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Consider the following one-player game. The vertices of a random graph on n vertices
are revealed to the player one by one. In each step, also all edges connecting the newly
revealed vertex to preceding vertices are revealed. The player has a fixed number of colors
at her disposal, and has to assign one of these to each vertex immediately. However, she
is not allowed to create any monochromatic copy of some fixed graph F in the process.

For n → ∞, we study how the limiting probability that the player can color all n
vertices in this online fashion depends on the edge density of the underlying random
graph. For a large family of graphs F , including cliques and cycles of arbitrary size, and
any fixed number of colors, we establish explicit threshold functions for this edge density.
In particular, we show that the order of magnitude of these threshold functions depends
on the number of colors, which is in contrast to the corresponding offline coloring problem.

1. Introduction

Consider the following one-player game on a random graph Gn,p. (Through-
out, Gn,p denotes the standard binomial random graph on n vertices in which
each edge is included independently with probability p=p(n).) The vertices
of Gn,p are revealed one by one to a player called Painter. In each step, also
all edges connecting the newly revealed vertex to preceding vertices are re-
vealed. Painter has a fixed number r of colors at her disposal, and has to
assign one of these to each vertex immediately. Her goal is to do so without
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creating a monochromatic copy of some fixed graph F in the process. She
loses as soon as the subgraph induced by the vertices of any color contains a
copy of F , and she wins if she can avoid this until all n vertices are colored.
We ask for which densities p of the underlying random graph Painter can
win the game asymptotically almost surely (a.a.s., with probability tending
to 1 as n tends to infinity).

We answer this question for a large class of graphs F , including cliques
and cycles of arbitrary size, and any fixed number of colors r: we give an
explicit threshold function p0 =p0(F,r,n) such that, using the right strategy,
Painter a.a.s. succeeds in coloring the entire random graph Gn,p for any
function p= o(p0) (also denoted by p� p0 in the following), but a.a.s. fails
to do so with any strategy if p=ω(p0) (also denoted by p�p0).

1.1. Our results

In order to state our main theorem, we need to introduce some notation.
For any graph F , let

(1) m1(F ) := max
H⊆F

eH

vH − 1

denote the maximum so-called 1-density of a subgraph H of F . The
thresholds we establish in this paper are determined by the density mea-
sures mr

1 (F ), which are inductively defined as follows:

(2) m r
1 (F ) :=

⎧
⎪⎨

⎪⎩

max
H⊆F

eH

vH
if r = 1,

max
H⊆F

eH + m r−1
1 (F )

vH
if r ≥ 2.

Theorem 1 (Main Result). Let F be a nonempty graph that has an
induced subgraph F ◦⊂F on vF −1 vertices satisfying

(3) m1(F ◦) ≤ m 2
1 (F ).

Then for all r≥1, the threshold for the online F -avoidance vertex-coloring
game with r colors is

p0(F, r, n) = n−1/m r
1 (F ).

The side condition (3) is only used in the upper bound proof – we prove
a lower bound of n−1/mr

1 (F ) in full generality.
If F is 1-balanced, i.e., if we have m1(F )= eF /(vF −1), Theorem 1 can

be simplified as follows (cf. Lemma 9 below).
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Corollary 2. Let F be a 1-balanced nonempty graph that has an induced
subgraph F ◦⊂F on vF −1 vertices satisfying

m1(F ◦) ≤ m1(F )
(
1 − v−2

F

)
.

Then for all r≥1, the threshold for the online F -avoidance vertex-coloring
game with r colors is

p0(F, r, n) = n
− 1

m1(F )(1−v−r
F

) .

In particular, this implies the following thresholds for the game with
cliques and cycles respectively.

Corollary 3 (Clique-avoidance games). For all � ≥ 2 and r ≥ 1, the
threshold for the online K�-avoidance vertex-coloring game with r colors is

p0(�, r, n) = n
− 2

�(1−�−r) .

Corollary 4 (Cycle-avoidance games). For all � ≥ 3 and r ≥ 1, the
threshold for the online C�-avoidance vertex-coloring game with r colors is

p0(�, r, n) = n
− �−1

�(1−�−r) .

The maximization over r potentially different subgraphs in (2) gives rise
to the curious phenomenon that a disconnected graph F may have a higher
threshold than each of his components. Consider for example r = 2 and F
the disjoint union of a triangle K3 and a cycle of length 6 with one extra
edge connecting two opposite vertices, denoted by C+

6 . Corollary 2 yields
that the individual components have thresholds p0(K3,2,n)=n−3/4 =n−0.75

and p0(C+
6 ,2,n) = n−36/49 ≈ n−0.735 respectively, whereas our lower bound

proof yields that p0(F,2,n) is at least n−1/m2
1 (F ) =n−18/25 =n−0.72.

