
PARTITION PROPERTIES OF THE DENSE LOCAL ORDER
AND A COLORED VERSION OF MILLIKEN’S THEOREM

C. LAFLAMME, L. NGUYEN VAN THÉ, N. W. SAUER

Abstract. We study finite dimensional partition properties of the countable

homogeneous dense local order (a directed graph closely related to the order
structure of the rationals). Some of our results use ideas borrowed from the

partition calculus of the rationals and are obtained thanks to a strengthening

of Milliken’s theorem on trees.

1. Introduction

The purpose of this paper is the study of the partition properties of a particular
oriented graph, called the dense local order. To our knowledge, the dense local order
(denoted S(2) in the sequel) appeared first in a work of Woodrow [W76]. The at-
tempt then was to characterize the countable tournaments which are homogeneous,
that is for which any isomorphism between finite subtournaments can be extended
to an automorphism of the whole structure. It was shown that up to isomorphism,
there are only two countable homogeneous tournaments which do not embed the
tournament D shown in Figure 1. Those are 1) the tournament corresponding to

the rationals (Q, <) where x Q←− y iff x < y and 2) the dense local order S(2).
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Figure 1. The tournament D

The tournament S(2) is defined as follows: let T denote the unit circle in the
complex plane. Define an oriented graph structure on T by declaring that there is
an arc from x to y iff 0 < arg(y/x) < π. Call

−→
T the resulting oriented graph. The

dense local order is then the substructure S(2) of
−→
T whose vertices are those points

of T with rational argument.
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A few years later, Lachlan proved in [La84] that any countable homogeneous
tournament embedding D also embeds every finite tournament. This completed the
classification initiated by Woodrow and showed that up to isomorphism there are
only three countable homogeneous tournaments: the rationals, the dense local order
and the countable random tournament

−→
R (up to isomorphism, the unique countable

homogeneous tournament into which every countable tournament embeds). Note
that this is in sharp contrast with the more general case of countable homogeneous
oriented graphs as there are continuum many such objects (this latter result is due
to Henson [Hen72] while the classification of countable homogeneous graphs is due
to Cherlin [Ch98]). In this paper, we will be interested in Ramsey type questions
with the following flavor: given k ∈ N and a finite tournament Y, is there a finite
tournament Z such that for every k-coloring of the arcs of Z, there is an induced
copy Ỹ of Y in Z where all the arcs have the same color? For this particular
problem, the answer could be negative (depending on which Y we started with)
but becomes positive if one is allowed to have at most two colors instead of one
single color for the arcs of Ỹ. More generally, Ramsey-theoretic properties of the
rationals and of the random tournament are known in the following sense: given
tournaments X, Y and Z, we write X ⊂ Z when X is an induced subtournament
of Z and X ∼= Y when there is an isomorphism from X onto Y. We define the set(
Z
X

)
as (

Z
X

)
= {X̃ ⊂ Z : X̃ ∼= X} .

For k, l positive elements of N (throughout this article, N = {0, 1, 2, 3, . . .}) and
a triple X,Y,Z of tournaments, the symbol

Z −→ (Y)Xk,l

is an abbreviation for the statement: “For any χ :
(
Z
X

)
−→ [k] (by [k] we mean the

set {0, . . . , k − 1}), there is Ỹ ∈
(
Z
Y

)
such that χ does not take more than l values

on
(eY
X

)
.” When l = 1, this is simply written Z −→ (Y)Xk . Let Q, T and C denote

the class of all finite subtournaments of Q,
−→
R and S(2) respectively. For K = Q, T

or C and X ∈ K, a first problem is to determine the value of the Ramsey degree of
X in K, denoted tK(X), defined as the least l ∈ N∪{∞} such that for every Y ∈ K
and every k ∈ N there exists Z ∈ K such that

Z −→ (Y)Xk,l .

A second problem is to determine the value of the big Ramsey degree of X in K.
This latter quantity is denoted TK(X) and is defined as follows: let F denote the
tournament Q if K = Q,

−→
R if K = T and S(2) if K = C. Then the big Ramsey

degree of X in K is the least L ∈ N ∪ {∞} such that for every k ∈ N,

F −→ (F)Xk,L .

For K = Q, the Ramsey degrees and the big Ramsey degrees are always finite and
can be computed effectively. More precisely, every X ∈ Q is such that tQ(X) = 1.
This is an easy consequence of the original Ramsey theorem. By contrast, a much
more difficult proof due to Devlin in [Dev79] showed that TQ(X) = tan(2|X|−1)(0),
the (2|X|−1)st derivative of tan evaluated at 0. Recall that tan′(0) = 1, tan(3)(0) =
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2, tan(5)(0) = 16, tan(7)(0) = 272 and that in general

tan(2n−1)(0) =
B2n(−4)n(1− 4n)

2n
where (Bn)n∈N is the Bernouilli sequence defined (for example) by

x

ex − 1
=

+∞∑
n=0

Bn
n!
xn for every |x| < 2π .

For K = T , Ramsey degrees and big Ramsey degrees have never been studied
explicitly but can be determined thanks to other known Ramsey type results. In
particular, thanks to a general partition result of Nešetřil and Rödl, it is known
that every X ∈ T has a finite Ramsey degree and that

tT (X) = |X|!/|Aut(X)|
where Aut(X) denotes the set of all automorphisms of X. On the other hand, TT (X)
is known to be finite and the work [LSV04] by Laflamme, Sauer and Vuksanovic
on the countable random undirected graph actually shows that its value can be
interpreted as the number of representations that X admits into a certain well-
known finite structure (that is, there is an algorithm for every X determining
the value of TT (X)). However, it is still unclear whether this expression can be
simplified so as to give a counterpart to Devlin’s formula in the context of T .

