
ETH Library

On properties of random
dissections and triangulations

Journal Article

Author(s):
Bernasconi, Nicla; Panagiotou, Konstantinos; Steger, Angelika

Publication date:
2010

Permanent link:
https://doi.org/10.3929/ethz-b-000422592

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Combinatorica 30(6), https://doi.org/10.1007/s00493-010-2464-8

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000422592
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00493-010-2464-8
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


COMBINATORICA
Bolyai Society – Springer-Verlag

0209–9683/110/$6.00 c©2010 János Bolyai Mathematical Society and Springer-Verlag

Combinatorica 30 (6) (2010) 627–654
DOI: 10.1007/s00493-010-2464-8

ON PROPERTIES OF RANDOM DISSECTIONS
AND TRIANGULATIONS*

NICLA BERNASCONI, KONSTANTINOS PANAGIOTOU†,
ANGELIKA STEGER

Received November 30, 2007

In this work we study properties of random graphs that are drawn uniformly at random
from the class consisting of biconnected outerplanar graphs, or equivalently dissections
of large convex polygons. We obtain very sharp concentration results for the number of
vertices of any given degree, and for the number of induced copies of a given fixed graph.
Our method gives similar results for random graphs from the class of triangulations of
convex polygons.

1. Introduction & Results

Dissections and triangulations of a convex n-gon are well-studied objects.
A dissection is a partition of the polygon into polygonal regions by means
of non-crossing diagonals. Triangulations are a special case of dissections,
where all regions are triangles. It is a simple and standard exercise in any
combinatorics course to obtain that the number of triangulations tn is equal
to the (n−2)nd Catalan number, i.e. tn+2 =

1
n+1

(2n
n

)
. The number of dis-

sections dn, however, is a much harder object. While an explicit formula
involving a sum over products of binomial coefficients belongs to the classi-
cal repertoire of advanced combinatorics, see e.g. [1, p. 74], an asymptotic
formula was obtained only a few years ago by Flajolet and Noy [3], who
showed that dn∼ cn−3/2ρ−n

D where ρD :=3−2
√
2

.
=0.1716. Throughout the
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paper, with ∼ we will mean “asymptotically equal”, in the sense that the
ratio of both terms tends to 1 as n grows.

If we advance to the question of properties of a random dissection or
triangulation (which is meant to denote a dissection/triangulation drawn
uniformly at random from the class of all dissections respectively triangu-
lations of a given convex n-gon), practically nothing seems to be known for
dissections. For a random triangulation Gao and Wormald used methods
from analytic combinatorics to determine in [6] the limiting distribution of
the maximum vertex degree, and obtain quite precise bounds on the number
of vertices of degree k in [7]. (Those papers and in addition [8] also study
these and related questions for more general types of triangulations.)

The main reason why these questions are so difficult is that contrary to
the standard Erdős and Rényi model of random graphs Gn,p, in random
dissections and triangulations (and other graph classes with structural side
constraints) the edges are not independent. Therefore most tools from clas-
sical random graph theory are not applicable in this context.

In this paper we show that recent progress in the construction of so-called
Boltzmann samplers by Duchon, Flajolet, Louchard, and Schaeffer [2] and
Fusy [5] can be used to reduce the study of degree sequences and subgraph
counts to properties of sequences of independent and identically distributed
random variables – to which we can apply standard Chernoff bounds to
obtain extremely tight results.

Our results. Let LDn denote the class of dissections of labeled convex n-
gons, and let LDn be a graph drawn uniformly at random from LDn. For a
labeled dissection LD we shall denote by deg (k; LD) the number of vertices
in LD with degree k. In our first theorem we determine the asymptotic value
of the random variable deg (k; LDn) and provide very tight bounds for the
tail probabilities. For brevity we write “(1± ε)X” to denote the interval
((1−ε)X,(1+ε)X).

Theorem 1.1. Let dk := (k− 1)p2(1− p)k−2, where p := 2−
√
2, and let

k0=k0(n) be the largest integer such that dk0n>(logn)3. There is a constant

C>0 such that for every k≤k0 and every (logn)2√
dkn

<ε=ε(n)<1 the following

holds for sufficiently large n:

P [ deg (k; LDn) ∈ (1± ε) · dk · n ] ≥ 1− e−Cε2
dk
k
n.

Furthermore, if k∈ [k0+1,10logn ], then

P
[
deg (k; LDn) < (log n)4

]
≥ 1− kn− logn.

For all remaining k we have that P [deg (k; LDn)=0]→1.
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From Theorem 1.1 it is easy to derive information about the maximum
vertex degree Δ(LDn) of a random element from LDn.

Corollary 1.2. Let p :=2−
√
2, and set b := 1

1−p . Then

P
[
Δ(LDn) �∈

(
logb n−O(log log n), 10 log n

)]
= o(1).

With our method it seems not possible to improve this result, but we
believe that the maximum degree for a random element of LDn is given by
the lower bound.

Conjecture 1.3. Let p :=2−
√
2, and set b := 1

1−p . Then

P
[
Δ(LDn) = logb n+Θ(log log n)

]
≥ 1− o(1).

Next we turn to subgraph counts. For an unlabeled dissection H we
denote by copy (H; LD) the number of induced copies of H in LD.

Theorem 1.4. Let H be an unlabeled dissection on nH vertices, such that
nH = o(logn). There exist rH (which we define in Section 3.3) and cH :=
1
2rH ·qnH−3, where q := 2−

√
2

2 , such that for every logn√
n8−nH

<ε=ε(n)<1 and

n sufficiently large

P
[
copy (H; LDn) ∈ (1± ε) · cH · n

]
≥ 1− e−(

1
8)

nH ε2n.

For triangulations we obtain similar results, except that some constants
change. Let LTn denote the class of triangulations of labeled convex n-gons
and let LTn be a graph drawn uniformly at random from LTn.

Theorem 1.5. For a random triangulation LTn Theorem 1.1 holds with
LDn replaced by LTn, if we let p := 1/2 instead of p := 2−

√
2. Similarly,

if H denotes an unlabeled triangulation on nH vertices, then Theorem 1.4
holds for LTn if we let p :=1/2, and q :=1/2.

