
ar
X

iv
:0

70
7.

18
36

v1
  [

m
at

h.
C

O
] 

 1
2 

Ju
l 2

00
7

Type-II Matrices and Combinatorial

Structures

Ada Chan and Chris Godsil

May 28, 2018

Abstract

Type-II matrices are a class of matrices used by Jones in his work

on spin models. In this paper we show that type-II matrices arise

naturally in connection with some interesting combinatorial and geo-

metric structures.

1 Introduction

If M and N are matrices of the same order, their Schur product is the matrix
M ◦N , defined by the condition

(M ◦N)i,j = Mi,jNi,j.

The Schur product is commutative and associative, with an identity element
J , the all-ones matrix. If M ◦ N = J we say that N is the Schur inverse of
M , and denote it M (−).

A type-II matrix is a Schur invertible n× n matrix W over C such that

WW (−)T = nI.

This condition implies that W−1 exists and

W (−)T = nW−1.

In [6] Jones showed that certain special type-II matrices could be used
to construct so-called spin models, which could in turn be used to construct
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interesting invariants of knots and links (including the Jones polynomial).
The main goal of this paper is to show that type-II matrices are much more
common than might be expected: in particular they arise in connection with
a range of combinatorial and geometric structures: symmetric designs, sets
of equiangular lines and strongly regular graphs.

2 The Basics

We offer some examples of type-II matrices. First

(

1 1
1 −1

)

is a symmetric type-II matrix. If ω is a primitive cube root of unity then





1 1 ω
ω 1 1
1 ω 1





is also type-II. For any non-zero complex number t, the matrix

W =









1 1 1 1
1 1 −1 −1
1 −1 t −t
1 −1 −t t









is type-II. Next we have the Potts models: if W is n× n and

W = (t− 1)I + J,

then

WW (−)T = ((t− 1)I + J)((t−1 − 1)I + J)

= ((2− t− t−1)I + (n− 2 + t+ t−1)J,

whence it follows that W is type-II whenever 2− t− t−1 = n, i.e., whenever
t is a root of the quadratic

t2 + (n− 2)t+ 1.
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As the first example suggests, any Hadamard matrix is a type-II matrix,
and it is not unreasonable to view type-II matrices as a generalisation of
Hadamard matrices.

The Kronecker product of two type-II matrices is a type-II matrix; this
provides another easy way to increase the supply of examples. Recall that
a monomial matrix is the product of a permutation matrix and a diagonal
matrix. It is straighforward to verify that if W is type-II and M and N are
invertible monomial matrices, thenMWN is type-II. We sayW ′ is equivalent
to W if W ′ = MWN , where M and N are invertible monomial matrices.

The transpose W T is also type-II, as is W (−), but these matrices may not
be equivalent to W . It would be a useful exercise to prove that any 2 × 2
type-II matrix is equivalent to the first example above, any 3 × 3 type-II
matrix is equivalent to the second, and any 4×4 type-II matrix is equivalent
to a matrix in the third family.

Let W be a Schur-invertible matrix, with rows and columns indexed by
the set Ω, where |Ω| = n. Let the vectors

ea, a ∈ Ω

denote the standard basis for C
Ω. We define a set of n2 vectors in C

n as
follows.

Ya,b := Wea ◦W (−)eb.

We can view Ya,b as the Schur ratio of the a- and b-columns of W . The
Nomura algebra NW of W consists of the set of n× n complex matrices M
such that each of the n2 vectors Ya,b is an eigenvector for M . The Nomura
algebra is non-empty, because it always contains I.

2.1 Lemma. Let W be a Schur invertible and invertible matrix. Then W
is a type-II matrix if and only if J ∈ NW .

Proof. Let Da be the n× n diagonal matrix such that

(Da)i,i := Wi,a.

Since W is invertible, its columns

Web, b ∈ Ω

are linearly independent. Since Da is invertible and

Ya,b = D−1
a Web,
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we see that the vectors
Ya,b, b ∈ Ω

are linearly independent and consequently they form a basis for Cn.
Now Ya,a = 1, so J ∈ NW if and only if

JYa,b = nδabYa,b,

equivalently
∑

r

Wr,a

Wr,b

= (W (−)TW )b,a = nδb,a

for all a, b ∈ Ω.

It follows that if W is a type-II matrix of order n×n, then NW contains I
and J and dimNW ≥ 2 when n ≥ 2. We say thatNW is trivial if dimNW = 2.
All the work in this paper is motivated by the desire to find type-II matrices
with non-trivial Nomura algebras. One reason is that if W is a type-II matrix
and W ∈ NW , then we may use W to construct a link invariant. The Potts
model, which we mentioned above, has this property and the corresponding
link invariants are evaluations of the Jones polynomial. For more on this
connection, see [5] and [4].

A type-II matrix W such that W ∈ NW is known as a spin model. The
Potts model aside, very few interesting spin models are known. If W is a
spin model other than the Potts model, then NW contains I, J and W ,
and therefore dimNW ≥ 3. Spin models have proved very difficult to find.
Hence we are lead to search for type-II matrices whose Nomura algebras are
non-trivial. For reasons that are not at all clear, even these seem to be scarce.