As for the case K = C, it does not seem to have been studied by anybody so far
and the purpose of the present paper is therefore to fill that gap. We first study
the Ramsey degrees in C. Our result here reads as follows:

Theorem 1. Every element X of C has a Ramsey degree in C equal to

tC(X) = 2|X|/|Aut(X)| .

We then turn to the study of the big Ramsey degrees in C, and prove:

Theorem 2. Every element X of C has a big Ramsey degree in C equal to

TC(X) = tC(X) tan(2|X|−1)(0) .

As a direct corollary, for every natural k > 0 and every coloring χ : S(2) −→ [k],
there is an isomorphic copy of S(2) inside S(2) on which χ takes only 2 colors (this
statement is not as obvious as it looks), and 2 is the best possible bound. On the
other hand, for every k-coloring of the arcs of S(2), there is an isomorphic copy of
S(2) inside S(2) where only 8 colors appear, and 8 is the best possible bound.

Theorem 1 and Theorem 2 are proved thanks to a connection between the class
C and some other classes of finite structures for which several Ramsey properties
are already known. Those are the classes Pn of all finite structures of the form
A = (A,<A, PA

1 , . . . , P
A
n ) where <A is a linear ordering on A and {PA

1 , . . . , P
A
n }

is a partition of A into disjoint sets. Given two such structures A and B, an
isomorphism is an order-preserving bijection f from A to B such that for every
x ∈ A, x ∈ PA

i iff f(x) ∈ PB
i . As it was the case for the class C, there is a

unique countable homogeneous structure whose class of finite substructures is Pn.
In this paper, this structure is denoted Qn. The role that Qn plays with respect
to Pn is exactly the same as the role that S(2) plays for the class C. As for S(2),
the structure Qn can be represented quite simply. Namely, the structure Qn can
be seen as (Q, Q1, . . . , Qn, <) where Q denotes the rationals, < denotes the usual
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ordering on Q, and every Qi is a dense subset of Q. The notions of Ramsey degrees
and big Ramsey degrees in Pn are then defined in exactly the same way as they are
for C. The Ramsey degrees in Pn are known: every element in Pn has a Ramsey
degree in Pn equal to one. This result, in the case n = 2, is one of the key facts in
our proof of Theorem 1. As for the big Ramsey degrees, we are able to prove that:

Theorem 3. Let n be a positive natural. Then every element X of Pn has a big
Ramsey degree in Pn equal to tan(2|X|−1)(0).

Equivalently, for every element X of Pn, tan(2|X|−1)(0) is the least possible nat-
ural such that for every natural k > 0,

Qn −→ (Qn)Xk,tan(2|X|−1)(0) .

Again, the corresponding result for n = 2 turns out to be crucial for our purposes.
Here, it is one of the ingredients of our proof of Theorem 2. Theorem 3 is obtained
by following ideas borrowed from Devlin [Dev79] together with a strengthening of a
theorem of Milliken [Mi79]: consider a finitely branching tree (in the order-theoretic
sense) T of infinite height, a number m, and a subset S ⊂ T . If S satisfies certain
properties listed in Section 5, we say that S is a strong subtree of T of height m.
According to Milliken’s theorem, if we assign a color to each strong subtree of height
m out of a finite family of colors then there exists a strong subtree of infinite height
such that all strong subtrees of height m contained in it have the same color. In
the version we need in order to prove Theorem 3, each level of the tree is assigned
a color (out of a finite set not related to the set of colors of subtrees). We then
consider only strong subtrees of height m with some given level-coloring structure
and we look for a strong subtree of infinite height with a level-coloring structure
similar to that of the original tree.

The paper is organized as follows: in section 2, we define the notion of extension
in P2 for any element of C and show that the number of nonisomorphic extensions
in P2 of a given element of C can be expressed simply in terms of the size of its
automorphism group. In section 3, we use this result to compute Ramsey degrees in
C and to prove Theorem 1. In section 4 we turn to the study of big Ramsey degrees
and show how Theorem 2 follows from Theorem 3. The two remaining sections of
the paper are devoted to a proof of Theorem 3. The first step is carried out in
section 5 where we prove a strengthening of Milliken’s theorem on trees. Together
with Devlin’s original ideas from [Dev79], this result is then used to derive Theorem
3.

Ackowledgements: C. Laflamme was supported by NSERC of Canada Grant#
690404. L. Nguyen Van Thé would like to thank the support of the Department of
Mathematics & Statistics Postdoctoral Program at the University of Calgary. N.
W. Sauer was supported by NSERC of Canada Grant # 691325. We would also like
to thank the anonymous referee whose numerous and helpful comments improved
the paper considerably.

2. Extensions of circular tournaments

The purpose of this section is to establish a connection between the elements of
C and the elements of P2. This connection is not new: it already appears in [La84]
and in [Ch98] as well as in several other papers. Here, it enables us to deduce most
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of our results from an analysis of the partition calculus on P2. This is done by
defining a notion of extension for every element of C:

For A = (A;<A, PA
1 , P

A
2 ) with <A a linear ordering on A and (PA

1 , P
A
2 ) a

partition of A, let ∼A denote the equivalence relation induced by (PA
1 , P

A
2 ). Let

then p(A) denote the oriented graph based on A and equipped with the arc relation
denoted A←− and such that

a
A←− b iff

(
(a ∼A b and a <A b) or (a �A b and b <A a)

)
.