Note that for p=1/2 we have dk = (k−1)2−k. For triangulations these
values for the expected number of vertices of degree k were already deter-
mined by Gao and Wormald in [7]. However, for small k our bounds on the
deviation probabilities are much tighter. In particular, note that for con-
stant k our tail bounds are of the form e−Θ(n), which is comparable to what
we are used to from classical random graph theory.
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Techniques & Outline. Let D be the class of edge-rooted, unlabeled dis-
sections of convex polygons. The root is an oriented edge, such that the
outer face is on its right side. It is easy to see that every edge-rooted, un-

labeled dissection with n≥ 3 vertices gives rise to precisely (n−1)!
2 distinct

labeled dissections. Hence the degree sequence of a random labeled dissec-
tion equals the degree sequence of a random edge-rooted, unlabeled dissec-
tion; the same holds obviously for the subgraph count. Formally, we have
the following statement.

Theorem 1.6. For a random edge-rooted unlabeled dissection Dn Theo-
rem 1.1 and Theorem 1.4 hold if we replace LDn with Dn.

The above discussion can easily be adapted for the case of triangulations,
where T is the class of edge-rooted unlabeled triangulations – we omit the
obvious details.

The greatest benefit of “switching” from LD to D (and similarly from LT
to T ) is that the classes D and T allow a so-called decomposition, which is
a unique description of the class in terms of general-purpose combinatorial
constructions (see Section 3). These constructions appear frequently in mod-
ern systematic approaches to asymptotic enumeration and random sampling
of several combinatorial structures. It is beyond the scope of this paper to
survey these results, and we refer the reader to [4] and references therein for
a detailed exposition.

One advantage of the knowledge of the decomposition is that it allows
us to develop mechanically algorithms that sample objects from the graph
class in question by using the framework of Boltzmann samplers. This frame-
work was introduced by Duchon et al. in [2], and was extended by Fusy [5]
to obtain an (expected) linear time sampler for planar graphs. Our main
contribution here is to exploit samplers for dissections and triangulations
to reduce in a very general way the problems of determining the degree se-
quence and counting small subgraphs to properties of independent random
variables, see Section 3.

We shall now give a short review of the concept of Boltzmann samplers,
tailored to our intended application. Let G be a class of unlabeled graphs,
and let Gn the subset of graphs in G with n vertices. We will write gn :=
|Gn|. Let G(z) =

∑
n≥0 gnz

n be the ordinary generating function of G. In
the Boltzmann model of parameter x, we assign to any object γ ∈ G the
probability

(1.1) Px[γ] =
x|γ|

G(x)
,
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if the expression above is well-defined. A Boltzmann sampler ΓG(x) for G
is an algorithm that generates graphs from G according to (1.1). In [2] sev-
eral general procedures, which translate common combinatorial construction
rules like union, set, etc. into Boltzmann samplers are given. Notice that the
probability above only depends on the choice of x and on the size of γ, such
that every object of the same size has the same probability of being gen-
erated. This means that if we condition on the output being of a certain
size n, then the Boltzmann sampler is a uniform sampler of the class Gn.
The parameter x “tunes” the expected size of the output, and the larger we
make it, the larger the expected size of a random object from G becomes.

The remainder of the paper is structured as follows. The next section
presents a few facts about Boltzmann samplers that we are going to ex-
ploit later. In Section 3 we first introduce the concept of predegree and
postdegree, which are central to our work, and then construct and analyze a
specific Boltzmann sampler for dissections. This will then allow us to prove
Theorem 1.1. In Sections 3.3 and 4 we sketch how to modify this proof in
order to obtain Theorems 1.4 and 1.5.

2. Properties of the Boltzmann Model

In this section we state and prove some basic facts which we are going to
apply several times. We start by observing that as long as the probabil-
ity (1.1) is not too small for large |γ|, we can construct by rejection an
efficient sampler that always outputs an object of the desired size with high
probability. In fact, suppose that for a class of graphs G the correspond-
ing ordinary generating function G(z) becomes singular at ρG , and that the
value G(ρG) is finite. Moreover, suppose that there exist constants c,α > 0
such that |Gn|∼cn−αρ−n

G . Then we obtain with (1.1) that the probability for
the whole graph class Gn (that is, the sum of the probabilities of all the ele-
ments on n vertices) is Px[Gn]∼ 1

G(x)cn
−α

(
x
ρG

)n
. Note that if we set x<ρG ,

the probability of drawing a graph of size n is exponentially small, while if
x= ρG , then this probability is proportional to a polynomial. Hence, from
now on we will concentrate on the case x=ρG.

Suppose that we are given an algorithm ΓG(ρG) that generates graphs
according to distribution (1.1) with x=ρG. With this notation, consider the
following simple algorithm.

Γ̃G(n) : for
(
i=1, . . . ,nα+3/2

)
let γi←ΓG(ρG)

I :={j |1≤j≤nα+3/2 and |γj |=n}
if I=∅ return ⊥
else return γmin{j|j∈I}
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Proposition 2.1. Let G be a class of graphs and c,α>0 constants such that
PρG [Gn]∼ cn−α. For sufficiently large n P

[
Γ̃G(n)=⊥

]
≤ e−n. Furthermore,

P
[
Γ̃G(n)=γ | Γ̃G(n) �=⊥

]
= |Gn|−1 for any γ∈Gn.

Proof. Since the calls to ΓG(ρG) are independent we may estimate with
much room to spare

P
[
Γ̃G(n) = ⊥

]
≤

(
1− (1− o(1))cn−α

)nα+3/2

≤
(
e−

c
2
n−α)nα+3/2

≤ e−n.

The second statement follows immediately from the fact that P [ΓG(ρG) =
γ1]=P [ΓG(ρG)=γ2] for all γ1,γ2∈Gn.

In other words, Γ̃G(n) will succeed with very high probability, and is a
uniform sampler for graphs from Gn. The next proposition states that if we
can prove that the probability that a random object generated by Γ̃G(n)
has a property with probability at least p, then a graph drawn uniformly at
random from Gn has that property with at least the same probability. The
proof is a straightforward application of the proposition above.

Proposition 2.2. Let G be a class of graphs and Γ̃G be its corresponding
sampler as above. Furthermore, let P⊂G and suppose that there is a p>0
such that P

[
Γ̃G(n) ∈ P

]
≥ p. Denote by Gn a graph drawn uniformly at

random from Gn. Then P [Gn∈P]≥p.

Proof. Note that for every γ ∈ Gn we have P
[
Γ̃G(n) = γ | Γ̃G(n) �= ⊥

]
=

|Gn|−1. Hence

P [Gn ∈ P ] = P
[
Γ̃G(n) ∈ P | Γ̃G(n) �= ⊥

]

≥ P
[
Γ̃G(n) ∈ P and Γ̃G(n) �= ⊥

]
= P

[
Γ̃G(n) ∈ P

]
.

