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Abstract

L. Lovász has shown in [9] that Sperner’s combinatorial lemma admits
a generalization involving a matroid defined on the set of vertices of the
associated triangulation. We prove that Ky Fan’s theorem admits an
oriented matroid generalization of similar nature (Theorem 3.1). Classi-
cal Ky Fan’s theorem is obtained as a corollary if the underlying oriented
matroid is chosen to be the alternating matroid Cm,r.

1 Introduction

The following extension of Sperner’s combinatorial lemma was proposed by Lászlo
Lovász in [9].

Theorem 1.1. ([9]) Let K be a simplicial complex which triangulates a d-
dimensional manifold. Suppose that a matroid N of rank d + 1 is defined on
the set vert(K) of vertices of K. If K has a simplex whose vertices form a
basis of the matroid N , than there exist at least two such simplices.

Homological nature of this result was subsequently emphasized by Bernt Lindström
who demonstrated that it suffices to assume that the complex K (in Theorem 1.1)
supports a d-cycle.

Theorem 1.2. ([7]) Let C =
∑

i∈I αiσi be a d-cycle in a complex K. Assume
that the vertices of simplices in C are labelled by elements of a matroid N of
rank (d + 1). If some simplex is labelled by the elements of a base of N , then
there are at least two simplices in C with this property.

As a corollary of Theorem 1.1 Lovász deduced the following result which reduces to
the classical version of Sperner’s lemma if N is the matroid such that S ⊂ vert(K) is
an independent set if and only if its elements are labelled (colored) by different labels.

1

http://arxiv.org/abs/0710.1981v1


Corollary 1.3. Suppose that K is a simplicial subdivision of a d-dimensional
simplex σ. Suppose that a matroid N of rank d + 1 is defined on the set
vert(K) of vertices of K and let vert(σ), the set of vertices of σ, be a basis of
N . Assume that for each face F of σ, the set F ∩ vert(K) is in the flat of
the matroid N spanned by vert(F ) ⊂ vert(σ). Then K has a simplex whose
vertices form a basis of N .

Well known Z2-counterparts of Sperner’s lema are Tucker’s lemma [17], [10] and its
generalization due to Ky Fan [5].

Theorem 1.4. ([5]) Suppose that K is a Z2-invariant triangulation of the
sphere Sn. Let ♦m := conv{±e1, . . . ,±em} be the m-dimensional crosspolytope
and ∂(♦m) ∼= Sm−1 its boundary with inherited (Z2-invariant) triangulation.
If f : K → ∂(♦m) is a simplicial, Z2-equivariant map, then n < m and

∑

1≤k1<k2<...<kn+1≤m

α(k1,−k2, k3,−k4, . . . , (−1)nkn+1) ∼= 1 (mod 2)

where α(j1, j2, . . . , jn+1) is the number of n-simplices in K mapped to the sim-
plex spanned by vectors ej1 , ej2, . . . , ejn+1

and by definition e−j := −ej.

A natural question is whether there exists a counterpart of Lovász’ theorem which
extends Ky Fan’s theorem (Tucker’s theorem) in the manner Theorem 1.1 extends
Sperner’s lemma. Our objective is to prove such a result, Theorem 3.1. It is not a
surprise that oriented matroids appear in this extension and play a role similar to the
role matroids play in Theorem 1.1.

2 Oriented matroids in a nutshell

Oriented matroids provide combinatorial models for important geometric objects, con-
figurations and structures including the following:

• linear subspaces L ⊂ R
n,

• configurations of points (vectors) in R
n,

• matrices,

• directed graphs,

• convex polytopes,

• linear programs,

• hyperplane arrangements etc.