This construction is illustrated in Figure 2.

a1 a2 a3 a1 a2 a3

A p(A)

Figure 2. Construction of p(A)

In words: interpret <A as a directed graph relation←− where x←− y iff x <A y.
Then reverse all the arcs between the elements of A which are not ∼A-equivalent.
It should be clear that p(A) is a tournament. For a tournament X, any A such
that p(A) = X is called an extension of X.

Lemma 1. Let A ∈ P2. Then p(A) ∈ C.

Proof. We construct ϕ(A) ⊂ S(2) isomorphic to p(A) as follows: denote by Im+

the complex open upper half plane. The directed graph structure on S(2) induces

a linear ordering on S(2) ∩ Im+ if we set x < y iff x
S(2)←− y. As a linear order,

(S(2)∩Im+, <) is isomorphic to Q, hence without loss of generality we may assume
that the linear ordering (A, <A) is a subset of (S(2)∩Im+, <). Using the fact that
in the complex plane, (−a) is the symmetric of a with respect to the origin, let
ϕ : A −→ S(2) be defined by:

ϕ(a) =
{

a if a ∈ PA
1 ,

−a if a ∈ PA
2 .

Observe that if a, a′ ∈ A belong to the same PA
i , then ϕ preserves the arc

relation
S(2)←− between a and a′ while it reverses it when a and a′ do not belong to

the same PA
i . This fact together with the construction scheme described previously

for p(A) (paragraph preceding Lemma 1) imply that the tournaments ϕ(A) and
p(A) are isomorphic. �

The procedure applied in Lemma 1 (refered to as projection procedure in the
sequel) is illustrated in a simple case in Figure 3.

Lemma 2. Let X ⊂ S(2). Then X has exactly 2|X|/|Aut(X)| nonisomorphic
extensions.

Proof. We first show that the projection procedure to obtain p(A) from A can be
reversed to an extension procedure in order to construct extensions of X: Consider
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a1 a2 a3

A S(2) S(2)

a1

a2 a3
ϕ(a1)

ϕ(a2)

ϕ(a3)
Im+

Figure 3. The projection procedure — construction of ϕ(A)

a line L through the origin avoiding all the vertices of X. Choose one of the open
half planes with boundary L, call it H. Then, set:

PA
1 = X ∩H, PA

2 = {−a : a ∈ X rH} .

That is, PA
2 is the set obtained from X r H by symmetry with respect to

the origin. As previously, the arc relation on S(2) induces a linear ordering on
A := PA

1 ∪PA
2 , call it <A. Then the structure A := (A;PA

1 , P
A
2 , <

A) is in P2 and
is an extension of X. A simple application of the extension procedure is illustrated
in Figure 4.

x

y

z
x

y

−y
z

x −y z
H
L

Figure 4. The extension procedure

Note the following essential fact: If A is an extension of X then applying the
projection procedure to A produces a copy X̃ of X included in S(2), and applying
the extension procedure to this same X̃ where L is the real axis and H is the open
upper half plane produces A itself. It follows that every extension of X can be
obtained by applying the extension procedure to X.

Hence, to count the number of non isomorphic extensions of X in P2, we need to
know when different choices of L,H provide non isomorphic extensions. Observe
first that the choice of L determines a linear ordering on X as follows: Choose any of
the two half planes with boundary L. Using symmetry with respect to the complex
origin if necessary, bring all the points of X inside this half plane, where the arc
relation on S(2) induces a linear ordering. Then, simply pull this linear ordering
back to X. Note that the linear ordering we obtain on X does not depend on the
half plane we chose to construct it. Observe that if two lines L,L′ induce linear
orderings <,<′ such that (X, <) and (X, <′) are non isomorphic (when seen as
ordered tournaments), then any choice of H,H ′ leads to non isomorphic extensions
of X in P2. Since for each line L there are two choices for H, it follows that the
number of non isomorphic extensions of X in P2 is twice the number of structures
of the form (X, <) where < comes from a line.
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To compute this number, observe that two lines L,L′ induce the same linear
ordering on X when their half planes contain the same vertices of X. Therefore,
there are |X| such orderings. Next, consider < and <′. They enumerate X increas-
ingly as {x1, . . . , x|X|} and {x′1, . . . , x′|X|} respectively, and (X, <) and (X, <′) are
isomorphic exactly when the map xn 7→ x′n is an automorphism of X. Therefore,
there are essentially |X|/|Aut(X)| different ways to order X via a line. The result
of Lemma 2 follows. �

Remark: Observe that since the number |X|/|Aut(X)| represents the number
of different ways to order X via a line, it is an integer. Therefore, |Aut(X)| divides
|X|.

3. Ramsey degrees in C

For X ∈ C, we write t(X) for the number 2|X|/|Aut(X)|. The purpose of this
section is to prove Theorem 1, that is: Every X ∈ C has a finite Ramsey degree
tC(X) in C and tC(X) = t(X). Throughout this section, X ∈ C is fixed. We first
show that tC(X) ≤ t(X) and next that t(X) ≤ tC(X).

3.1. Upper bound for tC(X): tC(X) ≤ t(X). We need to prove that for every
strictly positive k ∈ N, every Y ∈ C, there is Z ∈ C such that

Z −→ (Y)Xk,t(X) .