3. Dissections of Convex Polygons

In the remainder of the paper we shall denote with slight abuse of notation
by a “dissection” an edge-rooted, unlabeled dissection. Recall that the root
of a dissection is an oriented edge, such that the outer face is on its right
side. A dissection is then either a single edge, or an (ordered) sequence of
i≥2 dissections along the face containing the root edge, where i−1 pairs of
vertices are glued together, see Figure 1.

This yields that the ordinary generating function D(z) enumerating dis-
sections satisfies (see also [3] for a more general treatment)
(3.1)

D(z) = z2 +
D(z)2

z
+

D(z)3

z2
+ · · ·+ D(z)i

zi−1
+ · · · = z

4

(
1+ z−

√
z2 − 6z + 1

)
.
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Figure 1. Decomposition of rooted dissections of convex polygons.

It is easy to see that D becomes singular at ρD := 3− 2
√
2

.
= 0.1716, and

sophisticated tools from analytic combinatorics (see [3], Theorem 4) yield
that there is a constant c>0 such that dn := |Dn|∼cn−3/2ρ−n

D .

Before we proceed we shall make a few important definitions. For an edge-
rooted dissection D we will denote by the root vertex of D the tail of the
root edge of D, and by end vertex the head of the root edge. Furthermore,
we shall denote by rdeg (D) the degree of the root vertex of D.

For a dissection D, let us now consider its internal dual graph TD (see
Figure 2 for an illustration), in which we add a vertex for every face of D
except for the outer one, and connect two vertices if and only if the corre-
sponding faces share an edge in D. The dual graph is a rooted tree, where
the root is the vertex corresponding to the face containing the root edge
of D. For a vertex v of D, let fv ∈V (TD) be that vertex in the dual graph
that corresponds to a face that contains v, and among all such vertices is
that vertex which is closest to the root of TD. We call fv the characteristic
vertex of v in TD. Let e1(v) and e2(v) be the two edges on the outer face
of D that are incident to v, where e1(v) is the first that is encountered when
transversing the outer face of D in the direction of its root edge. Observe
that the face corresponding to fv partitions the edges incident to v in two
parts, one containing e1(v), the other containing e2(v). We define the pre-
degree pred (v;D) of v as the number of edges in the part containing e1(v),
while the postdegree postd(v;D) of v is defined as the number of edges in

Figure 2. A dissection and its
corresponding internal dual tree.

Figure 3. The first cycle of a dissection,
with dissections “sitting” on its edges.
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the part containing e2(v). We will simply write pred (v) and postd(v) if it is
clear of which dissection we are talking about. Finally, let pred (k;D) be the
number of vertices with predegree k in D, and define postd(k;D) similarly.

Notice that the sum of predegree and postdegree of a vertex is exactly
equal to the degree of the vertex. As we will see in the following subsections,
these two parameters will be much easier to handle than counting directly
vertices with a fixed degree in random dissections.

Before we present the details of our analysis we shall collect some prop-
erties of the predegree and the postdegree of a vertex in a dissection. Recall
that a dissection D is either a single oriented edge, or it consists of a cy-
cle CD := {{v1,v2},{v2,v3}, . . . ,{v�,v1}} of length 	, which is rooted at the
edge (v1,v�), and the edge {vi,vi+1} is replaced by an edge-rooted dissec-
tion Di – see Figure 3. Having this, we can easily prove the following lemma.

Lemma 3.1. Let D∈D be a dissection, and let v1, . . . ,v� and D1, . . . ,D�−1

be as defined above. Then the following holds for all 1≤ i<	. If v∈Di and
v �∈{vi,vi+1}, then

pred (v;D) = pred (v;Di) and postd (v;D) = postd (v;Di).

Furthermore, if v=vi, i.e. v is the root of a dissection Di, then

pred (vi;D) = deg (vi;Di) = rdeg (Di).

Proof. The statement is clearly true if D is a single edge. If D has at
least 3 vertices, then the characteristic face of a vertex v in Di such that v �∈
{vi,vi+1} is a face of Di. Similarly, the edges e1(v) and e2(v) needed for the
definition of predegree and postdegree are edges of the border of Di. Hence,
the predegree and postdegree of v depend only on Di, which proves the first
statement. For the second one, observe that the characteristic vertex fv of v
corresponds to the cycle CD. Its predegree is therefore precisely the degree
of the root vertex of Di.

Next we define an operation on the class D. Given a dissection D, this
operation first reflects D at an axis perpendicular to the root edge (such
that we obtain the same dissection, but the root edge will now have the
outer face on its left side, i.e., the resulting graph is not an element of D),
and then invert the direction of the root edge (so we obtain a graph in D).
We will call this operation reflection-rotation, and denote it by rr(D). The
following lemma is an immediate consequence of the definition of rr – we
state it without proof.

Lemma 3.2. For every element of D and for every vertex v∈D
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i) pred (v; rr(D))=postd(v;D),
ii) postd(v; rr(D))=pred(v;D).

Furthermore, rr(·) is a 1-to-1 mapping from Dn to Dn, and rr(rr(D))=D.

The remainder of this section is structured as follows. In Section 3.1 we
will design a sampler for dissections of convex polygons, and prove some fun-
damental properties of it. Section 3.2 deals with the analysis of an execution
of this sampler, which eventually yields the degree sequence of random dis-
sections. Finally, in Section 3.3 we demonstrate how we can obtain tight
estimates for the number of (small) subgraphs.

3.1. A Sampler for Dissections

According to the decomposition of the class of dissections (Figure 1) and the
translation rules in [2], a Boltzmann sampler for D starts with a cycle of a
certain length (given by an appropriate probability distribution), and then
substitutes every edge distinct from the root edge with another randomly
generated dissection. More formally, define the cycle distribution Cyc(x)
with parameter x by

(3.2) c�(x) := P [ Cyc(x) = 	 ] =

⎧
⎪⎨

⎪⎩

x2

D(x) if 	 = 2,
(D(x)

x

)�−2
if 	 > 2,

0 otherwise.

Then the sampler ΓD(x) for D is given by the following algorithm.

ΓD(x) : 	←Cyc(x)
if (	=2) return a single edge
else

γ←	-cycle {{v1,v2}, . . . ,{v�−1,v�},{v�,v1}}
for (i=1 . . . 	−1)

γi←ΓD(x)
γ← identify (vi,vi+1) with the root of γi

return γ, rooted at (v1,v�)

The next lemma follows directly from the compilation rules in [2].