Although they appear in many incarnations and disguises, oriented matroids always
provide essentially the same amount of information about the object they discretize
(cryptomorphism). The reader is referred to [19] (Section 6) for a quick introduction
and initial motivation and to [1] for illuminating orientation sessions (Sections 1 and
2) and thorough treatment of the general theory with many interesting applications.
More recent reference [14] offers both an outline of the theory and a guide to the papers
published after the appearance of [1].
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2.1 ♦m-oriented matroid of a linear subspace

Let us briefly review how an oriented matroid can be associated to a d-dimensional
linear subspace L ⊂ R

m. Let ♦m := conv{±e1, . . . ,±em} be the crosspolytope in R
m

and let P (♦m) be the associated face poset. Define ♦m-oriented matroid L♦m of L as
the collection (poset) L♦m = {F ∈ P (♦m) | L∩F 6= ∅} of all faces of the crosspolytope
intersected by L. The face poset P (♦m) is isomorphic to the poset {0,+,−}m of all
sign-vectors of length m. This isomorphism associates to each face F ∈ P (♦m) the
sign vector sign(F ) := sign(v) ∈ {0,+,−}m for some (any) v ∈ relint(F ). It follows
that L♦m is essentially the set V∗ of all covectors of an oriented matroid M = M(L)
which captures the combinatorial information about how the subspace L is placed in
the ambient space Rm. Similarly, the set C∗ of all cocircuits of M(L) can be described
as the set of all ⊆-minimal elements in L♦m or alternatively as the collection of faces
F ∈ P (♦m) such that the subspace L intersects relint(F ) in a single point.

2.2 Topological representation theorems

The original Topological Representation Theorem for oriented matroids was proved by
Folkman and Lawrence [1]. The following strengthening of this result, due to Brylavski
and Ziegler [3], provides a simultaneous representation for both the oriented matroid
M and its dual M∗.

Theorem 2.1. ([3]) For each oriented matroid M of rank r on {1, . . . , m}
there exists a (signed) pseudosphere arrangement A = (Si)1≤i≤2m in Sm−1

such that:

(1) Si = {x ∈ Sm−1 | xi = 0} for 1 ≤ i ≤ m.
(2) The (r−1)-subsphere SB := Sm+r+1∩ . . .∩S2m and (m−r−1)-subsphere

SA := Sm+1 ∩ . . . ∩ Sm+r are disjoint.
(3) The arrangement (Si ∩ SB)1≤i≤m is a topological representation of the

oriented matroid M in SB.
(4) The arrangement (Sj ∩ SA)1≤j≤m is a topological representation of the

oriented matroid M∗ in SA.

Corollary 2.2. Let M be an oriented matroid of rank r on [m] = {1, 2, . . . , m}.
Let Si, i = 1, . . . , m be the coordinate sphere Si = {x ∈ Sm−1 | xi = 0}. Then
there exists a (r − 1)-dimensional pseudosphere SB in Sm−1 such that the ar-
rangement {Si ∩ SB}mi=1 is a topological representation of M in SB. More-
over SB can be chosen to be centrally symmetric and transverse to each of the
spheres SI := Si1 ∩ . . . ∩ Sir for any r-element subset

I = {i1, . . . , ir} ⊂ [m].

Proof: According to Section 5.2 in [1] (Theorem 5.2.1), the condition that all pseudo-
spheres are centrally symmetric can be always satisfied. In particular all pseudospheres
in Theorem 2.1 can be assumed to have this property. Also, the transversality con-
dition from Corollary 2.2 is “built in” the Topological Representation Theorem for
oriented matroids. �
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3 Generalization of Ky Fan’s theorem

Theorem 3.1. Suppose that M is a connected, n-dimensional, triangulated
Z2-manifold. Moreover, it is assumed that the involution ν : M → M defining
the Z2-action is fixed-point-free. Given a positive integer m, let

λ : vert(M) → {±1,±2, . . . ,±m}

be a labelling of the vertices of M which satisfies the conditions:

(a) λ(ν(v)) = −λ(v) for each v ∈ vert(M),

(b) λ(v) + λ(v′) 6= 0 for each 1-simplex τ = {v, v′} in M .

Let M = M([m], C∗) be an oriented matroid of rank r = m − n on the set
E = [m] = {1, . . . , m} where C∗ is the set of associated cocircuits. Moreover,
M is assumed to be uniform in the sense that all cocircuits in C∗ have the
same cardinality n = m − r. Let w1 ∈ H1

Z2
(M,Z2) ∼= H1(M/Z2,Z2) be the

first Stiefel-Whitney class of the Z2-manifold M and let w(M) = wn
1 ([M/Z2])

be the associated Stiefel-Whitney number where [M/Z2] is the Z2-fundamental
class of M/Z2. Then,

(1) w(M) =
1

2

∑

τ∈C∗

α(τ) =
∑

[τ ]∈C∗/Z2

α(τ) (mod 2)

where α(τ) is the number of n-simplices σ ∈ M whose vertices receive labels
from τ , i.e. such that τ = {λ(v) | v ∈ vert(σ)}.