This is done thanks to the following partition property for P2:

Theorem 4 (Kechris-Pestov-Todorcevic, [KPT05]). Let n ∈ N, A,B ∈ Pn and k
a positive natural. Then there is C ∈ Pn such that

C −→ (B)Ak .

Proof. cf [KPT05], Theorem 8.4, p.158-159. �

In order to prove that X has a finite Ramsey degree tC(X) and that tC(X) ≤ t(X),
we apply Theorem 4 t(X) times as follows. For the sake of clarity, we only consider
the particular case where t(X) = 2 but it should be clear at the end of the argument
how to generalize to any other value. According to Lemma 2, t(X) is equal to
the number of nonisomorphic extensions of X in P2. Let A0,A1 denote those
extensions. Let also B0 ∈ P2 be such that p(B0) ∼= Y. Using Theorem 4, construct
B1 so that

B1 −→ (B0)A0
k .

Next, construct B2 so that
B2 −→ (B1)A1

k .

We claim that Z := p(B2) is as required. Let χ :
(
Z
X

)
−→ [k]. Then χ induces a

map from
(
B2
A1

)
to [k]. By construction of B2, we can find B̃1 ∈

(
B2
B1

)
such that χ

is constant on
(eB1
A1

)
. Then, working in B̃1, χ induces a map from

(eB1
A0

)
to [k]. By

construction of B1, we can find B̃0 ∈
(eB1
B0

)
such that χ is constant on

(eB0
A0

)
. Note

that since B̃0 ⊂ B̃1, χ is also constant on
(eB0
A1

)
. In Z, the substructure Ỹ supported

by B̃0 is then isomorphic to Y and we have(
Ỹ
X

)
=
(

Ỹ
A0

)
∪
(

Ỹ
A1

)
.
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Therefore, the map χ takes no more than 2 values (in the general case, t(X)
values) on

(eY
X

)
, as required. Thus, X has a Ramsey degree tC(X) in C and

tC(X) ≤ t(X) .

3.2. Lower bound for tC(X): t(X) ≤ tC(X). The main ingredient is the following
lemma:

Lemma 3. There exists Y ∈ C such that every extension of X embeds into every
extension of Y.

Proof. Let Cn denote the subtournament of S(2) whose set of vertices is given by
{e

2ikπ
2n+1 : k = 0, . . . , 2n}. Observe that up to an interchange of the parts, all the

extensions of Cn in P2 are isomorphic. Essentially, this is so because there is only
one way to order Cn via a line through the origin as in Lemma 2. Another way to
see it is to notice that Cn admits exactly 2n + 1 automorphisms: every rotation
whose angle is a multiple of (2iπ/2n+ 1) provides an automorphism. Furthermore,
we saw with the Remark at the end of section 2 that the number of automorphisms
divides the cardinality of the structure. Thus, there cannot be more than 2n + 1
automorphisms, which means in the present case that there are exactly 2n + 1
automorphisms. Therefore, Cn has 2|Cn|/|Aut(Cn)| = 2(2n + 1)/(2n + 1) = 2
extensions in P2, namely

Dn =
(
[2n+ 1] , <, [2n+ 1] ∩ 2Z, [2n+ 1] ∩ (2Z+ 1)

)
,

En =
(
[2n+ 1] , <, [2n+ 1] ∩ (2Z+ 1), [2n+ 1] ∩ 2Z

)
.

Note that if n is large enough, then X embeds into Cn. Note also that seeing X
as a subtournament of Cn, the extension procedure applied to X with any line L
and plane H also induces an extension of Cn. It follows that any extension of X
embeds in Dn and En, and we can take Y = Cn. �

Here is how Lemma 3 leads to the required inequality: Let Z ∈ C. We show that
there is a map χ on

(
Z
X

)
using t(X) values and taking t(X) values on the set

(eY
X

)
whenever Ỹ ∈

(
Z
Y

)
. Let C be an extension of Z in P2. Then given a copy X̃ of

X in Z, the substructure of C supported by X̃ is an extension of X in P2 and is
isomorphic to a unique element Aj of the family (Ai)i<t(X). Let χ(X̃) = j. Then
the map χ is as required.

3.3. Comments about tC(X). The effective computation of tC(X) (or equiva-
lently of |Aut(X)|) in the general case does not seem to be easy. It can be carried
out in the most elementary cases, see Figure 3.3.

X

tC(X)

r
2

r r�

4

r
r r�

�
��	 @

@@I

6

r
r r-�
��	 @

@@I

2

Figure 5. Elementary values of tC(X)
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There are also a few particular elements of C for which it can be performed
directly. For example, for the oriented graph corresponding to the linear order on
n points, the Ramsey degree in C is equal to 2n as there is only one automorphism.
On the other hand, call Cn the subtournament of S(2) whose set of vertices is given
by {e

2ikπ
2n+1 : k = 0, . . . , 2n}. We saw in the proof of Lemma 3 that Cn only has

two non isomorphic extensions. It follows that the Ramsey degree of Cn in C is
equal to 2. Finally, note that given any n ∈ N, there are exactly 2n nonisomorphic
structures in P2 whose base set has exactly n elements. Note also that any such
structure is the extension of a unique X ∈ C such that |X| = n. It follows that∑

|X|=n

tC(X) = 2n .

Using the expression of tC(X), it follows that∑
X∈C,|X|=n

n

Aut(X)
= 2n−1 .