The previous discussion glosses over one point. If W1 and W2 are type-II
matrices, then the Nomura algebra of W1 ⊗W2 is the tensor product of the
Nomura algebras of W1 and W2. Since

dim(NW1⊗W2
) = dim(NW1

) dim(NW2
),

the Nomura algebra of W1 ⊗ W2 is always non-trivial. However the corre-
sponding link invariants are of no interest, since they are built in an obvious
way from the invariants belonging to the factors. Therefore our search is ac-
tually for type-II matrices which have non-trivial Nomura algebra and which
are not equivalent to Kronecker products of type-II matrices.
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3 Nomura Algebras

We have introduced type-II matrices and their Nomura algebras. Now we
describe the connection between type-II matrices and combinatorics; the con-
nection is mediated by association schemes.

Let W be a type-II matrix or order n×n. We saw in the previous section
that

Ya,b, b ∈ Ω

form a basis for Cn. If M ∈ NW , then the matrix representing M relative
to this basis is diagonal, from which we conclude that if M,N ∈ NW then
MN = NM . In other words, the Nomura algebra of a type-II matrix is
commutative. We will also see that it is closed under the Schur product.

Let W be a type-II matrix, with rows and columns indexed by the set Ω,
where |Ω| = n. If M ∈ NW , there is an n× n matrix ΘW (M) such that

MYa,b = (ΘW (M))a,bYa,b.

We call ΘW (M) the matrix of eigenvalues of M . (When no confusion will
result, we write Θ(M) rather than ΘW (M).) Note that

Θ(MN) = Θ(M) ◦Θ(N).

Also Θ is an injective linear map from NW into the space of n× n complex
matrices.

We define a second family of n2 of vectors in Cn as follows.

Y ′

a,b := W T ea ◦W (−)T eb

Thus Y ′

a,b is the Schur ratio of two columns of W T , and so the set of matrices
with the vectors Y ′

a,b as eigenvectors is NWT . The following critical result is
due to Nomura [7]; it shows that the image of NW under Θ is contained in
NWT .

3.1 Theorem. If M ∈ NW then

Θ(M)Y ′

s,r = nMr,sY
′

s,r.

Proof. Suppose

Fi :=
1

n
Yu,iY

T
i,u.
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We verify easily that
FiFj = δi,jFi,

which shows that the Fi’s form an orthogonal set of n idempotents. We note
that rk(Fi) = 1 and tr(Fi) = 1. As the Fi’s commute it follows that

∑

i Fi is
an idempotent matrix with trace equal to n; hence

∑

i

Fi = I.

We have

MFi =
1

n
MYu,iY

T
i,u = (Θ(M))u,iFi.

Summing this over i in Ω, recalling that
∑

i Fi = I, we get

M =
∑

i

(Θ(M))u,iFi. (1)

Now

(Fi)r,s =
1

n

Wr,u

Wr,i

Ws,i

Ws,u
=

1

n

Wr,u

Ws,u

Ws,i

Wr,i

and therefore, by (1),

Mr,s =
1

n

Wr,u

Ws,u

∑

i

(Θ(M))u,i
Ws,i

Wr,i
.

Hence
nMr,s(Y

′

s,r)u = (Θ(M)Y ′

s,r)u,

which implies the theorem.

It is an easy consequence that the NW is closed under the Schur product.
We describe a simple way to test if two eigenvectors Ya,b’s belong to the

same eigenspace of NW .

3.2 Lemma. If Y T
a,uYb,c 6= 0 then (Θ(M))u,a = (Θ(M))b,c.

Proof. It follows from
∑

i Fi = I that

Yb,c =
1

n

∑

i

(Y T
i,uYb,c)Yu,i.
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So

(Θ(M))b,cYb,c = MYb,c =
1

n

∑

i

(Y T
i,uYb,c)(Θ(M))u,iYu,i.

Multiply both sides of this by Y T
a,u to get

(Θ(M))b,cY
T
a,uYb,c =

1

n
(Y T

a,uYb,c)(Θ(M))u,aY
T
a,uYu,a

= Y T
a,uYb,c(Θ(M))u,a.

If Y T
a,uYb,c 6= 0, this implies that (Θ(M))u,a = (Θ(M))b,c.

4 Association Schemes

We recall some definitions. An association scheme with d classes is a collec-
tion A of 01-matrices A0, . . . , Ad of order n× n such that:

(a) A0 = I.

(b)
∑

i Ai = J .

(c) AT
i ∈ A for i = 0, . . . , d.

(d) The product AiAj lies in the span of A, for all i and j.

(e) AiAj = AjAi.

The matrices Ai are the adjacency matrices of directed graphs whose arc sets
partition the arcs of the complete directed graph on n vertices. It follows
from the axioms that AiJ = JAi, whence each directed graph is regular.
The span of A is called the Bose-Mesner algebra of the association scheme.
Since the Ai are 01-matrices and sum to J , they form a basis for A; since
the set consisting of A and the zero matrix is closed under Schur product,
it follows that the span of A is closed under the Schur product. The axioms
also insure that the Bose-Mesner algebra is closed under transpose and under
matrix multiplication. On the other hand, a vector space of matrices is the
Bose-Mesner algebra of an association scheme if it contains I and J and is
closed under transpose, matrix and Schur product, and it is commutative
with respect to matrix multiplication. See [1] for details.

The simplest example of an association scheme arises if we take d = 1
and A1 = J − I. This is the association scheme of the complete graph (and
the Nomura algebra of a Potts model).
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4.1 Corollary. If W is a type-II matrix, then NW is the Bose-Mesner alge-
bra of an association scheme.

