bee(e)

Note that by the definition &&(€) and the triangle inequality we are assured that

1 2i+l 2i

dr(f(y f(b; > - -1|> —. 26

(@) 1@ > 5 (% -1)> 5 (26)
Recall that we plan to prové (R5) by induction knHaving done all of the above preparation, we are

now in position to strengthen (P5) so as to make the induetigement easier. Given two edges € Gy

we writee ~; hif both e, h are on the same canonical copy@fin G, Ci(e) = Ci(h) = C, and furthermore

e andh on the same side &. In other wordse —~; hiif there isa € {1, 2, 3,4} andC € %[« SUCh that if

we partition the edges @ into two disjointT[(g - BE';)] paths, there andh are on the same path.
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Let m € N be a universal constant that will be specified later. Foryimeger? < k/m and any
a € {1,2,3,4%™ define

1 Z max dT(f(aim(e)),f(bim(e)))/\zim'

Lg(a/) = — .
A L el , ds. (e e)+1
%E(GEZ)])G’\imam(e) Gk( am( ))

We also writeL, = min, ¢y 53 4w L¢(e). We will prove thatl, > L, 1 + ¢, wherec > 0 is a universal
constant. This will imply that fof = [k/m| we havel, = Q(k?) (sincemis a universal constant). By simple

arithmetic [25) follows.
Observe that for every € {1, 2, 3, 4/ ™ we have

L) = — LSy G@n©). (On(@) 127

m 4mie-1) ie(1,...0) do. (6, 8m() + 1
Be(1,2,3,4)m eeE(G[M) eirBin(® k( m(€))

1 1 dr (f(@m(e). f(bim(€)) A 2™
= Z M Z |e{JI:naX -

m 1) dg, (e €m(e) +1

4m
Bel1,2.34) e<E(Gjj;) e~m@m(e)

e

e<E(Gfy)

1 dr (f (@um(®). (brm(€) A 2
2, M0 @) + 1 (e min(@)

ot (f (aim(€), f(bim(€))) A 2

ieflnt-1) de, (e 8m(e) +1
e~imém(e)
1
= 4—m Z Lt’—l(ﬂa’)
pe{1,2,3,44M
1 dr(f(am(®), f(bem(€)) A 2™
e Z maxi 0, o= " Lo~ sm@im(e)
e d e e 1 £mSm
eeE(GE?]) Gk(ea Km( )) +
) dr (f(@m(©), f(Bim(€)) A 2M
i€(Lnl~1) de, (e 8m(e) +1
e~imém(e)
1 dr(f(am(®), f(bem(€)) A 2™
> La+= > maxio, = * Lo igm(@)
d 1 £mEfm
4 ) G (& €m(e)) +

—~ dr(f(am(e)), f(bim())) A 2™
L.l dg(eBm(e) + 1

€~im&m(€)
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Thus itis enough to show that

pder 1 Z maxl 0 dr (f(@m(e)), f(bem(€))) A 2™

— . .
A eeE(GEk)]) ds (& &m(e) + 1 {e~emBem(€)}

max  Gr(f@m(®), f(Bim(e) A 2™

ie(L...0~1) dg, (e €m(e) +1
e~im&m(e)

= Q). 27

To prove [2T) denote fo€ € %

Sc=4qe€ EC): & ~me and

dr(f(am(e)), f(bim())) A 2™ _ 1 dr(fam(®). fbam(e) A 2
el de, (6 8m(e) + 1 T2 o (6 €m(©) + 1
Then using[(26) we see that
A s 1L dr (f(@m(e)), f(brm(e))) A 2™
2.4 Gyl dg, (e €&m(e) +1
1 dr(f(@am(@), flom(@) A 2™ 1 dr (f(@am(e)), f(bm(e))) A 2™
2.4 ng}al see%c)e do, (e Bm(@) + 1 2.4 c;g[(,] e; Oo, (€ (@) + 1

2m€—l
1 2™ 1 dr(f(am(©)), f(bem(€))) A 2T
2. 4mt CEZ%M ; 120 2.4 CEZ%M eezsc dg (& €&m(e) + 1

1 1 r(f (am(®). { (Bum(@)) A 27
Q(W"CK[‘*}"ZWW)‘- 22T @)

Ce%a) €€Sc

Q(me) - i Z Z dr (f(amm(e)), f(bm(€)) A 2[”‘.