4. Big Ramsey degrees in C

The purpose of this section is to prove Theorem 2 under the assumption that
Theorem 3 holds. Denoting by T (X) the number tC(X) tan(2|X|−1)(0), we need
to show that every X has a finite big Ramsey degree TC(X) in C equal to T (X).
Equivalently, we first need to prove that for every k ∈ N,

S(2) −→ (S(2))Xk,T (X) .

Then, when this is done, we need show that T (X) is the least number with that
property.

4.1. Upper bound for TC(X): TC(X) ≤ T (X). Recall given a structure A =
(A,<A, PA

1 , P
A
2 ) where <A is a linear ordering on A and (PA

1 , P
A
2 ) is a partition

of A into two disjoint sets, the tournament p(A) is obtained by interpreting <A

as a directed graph relation ←− (x ←− y iff x <A y) and reversing all the arcs
between the elements of A which are in different parts PA

i .

Lemma 4. Q2 is an extension of S(2).

Proof. Applying the extension procedure (described in the proof of Lemma 2) to
the tournament S(2) where L is any line through the origin avoiding S(2) and H
any of the open half planes with boundary L, we get Q2. Therefore, Q2 is an
extension of S(2)r {1} ∼= S(2). �

Keeping the result of Lemma 4 in mind, here is how we prove S(2) −→ (S(2))Xk,T (X).

Let χ :
(
S(2)
X

)
−→ [k]. Let (Ai)i<tC(X) enumerate the extensions of X. Then

by Lemma 4, χ induces a map from
(Q2
A0

)
to [k]. By Theorem 3, we can find

Q0
2 ∈

(Q2
Q2

)
such that χ takes no more than tan(2|A0|−1)(0) = tan(2|X|−1)(0) val-

ues on
(
Q0

2
A0

)
. Then, working in Q0

2, χ induces a map from
(
Q0

2
A1

)
to [k]. Again,

applying Theorem 3, we can find Q1
2 ∈

(
Q0

2
Q2

)
such that χ takes no more than

tan(2|A1|−1)(0) = tan(2|X|−1)(0) values on
(
Q1

2
A1

)
. Note that since Q1

2 ⊂ Q0
2, χ takes

no more than ∆|X| many values on
(
Q1

2
A0

)
. Repeating this procedure tC(X) times,
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we end up with Q
tC(X)−1
2 such that for every i < tC(X), χ takes no more than

tan(2|X|−1)(0) values on
(
Q
tC(X)−1
2
Ai

)
. Now, in S(2), the substructure supported by

Q
tC(X)−1
2 is isomorphic to S(2) and since we have(

Q
tC(X)−1
2

X

)
=

⋃
i<tC(X)

(
Q
tC(X)−1
2

Ai

)
,

the map χ takes no more than tC(X) tan(2|X|−1)(0) = T (X) values on
(
Q
tC(X)−1
2

X

)
,

as required. Thus, X has a big Ramsey degree TC(X) in C and it follows that
TC(X) ≤ T (X).

4.2. Lower bound for TC(X): T (X) ≤ TC(X). We start with an analogue of
Lemma 3.

Lemma 5. Every extension of X in P2 embeds into every extension of S(2).

Proof. We prove that for every extension B = (S(2), B1, B2, <) of S(2), the follow-
ing holds

∀x, y ∈ S(2) ∀i ∈ {1, 2} (x < y → ∃z ∈ Bi x < z < y) (∗) .

Assuming that (∗) holds, B1 and B2 are dense in B. It follows that Q2, and
therefore every element of P2, embeds into B. In particular, every extension of X
embeds into B, which finishes the proof of Lemma 5. We consequently turn to the
proof of (∗). Without loss of generality, we may assume that i = 1. We have several
elementary cases to verify:

(1) If x, y ∈ B1. Fix z ∈ S(2) such that x
S(2)←− z

S(2)←− y. Then z ∈ B1. Indeed,
if not, then z ∈ B2 and so x > z and z > y. Hence x > y, a contradiction.

(2) If x, y ∈ B2, then z ∈ S(2) such that x
S(2)−→ z

S(2)−→ y works.

(3) If x ∈ B1 and y ∈ B2, then z ∈ S(2) such that x
S(2)←− z and y

S(2)←− z works.

(4) If x ∈ B2 and y ∈ B1, then z ∈ S(2) such that z
S(2)←− x and z

S(2)←− y works.
This finishes the proof of Lemma 5. �

We can now show T (X) ≤ TC(X) by producing a map χ on
(
S(2)
X

)
taking T (X)

values on the set
(
C
X

)
whenever C ∈

(
S(2)
S(2)

)
. First, for every i < tC(X), Theorem

3 guarantees the existence of a map λi :
(Q2
Ai

)
−→ [tan(2|X|−1)(0)] witnessing that

the big Ramsey degree of Ai in P2 is equal to tan(2|X|−1)(0). Next, consider S(2),
seen as p(Q2). Then given a copy X̃ of X in S(2), the substructure A(X̃) of Q2

supported by X̃ is an extension of X in P2 and is isomorphic to a unique element of
the family (Ai)i<tC(X). Define then the map χ :

(
S(2)
X

)
−→ [tC(X)]×[tan(2|X|−1)(0)]

by
χ(X̃) = (i, λi(A(X̃)) .

where i < tC(X) is the unique natural such that A(X̃) ∼= Ai. Then χ is as required:
Let C ∈

(
S(2)
S(2)

)
. The substructure B of Q2 supported by C is an extension of S(2)

and by Lemma 5, all the extensions of X embed in B. Additionnally, Q2 embeds
into B so λi takes ∆|X| many values on