Proof. It is immediate from its definition that NW is closed under and is
commutative with respect to matrix multiplication. By Lemma 2.1, NW

contains I and J . We show that it is also closed under transpose and Schur
multiplication.

Theorem 3.1 yields that if M ∈ NW then

ΘWT (ΘW (M)) = nMT .

Since ΘW (M) ∈ NWT we see that ΘWT (ΘW (M)) ∈ NW . Therefore NW is
closed under transpose. We also see that ΘWT is surjective.

We saw that if M,N ∈ NWT then

ΘWT (MN) = ΘWT (M) ◦ΘWT (N).

This shows that ΘWT (NWT ) is closed under Schur multiplication. Since ΘWT

is surjective, it follows that NW is closed under Schur multiplication.

If W is a type-II matrix with algebra NW then, as noted before, W
determines a spin model if and only if W lies in NW . As any type-II matrix
equivalent to W has the isomorphic Nomura algebra, [5], we may concentrate
on the matrices W that lie in their Nomura algebra. If W ∈ NW then

(a) W is normal.

(b) The diagonal of W is constant, that is, W ◦ I = cI for some c.

(c) The row and column sums of W are all equal.

These conditions hold because they are satisfied by any matrix in a Bose-
Mesner algebra.

One consequence of Nomura’s theorem is that, when searching for spin
models, we can restrict ourselves to type-II matrices that lie in the Bose-
Mesner algebra of an association scheme. This is important because there
may be uncountably many type-II matrices of a given order n, but there are
only finitely many association schemes of order n. Hence our search space is
considerably restricted.
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5 Hadamard Matrices

A Hadamard matrix is a ±1-matrix of order n× n such that

HTH = nI.

Since H ◦H = J it follows that H is a type-II matrix. Hadamard matrices
have long been of interest to combinatorialists. Since they are the simplest
examples of type-II matrices, we summarise what is known about their No-
mura algebras here.

5.1 Lemma. If W is real then all matrices in NW are symmetric.

Proof. If W is real then the eigenvectors Ya,b are real. Hence the Schur
idempotents of the scheme have only real eigenvalues. Since NW is closed
under transposes and is a commutative algebra, the Schur idempotents are
real normal matrices. A real normal matrix is symmetric if and only if its
eigenvalues are real.

The following is a new proof of a result due to Jaeger et al [5].

5.2 Lemma. Let W be a Hadamard matrix of order n. If NW is non-trivial,
then n is divisible by eight.

Proof. Let wi denote Wei. Normalise W so that w1 = 1 and assume 1, i, j
and k are distinct. Then

(w1 + wi) ◦ (w1 + wj) ◦ (w1 + wk)

is the Schur product of three vectors with entries 0,±2. The sum of the
entries of this vector is

〈1, w◦3
1 〉+ 〈1, w◦2

1 ◦ (wi + wj + wk)〉
+ 〈1, w1 ◦ (wi ◦ wj + wi ◦ wk + wj ◦ wk)〉+ 〈1, wi ◦ wj ◦ wk〉 (2)

Since W is a Hadamard matrix, the second and third terms here are zero,
whence we deduce that, modulo 8,

n+ 〈1, wi ◦ wj ◦ wk〉 = 0

and therefore, if n is not divisible by 8, then Yi,1 = wi cannot be orthogonal
to Yj,k = wj ◦ wk.
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If H is a Hadamard matrix of order less than 32, its Nomura algebra is a
product of Potts models. (Unpublished computations by Allan Roberts and
the second author.)

Hadamard matrices form a special class of a more general class of type-II
matrices. A complex matrix is flat if all its entries have the same absolute
value. The following result is easy to prove.

5.3 Lemma. For an n×n matrix, any two of the following statements imply
the third:

(a) W is a type-II matrix.

(b) n−1/2W is unitary.

(c) |Wi,j| = 1 for all i and j.

In other words, a unitary matrix is type-II if and only if it is flat. The
character table of an abelian group is flat, type-II and unitary. Flat unitary
matrices appear in quantum physics in connection to mutually unbiased sets
of orthogonal bases.

6 Symmetric Designs

We consider type-II matrices with exactly two distinct entries, that are not
Hadamard matrices.

6.1 Theorem. Suppose W = aJ + (b − a)N , where N is a 01-matrix and
a 6= ±b. Then W is type II if and only if N is the incidence matrix of a
symmetric design.

Proof. Let N be the incidence matrix of a symmetric (v, k, λ)-design, and
let W be given by

W = J + (t− 1)N,

where

t =
1

2(k − λ)

(

2(k − λ)− v ±
√

v(v − 4(k − λ))
)

.

We show that W is a type-II matrix.
We have

W (−) = (t−1 − 1)N + J

10



and, as NJ = NTJ = kJ and J2 = vJ ,

WW (−)T = (t− 1)(t−1 − 1)NNT + (k(t+ t−1 − 2) + v)J

= (t− 1)(t−1 − 1)(k − λ)I + ((k − λ)(t+ t−1 − 2) + v)J.

The coefficient of J is zero if

(k − λ)(t− 1)2 + v(t− 1) + v = 0,

which yields sufficiency.
We now prove the converse. If W has exactly two distinct entries, there

is no harm in assuming that we have

W = J + (t− 1)N

for some 01-matrix N and some complex number t such that t 6= ±1. Then
W (−)T = J + (t−1 − 1)NT and so, if W is v × v, we have

WW (−)T = vJ + (t− 1)NJ + (t−1 − 1)JNT + (t− 1)(t−1 − 1)NNT .