2-4m Ce%ja) €Sc dg, (e €&m(e) + 1

(28)

To estimate the negative term [n{28) fixe 4j,;. For every edge € Sc (which implies in particular
thatém(e) = ec) we fix an integei < ¢ such thae ~iy, €m(€) and

2m _ dr(f@m(®). flom@) A 2™ 1 dr(f@am(e). f(bem(e) A 2™
do, (& 8m(€) + 1~ do (e €m(e) +1 "~ 2 do, (e €&m(€) + 1

1 2€m
> 5
12 de(e, e)+1
or

Ao, (8 8m(e) + 1 < 279™4 [dg, (e, ec) + 1] . (29)
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We shall call the edgem(e) the designated edge that insereddto Sc. For a designated edges E(C) of
levelim (i.e. £ € Ain(C)) we shall denote byc(¢) the set of edges & which ¢ inserted tdSc. Denoting
D, = dg, (&, ec) + 1 we see thaf(29) implies that fere &¢(¢) we have

ID; - [do, (& &c) + 1] | < 2079™4 [dg, (e, ec) + 1] . (30)
Assuming tham > 5 we are assured that 2™ < 1. Thus [30) implies that
ﬁ <dg (e ec) +1< ﬁ
Hence
Z dT(f(azm(e)),Af(bfm(e))) A2 < Sl 2m
& do, (e €&m(€) + 1 T b o) oty den(® ec) +1

N

-1 me
22, 2. 2T
=1 ceAm(C) =y ]
De NES De
1+20—Om+4 SIS _o(i-Om4

-1 i

| 1+ 2(|—€)m+4

= O(1)-2™ > JAim(C)l - log(m)
i=1

= O(1)- 2fM. 270m. 20=0m = (1) - 2.
Thus, usingl(28) we see that

1

A= Q) - O(1)-

|| 2™ € = Q(me) - O(L) = Q(0),

provided thaimis a large enough absolute constant.
This completes the proof of the lower bound in Theokém 1. m]

4 Monotone clustering problems

In this section we give some examples which illustrate hoktag® monotone clustering problems can be
solved dficiently on ultrametrics. Our arguments are quite flexibie apply in more general situations.

Before passing to these algorithms, we make a few generarksmn the framework for monotone cluster-
ing that was discussed in the introduction.

In the definition of monotone clustering we required thét, d, P) is homogeneous id. One might
wonder whether it is possible to consider also higher ordEmmogeneity, i.e. clustering cost functidns
which satisfyI'(x, Ad, P) = APT'(x, d, P) for somep > 1 (this occurs, for example, in themeans clustering
problem, where the goal is to find“centers” that minimize the sum over the data points of theased
distance to the closest center). For the proof of ThedremwZotd in this setting we need a distribution
over non-contractive embeddings into ultrametrics X — U with a polylogarithmic upper bound on the
expected value d¥ f(x)|%,. Unfortunately, this is impossible to achieve in generatided, letf : C, — T
be a random non-contractive embedding ofrtkeycle into trees. Lemnid 6 implies that there exists an edge
(x, x+ 1) € E(Cp) for whichdr(f(x), f(x+ 1)) > 2 - 1. Thus

S (9. 1) > .

P
{xYy}€E(Cn) 12
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Taking expectation we see that

1 nP-1
XE@%)E[M(X»EO] > XevZ(‘éﬂ)E[Wf(x)@] >

We note, however, that the proof of Theorem 2 used the honedtyesf I' in a weak way. In order to get
a polylogarithmic reduction to ultrametrics is enough telese, for example, that for evely> 1 we have
I'(x, Ad, P) = O(polylog(n)) - 2 - T'(x,d, P).

Our second remark concerns the fact that the solution spaegadnotone clustering problem that was
presented in the introduction wa¥?". Thisis a huge space, and as we have seen in Séction 1.1fibhg set
the clustering cost function to ke on certain possible clustering solutions it is possiblectiuce the size
of this space. Additionally, in the arguments is Seclionthel cost functior” ignored the structure of the
solution space. Thus in a more generic formulation of the atmme clustering framework we can assume
that the solution space is some abstract finite&t). For example, in our version of the fault-tolerant
k-median problem we can take the solution space the

4.1 Monotone clustering on ultrametrics via dynamic programming

We now pass to the design of some monotone clustering digmsibn ultrametrics. It is a standard fact (see

for examplel[[6]) that any ultrametri¢J(dy) can be represented as follows. There is a graph theoréteal

T = (V,E) such thatU is the set of leaves of. The vertices ofl are labelled by : V — [0, «) and for

everyu,v € U we havedy (u,v) = A(lca(u, v)), where Icag, v) is the least common ancestorwandvin T.