Lemma 3.3. P [ΓD(x)=D ]= x|V (D)|
D(x) for D∈D.

With the above result we obtain straightforwardly an asymptotic esti-
mate for the probability that ΓD(x) outputs an object of a given size.
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Lemma 3.4. Let 0<x≤ρD. There is a constant C=C(x)>0 such that

P [ |ΓD(x)| = n ] ∼ Cn−3/2

(
x

ρD

)n

.

Proof. By applying Lemma 3.3 and using the estimate |Dn| ∼ cn−3/2ρ−n
D

we obtain

P [ |ΓD(x)| = n ] =
|Dn| · xn
D(x)

∼ cn−3/2ρ−n
D xn

D(x)
= Cn−3/2

(
x

ρD

)n

.

Observe that if we choose x = ρD, then the lemma above states that
the probability that ΓD(x) outputs an object of size n is proportional
to n−3/2. Thus, Proposition 2.1 guarantees the existence of an exact-size
sampler Γ̃D(n), which performs n3 independent calls to ΓD(ρD), and has
probability of success at least 1−e−n, i.e., it returns an empty graph ⊥ with
probability at most e−n.

The next lemma summarizes some key properties of ΓD(x) that we shall
exploit later.

Lemma 3.5. Let D be the output of ΓD(x), and let r be the root vertex
of D. Then there is a unique sequence of values α1, . . . ,αN such that the
following is true:

i) αN =2 and ΓD(x) outputs D if and only if the random values it used in
its execution were precisely this sequence.

ii) N= |E(D)|.
iii) |V (D)|=

∣
∣{i |1≤ i≤N and αi=2

}∣∣+1.
iv) deg (r;D)= rdeg (D)= min

k=1,...,N
{k |αk=2}.

v) For every k≥ 1 the number of vertices different from the two endpoints
of the root edge in D that have predegree k is equal to the quantity
∣
∣{1 ≤ i ≤ N − k

∣
∣ αi = 2, and αi+k = 2, and αi+j �= 2 for 1 ≤ j < k

}∣∣ .

Proof. Before we prove the statements, let us make an important observa-
tion. Suppose that when ΓD(x) finishes its execution, we draw the resulting
dissection on the plane such that its root (i.e., the edge (v1,v�) generated
in the very first call of ΓD(x)) is as demonstrated in Figure 1, thus it is
oriented from left to right. Then ΓD(x) has the property that it first gen-
erated the cycle that contains the root edge (v1,v�), and then generated the
other parts of the dissection in clockwise order: it successively created 	−1
dissections D1, . . . ,D�−1, starting from the one which was attached to the
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edge (v1,v2), then the one which was attached to (v2,v3), and so on, always
proceeding in a clockwise manner – cf. Figure 3. Note that the same also
applies for all recursive calls to ΓD(x). With this observation we shall prove
the statements i)–v) with induction over the structure of D.

It is straightforward to see that if D is a single edge, then i) is trivially
true. On the other hand, ifD is composed out of the dissectionsD1, . . . ,D�−1,
then by the induction hypothesis there are 	− 1 sequences A1, . . . ,A�−1 of
values, such that ΓD(x) outputs Di if and only if the random values that
it used in its execution were precisely Ai. Since ΓD(x) can output D if and
only if it first had generated a cycle of length 	, and then generated the
dissections D1, . . . ,D�−1 in exactly this order, only the sequence of random
values (	,A1, . . . ,A�−1) will cause ΓD(x) to output D. Furthermore, the last
used variable αN must be equal to 2, since otherwise ΓD(x) would have
initiated at least one more recursive call (and hence αN would not have
been the end of the list). This proves i).

For the remainder of the proof we fix the following notation. We will
assume that ΓD(x) outputs Dj if and only if it used the sequence of random
values Aj=(αj,1, . . . ,αj,Nj), and we will write (α1, . . . ,αN )≡(	,A1, . . . ,A�−1),
where 	≥3.

To see ii), note that the statement is trivial ifD is just an edge. Moreover,
if D has more than two vertices, then by applying the induction hypothesis
we may assume that |E(Dj)|=Nj for j=1, . . . , 	−1. But then we can derive

|E(D)| = 1 +
�−1∑

j=1

|E(Dj)| = 1 +
�−1∑

j=1

Nj = |(	,A1, . . . , A�−1)| = N,

which is precisely ii).
The third statement of the lemma is easily seen to be true for dissections

with two vertices. If D is composed, then by the induction hypothesis we
have for all 1≤j≤	−1 that

|V (Dj)| =
∣
∣{i | 1 ≤ i ≤ Nj and αj,i = 2

}∣∣+ 1.

But then we may deduce that

|V (D)| =
�−1∑

j=1

|V (Dj)| − (	− 2) (as the vertices v2, . . . , v�−1

are counted in the sum twice)

=

�−1∑

j=1

[ ∣
∣{i | 1 ≤ i ≤ Nj and αj,i = 2

}∣∣+ 1
]
− (	− 2)

=
∣∣{i | 1 ≤ i ≤ N and αi = 2

}∣∣+ 1 (as α1 = 	 ≥ 3).
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In order to see iv), let us assume first that D is an oriented edge. Then
it is easy to see that ΓD(x) will output D if and only if the first random
value evaluates to 2 (and no other calls to ΓD(x) will be initiated). But then
α1=2, and the statement is true as the degree of the root of D is precisely 1.
On the other hand, ifD is composed out of the dissections D1, . . . ,D�−1, then
we have deg (r;D)=1+deg(r;D1). Now note that r is also the root vertex
of D1, as ΓD(x) identifies the edge (v1,v2)≡(r,v2) with the root edge of D1

when constructing D. Hence, we may apply the induction hypothesis, and
we obtain

deg (r;D) = 1 + deg (r;D1) = 1 + min
1≤i≤N1

{i | α1,i = 2} .

But the last quantity equals min1≤i≤N{i |αi=2}, as we have α1= 	≥3 and
due to i) there is at least one element in the sequence A1 that equals 2. This
proves iv).

Finally, to prove v), we denote a vertex different from the endpoints of
the root edge of a dissection as an inner vertex. Observe that v) is true
for dissections which consist only of a single edge, as we then do not have
any inner vertex. In every other case, due to the induction hypothesis we
have that for all 1≤ j≤ 	−1, the number of inner vertices of Dj that have
predegree k is
∣
∣{1 ≤ i ≤ Nj − k | αj,i = 2, αj,i+k = 2, and αj,i+x �= 2 for 1 ≤ x < k

}∣∣ .