1.2. From subgraph appearance to Ramsey properties

It is instructive to compare these threshold functions to the lower and upper
bounds that follow from known offline results. Clearly, Painter is only in
danger if the underlying random graph contains a copy of F . The following
well-known theorem due to Bollobás states a threshold for this event.
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Theorem 5 ([1]). Let F be a nonempty graph, and let P = ‘G contains a
copy of F ’. Then

lim
n→∞

P[Gn,p ∈ P] =

{
1 if p � n−1/m(F )

0 if p � n−1/m(F ),

where
m(F ) := max

H⊆F

eH

vH
.

Thus, for p�n−1/m(F ) there is a.a.s. no copy of F in Gn,p, and Painter
cannot possibly lose the game. In fact, since by definition we have m1

1 (F )=
m(F ), Theorem 1 yields the statement of Theorem 5 for r=1. It is easy to
see that for r≥ 2, mr

1 (F ) is strictly larger than m(F ) and defines a higher
threshold.

On the other hand, knowing the entire graph in advance would ease
Painter’s situation. Thus, the following result of �Luczak, Ruciński, and Voigt
concerning offline Ramsey properties of random graphs yields an upper
bound on the threshold of the online game.

Theorem 6 ([5]). Let r≥ 2 and F be a nonempty graph that in the case
r = 2 is not a matching. Moreover, let P = ‘every r-vertex-coloring of G
contains a monochromatic copy of F ’. Then there exist positive constants
c=c(F,r) and C =C(F,r) such that

lim
n→∞

P[Gn,p ∈ P] =

{
1 if p > Cn−1/m1(F )

0 if p < cn−1/m1(F ),

where m1(F ) is defined as in (1).

It follows that Painter a.a.s. has no chance of winning the game if p�
n−1/m1(F ) since no proper coloring exists at all. Note that the order of mag-
nitude of this offline threshold does not depend on the number of colors r.
Comparing our results to that, we see that for r → ∞, the exponent in
Corollary 2 tends to the exponent for the offline case, and it can be shown
(cf. Lemma 7) that this convergence holds in general, i.e., that every graph
satisfies

lim
r→∞

m r
1 (F ) = m1(F ).

Thus, the online threshold, which does depend on the number of colors r,
approaches the offline threshold as r grows.

Our proofs show that it is impossible to strengthen the online thresh-
olds to ‘semi-sharp’ thresholds as in Theorem 6. This suggests that online
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colorability is essentially determined by local properties, and in some sense
closer related to Theorem 5 than to Theorem 6 (cf. [2] for a discussion of
sharp thresholds and global vs. local graph properties).

1.3. Edge-colorings

Online Ramsey games in random graphs were first considered for edge-
colorings. Investigating algorithmic Ramsey properties of triangles, Friedgut
et al. [3] introduced and solved the online triangle-avoidance edge-coloring
game with two colors. In [7,8] this result was extended to a theorem sim-
ilar to Theorem 1, covering the game with two colors. It was conjectured
that the theory generalizes to the game with more colors analogously to the
vertex-coloring case – in fact, the corresponding lower bound was shown to
hold in full generality.

1.4. Organization of this paper

We explain our notation and prove some auxiliary results in Section 2. In
Sections 3 and 4 we prove that n−1/mr

1 (F ) is a lower and an upper bound on
the threshold respectively.

2. Preliminaries and notation

The expression f 
 g means that the functions f and g differ at most by a
multiplicative constant. All graphs are simple and undirected. We denote a
clique on � vertices by K� and a cycle on � vertices by C�. The number of
vertices of a graph G is denoted by vG or v(G), and similarly the number of
edges by eG or e(G).

2.1. Density measures

The standard density measure for graphs is d(G) :=eG/vG, which is exactly
half of the average degree. Besides d(G), we also use the so-called 1-density
d1(G) := eG/(vG − 1). For the sake of completeness, we also define d(G) =
d1(G) := 0 if G is empty. For a given density function di, we let mi(G) :=
maxH⊆G di(H). We say that G is balanced with respect to di if mi(G) =
di(G). We simply write balanced for balancedness w.r.t. d, and 1-balanced
for balancedness w.r.t. d1.
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For nonempty graphs F and G and any integer r≥2, we define

d
r
1 (F,G) :=

eG + m r−1
1 (F )

vG
,

where mr−1
1 (F ) is defined as in (2). We set d

r
1(F,G) :=0 if F or G is empty.