We may, and will, assume in what follows that every verteX @ either a leaf or has exactly two children.
We begin by showing that the fault-tolerant version of kamedian problem described ihl (5) can be

solved exactly on ultrametrics.

Lemma10. The minimization of the objective function(@) can be solved exactly on any n-point ultramet-
ric in time O(kr?).

Proof. Let (U, dy) be ann-point ultrametric and leT = (V, E) be a binary tree with vertex labels: V —
[0, o0) which representt). We also assume that we are given fault-tolerant paramigi@p$.cy. For every
v eV let T, denote the subtree df rooted atv. Define forv e V andse {0, ...,k}

cost (v, s) = min Z du (X Xy (6 du)) © e, X, ..., Xs€ TyNU ¢ (31)
xeTyNU
j(¥<s
Our goal is to compute cagt, k), wherer is the root ofT. This will be done using dynamic program-
ming. For any leafi € U ands € {0,...,k} define costf, s) = 0. Letv € V be an internal vertex with two
childrenu, w € V. Define recursively

costf,s) = m

in_| cost(t) + costgy, s- t)
t€{0,...,s}

+AW) - (xeTynU s t<j < sl +lixe TwnU: s—t< j() <sl)]. (32)

A bottom-up computation of the dynamic program[inl(32) cotepicost, s) naively inO(kr?) time.
We will be done if we show that cost(s) = cost(v, s) for anyv € V ands € {0,...,k}. The fact that
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cost(v, s) < cost, s) is obvious sincel(32) computes a feasible solution of (81} fact is proved by a
straightforward induction).
We prove the reverse inequality by induction|®@. Let Xy, ..., Xs € Ty N U be such that

cost(v, s) = Z du (% X (X du)).-
xeTyNU
j(¥)<s

Let u,w be the children ov in T. We may reorder the points so that for soime {0,..., s} we have
(X, .., X%} = TuN{Xq, ..., X} and{Xee1, ..., Xs} = Tw N {X1,..., Xs}. Then

cost (v, s) = Z du (% X9 (% du))

xeTyNU
j(¥)<s
= > du(xXecdu))+ > du (%X, 06 du))
xeTynU xeTwNU
()<t j()<s-t
+AMV) - ({IXeTunU:t<jX) <8+ {xeTwnU: s—t< j(x) <8} (33)
> cost(u,t) + cost(w,s—1)
+AMV) - ({IXeTunU:t<jX) <8+ {xeTwnU: s—t< j(x) <8} (34)
> cost(,t) + cost@v, s—1t)
+ANV) - ((xeTynU i t<j(X) < sfl+[{xeTynU: s—t< j(X) <) (35)
> costl, s), (36)

where in[[3B) we used the fact that the tleeepresents the ultrametrit/(dy), in (34) we used the definition
of cost(u,t) and cost(w, s — t) given by [31), in[(35) we used the inductive hypothesis, enB8) we
used[(3R). m|

Our final result is the proof of Lemnid 3, which yields a FPTAS tlwe X¢,, clustering problem on
ultrametrics. We start with the following inequality.

Lemmall. Fix p> land assume thata>a, > --->a,>0andh,...,b, > 0. Then
n n 1/p
Z(ap +bP)P > Za, +[ + bj’] :
j=2
Proof. The proof is by induction on, and the inductive hypothesis simplifies to
n p n+1 1/p
[a{) " Z b}“] T [31 " Z bp] ~ (@, + b )YP (37)
=1

Denote forx > 0

0 1p
f(x) = [af + 0P+ x] — (@ +X)YP.
=1
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Inequality [37) isf (b ,) < f(0), so it is enough to prove thétis decreasing. But

n+1
1 1 1 1

- < - <
R I B R L LT

f/(x) =

0,

sincea; > any1. O

Proof of Lemmal3Let (U,dy) be ann-point ultrametric and leT = (V, E) be a binary tree with vertex
labelsA : V — [0, o) which representt). Forv e V, ¢ € {0,...,k}, s€ {0,...,n} andt € [0, o) define
B*(v, ¢, s t) to be the minimum cost according id (7) to clusigmn U using¢ sets and centers, when we are
allowed to excludes points fromT, N U, and the most costly cluster has cbst