In order to count the number of inner vertices with predegree k in γ we
apply Lemma 3.1. Then we have that this number equals the number of
inner vertices of the dissections D1, . . . ,D�−1 with that predegree, plus the
number of vertices among v2, . . . ,v�−1, that have predegree k. But according
to the second statement of Lemma 3.1, the latter number equals the number
of dissections among D2, . . . ,D�−1, that have root degree equal to k.

Now let dj be the minimal index in Aj , such that αj,dj =2. Due to iv) we
know that rdeg (Dj)= dj, and hence the quantity sk := |{2≤ j≤ 	−1 | dj =
k}| counts the number of root vertices of D2, . . . ,D�−1 that have degree k.
Thus, from the previous discussion we may deduce that the number of inner
vertices of D with predegree k is precisely

�−1∑

j=1

∣
∣{1 ≤ i ≤ Nj − k | αj,i = 2, αj,i+k = 2, αj,i+x �= 2 for 1 ≤ x < k

}∣∣+sk =

�−1∑

j=1

∣∣{dj ≤ i ≤ Nj − k | αj,i = 2, αj,i+k = 2, αj,i+x �= 2 for 1 ≤ x < k
}∣∣+sk.
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To complete the proof, note that we know from i) that for all j we have
αj,Nj =2. The above quantity is thus equal to

∣
∣{1 ≤ i ≤ N − k | αi = 2, αi+k = 2, αi+x �= 2 for 1 ≤ x < k

}∣∣ ,

as α1=	>2.

Lemma 3.5 allows us to identify every dissection D with a se-
quence (α1, . . . ,αN ) that generates it. Moreover, the probability that
ΓD(x) outputs D is exactly equal to the probability that an (infinite) se-
quence (α1,α2, . . .), in which the αi’s are drawn independently according
to (3.2), starts with (α1, . . . ,αN ). In order to study properties of a random
dissection we will thus proceed in two steps:
– establish a correspondence between properties of a dissection and prop-

erties of such sequences,
– bound the probability that a random dissection has a specific property

in terms of the probability that a sequence drawn according to (3.2) will
have the corresponding property.

Note that the statements ii)–v) from Lemma 3.5 already contribute to the
first part. We shall close this section with an additional lemma that will help
us to further establish a correspondence between properties of dissections
and properties of sequences of values. In order to formulate it we need some
notation. From Lemma 3.5 we know that the αi’s that are equal to 2 play
a special rôle: they determine the number of vertices in the dissection. In
order to emphasize this we subdivide every sequence (α1, . . . ,αN ) into blocks
as follows. A block of size 	 is a subsequence (αi+1, . . . ,αi+�) such that αi=
αi+�=2 and αi+k>2 for all k=1, . . . , 	−1. (For notational convenience we
assume that α0≡2 so that the sequence starts with a block; the value α0 is
never used by the sampler.)

In our final lemma of this section we establish how predegree and postde-
gree of a given vertex in D change during the execution of the sampler. To
formulate the lemma we fix some more notation. Observe that ΓD(x) uses
the values in the sequence A=(α1,α2, . . .) sequentially in order to generate a

dissection. We denote by D̂i the part of the final dissection that ΓD(x) has
generated at the iteration when everything up to and including the (i−1)st

block has been read. In particular, D̂1 is just a single edge. Furthermore, de-
note by u1, . . . ,u|V (D)| the vertices of D, where u1 is the root vertex, and ui is
the neighbor of ui−1 in clockwise direction around the border of D. Finally,

let ei={wi,w
′
i} be the edge on the border of D̂i which is going to be identi-

fied with the root edge of the dissection that will be generated in the current
(recursive) call to ΓD(x), and let e1≡D̂1.
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Lemma 3.6. With the notation above, we have that for all 1≤ i< |V (D)|
the following two properties hold:

i) wi=ui, and pred (ui;D)= size of the i-th block read by ΓD(x).

ii) postd(ui;D)=postd
(
ui; D̂i+j

)
, for all 0≤j≤|V (D)|− i.

Proof. The proof of the lemma is by induction over the structure of D. If D
is a single oriented edge the statement is obtained straightforwardly. Other-
wise, D is a sequence of dissections D1, . . . ,D�−1 along the face containing
the root edge, where the root vertex of Di is identified with the end vertex
of Di−1, and the root vertex of D1 is joined by an edge with the end vertex
of D�−1 (cf. Figure 3). Observe that there exists indices 1= i1<i2< · · ·<i�−1

such that uij is the root vertex of Dj .

Recall that the sampler will start constructing the dissection Dj after
having completed the generation of Dj−1, as it serves the recursive calls in
clockwise order around the root edge. In particular, therefore we have that
D̂ij is the dissection consisting of D1, . . . ,Dj−1, and the cycle surrounding
the root face.

With this in mind, we see that the claims of the lemma follow for vertices
not contained in the root face by applying the induction hypothesis and
Lemma 3.1. It thus remains to show the claims for vertices uij . i) follows
immediately from the observations above and Lemmas 3.1 and 3.5. To see ii)
observe that

postd
(
uij ; D̂ij

)
= degree of the end vertex of Dj−1 (in Dj−1)

= postd
(
uij ;D

)
,

due to Lemma 3.1 and Lemma 3.2 and note that the postdegree will not
change any more, as the generation of Dj−1 was completed.

3.2. The Degree Sequence of Random Dissections

In this section we shall prove Theorem 1.1. We start by quoting a simple
version of the standard Chernoff bounds (see for example [9]).

Lemma 3.7 (Chernoff Inequalities). Let X∼Bin(n,p) and μ :=E [X]=
np. Then for every 0<ε<1

(3.3) P [X ∈ (1± ε)μ ] ≥ 1− 2e−
ε2

3
μ.
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First we shall prove a lemma that is similar in spirit to Theorem 1.1,
but considers just the predegrees instead of the full degrees of the vertices.
Observe that statement v) of Lemma 3.5 provides a close connection between
the number of vertices of predegree k and the number of blocks of length k in
the input sequence (α1,α2, . . .) of the sampler ΓD(x). Observe also that the
fact that the αi’s are sampled independently according to the distribution
given in (3.2) implies that the length of a block is geometrically distributed.
Now, by applying Proposition 2.1 we obtain that there is an algorithm that
returns a dissection of size exactly n (or nothing), which exploits ΓD(x).
By keeping track of the probabilities, both observations together will allow
us to make precise statements regarding the number of vertices with a given
predegree in random dissections of size n.