Note that
m r

1 (F ) = max
H⊆F

d
r
1 (F,H)

for all r≥2, and recall that m1
1 (F )=m(F ) by definition. We say that F is

balanced w.r.t. d
r
1 if mr

1(F )=d
r
1(F,F ). To simplify notation, we often write

d1 for d
2
1 .

The maximum density measures m and m1 are well-known and motivated
by Theorems 5 and 6 respectively. It is also well-known that every nonempty
graph satisfies m(F )<m1(F ), and that every 1-balanced graph is balanced.
In contrast, the maximum densities mr

1(F ) seem to have not been studied
before. The next lemma shows that they interpolate between m and m1 in
some sense.

Lemma 7. Let F be a nonempty graph.

(i) We have

m(F ) = m 1
1 (F ) < m 2

1 (F ) < · · · < m r
1 (F ) < · · · < m1(F ).

(ii) We have

lim
r→∞

m r
1 (F ) = m1(F ).

(iii) If F is 1-balanced, it is balanced with respect to d
r
1 for all r≥1.

(iv) For all r ≥ 2, if F is balanced with respect to d
r
1 , it is balanced with

respect to d
r−1
1 .

For the proof we use the following observation, which we state separately
for further reference.

Proposition 8. For a, c, C∈R and b>d>0, we have

a

b
≥ C ∧ c

d
≤ C =⇒ a − c

b − d
≥ C

and
a − c

b − d
≥ a

b
⇐⇒ c

d
≤ a

b
.
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Proof of Lemma 7. We prove (i) by induction on r, showing that mr
1 (F )<

mr+1
1 (F ) and mr

1 (F )<m1(F ). In the base case r=1, these statements follow
from the inequalities d(H) < d

2
1 (F,H) and d(H) < d1(H) for all nonempty

subgraphs H⊆F . For r≥2, the first inequality follows from

m r
1 (F ) = max

H⊆F

eH + m r−1
1 (F )

vH

Ind.
< max

H⊆F

eH + m r
1 (F )

vH
= m r+1

1 (F ).

The second inequality follows with eH/(vH −1)≤m1(F ) from

m r
1 (F ) = max

H⊆F

eH + m r−1
1 (F )

vH

Ind.
< max

H⊆F

m1(F )(vH − 1) + m1(F )
vH

= m1(F ).

This concludes the proof of (i).
Clearly, (i) implies that m∞

1 (F ) := limr→∞mr
1 (F ) exists and is at

most m1(F ). On the other hand, letting r→∞ in (2) yields that eH+m∞
1 (F )

vH
≤

m∞
1 (F ) for all H ⊆ F , which by elementary calculations is equivalent to

m∞
1 (F )≥m1(F ). This proves (ii).
An easy calculation shows that d

r
1 (F,F ) ≤ d1(F ) is equivalent to

mr−1
1 (F ) ≤ d1(F ). Hence, F satisfies d

r
1 (F,F ) ≤ d1(F ) by (i). If F is 1-

balanced, we obtain for every subgraph H �F with 2≤vH <vF that

(eF + m r−1
1 (F )) − (eH + m r−1

1 (F ))
vF − vH

=
eF − eH

(vF − 1) − (vH − 1)
Prop.8
≥ d1(F ) ≥ d

r
1 (F,F ),

which again by Proposition 8 implies that d
r
1(F,H)≤ d

r
1(F,F ), concluding

the proof of (iii).
Claim (iv) follows analogously from

(eF + m r−1
1 (F )) − (eH + m r−1

1 (F ))
vF − vH

=
(eF + m r

1 (F )) − (eH + m r
1 (F ))

vF − vH
Prop.8
≥ d

r
1 (F,F ) ≥ d

r−1
1 (F,F )

for every subgraph H �F with 2≤vH <vF .

The inductive definition of mr
1(F ) can be written in the following explicit

form, which yields the threshold formula in Corollary 2.

Lemma 9. For all nonempty graphs F and r≥1, we have

(4) m r
1 (F ) = max

H1,...,Hr⊆F

∑r
i=1 e(Hi)

∏i−1
j=1 v(Hj)

∏r
i=1 v(Hi)

,
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and the graphs H1, . . . ,Hr maximizing (4) can be calculated recursively via

(5) Hr = Hr(F ) :=

⎧
⎪⎨

⎪⎩

argmaxH⊆F
eH

vH
if r = 1,

argmaxH⊆F
eH + m r−1

1 (F )
vH

if r ≥ 2.

If F is 1-balanced, we have

m r
1 (F ) = m1(F )

(
1 − v−r

F

)
.