We next define a “pseudo codB(v, ¢, s, t) inductively as follows. Ifvis a leaf then defin8(v, 1, 0,0) =
B(v,1,1,0) = B(v,0,1,0) = 0, and for all other values & s, t we setB(v, ¢, s, t) = co. Whenv has children
u andw define:

B(v, ¢, s,t) = min{ B(u, £1, s1,t1) + B(w, {2, S, 12)

S1,M1,82,M2€{0....,8},
t1,t2€[0,1],
1 1y £1€{0,...,t},
p p r1<sy,
+ (1) + 2AWP) T -t + (8 +AW)P) T o . 5};% r
=S1+S—T1-T2,
{=01+{2,

t:max{(tf+r2A(v)p)1/p, (t§+r1A(v)p)1/p]
With these definition we will prove the following claim by indtion.

Claim 12. Foreveryve T,£ €{0,...,k}, s€{0,...,n}and te [0, ) we have
B*(v, £, s t) = B(v, ¢, s b).

Assuming the validity of Claih 12 for the moment, we concladdollows. The dynamic programming
algorithm described above does noffe since the parametetakes values in the range, [®), while we
need it to take only polyi) values. We fix this issue using an argument which is basedeasifrom/[[5].

Normalize the distances id so that the minimum distance is 1, and dendte= diam@U). We can
clearly assume thdt< n®. Assume first of all that we can ensure that A = O(poly(n)). Once this is
achieved then all we need to do is to apply a standard dizatth procedure as follows. Fix an integer
M > 0 which will be determined presently and &t = {0, A/M, 2A/M, ..., A}. Fort € [0, A] denote by
rd(t) the rounding ot to its closest value i®'. We can now define a discretized dynamic programming
procedureB’(v, ¢, s, 1), wherey, ¢, s take the same values as in the definitiorB{4, £, s,t) andr € A’. This
is done by defining as before for a leag U B(v, 1,0,0) = B(v, 1, 1,0) = B(v, 0, 1,0) = 0, and for all other
values oft, s, T settingB(v, ¢, s, 7) = co. Whenv has childreru andw define:
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B'(v, £, s,7) =min{rd ((Tf + r2A(V)'O)1/IO —ty+(Th+ rlA(v)p)l/p - Tz)

S1,11,52,2€{0,...,8},
T1,T2€A,
€1€{0,....(},
’ ’ . r1<sy,
+B'(U, €1, 81,71) + B'(W, {2, S, 72) : r<s,
S=§1+$-r1-r2,
'f:€1+€2,

r=rd(max{(cD+r2AW)P) P, (5+r1a(v)P) 7))

It is straightforward to check by induction that for ang V, £ € {0,...,k}, s€ {0,...,n} andt € [0, A] we
have
IB(v, ¢, s,t) — B'(v, £, s, rd(t))] < 4[;"'.

Since the optimal value of the¢, clustering problem is at least 1 (excluding trivial cases)this is the
smallest distance i, B’ will yield an approximation algorithm for this problem wreosultiplicative error
is bounded by % O(n/M). TakingM = n/e for somee € (0, 1) we obtain the required PTAS.

We therefore need to argue that we can ensurettha®(poly(n)). Recall that we can assume thag
nd. LetP = {(x¢,Cy), ..., (%, Ck)} be the (yet unknown) optimal solution of thé, clustering problem with
k-centers orJ. Leth be the maximum length appearing in the solution, h.e. max<i<k MaXc; du (X, X).

Fix £ € (0, 1) and define two “levels” of the trek by

L={veV: A(v) < h< A(parent())},

and

Q= {v eV: AV) < 2—2 < A(parent(/))}.
Let T’ be the subtree obtained fromby deleting the subtre€3, \ {v}},cq, and letU’ denote the leaves of
T’. Equivalently,U’ is obtained fronlJ by contracting all distances smaller tli/n?. It is straightforward
to check that cost (P) < cosyy(P) < (1 + ¢) cosyy/(P).

Note that for every € L the aspect ratio (i.e. the ratio of the diameter and the sbbdistance) of
T,NU’ is at mosh?/s. So, by the above reasoning (in the case of an a priori poljaidsaund ort) we can
approximate in polynomial time the value Bf(v, £, s,t) up to a factor 1+ O(g). It remains to “glue” these
approximate solutions to a solution of thé, clustering problem oii. This is done by a (simpler) dynamic
programming argument as follows. Denote'Byhe subtree o’ whose root is the same as thatTdfand
whose leaves are. Forv e T let C*(v, ) be the optimal solution of thE/,, clustering problem offy with
¢ centers and assuming that the largest distance appeating solution is at modt. We calculateC*(v, ¢)
by dynamic programming: For e L defineC(v, £) = min; B*(v, ¢, 0,t), and ifv has two childreru,win T
then

C(V, f) = min{C(u, fl) + C(W, 52) 01 €{0,...,¢), {1+ =1(}.