Proof: Let ∂♦m be the boundary of the crosspolytope ♦m = conv{±e1, . . . ,±em}. As
a Z2-space, ∂♦

m is isomorphic to the join [2]∗. . .∗[2] ofm copies of [2] = {1, 2}. We may
therefore see ∂♦m as a subcomplex of (the boundary of) an “infinite crosspolytope”
EZ2 = [2] ∗ . . . ∗ [2] ∗ . . ., which is nothing but the well known Milnor’s model for the
classifying space of the group Z2.

Any labelling λ : vert(M) → {±1, . . . ,±m} can be in an unique way extended to
a Z2-equivariant map

Λ : M → ♦m

which is affine on each simplex σ ∈ M . Conditions (a) and (b) on the labelling
guarantee that Im(Λ) ⊂ ∂♦m and that Λ is a simplicial Z2-map. Consequently, Λ
is essentially a classifying map Λ : M → ∂♦m →֒ EZ2, that is the unique (up to a
Z2-homotopy) Z2-equivariant map Λ : M → EZ2. Let ξ = Λ/Z2 : M/Z2 → ∂♦m/Z2

be the induced map. Let γ ∈ H1
Z2
(∂♦m/Z2;Z2) ∼= H1(∂♦m/Z2;Z2) be the first Stiefel-

Whitney class of the Z2-space ∂♦m, or equivalently the first S-W-class of the line
bundle

R
1 → ∂♦m ×Z2

R
1 → ∂♦m/Z2.

Let SB be the (r − 1)-dimensional pseudosphere in Sm−1 ⊂ R
m which represents the

oriented matroid M in the sense of Corollary 2.2. The fundamental class y = [SB/Z2]
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of the quotient projective space SB/Z2 ⊂ RPm−1 represents the generator of the group
Hr−1(RPm−1;Z2) ∼= Z2. This follows from the fact that, according to the definition of
a (centrally symmetric) pseudosphere, there exists a Z2-homeomorphisms h : Sm−1 →
Sm−1 which maps the (r − 1)-dimensional equator of Sm−1 to the pseudosphere SB.
By the well-known formula, see e.g. [4], Section VII.12, or [2], Theorem VI.5.2 part
(4), and standard (loc. cit.) properties of the products of (co)homology classes and
the Poincaré duality map D,

(2) w(M) = wn
1 ([M/Z2]) = wn

1 ∩ [M/Z2] = ξ∗(ξ
∗(γn) ∩ [M/Z2]) =

(3) = γn ∩ ξ∗[M/Z2] = D(γn) • ξ∗[M/Z2] = [SB] • ξ∗[M/Z2].

For the completion of the proof it is sufficient to observe that the intersection product
[SB] • ξ∗[M/Z2] is precisely the right hand side of the equation (1). Indeed, the
intersection τ ∩ SB is transverse for each of the simplices (cocircuits) τ ∈ C∗ and each
of them is counted with the multiplicity α(τ). �

Corollary 3.2. If wn
1 is non-trivial, i.e. if w(M) = wn

1 ([M/Z2]) = 1, for
example if M = Sn is the n-sphere, then

(4) 1 =
∑

[τ ]∈C∗/Z2

α(τ) (mod 2)

where the summation is over the representatives of classes [τ ] = {τ,−τ} of
antipodal simplices (cocircuits).

Corollary 3.3. The usual Ky Fan’s theorem (Theorem 1.4) follows from Theo-
rem 3.1 (Corollary 3.2) if M is chosen as (the dual of) the alternating oriented
matroid Cm,r.

Proof: The (dual of) the alternating matroid Cm,r is defined, [1] Section 9.4, as the ori-
ented matroid of the vector configuration W = {v1, . . . , vm} where vi := (1, ti, . . . , t

r
i )

are the points on the moment curve corresponding to a sequence 0 < t1 < . . . < tm.
The associated set of cocircuits is, following the description given in Section 2.1, ob-
tained as the ♦m-oriented matroid associated to the subspace L := Im(W ) where W
is the matrix

W = [vt1, . . . , v
t
m] =











1 1 . . . 1
t1 t2 . . . tm
...