Proof. To prove the first statement, we apply induction on r. For r=1, the
claim follows directly from (2). For r≥2, we have

m r
1 (F ) = max

Hr⊆F

e(Hr) + m r−1
1 (F )

v(Hr)

Ind.= max
H1,...,Hr⊆F

e(Hr) +
Pr−1

i=1 e(Hi)
Qi−1

j=1 v(Hj )
Qr−1

i=1 v(Hi)

v(Hr)

= max
H1,...,Hr⊆F

∑r
i=1 e(Hi)

∏i−1
j=1 v(Hj)

∏r
i=1 v(Hi)

.

If F is 1-balanced, by Lemma 7 it is also balanced w.r.t. d
r
1 , r≥ 1, and

we have H1 = · · ·=Hr =F . Plugging this into (4), we thus obtain

m r
1 (F ) =

eF

vF

r−1∑

j=0

v−j
F =

eF

vF

(

v
−(r−1)
F

vr
F − 1

vF − 1

)

=
eF

vF − 1
(
1 − v−r

F

)
.

2.2. Janson’s inequality

Janson’s inequality is a very useful tool in probabilistic combinatorics. In
many cases, it yields an exponential bound on lower tails where the second
moment method only gives a bound of o(1). Here we formulate a version
tailored to random graphs.

Theorem 10 ([4]). Consider a family (potentially a multi-set) F = {Hi |
i ∈ I} of graphs on the vertex set {v1, . . . ,vn}. For each Hi ∈ F , let Xi

denote the indicator random variable for the event Hi ⊆Gn,p, and for each
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pair Hi,Hj ∈F , i �=j, write Hi∼Hj if Hi and Hj are not edge-disjoint. Let

X =
∑

Hi∈F
Xi ,

µ = E[X] =
∑

Hi∈F
pe(Hi),

∆ =
∑

Hi,Hj∈F
Hi∼Hj

E[XiXj ] =
∑

Hi,Hj∈F
Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj).

Then for all 0≤δ≤1 we have

P[X ≤ (1 − δ)µ] ≤ e
− δ2µ2

2(µ+∆) .

In particular, Janson’s inequality yields the following counting version of
Theorem 6. The proof is essentially the same as the one for the 1-statement
of Theorem 6 given in [5].

Theorem 11. Let r ≥ 2 and F be a nonempty graph. Then there exist
positive constants C =C(F,r) and a=a(F,r) such that for

p = p(n) ≥ Cn−1/m1(F ),

the random graph Gn,p a.a.s. satisfies the property that in every r-vertex-
coloring there are at least anvF peF monochromatic copies of F .

3. Lower bound

In this section we prove a general lower bound of n−1/mr
1 (F ) for the game

with an arbitrary graph F and an arbitrary number of colors r. We provide
an explicit strategy which a.a.s. succeeds in coloring Gn,p online if p �
n−1/mr

1 (F ).
Consider the game with two colors, say red and blue, and assume that

Painter uses one color, say red, in every move if this does not create an
entirely red copy of F . Clearly, if Painter loses she does so with a blue copy
of F , which was forced by a surrounding red structure. More precisely, after
her losing move the board contains a blue copy of F , each vertex of which
completes a red subgraph to a copy of F . We say that the graph formed
by these copies is a dangerous graph for Painter. Figure 1 shows two such
dangerous graphs for the case F =K4.

This simple greedy strategy yields the claimed lower bound if F is bal-
anced w.r.t. d

2
1 . For general graphs, it may be smarter to play the greedy
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Figure 1. Two graphs from the class F(K4,K4), which are dangerous to a greedy
Painter in the K4-avoidance game with two colors. The graph on the left hand side is the

unique graph K∗
4 . In both graphs, the inner vertices and edges are shaded.

strategy with respect to an appropriately chosen subgraph H of F . For
an example, consider the graph F consisting of a triangle with one edge at-
tached to it. Here it turns out that greedily avoiding triangles and forgetting
about the additional edge guarantees longer survival than greedily avoiding
F itself. If Painter follows this greedy strategy for a fixed H ⊆F , the game
ends with a blue copy of F , each vertex of which completes a red subgraph
to a copy of H.

For arbitrary nonempty graphs H1 and H2, let F(H1,H2) denote the
class of all graphs that have an ‘inner’ (blue) copy of H1, each vertex of
which also completes an ‘outer’ (red) copy of H2. Here the colors should
only provide the intuitive connection to the greedy strategy, the members
of the family F(H1,H2) are not associated with a coloring. We say that the
inner copy of H1 is formed by inner vertices and edges, and refer to the
surrounding elements as outer vertices and edges respectively. Formally, we
define the family of graphs F(H1,H2) as follows.