Lemma 3.8. Let p� := c2(ρD)(1 − c2(ρD))�−1, where c2(ρD) is defined
in (3.2), and let 	0= 	0(n) be the largest integer such that p�0n>

1
9(logn)

2.
Furthermore, let dk be defined as in Theorem 1.1. There is a constant C>0

such that for every (logn)2√
p�n

<ε= ε(n)< 1 the following holds for sufficiently

large n. If 	≤	0

P [ pred (	;Dn) ∈ (1± ε) · p� · n ] ≥ 1− e−Cε2p�n.

Furthermore, if 	∈ [	0+1, 5logn ], then

P
[
pred (	;Dn) < (log n)2

]
≥ 1− n− logn.

Finally, if 	>5logn, then P [pred (	;Dn)=0]→1.

Proof. Let

(3.4) L = (α1, α2, . . . )

be an (infinite) sequence of random variables which were drawn indepen-
dently according to the distribution (3.2), where we set x=ρD. Furthermore,
let ΓD(L) be the sampler ΓD(x) for the special case x=ρD, with the follow-
ing modification: ΓD(L) proceeds in exactly the same way as ΓD(ρD), but
every time that ΓD(ρD) would make a random choice (i.e., draw a random
variable), ΓD(L) reads the next unused entry from L. Due to Lemma 3.3, the

algorithm ΓD(L) is a Boltzmann sampler for D, i.e. P [ΓD(L)=γ ]=
ρ
|γ|
D

D(ρD) ,

where the probability is taken over the random choices in L.
With this in mind, by applying Lemma 3.4 and Proposition 2.1 we obtain

that there is a sampling algorithm Γ̃D(n) which performs n3 independent
calls to ΓD(L) such that for each of these n3 calls it uses a new list Li as
defined in (3.4).
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In the sequel we define two events A and B such that their intersection
implies the event “pred(	; Γ̃D(n))∈ (1±ε)p�n” if 	≤ 	0. (We discuss at the
end of the proof how we have to modify the event B in order to obtain the
statements for 	>	0.)

(A) Γ̃D(n) �=⊥.
(B) For j≥1, let Ni,j be the position of the j-th occurrence of the value “2”

in the list Li, and for j≥2 let Δi,j=Ni,j−Ni,j−1. Furthermore, let Xi,j

be the indicator variable for the event “Δi,j=	”. Then Xi :=
∑n−1

j=2 Xi,j ∈
(1±ε/2)p�n for all 1≤ i≤n3.

Now assume that A andB occur simultaneously. Clearly, due to A there is
an index i0 such that ΓD(Li0) outputs a dissection with precisely n vertices.
But then, due to Lemma 3.5 (statements iii) and v)), the number of vertices
in the output of ΓD(Li0) that are different from the endpoints of its root
edge and that have predegree 	 is equal to

∣∣{1 ≤ i ≤ Ni0,n−1 − 	 | αi = 2, αi+� = 2, αi+x �= 2 for 1 ≤ x < 	
}∣∣ .

But this quantity equals precisely the variable Xi0 defined in the event B.
Hence, B implies that the number of vertices with predegree 	 in the output
of Γ̃D(n) is in the interval

[
(1− ε/2)p�n, (1 + ε/2)p�n+ 2

]
⊆ (1± ε)p�n,

whenever n is large enough.
In the sequel we will show that P [A]≥1−e−n and P [B]≥1−e−C′ε2p�n,

for a suitably chosen constant C ′>0. Then the proof of the first part of the
lemma follows easily:

P [ pred (	;Dn) ∈ (1± ε) · p� · n ] = P
[
pred

(
	; Γ̃D(n)

)
∈ (1±ε)·p� ·n | A

]

≥ P [B | A ] =
P [A and B]

P [A]
≥ 1− e−n − e−C′ε2p�n ≥ 1− e−Cε2p�n,

for an appropriately chosen constant C>0.
The fact that P [A]≥ 1− e−n follows immediately from Proposition 2.1.

To obtain the lower bound for the probability of B we first consider an
arbitrary but fixed index 1 ≤ i ≤ n3. Observe that the fact that the αi’s
are independent implies that the values Δi,2, . . . ,Δi,n−1 are independent.
Furthermore note that P [Δi,j=	 ] = c2(ρD)(1− c2(ρD))�−1 = p�, as this is
the probability that there are 	−1 consecutive values in Li that are greater
than 2, followed by a “2”. So Xi is distributed as Bin(n−2,p�), and with
Lemma 3.7 we obtain that there is a constant C ′′>0 such that

P [Xi �∈ (1± ε/2)p�n ] ≤ e−C′′ε2p�n.
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Let B denote the complement of event B. We estimate P [B ] by the union
bound, and exploit the lower bound for ε:

P [B ] = P [∃i : Xi �∈ (1± ε/2)p�n ] ≤ n3 · e−C′′ε2p�n ≤ e−C′ε2p�n.

This concludes the proof for 	≤ 	0. Now let 	 ∈ [	0+1, 5logn ], and define
the event B′ to denote the event B with the only difference that we require
Xi < (logn)2− 1. As above, it is easy to argue that A and B′ imply the

event “pred(	; Γ̃D(n))< (logn)2”. (Here we used that the predegree of the
endvertex of a dissection is always one. The minus one term in the definition
of event B′ thus suffices to take care of both root vertices.) To complete the
proof for such 	, recall that Xi is distributed like Bin(n−2,p�) and note that
due to p�n≤ 1

9 (logn)
2 we may estimate with

(a
b

)
≤(eab )

b

P [B′ ] = P
[
∃i : Xi ≥ (log n)2 − 1

]
≤ n3

(
n− 2

(log n)2 − 1

)
p
(logn)2−1
�

≤ n3

(
enp�

(log n)2 − 1

)(logn)2−1

≤ n− logn,

whenever n is sufficiently large. If 	>5logn we observe that c2(ρD)
.
=0.58579

and hence p�n=o(n−3). We define the event B′′ as above, with the difference
that we require Xi=0 and rdeg (ΓD(Li)) �=	+1. We easily see that A and B′′

imply the event “pred(	; Γ̃D(n)) = 0”, since the condition rdeg (ΓD(Li)) �=
	+1 implies that the predegree of the root vertex of ΓD(Li) is different
from 	. Finally, to bound P[B′′] we observe that due to iv) of Lemma 3.5 we
have

P [B′′ ] = P [ ∃i : Xi > 0 ] + P [∃i : rdeg (ΓD≤n(Li)) = 	+ 1 ]

≤ n3(E [Xi] + p�+1)
(E[Xi]≤np�)

= o(1).