(
B
Ai

)
for every i. Thus, χ takes T (X) many

values on
(
C
X

)
. This shows that T (X) ≤ TC(X) and finishes the proof of Theorem

2.
10



4.3. Elementary values of TC(X). As previously, we finish this section by col-
lecting the elementary values of TC(X):

X

TC(X)

r
2

r r�

8

r
r r�

�
��	 @

@@I

96

r
r r-�
��	 @

@@I

32

Figure 6. Elementary values of TC(X)

5. A colored version of Milliken’s theorem

In Section 4, we provided a proof of Theorem 2 assuming Theorem 3. The
goal of the present section is to make a first step towards a proof of Theorem
3 by proving a strengthening of the so-called Milliken theorem. The motivation
behind the strategy here really comes from the proof of Theorem 3 when n = 1.
This was completed by Devlin in [Dev79] thanks to two main ingredients. The
first one is a detailed analysis of how copies of Q may appear inside Q when Q
is identified with the complete binary tree [2]<∞ of all finite sequences of 0’s and
1’s ordered lexicographically. The second ingredient is a partition result on trees
due to Milliken in [Mi79]. In our case, where we are interested in Qn instead of Q,
the relevant objects to study are not trees anymore but what we will call colored
trees. In that context, Devlin’s ideas can be applied with few modifications to
identify how copies of Qn may appear inside Qn. Those are presented in Section
6. However, the relevant version of Milliken’s theorem requires more work and the
purpose of the present section is to show it can be completed. We start with a
short reminder about the combinatorial structures lying at the heart of Milliken’s
theorem: order-theoretic trees.

In what follows, a tree is a partially ordered set (T,≤) such that given any
element t ∈ T , the set {s ∈ T : s ≤ t} is finite and linearly ordered by ≤. The
number of predecessors of t ∈ T , ht(t) = |{s ∈ T : s < t}| is the height of t ∈ T .
The m-th level of T is T (m) = {t ∈ T : ht(t) = m}. The height of T is the least m
such that T (m) = ∅ if such an m exists. When no such m exists, we say that T has
infinite height. When |T (0)| = 1, we say that T is rooted and we denote the root
of T by root(T ). T is finitely branching when every element of T has only finitely
many immediate successors. When T is a tree, the tree structure on T induces a
tree structure on every subset S ⊂ T . S is then called a subtree of T . Here, all the
trees we will consider will be rooted subtrees of the tree N<∞ of all finite sequences
of naturals ordered by initial segment. That is, every element of N<∞ is a map
t : [m] −→ N for some natural m ∈ N. In the sequel, this natural is denoted |t| and
is thought as the length of the sequence t. The ordering ≤ is then defined by t ≤ s
iff |t| ≤ |s| and

∀k ∈ [|t|], t(k) = s(k) .

That is, if we think of t as the sequence of digits t(0)t(1) . . . t(|t| − 1), then t ≤ s
simply means that s is obtained from t by adding some extra digits to the right of

11



t, ie
s = t(0)t(1) . . . t(|t| − 1)s(|t|)s(|t|+ 1) . . . s(|s| − 1) .

The main concept attached to Milliken’s theorem is the concept of strong subtree.
Fix a downwards closed finitely branching subtree T of N<∞ with infinite height.
Say that a subtree S of T is strong when

(1) S has a smallest element.
(2) Every level of S is included in a level of T .
(3) For every s ∈ S not maximal in S and every immediate successor t of s in

T there is exactly one immediate successor of s in S extending t.
An example of strong subtree in provided in Figure 5. For a natural m > 0,

denote by Sm(T ) the set of all strong subtrees of T of height m. Denote also by
S∞(T ) the set of all strong subtrees of T of infinite height.

Figure 7. A strong subtree

Theorem 5 (Milliken [Mi79]). Let T be a nonempty downward closed finitely
branching subtree of N<∞ with infinite height. Let k,m > 0 be naturals. Then
for every map χ : Sm(T ) −→ [k], there is S ∈ S∞(T ) such that χ is constant on
Sm(S).

For our purposes, we need a stronger version of Milliken’s theorem relative to
n-colored trees. Let α ∈ N ∪ {∞} and n > 0 be a natural. An n-colored tree of
height α is a tree T of height α together with an n-coloring sequence τ assigning an
element of [n] (thought as a color) to each of the levels of T (τ(i) then corresponds
to the color of T (i), the level i of T ). If S is a strong subtree of T , τ induces an n-
coloring sequence of S provided by a subsequence of τ . For β ≤ α and σ a sequence
of length β with values in [n], let Sσ(T ) denote the set of all strong subtrees of T
such that the coloring sequence induced by τ is equal to σ.

Theorem 6. Let T be a nonempty downward closed finitely branching subtree of
N<∞ with infinite height. Let n > 0 be a natural and Σ an n-coloring sequence of
T taking each value i ∈ [n] infinitely many times. Let k > 0 be a natural and σ an
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n-coloring sequence with finite length. Then for every map χ : Sσ(T ) −→ [k], there
is S ∈ SΣ(T ) such that χ is constant on Sσ(S).

Proof. We proceed by induction on n. The case n = 1 is handled by the original
version of Milliken’s theorem. We therefore concentrate on the induction step.
Assume that Theorem 6 holds for the natural n. We show that it also holds for the
natural n+ 1. Since Σ takes each value i ∈ [n] infinitely many times, then by going
to a subtree of T if necessary, we may arrange that Σ is the sequence defined by

Σ(k) = k mod (n+ 1) .