Definition 12. For all graphs H1 =(V,E) and H2, let

F(H1,H2) :=
{
F ′ = (V

.
∪ U,E

.
∪ D) : F ′ is a minimal graph

such that for all v ∈ V there are sets U(v) ⊆ U and D(v) ⊆ D with
(
{v}

.
∪ U(v),D(v)

) ∼= H2

}
.

The inner vertices V and edges E form the inner of H1. Every vertex v∈V
together with U(v) and D(v) forms a copy of H2. Hence, |U(v)|= v(H2)−
1 and |D(v)| = e(H2). We take F ′ as a minimal element with respect to
subgraph inclusion, i.e., F ′ does not have a subgraph which satisfies the
same properties. This ensures in particular that F(H1,H2) is finite.
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Figure 2. The unique graph from the class F(K3,K3,K3) in which no outer copies
overlap.

In the game with three colors, say, with colors yellow (3), red (2) and
blue (1), a greedy Painter first avoids some subgraph H3 in yellow, H2 in red,
and eventually H1 in blue. We call this strategy the greedy 〈H3,H2,H1〉-
avoidance strategy. By the same argument as before, if Painter loses, the
board contains a red-blue copy of a member from the family F(H1,H2),
every vertex of which completes an entirely yellow copy of H3. We denote
the class of all such graphs by F(H1,H2,H3). Figure 2 depicts a graph from
the class F(K3,K3,K3).

This motivates the following inductive definition for general r.

Definition 13. For any graph H1, let F(H1) := {H1}. For r ≥ 2 and arbi-
trary graphs H1, . . . ,Hr, let

F(H1, . . . ,Hr) :=
{
F r ∈ F(F r−1,Hr) : F r−1 ∈ F(H1, . . . ,Hr−1)

}
.

By the same argument as before, if Painter loses the game with r colors
following the greedy 〈Hr, . . . ,H1〉-avoidance strategy, the board contains a
copy of a graph from F(H1, . . . ,Hr). With this observation at hand, the
lower bound in Theorem 1 is an immediate consequence of the next, purely
deterministic lemma.

Lemma 14. Let F be a nonempty graph, and let r ≥ 1. If the subgraphs
H1, . . . ,Hr ⊆ F are chosen according to (5), all graphs F r ∈ F(H1, . . . ,Hr)
satisfy

m(F r) ≥ m r
1 (F ).

Proof of Theorem 1 (Lower Bound). Since the class F(H1, . . . ,Hr) is
finite, Lemma 14 implies by Theorem 5 that Gn,p a.a.s. contains no graph
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from this class if p� n−1/mr
1 (F ). Therefore, Painter will a.a.s. not lose the

game if she follows the greedy 〈Hr, . . . ,H1〉-avoidance strategy.

Before proving Lemma 14, we give some intuition for it. Consider again
the case r = 2. Among the graphs F ′ ∈ F(H1,H2), there are some distin-
guished ones F ∗ which have vertex-disjoint outer copies. Such a graph is
depicted in Figure 1 on the left hand side. Clearly, these graphs have ex-
actly v(H1)(v(H2)−1)+v(H1)=v(H1)v(H2) vertices and v(H1)e(H2)+e(H1)
edges. If H1 and H2 are chosen according to (5), this yields

d(F ∗) =
v(H1)e(H2) + e(H1)

v(H1)v(H2)
=

e(H2) + d(H1)
v(H2)

= m 2
1 (F ).

More generally, the density of a ‘nice’ member of the class F(H1, . . . ,Hr)
with vertex-disjoint outer copies is given by the fraction on the right hand
side of (4) (cf. Figure 2 for an example). Thus the statement of Lemma 14 is
essentially that members of the family F(H1, . . . ,Hr) that contain overlap-
ping substructures are at least as dense as the ‘nice’ members which have
vertex-disjoint outer copies.

We shall prove Lemma 14 by induction on r using Lemma 15, which
essentially proves the case r=2. Recall that we abbreviate d

2
1 by d1.

Lemma 15. Let S and H be graphs satisfying m(H)≤ d1(S,H). Then all
S′∈F(S,H) satisfy

m(S′) ≥ d1(S,H).

With Lemma 15 at hand, Lemma 14 follows easily.