Since WW (−)T = vI and NNT is symmetric, this implies that

M := (t− 1)NJ + (t−1 − 1)JNT

is symmetric. We work with this. Note that this equation yields

M −MT = (t− t−1)NJ + (t−1 − t)JNT = (t− t−1)(NJ − (NJ)T ).

Since M = MT and t 6= ±1, this forces us to conclude that NJ is symmetric.
Hence there is a positive integer k such that

NJ = JNT = kJ.

Returning to our expression for WW (−)T , we now have

WW (−)T = (v + k(t + t−1 − 2))J + (2− t− t−1)NNT . (3)

Since (2 − t− t−1) = −(t − 1)2/t and t 6= 1, it follows that NNT is a linear
combination of I and J , and consequently N is the incidence matrix of a
symmetric design.
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Note that if v + k(t + t−1 − 2) = 0 in 3) then we get NNT = kI. Since
N is a square 01-matrix, NNT = kI only when k = 1. In this case, N is
the incidence matrix of the complement of the complete design, and W =
J + (t− 1)N is equivalent to the Potts model.

If H is a Hadamard matrix, we may multiply it fore and aft by diagonal
matrices, thus setting all entries in the first row and column to 1. If H1 is
the matrix we get from this by deleting the first row and column, then

1

2
(H1 + J)

is the incidence matrix of a symmetric design. This gives a large class of
examples of symmetric designs.

6.2 Lemma. Suppose W is a type-II matrix of the form (t−1)N +J , where
N is the incidence matrix of a symmetric (v, k, λ)-design. If v > 3, then all
matrices in NWT are symmetric.

Proof. We show that 〈Yi,j, Yi,j〉 6= 0 when v > 3. By Lemma 3.2, it follows
that Θ(M)i,j = Θ(M)j,i for all M in NW and for all i and j.

We have

〈Yi,j, Yi,j〉 = (k − λ)(t2 + t−2) + v − 2k + 2λ

= (k − λ)(t2 − 2 + t−2) + v,

and so, if 〈Yi,j, Yi,j〉 = 0 then

t2 − 2 + t−2 =
−v

(k − λ)
.

From our computations in the proof of the previous theorem,

(k − λ)(t− 2 + t−1) + v = 0, (4)

and so

t− 2 + t−1 =
−v

(k − λ)
.

As
t2 − 2 + t−2 = (t− 2 + t−1)(t+ 2 + t−1),

these equations imply that, if 〈Yi,j, Yi,j〉 = 0, then

t + 1 + t−1 = 0,
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whence (4) implies that v = 3(k − λ).
Since v(v − 1)λ = vk(k − 1), if v = 3(k − λ), then

k2 = k + (v − 1)λ = (3λ+ 1)(k − λ)

and therefore
k2 − (3λ+ 1)k + 3λ2 + λ = 0

This discriminant of this quadratic is

1 + 2λ− 3λ2 = (1− λ)(1 + 3λ),

which is negative if λ > 1. The lemma follows.

6.3 Lemma. Let N be the incidence matrix of a symmetric design, and let
W be a type-II matrix of the form (t−1)N+J . If t 6= −1, then the difference
of two distinct columns of N is an eigenvector for the Nomura algebra of W .

Proof. If u is a point in the design and α and β are the i-th and j-th blocks
in the design, then

(Yi,j)u =











t, if u ∈ α\β;
t−1, if u ∈ β \α;
1, otherwise.

By the previous lemma, Yi,j and Yj,i have the same eigenvalues for any matrix
in NW . Therefore the vector

(t− t−1)−1(Yi,j − Yj,i)

is an eigenvector for each matrix in NW , but this vector is just the difference
of the i-th and j-th columns of N .

We note that if t = −1 then (t− 1)N + J is type II if and only if it is a
Hadamard matrix. The previous lemmas lead to the following disappointing
consequence.

6.4 Theorem. Suppose W is a type-II matrix of the form (t − 1)N + J ,
where N is the incidence matrix of a symmetric (v, k, λ)-design. If v > 3 and
t 6= −1, then the Nomura algebra of W is trivial.
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Let Zi,j := Nei −Nej for some i 6= j. If k is distinct from i and j then

〈Zi,j, Nek〉 = 〈Nei, Nek〉 − 〈Nej , Nek〉 = λ− λ = 0

while
〈Zi,j, Nei〉 = k − λ.

We conclude that 〈Zi,j, Zi,k〉 = k − λ and therefore at least one of

Y T
i,kYi,j, Y T

k,iYi,j, Y T
i,kYj,i and Y T

k,iYj,i

is non-zero. It follows from Lemma 3.2 and Lemma 6.2 that

Θ(M)i,k = Θ(M)i,j

for any matrix M from NW . It follows that NW must be trivial.

7 Equiangular Lines

We consider sets of lines in Cd. A set of lines in Cd spanned by the unit
vectors x1, . . . , xn is equiangular if there is a real number α such that

|〈xi, xj〉| = α

whenever i 6= j. Note that it is reasonable to take the absolute value here,
because if λ ∈ C and |λ| = 1 then λxi and xi are unit vectors spanning the
same line. We will refer to α as the angle between the lines. We are also
interested in equiangular sets of lines in Rd; the above definition still works
in this case. We have the following result, due to [8].