Recall that in Section 3 we introduced a reflection-rotation operation rr
that is a bijective mapping from Dn to Dn, and maps a dissection D to a
dissection D′=rr(D) such that pred (	;D)=postd(	;D′), cf. Lemma 3.2. As
rr(rr(D))=D this implies in addition that the number of dissections in Dn

with a specified number of vertices with postdegree 	 is equal to the number
of dissections with the same number of vertices with predegree 	.

Lemma 3.9. Let Dn be drawn uniformly at random from Dn. For all 	
and k we have

P [ pred (	;Dn) = k ] = P [ postd (	;Dn) = k ] .

With the above facts at hand we can now prove the theorem on the
degree distribution of a random dissection.
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Proof of Theorem 1.1. We first consider the case k≤k0; at the end of the
proof we will point out the modifications that have to be made to obtain the
result for all other k as well. Let 1≤	≤k−1 and denote for a dissection D by
PRED (	;D) :={v∈V (D) |pred (v;D)=	} the set of vertices with predegree 	
in D, and define similarly POSTD(	;D). Our proof strategy is to show that

with probability at least 1−e−C̃ε2
dk
k
n, for some C̃ >0,

(3.5)
∣
∣PRED (k − 	;Dn) ∩ POSTD (	;Dn)

∣
∣ ∈ (1± ε)p�pk−�n,

where p� (as in Lemma 3.8) is defined as c2(ρD)(1−c2(ρD))�−1, with c2(ρ)=
ρ2D

D(ρD) = 2−
√
2, namely c2(ρD) is the p in the statement of Theorem 1.1.

Then

p�pk−� = c2(ρD)(1 − c2(ρD))
�−1c2(ρD)(1− c2(ρD))

k−�−1

= c2(ρD)
2(1− c2(ρD))

k−2 =
dk

k − 1
,

with dk as defined in the statement of the theorem. Therefore, if we
prove (3.5), and since the degree of a vertex in a dissection equals the
sum of its predegree and postdegree, summing up the above expression for
1≤	≤k−1 yields for sufficiently large n the claim of the theorem.

From now on let 1≤	≤k−1 be fixed and let

(3.6) L=� = (α1, α2, . . . ) and L �=� = (β1, β2, . . . )

be two (infinite) sequences of variables drawn independently according to
the distribution (3.2), where we set x=ρD. Furthermore, let ΓD(L=�,L �=�)
be the sampler ΓD(x) for the special case x=ρD, with the following mod-
ification: ΓD(L=�,L �=�) proceeds in exactly the same way as ΓD(ρD), but
every time that ΓD(ρD) would make a random choice (i.e., draw a ran-
dom variable), ΓD(L=�,L �=�) reads the next unused value from one of the
lists L=� or L �=�. The choice of the list is made according to the following
rules:

(R1) We decide on the list from which to read the values once at the be-
ginning and then only after a “2” that was read, i.e., after the end of a
block was reached in the current list.

(R2) In the beginning the sampler draws from L=� if 	=1, and otherwise
from L �=�.

(R3) After a “2” was read we proceed as follows. Let D̂i be the (partial)
dissection generated by ΓD(L=�,L �=�) after having processed in total
precisely i−1 blocks (such that some of them were read from L=�, and
the remaining ones from L �=�). Moreover, let ei={wi,w

′
i} denote the edge
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on the border of D̂i which is going to be identified with the root edge of
the dissection that will be generated in the current recursive call to the
sampler, such that wi is identified with the root vertex of that dissection.
Then ΓD(L=�,L �=�) will draw the variables of the next block from L=�

if wi has postdegree precisely 	 in D̂i, and otherwise from L �=�.

As ΓD(L=�,L �=�) simply imitates the execution of ΓD(ρD), it is due to
Lemma 3.3 a Boltzmann sampler for D, i.e.

(3.7) P
[
ΓD(L=�, L �=�) = γ

]
=

ρ
|γ|
D

D(ρD)
,

where the probability is taken over the random choices in L=� and L �=�.
With this in mind, by applying Lemma 3.4 and Proposition 2.1 we ob-

tain that there is an algorithm Γ̃D(n) which performs n3 independent calls

to ΓD(L=�,L �=�) such that for each call a new pair of lists (L=�
i ,L �=�

i ) is used,
where all lists are as defined in (3.6).

Before we proceed let us discuss a fundamental property of ΓD(L=�,L �=�).
Recall that the sampler accesses the two lists blockwise, i.e., it reads a com-
plete block from a list, before it decides with rule (R3) to possibly change its
source of random values (recall that a block is a sequence of values ending at
a two). Furthermore, note that due to Lemma 3.5, iii), ΓD(L=�,L �=�) needs
exactly n−1 blocks to generate a dissection D with n vertices. Hence there
is a value t such that ΓD(L=�,L �=�) used the first t blocks from L=�, and
the remaining n−1−t blocks from L �=�. Denote by tm the number of blocks
of size m among the t blocks. The fundamental property of ΓD(L=�,L �=�)
that we will exploit is the following.

(3.8)
tm equals the number of vertices different from the end vertex

with postdegree 	 and predegree m in D.

To prove that (3.8) holds we shall apply Lemma 3.6. Recall that
ΓD(L=�,L �=�) imitates the execution of ΓD(ρD), except for the fact that
it reads the needed random variables from the two lists L=� and L �=�.
In particular, the sequence (D̂i)1≤i≤n of partial dissections generated
by ΓD(L=�,L �=�) is the same as the sequence that is generated by ΓD(ρD),
if we assume that the output of both samplers is the same graph. Now, by
applying Lemma 3.6 we observe the following. Consider any vertex uj of D,
where the notation is such that u1 is the root vertex, and uj is the neigh-
bor of uj−1 in clockwise direction around the border of D. If the postdegree

of uj in D is 	, then it was due to ii) also 	 in D̂j, . . . , D̂|V (D)|=D. That is,
after the (j−1)th block was read by the sampler, the postdegree of uj did
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not change any more. Moreover, due to i) we have that j is the only index x
such that uj is the first element of ex. Hence, when the sampler reads the
j-th block from one of the lists, we have that ej = {uj ,v′j}, for some other

vertex v′j in D̂j, and according to the previous discussion, the postdegree
of uj will not change any more during the generation of D. By putting it all
together we see that the number of blocks of size m read from L=� equals due
to rule (R3) the number of vertices in D with postdegree 	 and predegree m.

We now define three events A, B, and C, which will imply (3.5).