Proof of Lemma 14. We proceed by induction on r. For r = 1, we have
F(F )={F} and m(F )=m1

1 (F ) by definitions.
Now suppose we have r≥2, and let F r be any graph from F(H1,H2, . . . ,

Hr). Then by definition there is a graph F r−1 ∈ F(H1,H2, . . . ,Hr−1) such
that F r ∈F(F r−1,Hr), and we have

(6)
d1(F r−1,Hr) =

e(Hr) + m(F r−1)
v(Hr)

Ind.
≥ e(Hr) + m r−1

1 (F )
v(Hr)

= d
r
1 (F,Hr) = m r

1 (F )

by the induction hypothesis. Due to

m(Hr) ≤ m(F )
L. 7
≤ m r

1 (F )
(6)

≤ d1(F r−1,Hr),
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we can apply Lemma 15 with S←F r−1 and H←Hr to obtain that

m(F r)
L. 15
≥ d1(F r−1,Hr)

(6)

≥ m r
1 (F ).

Proof of Lemma 15. First, we argue that it suffices to prove Lemma 15 for
the case when S is balanced. Suppose it is not, and let G⊂S be a (balanced)
subgraph satisfying d(G)=m(S). Then we have d1(S,H)=d1(G,H). Hence,
if S and H satisfy the assumption of the lemma, so do G and H. Moreover,
every graph S′ ∈ F(S,H) contains a subgraph G′ ∈ F(G,H). Therefore, if
Lemma 15 holds for balanced graphs, it follows that

m(S′) ≥ m(G′)
L. 15
≥ d1(G,H) = d1(S,H).

For the rest of the proof, we assume that S is balanced and thus

(7) d1(S,H) =
eH + d(S)

vH
=

vSeH + eS

vSvH
.

In order to prove m(S′)≥d1(S,H) for all S′∈F(S,H), we show the slightly
stronger assertion d(S′)≥d1(S,H).

Recall that in every graph S′ = (V
.
∪U,E

.
∪D), the inner copy (V,E) is

isomorphic to S. By definition, for each inner vertex v∈V , we can identify
sets of outer vertices U(v)⊆U and outer edges D(v)⊆D such that Ĥ(v) :=
({v}

.
∪U(v),D(v)) is isomorphic to H. While these sets are not necessarily

unique, for the rest of the proof we fix one choice of appropriate sets U(v)
and D(v). The minimality condition in Definition 12 ensures that every
vertex of U is contained in one of the sets U(v), v∈V , and that every edge
of D is contained in one of the sets D(v), v ∈ V . Let � := vS, and fix an
arbitrary order v1, . . . ,v� on the inner vertices of S′. For 2≤ i≤�, let

Ji := Ĥ(vi) ∩
( i−1⋃

j=1

Ĥ(vj)
)

denote the intersection of the ith outer copy of H with the preceding i−1
copies. For 0≤k≤�, let

Sk := (V,E) ∪
k⋃

i=1

Ĥ(vi).

Note that S0
∼=S and S� =S′.

With induction on k and using that

V
(
Sk−1 ∩ Ĥ(vk)

)
= {vk}

.
∪ V (Jk),
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we obtain that, for 0≤k≤�,

v(Sk) = v(Sk−1) + v
(
Ĥ(vk)

)
− v

(
Sk−1 ∩ Ĥ(vk)

)

Ind.=
(

vS + (k − 1)(vH − 1) −
k−1∑

i=2

v(Ji)
)

+ vH − (1 + v(Jk))

= vS + k(vH − 1) −
k∑

i=2

v(Ji).

Similarly, we obtain with

E
(
Sk−1 ∩ Ĥ(vk)

)
= E(Jk)

that, for 0≤k≤�,

e(Sk) = eS + keH −
k∑

i=2

e(Ji).

For k=�(=vS) this yields

(8) v(S′) = v(S�) = vSvH −
�∑

i=2

v(Ji)

and

(9) e(S′) = e(S�) = eS + vSeH −
�∑

i=2

e(Ji).

Since we chose H maximizing (2), and since each Ji is a subgraph of H,
we have for 2≤ i≤� that

(10)
e(Ji)
v(Ji)

≤ e(Ji) + d(S)
v(Ji)

≤ eH + d(S)
vH

(7)
= d1(S,H).