...
. . .

...
tr−1
1 tr−1

2 . . . tr−1
m











It is well known and not difficult to prove that the associated cocircuits are precisely
the alternating sequences (and their antipodes) that appear in the formulation of
Theorem 1.4. �
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4 Homological reformulation

Theorem 3.1 admits a reformulation which emphasizes its homological nature. It
is parallel to and, to some extent, inspired by Lindström’s extension of the result of
Lovász. Theorem 4.1 can be interpreted as a combinatorial formula (involving oriented
matroids) for a power of the first Stiefel-Whitney characteristic cohomological class of
the Z2-complex ∂♦m ∼= Sm−1. Moreover, it points in the direction of a hypothetical
“homological representation theorem” for oriented matroids.

As before, each cocircuit (covector) of an oriented matroid M is identified with
the corresponding face τ of the cross-polytope ♦m (Section 2.1).

Theorem 4.1. Let M = M([m], C∗) be an uniform oriented matroid of rank
r = m − n on the set E = [m] = {1, . . . , m} where C∗ is the set of associated
cocircuits. For each cocircuit τ ∈ C∗ ⊂ P (♦m) let τ̂ be the Z2-cochain dual to τ
where τ̂(τ) = 1 and τ̂(θ) = 0 if θ 6= τ . Then the n-dimensional, Z2-equivariant
cochain

(5) CM :=
∑

τ∈C∗

τ̂ ∈ Cn
Z2
(∂♦m)

represents the Stiefel-Whitney characteristic class

wn
1 ∈ Hn

Z2
(∂♦m) ∼= Hn(RPm−1).

Proof: The proof uses similar ideas as the proof of Theorem 3.1 so we omit the details.
The key observation is that the cochain CM is a Poincaré dual (on the level of chains)
of the class [SB]. For this it is sufficient to check that CM is a cochain which can be
deduced from the fact that the pseudosphere SB is transverse to all the simplices in
the triangulation of ∂♦m. �

Example: Choose a rank 2 oriented matroid M associated to a nonstretchable ar-
rangement A of pseudolines. For example let A be the arrangement of nine pseudolines
described by Ringel, see [14] Figure 6.1.2. In this case m = 9, r = 3 and n = 9−3 = 6.
According to formula (5) this yields a cochain representative for the class w6

1 which
has a 6-dimensional simplex (and its antipode) for each intersection of two pseudolines
in A.

5 Concluding remarks

The proof of Theorem 3.1 appears to be new already in the realizable case where we
don’t need the full power of the Topological representation theorem. In particular this
approach yields a short and conceptual, albeit non-constructive, proof of the classical
Ky Fan’s theorem.

It is natural to ask if the condition (Theorem 3.1) that M is a uniform oriented
matroid can be relaxed. Indeed, it would be desirable and hopefully not too difficult
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to come up with analogues of the formula (5) for the case of non-uniform matroids.
The critical step is to express the intersection product [SB] • ξ∗[M/Z2] in terms of the
underlying oriented matroid. One way around this difficulty is to analyze perturbations
of the associated pseudosphere arrangement.

Aside from the conceptual interest, more general formulas could lead to new in-
ductive and constructive proofs based on standard oriented matroid technique. This
may prove useful in finding new systematic ways of producing combinatorial proofs
for combinatorial statements which originally required topological methods, cf. [8] [11]
[13] [20] for some of the more recent related developments.

Considering some recent advances [12] [20] in understanding Zq-analogues of Tucker’s
and Ky Fan’s theorem, it would be interesting to know if such analogs exist for The-
orem 3.1. This may involve a development of an analogue (or replacement) for the
concept of a (Zq-oriented) matroid, see [18] for a related development.

Formula (1) seems to indicate that, at least in principle, all the formulas involving
algebraic count of alternating simplices, could be instances of more general statements
involving oriented matroids. For example it is plausible that Sarkaria’s “Generalized
Tucker-Ky Fan theorem” [15] admits such a generalization.

Finally, in light of the fact that Ky Fan’s theorem and its consequences have found
numerous applications in combinatorics and discrete geometry, [16] being one of the
latest examples, it remains to be seen if Theorem 3.1 can be used for a similar purpose.
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