We may also assume that for every t ∈ T , the set {j ∈ ω : t_j ∈ T} is an initial
segment of N (here, t_j denotes the concatenation of t and j, that is the sequence
obtained from t by extending it with the extra digit j. Formally t_j(n) = t(n) for
every n < |t| and t_j(|t|) = j).

Let q : T −→ T be the function mapping the elements of T with color n onto
their immediate predecessor in T and leaving the other elements of T fixed. For an
(n+ 1)-coloring sequence τ , let q(τ) be the n-coloring sequence obtained from τ by
replacing every occurence of n in τ by (n− 1).

Say that a strong subtree U of T satisfies (∗) when
(1) For every u ∈ U and for every immediate succesor u′ of u in U , if u has

color (n − 1) and t is the immediate successor of u in T such that t ≤ u′,
then t_0 ≤ u′.

(2) For every u ∈ U with color n, u = q(u)_0.

Lemma 6. Let σ be an (n+1)-coloring sequence with finite length, S ∈ Sq(σ)(q(T )).
Then there is a unique σ∗T in Sσ(T ) such that

• σ∗T satisfies (∗).
• For every k, q(σ∗T (k)) ⊂ S(k).

Assuming Lemma 6, the induction step can be carried out as follows: let σ
be an (n + 1)-coloring sequence with finite length and χ : Sσ(T ) −→ [k]. Using
Lemma 6, transfer χ to λ : Sq(σ)(q(T )) −→ [k] by setting λ(S) = χ(σ∗S). Then,
using Theorem 6 for the natural n, find a strong subtree U of q(T ) with coloring
sequence q(Σ) such that Sq(σ)(U) is λ-monochromatic with color ε. By refining U
if necessary, we may assume that no two consecutive levels of U are consecutive in
T . Then Σ∗U ∈ SΣ(T ) and satisfies (∗). We claim that χ is constant on Sσ(Σ∗U).
Indeed, let V ∈ Sσ(Σ∗U). Then q(V ) ⊂ q(Σ∗U) ⊂ U and it has coloring sequence
q(σ). Let W ⊂ U be a strong subtree with the same height as q(V ) and such that
q(V ) ⊂ W . Since Σ∗U has property (∗), so does V . By Lemma 6, it follows that
V = σ∗W . Hence

χ(V ) = χ(σ∗W ) = λ(W ) = ε. �

Proof of Lemma 6. For a tree V and an element v ∈ V , let ISV (v) denote the
set of all immediate successors of v in V . We start by proving the existence of a
tree U fulfilling the requirements. We proceed inductively and construct U level
by level. For U(0), we distinguish two cases. If σ(0) 6= n, we set U(0) = S(0)(=
{root(S)}). If σ(0) = n, we set U(0) = {root(S)_0}. Assume that U(0) . . . U(k)
are constructed.

Case 1: σ(k) 6= n− 1. Then for every u ∈ U(k), any element v of IST (u) is also
in ISq(T )(q(u)). Thus, there is a unique φ(v) ∈ S(k + 1) such that v ≤ φ(v). If
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σ(k+1) 6= n, U(k+1) is formed by collecting all the φ(v)’s. Otherwise, σ(k+1) = n
and U(k + 1) is formed by collecting all the φ(v)_0’s.

Case 2: σ(k) = n− 1.
Then the immediate successors of the elements of U(k) in T have color n and

are not in q(T ). For u ∈ U(k) and v ∈ IST (u), v /∈ ISq(T )(q(u)) and v may
be dominated by more than one element in S. However, v_0 ∈ ISq(T )(q(u)) is
dominated by exactly one element in S. Let φ(v) denote this element. Form
U(k + 1) as in Case 1 by collecting all the φ(v)’s if σ(k + 1) 6= n and all the
φ(v)_0’s otherwise.

Repeating this procedure, we end up with a tree U . This tree is as required as
at every step, the construction makes sure that it is strong and that the property
(∗) is satisfied.

We now show that this procedure is actually the only possible one. Assume
that U and U ′ are as required. We show that U = U ′. First of all, it should be
clear that U and U ′ have the same root. We now show that if u ∈ U ∩ U ′, then
ISU (u) = ISU ′(u). It suffices to show that ISU (u) ⊂ ISU ′(u). Let w ∈ ISU (u).

Claim 1. q(w) ∈ ISq(U)(q(u)).

Proof. Let v ∈ U be such that q(v) ≤ q(w) and u < v. Since q(v) and q(w) are
comparable, v and w are above the same immediate successor of u in U . Hence
w ≤ v and q(w) ≤ q(v). �

So, fix t ∈ IST (u) and v ∈ ISq(T )(q(u)) such that

u ≤ t ≤ w and q(u) ≤ v ≤ q(w) .

Observe that because q(T ) ⊂ T , we have t ≤ v. Let w′ ∈ ISU ′(u) be such that
u ≤ t ≤ w′. Note that as for w, we have q(w′) ∈ ISq(U ′)(q(u)).

Claim 2. v ≤ q(w′).