Using (10) and applying Proposition 8 repeatedly, we obtain from (8) and (9)
that

e(S′)
v(S′)

=
eS + vSeH −

∑�
i=2 e(Ji)

vSvH −
∑�

i=2 v(Ji)
≥ eS + vSeH

vSvH

(7)
= d1(S,H).
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4. Upper bound

In this section we prove an upper bound of n−1/mr
1 (F ) for the game with a

graph F satisfying the precondition of Theorem 1, and an arbitrary number
of colors r. We show that Painter a.a.s. fails to color Gn,p online regardless
of her strategy if p � n−1/mr

1 (F ), provided that there exists an induced
subgraph F ◦⊂F on vF −1 vertices satisfying

m1(F ◦) ≤ m 2
1 (F )

(cf. (3)). We will need this assumption in order to apply Theorem 11 to F ◦.
Assume that p � n−1/mr

1 (F ) is given. We combine a two-round ap-
proach with induction on r to prove that every strategy a.a.s. fails to
color all vertices. We partition the vertex set of G = Gn,p into two sets
V1 := {v1, . . . ,v
n/2�} and V2 := {v
n/2�+1, . . . ,vn} and relax the game to a
semi-online game, revealing the subgraph G[V1] to Painter all at once. She
may color the vertices of V1 offline. In the second round, the vertices of V2

are revealed one by one, and Painter has to color them online as before.
Suppose that Painter’s coloring of the vertex set V1 is fixed, and consider

the set of edges EG(V1,V2) generated between V1 and V2, but hidden from
Painter’s view. For each color s ∈ {1, . . . ,r}, this edge set defines a vertex
set Base(s)⊆V2 consisting of all vertices in V2 that complete a copy of F in
color s. Obviously, Painter may not assign color s to any vertex in Base(s)
in the second round. The next claim asserts that there exists some color
class s0∈{1, . . . ,r} such that Base(s0) is large enough to apply the induction
hypothesis.

Claim 16. After the first round was played, there a.a.s. exists a color s0∈
{1, . . . ,r} such that we have

|Base(s0)| = Ω
(
nm r−1

1 (F )/m r
1 (F )

)
.

With Claim 16 at hand, the upper bound in Theorem 1 is easy to prove.

Proof of Theorem 1 (Upper Bound). We proceed by induction on r.
The base case r = 1 follows directly from Theorem 5. For r ≥ 2, Claim 16
implies that in the second round, Painter must a.a.s. color a binomial random
graph G

en,ep on ñ=Ω(nmr−1
1 (F )/mr

1 (F )) vertices with edge probability

p̃ = p � n−1/m r
1 (F ) = Ω

(
ñ−1/m r−1

1 (F )
)

with just r−1 colors left in an online fashion. Applying the induction hy-
pothesis yields that she a.a.s. fails to do so no matter which strategy she
employs.

It remains to prove Claim 16.
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Proof of Claim 16. We will prove a lower bound on P[v∈Base(s0)] by an
application of Theorem 10 to the random edges between V1 and V2 gener-
ated in the second round. For this calculation to work out we need certain
properties to hold for the random graph on V1 generated in the first round.
In the following we specify these properties and prove that they hold a.a.s.

In order to simplify notation, let β := mr−1
1 (F )/mr

1 (F ). Note that we
have β < 1 due to Lemma 7. For any graph J ⊆ F with vJ ≥ 1 and p �
n−1/mr

1 (F ), we have

nvJ peJ � nvJ−eJ/m r
1 (F ) ≥ n

vJ−
eJ vJ

eJ+m r−1
1

(F )

= n

vJ eJ+vJm r−1
1 (F )−eJ vJ

eJ+m
r−1
1 (F ) = n

vJ

eJ+m
r−1
1 (F )

m r−1
1 (F )

≥ nm r−1
1 (F )/m r

1 (F ) = nβ.

(11)

Consider a fixed induced subgraph F ◦ ⊂F on vF −1 vertices satisfying
m1(F ◦)≤m2

1 (F )≤mr
1 (F ) (cf. (3) and Lemma 7). Let s0∈{1, . . . ,r} denote

the color for which the number of monochromatic copies of F ◦ in G[V1] is
largest, and let M denote the number of copies in this color. In the following,
we label these copies by F ◦

i , i=1, . . . ,M . By Theorem 11, we a.a.s. have

(12) M = Ω
(
nv(F ◦)pe(F ◦)

)
.

For any vertex v ∈ V2 and i = 1, . . . ,M , let Tv,i ⊆ V1 ×{v} be a set of
potential edges that connect F ◦

i and v such that they form a copy of F . If
there are several such sets, pick one arbitrarily. Thus |Tv,i|=degF (u) for all
v and i, where u denotes the vertex that was removed from F to obtain F ◦.