A straightforward induction shows th&t(v, £) = C(v, £).

The only thing that is left to be explained is how to find theuegl. This is done by exhaustive search:
We try all the(3) possible values dfi, do the above procedure for each of them, and take the miniofum
the values that we get.
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The proof of Lemma&l3 will be complete once we prove Claimh 12. fiks note thatB*(v, ¢, s, 1) <
B(v, ¢, s t). This is true becausB(:) represents a feasible solution Bf(-). The proof of this fact is by
induction. Ifu,w € V are the children of in T then there exis$;, $, 11, t2, r1, 2, €1, £2 such that

1 1
B(v, £, S.1) = B(U, €1, 51, 11) + BW, £2, S, 1) + (1] + r2A(W)°) P+ (t7 +r1A(W)P) Pt

where sy, r1, 5,12 € {0,...,8}, t1,tp € [0,t], €1 € {0,...,€}, 11 < S, M2 € §,S= S+ S —Tr1— Iy
€ =101+, andt = max{(tf + rzA(v)p)l/p, (t + rlA(v)p)l/p}. By the inductive hypothesiB(u, £1, S, t;)
and B(w, {2, ;,t2) correspond to feasible solutions Bf(:) on T, N U and Ty, N U, respectively. Hence
B(v, ¢, s,t) corresponds to the following feasible solution: Take timon of the centers i, N U and
TwNU and retain all the current clustersignU andT,,NU as is. Next add arbitrams unclustered points
from T,NU (from the pool ofs; unclustered points that we are assuming exigt,in U) to the cluster with
the most weight ifT,, N U, and similarly add, unclustered points frorh,, N U to the cluster with the most
weight inT, N U. This creates the required feasible solution.

We next prove by induction thd&*(v, ¢, s;t) > B(v,¢, s, t). Consider the clustering solution at which
B*(v, ¢, s t) is attained. It corresponds wexcluded leaveys,...,ys € Ty N U, € “centers” Xy, ..., X, €
(Ty N U)\ {y1,...,V¥s} and a partition(C4, ..., Cg} of (Ty NU) \ {y1,...,Ys} such that

1/p
> d0x )P

xeCj

4

B*(v, £, s 1) = Z

=1

By reordering the points we may assume that . ., Xg, € Ty andXe 41, .. ., Xg+6,, € Tw (Wherely = £— (7).

Denote
£1 l1+62
[U Cj] N Ty [ U Cj
j=1

j=01+1
Finally, we may assume that

{1,...61

=r, and NTyl =r1.

xeC1NTy xeCjNTy
and o
5]
LS ) dxxe)’= max 3 dxx)P.
XeCrp 1T JetrL it) ST,
Denote
i l1+82
Av=[lJCi[nTw and A=| [ Cj|nT.
i=1 j=t1+1

We also writes; = [{y1,...,Y¥s} N Tyl +rrands, = |{y1,...,Yss N Twl + 12, sothats= s + S, —ry — I,
Note that by definition

01 1/p
Z[ > d(x,xj)p] > B'(U, €1, S1. 1), (38)
=1 \xeC;nTy,
and
{1+82 i/p
D [ > d(Xan)p] > B'(W. &2, %2, 1p). (39)
j=1+1\xeCjnTy,
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Thus

1/p 1/p
{1 {1+0>
B'(vest)=> | > dxx)P+ICinAJAMP| + D1 | > dixx))P +IC; N AJAN)P
j=1 | xeCjnTy j=01+1 [ xeCjnTy
> B 1, S ) + BW. (2 52, ) + (10 + 12A0P) T — ty + (8 + 1aa)P) P -t (40)
> B(U, €1, 51, 1) + BW, 2, 52, ) + (1P + 1A0WP) T — ty + (2 + 1aw)P) P -ty (41)
> B(v,(,st), (42)

where in[(40) we used Lemrhalll together withl (38) (39MI) we used the inductive hypothesis, and
in (42) we used the definition &(-). This completes the proof of Lemma 3. m|
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