Proof. If t ∈ q(T ), then t = v and we are done. Otherwise, t has color n and
u ≤ t < v ≤ w. By (∗) for U , t_0 ≤ w. Hence t_0 = v. Now, by (∗) for U ′, we
have t_0 ≤ w′. Hence, v ≤ w′ and v ≤ q(w′). �

It follows that q(w) and q(w′) are in S and above v. Since they have the same
height, they must be equal. Hence, w = w′. �

6. Big Ramsey degrees in Pn
In this section, we show how Theorem 3 can be proven thanks to the machinery

developed in Section 5. As already mentioned, this is essentially done by using the
ideas that were used by Devlin in [Dev79] to study the partition calculus of the ra-
tionals. For that reason, several results are stated without proof. Our presentation
here, however, follows a different path. Namely, it repeats the exposition of the
forthcoming book [To]. All the details of the proofs that we omit here will appear
in [To] together with a wealth of other applications of Milliken’s theorem.

In the sequel, we work with the tree T = [2]<∞ of finite sequences of 0’s and 1’s
colored by the map Σ defined by Σ(i) = (i mod n) + 1 for every i ∈ N. Noticing
that (T,<lex) and (Q, <) are isomorphic linear orderings and that in (T,<lex), the
subset Ti of all the elements with color i is dense whenever i = 1 . . . n, we see that
the colored tree T is isomorphic to Qn.
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For s, t ∈ T , set
s ∧ t = max{u ∈ T : u ⊂ s, u ⊂ t} .

For A ⊂ T , set
A∧ = {s ∧ t : s, t ∈ A} .

Note that A ⊂ A∧ and that A∧ is the minimal rooted subtree of T containing
A. Define an equivalence relation Em on the collection of all finite subsets of T as
follows: for A,B ⊂ T , set AEmB when there is a bijection f : A∧ −→ B∧ such
that for every s, t ∈ A∧:

i) s ≤ t↔ f(s) ≤ f(t).

ii) |s| < |t| ↔ |f(s)| < |f(t)|.
iii) s ∈ A↔ f(s) ∈ B.

iv) t(|s|) = f(t)(|f(s)|) whenever |s| < |t|.
iv) f(s) has color i whenever s has color i.

It should be clear that Em is an equivalence relation. Given A ⊂ T , let [A]Em

denote the Em-equivalence class of A. Let also σA denote the sequence of colors
corresponding to A∧.

Lemma 7. Let V ∈ Sσ(T ) and A ⊂ T such that σA = σ. Then there is a unique
A′ ∈ [A]Em such that A′ ⊂ V .

Finally, for a strong subtree S of T , let [A]Em � S denote the set of all elements
of [A]Em included in S.

Theorem 7. Let A be a finite subset of T . Then for every natural k > 0 and every
map χ : [A]Em −→ [k], there is S ∈ SΣ(T ) such that χ is constant on [A]Em � S.

Proof. Define λ(V ) for every V ∈ SσA(T ) by the χ-value of its unique subset which
belongs to [A]Em. According to Lemma 7, the map λ is well-defined. By Theorem 6,
there is S ∈ SΣ(T ) such that λ is constant on Sσ(S). It follows that χ is constant
on [A]Em � S. �

As a direct consequence, every element X of Pn has a big Ramsey degree in Pn
less or equal to the number of embedding types of X inside T . It turns out that
when reconstituting copies of Qn inside T , certain embedding types can be avoided.

A finite set A ⊂ T realizes a Devlin embedding type when
(1) A is the set of all terminal nodes of A∧.
(2) |s| 6= |t| whenever s 6= t ∈ A∧.
(3) t(|s|) = 0 for all s, t ∈ A∧ such that |s| < |t| and s � t.

Figure 8 represents eight of the sixteen Devlin types that may be realized by
a 3-element subset of T in the uncolored case (n = 1) (Each picture represents a
subset of the binary tree).

Lemma 8. Every S ∈ SΣ(T ) includes an antichain X such that:
(1) (X,X ∩ T1, . . . , X ∩ Tn, <lex) is isomorphic to Qn,
(2) Every finite subset of X realizes a Devlin embedding type.
(3) For every Devlin embedding type [A]Em and every Y ⊂ X isomorphic to Qn

there exists B ⊂ Y such that [B]Em = [A]Em.
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Figure 8. Examples of Devlin types on three elements when n = 1

Proof. Without loss of generality, we may assume that S = T . Let W ⊂ T be
the ∧-closed subtree of T uniquely determined by the following properties (For an
attempt to represent the lowest levels of W , see Figure 9):

(1) root(W ) = ∅.
(2) ∀l ∈ N ∀0 < i < n |W ∩ T (nl)| = 1 and |W ∩ T (nl + i)| = 0.
(3) ∀l ∈ N ∀s, t ∈W (l) s <lex t→ |s| < |t|.
(4) ∀l < m ∈ N ∀s ∈W (l) ∀t ∈W (m) |s| < |t|.
(5) W is order-isomorphic to (T,<lex).
(6) ∀s ∈W ∀t < s t /∈W → t_0 < s.

Let f 7→ wf denote the isomorphism between (T,<lex) and W . Define then
xf = w_f 01_0i (here, 0i denotes the sequence with i many 0’s) where i is such
that 0 ≤ i < n and |f | = i mod (n). Then one can check that for every Y ⊂ X
isomorphic to Qn, the embedding types of the finite subsets of Y are exactly the
Devlin’s embedding types. �

It follows that every element X of Pn has a big Ramsey degree in Pn equal to
the number of embedding types of X inside T . Proceeding by induction on the size
of X, it can be shown that this number of embeddings actually only depends on
the size of X and satisfies a recursion formula which allows to identify it with the
number tan(2|X|−1)(0). This finishes the proof of Theorem 3.
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