For v∈V2 and any pair of indices i,j, 1≤ i,j≤M , let

Jv,ij := (F ◦
i ∪ Tv,i) ∩ (F ◦

j ∪ Tv,j)

denote the graph in which the two potential copies of F intersect. Further-
more, for J ⊆ F let Mv,J denote the number of pairs i,j, i �= j, for which
Tv,i∩Tv,j �=∅ and Jv,ij

∼=J . Note that Mv,J is bounded by a constant times
the number of subgraphs in G[V1] formed by two copies of F ◦ intersecting
in a copy of J◦ :=J ∩F ◦. (Here the constant accounts for the fact that the
same subgraph of G[V1] might correspond to different overlapping pairs of
copies of F ◦.) The expected number of such subgraphs in G[V1] is of order

n2v(F ◦)−v(J◦)p2e(F ◦)−e(J◦) =
(
nv(F ◦)pe(F ◦)

)2
n−vJ+1p−eJ+degJ (u)

(11)
�

(
nvF−1pe(F ◦)

)2
n1−βpdegJ (u).
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Thus it follows with Markov’s inequality that

(13) Mv,J �
(
nvF−1pe(F ◦)

)2
n1−βpdegJ(u)

a.a.s. Since the number of subgraphs J◦⊆F ◦ is a constant only depending
on F , a.a.s. this bound holds simultaneously for all subgraphs J⊆F and all
v∈V2 after the first round.

For v∈V2, let
Fv := {Tv,1, . . . , Tv,M}.

Note that Fv might be a multiset, since the same set of edges may com-
plement distinct monochromatic copies of F ◦ in G[V1] to a copy of F . For
i = 1, . . . ,M , let Xv,i denote the indicator random variable for the event
Tv,i⊆Gn,p, and set

Xv :=
M∑

i=1

Xv,i .

Clearly, the vertex v is contained in Base(s0) if Xv ≥1. We apply Theo-
rem 10 to the family Fv in order to obtain a lower bound on the probability
of this event. Conditioning on the outcome of the first round as specified,
i.e., on (12) and (13), we obtain

(14) µ = E[Xv] = M · pdegF (u) (12)
= Ω

(
nvF−1peF

) (11)
= ω

(
nβ−1

)

and

∆ =
M∑

i,j=1
Tv,i∼Tv,j

E[Xv,iXv,j ]

=
∑

J⊆F
u∈V (J)

M∑

i,j=1
Tv,i∼Tv,j ,Jv,ij

∼=J

E[Xv,iXv,j ]

=
∑

J⊆F
u∈V (J)

Mv,J · p2 degF (u)−degJ (u)

(13)
= o

(
(nvF−1peF )2n1−β

) (14)
= o

(
µ2n1−β

)
.

Therefore, Theorem 10 yields that

P[v /∈ Base(s0)] ≤ P[Xv = 0] ≤ exp
{

− µ2

2(µ + ∆)

}

= exp
{
−ω

(
nβ−1

)}
= 1 − ω

(
nβ−1

)
.
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Figure 3. Illustrations for the bowtie example, cf. text.

Since for a fixed outcome of the first round, the events {u∈Base(s0)} and
{v ∈ Base(s0)} are independent for u �= v ∈ V2, standard Chernoff bounds
imply that a.a.s. we have

|Base(s0)| = Ω

(
∑

v∈V2

P [v ∈ Base(s0)]
)

= Ω
(
nβ

)
.

5. Outlook

It is tempting to dismiss the precondition (3) as an artifact of our upper
bound proof technique and conjecture that n−1/mr

1 (F ) is in fact the thresh-
old of the game for all graphs F and all r ≥ 1. We conclude this work by
presenting an example that shows that this is not the case.

Consider the case r=2 and the ‘bowtie graph’ B formed by two triangles
which are connected by an edge. Our lower bound proof shows that greedily
avoiding triangles (say, greedily using red, and using blue to avoid red tri-
angles) allows Painter to win the game if p�n−1/m2

1 (B) =n−18/25 ≈n−0.72.
This value corresponds to the number of edges and vertices of a ‘nice’ graph
from F(F,K3), depicted on the left hand side of Figure 3. With some case
checking, one can show that switching back to red when the previous strat-
egy would complete a blue copy of B (thus completing a red triangle instead)
improves the lower bound to n−36/51 =n−12/17≈n−0.706. This value is given
by the number of edges and vertices of the graph depicted on the right hand
side of Figure 3.

References

[1] B. Bollobás: Threshold functions for small subgraphs, Math. Proc. Cambridge
Philos. Soc. 90(2) (1981), 197–206.



ONLINE VERTEX-COLORING GAMES IN RANDOM GRAPHS 123

[2] E. Friedgut: Hunting for sharp thresholds, Random Structures & Algorithms 26(1–
2) (2005), 37–51.

[3] E. Friedgut, Y. Kohayakawa, V. Rödl, A. Ruciński and P. Tetali: Ramsey
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