7.1 Theorem. If there is a set of n equiangular lines in Cd or Rd with angle
α and dα2 < 1, then

n ≤ d(1− α2)

1− dα2
.

Proof. Suppose x1, . . . , xn are unit vectors spanning a set of equiangular
lines in Cd and suppose Xi := xix

∗

i . Then Xi is a Hermitian matrix that
represents orthogonal projection onto the line spanned by xi. Assume that
|〈xi, xj〉| = α when i 6= j. The space of Hermitian matrices is a real inner
product space with inner product 〈X, Y 〉 given by

〈X, Y 〉 = tr(XY ).

14



Then 〈Xi, Xi〉 = 1 and if i 6= j then

〈Xi, Xj〉 = tr(XiXj) = tr(xix
∗

ixjx
∗

j )

= tr(x∗

jxix
∗

ixj)

= |x∗

ixj |2
= α2.

If
Z :=

∑

i

Xi

then
〈Z,Z〉 = n+ (n2 − n)α2

and if γ ∈ R, then

〈Z − γI, Z − γI〉 = n + (n2 − n)α2 − 2γn+ γ2d.

Here the right side is a quadratic in γ, and is non-negative for all real γ. Its
minimum value occurs when γ = n/d, which implies that

−n2

d
+ n(1 + α2(n− 1)) ≥ 0.

The theorem follows from this.

Note that the above proof still works if we replace C by R and ‘Hermitian’
by ‘symmetric’.

We say a set of lines is tight if equality holds in the bound of the previous
theorem. We say that an n× n matrix C is a generalized conference matrix
if:

(a) C is Hermitian

(b) Ci,i = 0 for all i.

(c) |Ci,j| = 1 if i 6= j.

(d) The minimal polynomial of C is quadratic.

Note that a conference matrix is an n× n matrix with diagonal entries zero
and off-diagonal entries ±1, such that CCT = (n − 1)I. It is known that a
conference matrix is equivalent to a symmetric or skew symmetric conference
matrix. If C is symmetric then it is Hermitian and C2 − (n− 1)I = 0. If C
is skew symmetric, then iC is Hermitian and (iC)2 − (n− 1)I = 0.

15



7.2 Corollary. Suppose x1, . . . , xn are unit vectors that span a set of equian-
gular lines in Cd with angle α and Gram matrix G, and suppose G = I+αC.
Then the set of lines is tight if and only if C is a generalized conference
matrix.

Proof. Suppose x1, . . . , xn span a set of equiangular lines in Cd, let Xi be
the orthogonal projection onto the line spanned by xi and set Z =

∑

i Xi. If
this set of lines is tight, then

〈Z − γI, Z − γI〉 = 0

and consequently
∑

i

Xi =
n

d
I.

Let U be the n× d matrix with i-th row equal to x∗

i . Then

U∗U =
∑

i

Xi =
n

d
I.

Now G := UU∗ is the Gram matrix of the unit vectors x1, . . . , xn; since UU∗

and U∗U have the same non-zero eigenvalues with the same multiplicities
it follows that the eigenvalues of G are 0 and n/d. Since our set of lines is
equiangular, we may write

G = I + αC.

Here C is Hermitian, its diagonal entries are zero, its off-diagonal entries all
have absolute value 1, and its minimal polynomial is quadratic. Thus it is a
generalized conference matrix.

For the converse, suppose that C is a non-zero Hermitian matrix with
zero diagonal and

C2 − βC − γI = 0.

Then the diagonal entries of C2 are positive, whence γ 6= 0 and C is invertible.
If τ is the least eigenvalue of C, then

G := I − 1

τ
C

is Hermitian and all its eigenvalues non-negative. Assume rk(G) = d. Since
tr(G) = n it follows that the eigenvalues of G are 0 and n/d. Hence there is
an n× d matrix U such that

U∗U =
n

d
I, UU∗ = G.
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Thus G is Gram matrix of the columns of U∗, and so these columns span a
set of equiangular lines in Cd. Since U∗U = (n/d)I, the set of lines is tight.

Conditions (a) and (c) in the definition of generalized conference matrix
imply that (C2)i,i = (n− 1)I, whence the minimal polynomial of C has the
form z2 − βz − (n− 1), for some β.

7.3 Theorem. Suppose C is a generalized conference matrix of order n×n
with minimal polynomial z2 − βz − (n− 1). If t + t−1 + β = 0, then tI + C
is type II.

Proof. If C is a generalized conference matrix, then

(tI + C)(−)T = t−1I + C

and therefore

(tI + C)(tI + C)(−)T = I + t−1C + tC(−)T + CC(−)T

= I + (t+ t−1)C + C2

= I + (t+ t−1)C + βI + (n− 1)I

= nI + (t+ t−1 + β)C.

Hence tI + C is type-II if
t + t−1 + β = 0.

We derive a converse to this result, under weaker conditions.

7.4 Theorem. Let W be a type-II matrix with all diagonal entries equal to
c and with quadratic minimal polynomial. If W − cI is Hermitian, it is a
scalar multiple of a generalized conference matrix.

Proof. Suppose that W is n× n and

W 2 − βW − γI = 0.

Since W is invertible, γ 6= 0 and

W−1 = −1

γ
(βI −W ).

Hence
J = nW ◦W−T = −n

γ
(βW ◦ I −W ◦W T ),
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from which we find that

W ◦W T = βW ◦ I + γ

n
J. (5)

It follows that all off-diagonal entries of W have the same absolute value
(namely

√

γ/n).

8 Strongly Regular Graphs

A graph X is strongly regular if it is not complete and there are integers
k, a and c such that the number of common neighbours of an ordered pair
of vertices (u, v) is k, a or c according as u and v are equal, adjacent or
distinct and not adjacent. Trivial examples are provided by the graphs mKn

and their complements. The Petersen graph provides a less trivial example.
A strongly regular graph X is primitive if both X and its complement are
connected; an imprimitive strongly regular graph is isomorphic to mKn or
its complement. A strongly regular graph X gives rise to an association
scheme with two classes, corresponding to X and its complement. Conversely
each association scheme with two classes determines a complementary pair
of strongly regular graphs.

8.1 Theorem. Let X be a primitive strongly regular graph with v vertices,
valency k, and eigenvalues k, θ and τ , where θ > τ . Let A1 be the adjacency
matrix of X and A2 the adjacency matrix of its complement. Suppose

W := I + xA1 + yA2.

Then W is a type-II matrix if and only if one of the following holds

(a) y = x = 1
2
(2− v ±

√
v2 − 4v).

(b) x = 1 and y = 1+ 1
2(k̄−λ)

(−v±
√

v2 − 4(k̄ − λ)v) and A2 is the incidence

matrix of a symmetric (v, k̄, λ)-design where k̄ = v − k − 1.

(c) x = −1 and y = 1
2
(λ ±

√
λ2 − 4) (where λ = (1 + θτ)−1(2 − 2θτ − v)),

and A1 is the incidence matrix of a symmetric design.

18



(d) x+ x−1 is a zero of the quadratic z2 − αz + β − 2 with

α =
1

θτ
[v(θ + τ + 1) + (θ + τ)2],

β =
1

θτ
[−v − v(1 + θ + τ)2 + 2θ2 + 2θτ + 2τ 2]

and

y =
1

(x− x−1)

(

θτx− 1

(θ + 1)(τ + 1)
(x+ x−1 − 2 + v)− (v − 2)x− 2

)

.

Proof. We use ℓ to denote valency v − 1− k of the complement of X . Then
the eigenvalues of A2 are v − 1 − k, −1 − τ and −1 − θ and the equation
WW (−)T = vI is equivalent to

(1 + kx+ ℓy)(1 + kx−1 + ℓy−1) = v,

(1 + θx+ (−θ − 1)y)(1 + θx−1 + (−θ − 1)y−1) = v,

(1 + τx+ (−τ − 1)y)(1 + τx−1 + (−τ − 1)y−1) = v.

Note that this set of equations is invariant under the substitutions

x 7→ x−1, y 7→ y−1

and also under the substitutions

x 7→ y, y 7→ x, θ 7→ −θ − 1, τ 7→ −τ − 1.

The missing details in the following calculations were performed in Maple.
If we set

X := x+
1

x
, Y := y +

1

y
, Z :=

x

y
+

y

x

then, from our three equations we get

kℓZ + kX + ℓY = v − 1− k2 − ℓ2,

−θ(θ + 1)Z + θX − (θ + 1)Y = v − 1− θ2 − (θ + 1)2, (6)

−τ(τ + 1)Z + τX − (τ + 1)Y = v − 1− τ 2 − (τ + 1)2. (7)

These three equations are linearly dependent: if θ has multiplicity m and
τ has multiplicity n as an eigenvalue of A1, then the first equation plus m
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times the second plus n times the third is zero. In fact, our three equations
are equivalent to the following pair.

Y − 2 + v =
θτ

(θ + 1)(τ + 1)
(X − 2 + v), (8)

Z − 2 =
1

(θ + 1)(τ + 1)
(X − 2 + v). (9)

Given the definitions of Y and Z, we can view this as a pair of linear equations
in y and y−1, whence we find that

y(x− x−1) =
θτx− 1

(θ + 1)(τ + 1)
(x+ x−1 − 2 + v)− (v − 2)x− 2.

Assume x2 6= 1. If we define

p(x) := τθx3 + (1− v + 2θ + 2τ − θv − τv)x2 − (2θ + τθ + 2τ + v)x− 1,

then (8) and (9) hold if and only if

y =
p(x)

(θ + 1)(τ + 1)(x2 − 1)
, y−1 =

−x2p(x−1)

(θ + 1)(τ + 1)(x2 − 1)
.

Then the previous expressions for y and y−1 hold if and only if

−x2p(x)p(x−1) = [(θ + 1)(τ + 1)(x2 − 1)]2.

We deduce that x must be a root of the polynomial

(x2 + (v − 2)x+ 1)(x4 − αx3 + βx2 − αx+ 1) (10)

where

α =
1

θτ
[v(θ + τ + 1) + (θ + τ)2],

β =
1

θτ
[−v − v(1 + θ + τ)2 + 2θ2 + 2θτ + 2τ 2].

If x is a root of the quadratic factor in (10), then X − 2 + v = 0 and so
Equations (8) and (9) imply that Y = 2− v and Z = 2. Since

Z − 2 =
(x− y)2

xy
,
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it follows that

y = x =
1

2
(2− v ±

√
v2 − 4v).

This is the Potts model solution.
We turn to the quartic factor in (10), which is equal to

x2
(

(

x+ x−1
)2 − α

(

x+ x−1
)

+ β − 2
)

.

From this we see that X must be a zero of the quadratic

z2 − αz + β − 2 (11)

and thus (d) holds.
To complete the proof we consider the cases where x2 = 1. If x = 1 then

Theorem 6.1 yields that A2 is the incidence matrix of a symmetric design.
So we assume x = −1.

Equations (8) and (9) imply that

Y − 2 + v = θτ(Z − 2).

Since Z = −Y if x = −1, we find that

(1 + θτ)Y = 2− 2θτ − v

whence

y =
1

2
(λ±

√
λ2 − 4),

where

λ =
2− 2θτ − v

1 + θτ
.

(The denominator cannot be zero because τ ≤ −2 and θ ≥ 1 for any primitive
strongly regular graph.)

If x = −1 then Z = −Y and X = −2; if we add equations (8) and (9) we
get

v − 4 =
(θτ + 1)(v − 4)

(θ + 1)(τ + 1)
.

whence we find that v−4 or θ+τ = 0. Since, for any strongly regular graph,

A2 − (θ + τ)A + θτI = (k + θτ)J,

we see that if θ + τ = 0, then A2 = −θτI + (k + θτ)J . Therefore A is the
incidence matrix of a symmetric design (with zero diagonal and symmetric
incidence matrix).
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Jaeger [3] showed that if W is a spin model then X is formally self-dual.
If X is formally self-dual then v = (θ − τ)2 and the quadratic (11) becomes

(

z − τ 2 − θ2 + 2τ

θ

)(

z − θ2 − τ 2 + 2θ

τ

)

.

In addition to the Potts model solutions, Equations (8) and (9) give

x =
1

2τ

(

θ2 − τ 2 + 2θ ±
√

(θ − τ)(θ − τ + 2)(θ + τ)(θ + τ + 2)
)

and

y =
1

2(θ + 1)

(

θ2 − τ 2 + 2(θ + 1)±
√

(θ − τ)(θ − τ + 2)(θ + τ)(θ + τ + 2)
)

,

or

x =
1

2θ

(

τ 2 − θ2 + 2τ ±
√

(θ − τ)(θ − τ − 2)(θ + τ)(θ + τ + 2)
)

and

y =
1

2(τ + 1)

(

τ 2 − θ2 + 2(τ + 1)±
√

(θ − τ)(θ − τ − 2)(θ + τ)(θ + τ + 2)
)

.

Hence there are at most six type-II matrices, up to equivalence, in the Bose-
Mesner algebra of a formally self-dual strongly regular graph.

We now determine what happens to the imprimitive strongly regular
graphs, which will arise in the next section.

8.2 Theorem. Let A1 be the adjacency matrix of mKk+1 and A2 the adja-
cency matrix of its complement. Suppose

W := I + xA1 + yA2.

Then W is a type-II matrix if and only if one of the following holds

(a) W is equivalent to the Potts model,

(b)

x =
(kv − 2k − 1)y2 − (v − 2k − 2)y − 1

k(1− y2)

and

y + y−1 =
2(k + 1)2 − v(k2 + 1)

(k + 1)2 − kv

where v = m(k + 1).
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Proof. The eigenvalues of A1 are k and −1, so θ = k and τ = −1. The
equation WW (−)T = vI are equivalent to Equations (6) and (7):

−k(k + 1)Z + kX − (k + 1)Y = v − 1− k2 − (k + 1)2

X = −v + 2.

Solving this as a pair of linear equations in x and x−1 gives

k(1− y2)x = (kv − 2k − 1)y2 − (v − 2k − 2)y − 1.

Assume y2 6= 1. Then Equations (6) and (7) are equivalent to

x =
p(y)

k(1− y2)

and

x−1 =
−y2p(y−1)

k(1− y2)

where
p(y) = (kv − 2k − 1)y2 − (v − 2k − 2)y − 1.

Now these expressions for x and x−1 hold if and only if

−y2p(y−1)p(y) = k2(1− y2)2.

We deduce that y must be a root of the quartic

(

y2 + (v − 2)y + 1
) (

y2 − βy + 1
)

where

β =
2(k + 1)2 − v(k2 + 1)

(k + 1)2 − kv
.

If y is a root of y2 + (v − 2)y + 1 then we deduce from Equation (8) that
x = y and W is the Potts model.

If y = 1 then Y = 2, Z = X and Equation (6) becomes X = −v
k2

+ 2.
Equations (6) and (7) imply k = 1. In this case, A1 is a permutation matrix
and W = J + (x− 1)A1 is equivalent to the Potts model.

If y = −1 then Y = −2, Z = −X and Equation (6) becomes

X =
v − 2k2 − 4k − 4

k2 + 2k
.
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Equations (6) and (7) imply

2− v =
v − 2k2 − 4k − 4

k2 + 2k
,

which leads to v = 4 and x = −1. In this case, −W = J − 2I is the Potts
model.

9 Covers of Complete Graphs

Now we know that the Bose-Mesner of algebra of an association scheme with
two classes contains type-II matrices different from the Potts models. Given
this, it is natural to ask what happens in schemes with more than two classes;
in this section we consider the next simplest case. We will see that non-trivial
type-II matrices do arise, and that the amount of effort required to establish
this increases considerably.

We say a graph of diameter d is antipodal if whenever u, v and w are
vertices and

dist(u, v) = dist(v, w) = d,

then u = w or dist(u, w) = d. If X is antipodal, then the relation “at
distance 0 or d” is an equivalence relation. The cube and the line graph of
the Petersen graph provide two examples with d = 3. If X is antipodal with
d = 2, then it is the complement of a collection of complete graphs. If X
is an antipodal graph with diameter d, then its ‘antipodal classes’ form the
vertices of a distance-regular graph with the same valency and diameter ⌊d

2
⌋.

Here we are interested in distance-regular antipodal graphs with diameter
three. To each such graph there is a set of four parameters (n, r, a1, c2). The
integer n is the number of antipodal classes, and r is the number of vertices
in each class. If (u, v) is a pair of vertices from X and dist(u, v) = 1 then u
and v have exactly a1 common neighbours; if dist(u, v) = 2 they have exactly
c2 common neighbours. The value of a1 is determined by n, r and c2, so it is
conventional to provide only the triple (n, r, c2).

9.1 Theorem. Suppose X is an antipodal distance regular graph of diame-
ter three with parameters (n, r, c2) and let Ai be the i-th distance matrix of
X , for i = 1, 2, 3. Then the matrix

W = I + xA1 + yA2 + zA3
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is type-II if and only if

(a) x = y and W is a type-II matrix in the Bose-Mesner algebra of rKn.

(b) y = −x−1 and x is a solution of a quadratic equation.

(c) y 6= −x−1 and the possible values of (x, y) are the points of intersection
of two quartics in x and y.

Proof. We use θ and τ to denote eigenvalues of X not equal to −1 or n− 1.
Now W is a type-II matrix if and only if the following system of equations
are satisfied:

(1− x− (r − 1)y + (r − 1)z)

(

1− 1

x
− (r − 1)

y
+

(r − 1)

z

)

= nr, (12)

(1 + θx− θy − z)(1 + θx−1 − θy−1 − z−1) = nr, (13)

(1 + τx− τy − z)(1 + τx−1 − τy−1 − z−1) = nr. (14)

Subtracting (14) from (13) gives

(x−y)z−1+(x−1−y−1)z = (x−y)+(x−1−y−1)+(θ+τ)(x−y)(x−1−y−1). (15)

Adding θ times this to (13) yields

z−1 + z = −θτ(x− y)(x−1 − y−1) + 2− nr. (16)

Solving (15) and (16) as two linear equations in z and z−1, we get

(x− y)
(

(1 + xy)z − θτ(x− y)2 − (θ + τ)(x− y) + (nr − 1)xy − 1
)

= 0.
(17)

There are three cases. First if x = y we are lead to type-II matrices contained
in the Bose-Mesner algebra of rKn (including the Potts models). Second, if
xy = −1 then (17) yields a quadratic in X := x+ x−1:

−θτX2 − (θ + τ)X − nr = 0 (18)

and (16) gives

z−1 + z = −θτX2 − nr + 2

= (θ + τ)X + 2. (19)
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Solving (12) and (19) as two linear equations in z and z−1 gives

z =
p(x)

rx(x+ 1)(x− 1)(r − 1)

and

z−1 =
−x4p(x−1)

rx(x+ 1)(x− 1)(r − 1)

where

p(x) = (r − 1)(θ + τ + 1)x4 + (θ + τ + r − rθ − rτ)x3 +

(3rθ − r2τ − r2θ + 3r − rθτ + 3rτ − 2− 2θ − 2τ − 2r2)x2 +

(−rθ − rτ + 3r + θ + τ − 2r2)x− (r − 1)(rθ + rτ − 1− τ − θ).

Now these expressions for z and z−1 hold if and only if

−x4p(x−1)p(x) = [rx(x+ 1)(x− 1)(r − 1)]2

which gives a quartic in X . Applying (18) to this quartic, we can express
X = x+ x−1 in r, θ, and τ . Hence x is a solution of a quadratic equation.

Finally if x 6= y or −y−1, Equations (15) and (16) are equivalent to

z =
1

(1 + xy)

(

θτ(x − y)2 + (θ + τ)(x− y)− (nr − 1)xy + 1
)

,

and

z−1 =
1

xy(1 + xy)

(

θτ(x − y)2 − (θ + τ)(x− y)xy − (nr − 1)xy + x2y2
)

.

Now substituting these two expressions into (12) gives a quartic in vari-
ables x and y while zz−1 = 1 gives another one.

Note that rKn is a strongly regular graph, so the possible type-II matrices
are determined by the results of the previous section.

Calculations performed in Maple showed that the resultant with respect
to x of the two quartics in case (c) is a non-zero polynomial in y of degree at
most 30. By the elimination property of resultants [2], the resultant vanishes
at any common solution of the two quartics. Hence these two quartics vanish
at no more than thirty values for y. Similarly, the resultant with respect to
y of these two quartics is a non-zero polynomial in x of degree at most 30
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and they vanish at no more than thirty values for x. Consequently there
are finitely many type-II matrices, up to scalar multiplication, in the Bose-
Mesner algebra of an antipodal distance regular graph of diameter three.

As a final remark, it could be true that each Bose-Mesner algebra is equal
to the set of all polynomials in some type-II matrix. The results of the last
two sections imply this is true for schemes with at most two classes, and for
antipodal schemes with three classes. (Since we do not have strong evidence
either way, we will not make any conjecture.)
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