(A) Γ̃D(n) �=⊥.
(B) postd

(
	; Γ̃D(n)

)
∈(1±ε/3)p�n, where p�=c2(ρD)(1−c2(ρD))�−1.

(C) Define Ni,0 := 0, and for j ≥ 1 let Ni,j be the position of the j-th
occurrence of the value “2” in the list L=�

i , and let Δi,j :=Ni,j−Ni,j−1.
Furthermore, let Xi,j be the indicator variable for the event “Δi,j=k−	”.
Then for all 1≤ i≤n3 and all (1−ε/3)p�n≤n′≤n

X
(n′)
i :=

n′∑

j=1

Xi,j ∈ (1± ε/3)pk−�n
′.

Now assume that the events B and C occur simultaneously. Clearly,
B implies A and we know that thus there exists an i0 such that

ΓD
(
L=�
i0
,L �=�

i0

)
outputs a dissection with precisely n vertices, which has

postd
(
	;ΓD

(
L=�
i0
,L �=�

i0

))
∈(1±ε/3)p�n vertices with postdegree 	. Then, due

to property (3.8), the number of vertices different from the end vertex in the

output of ΓD
(
L=�
i0
,L �=�

i0

)
with predegree k− 	 and postdegree 	 equals the

number of blocks of size k−	 among the first postd
(
	;ΓD

(
L=�
i0
,L �=�

i0

))
blocks

of L=�
i0
. By applying event C with i= i0 and n′= postd

(
	;ΓD

(
L=�
i0
,L �=�

i0

))
∈

(1±ε/3)p�n we obtain that this number is in the interval

(
1± ε

3

)
· pk−� · n′ ⊆

(
1± ε

3

)2
pk−� · p� · n

`
p�pk−�=

dk
k−1

´

⊆
(
1± 7ε

9

) dk
k − 1

n.

From this we deduce that the total number of vertices with predegree k−	
and postdegree 	 in the output of Γ̃D(n) is contained in

[(
1− 7ε

9

) dk
k − 1

n,
(
1 +

7ε

9

) dk
k − 1

n+ 1

]
⊆ (1± ε)

dk
k − 1

n.

From Proposition 2.1 we know that P [A]≥ 1− e−n. In the following we

will show that P [B |A ]≥1−e−C′ε2p�n and P [C]≥1−e−C′′ε2dkn, for suitably
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chosen constants C ′,C ′′>0. Then the proof of the first part of the theorem
follows immediately:

P [(3.5)] = P

[∣∣PRED
(
k−	; Γ̃D(n)

)
∩POSTD

(
	; Γ̃D(n)

)∣∣∈ (1±ε) dk
k − 1

n
∣∣
∣A

]

≥ P [B ∧ C | A ] ≥ P [B | A ]− P [C | A ] ≥ P [B | A ]− P [C ]

P [A]

≥ 1− e−C′ε2p�n − e−C′′ε2 dk
k
n

1− e−n
≥ 1− e−Cε2

dk
k
n,

for an appropriately chosen constant C > 0. To show the existence of a
constant C ′>0 such that P [B |A ]≥1−e−C′ε2p�n we recall Lemma 3.9 and
Lemma 3.8 and obtain

(3.9)

P [B | A ] = P

[
postd (	;Dn) ∈

(
1± ε

3

)
p�n

]

(Lemma 3.9)
= P

[
pred (	;Dn) ∈

(
1± ε

3

)
p�n

] (Lemma 3.8)

≥ 1− e−C′ε2p�n.

To bound the probability of C we proceed precisely as in the proof of
event B in Lemma 3.8 – we observe that the values Δi,1, . . . ,Δi,n′ are in-

dependent, and that P [Δi,j=k−	 ]=pk−�. Therefore X
(n′)
i is Bin(n′,pk−�)-

distributed, and Lemma 3.7, the union bound and the lower bound for ε
yield the desired upper bound for P [C ].

Now let us turn our attention to the case k ∈ [k0+1,10logn ]. Here we
cannot work directly with (3.5), as due to Lemma 3.8 it depends on the
choice of 	 whether the number of vertices with predegree 	 is around p�n or
is at most (logn)2. In the first case we can exploit the event B from above,
while in the latter we use the following modification of it.

(B′
�) postd

(
	; Γ̃D(n)

)
<(logn)2.

Furthermore, we shall modify C for every admissible 	 as follows.

(C′
�) X

(n′)
i <20(logn)2 for all n′<(1+ε)p�n+(logn)2=:n′

0.

Now, if 	 is such that p�n < 1
9 (logn)

2, then with the same argument as

in (3.9) we can show that P [B� |A ]≥1−n− logn. But then B′
� implies with

Property (3.8) that with probability at most n− logn, the number of vertices
with postdegree 	 and predegree k−	 is larger than (logn)2. Furthermore, if 	
is such that p�n≥ 1

9(logn)
2, then C′

� implies that there are at most 20(logn)2

vertices different from the end vertex with postdegree 	 and predegree k−	.
Summing over all admissible 	 yields then that the total number of vertices
with degree k is at most k ·(20(logn)2+1)≤(logn)4.
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It remains to show that P [C′
� ] ≥ 1− n− logn. To see this, observe that

X
(n′)
i is distributed like Bin(n′,pk−�). Observe that from dkn< (logn)3 we

can deduce that k≥ 1
2 logn and therefore dkn

k <2(logn)2. Hence

P [C′
� ] = P

[
∃i, n′ : X

(n′)
i > 20(log n)2

]
≤ n3

∑

n′≤n′
0

(
n′

20(log n)2

)
p
20(log n)2

k−�

≤ n4

(
n′
0

20(log n)2

)
p
20(log n)2

k−� ≤ n4

(
2p�n+ (log n)2

20(log n)2

)
p
20(logn)2

k−�

≤ n4

(
e(2p�n+ (log n)2)pk−�

20(log n)2

)20(log n)2

= n4

(
e

20

(2p�pk−�n

(log n)2
+ pk−�

))20(log n)2

`
p�pk−�=

dk
k−1

´

≤ n4

(
e

20

(
2dkn

k(log n)2
+ 1

))20(log n)2

≤
(e
4

)20(log n)2

≤ n− logn.

Finally, if k > 10logn, then observe that there is a vertex in the output
of Γ̃D(n) such that either its predegree or its postdegree is larger than 5logn.
But this event does not occur with high probability, due to Lemmas 3.8
and 3.2.

3.3. Number of Edges and of Small Subgraphs

In this section we shall prove Theorem 1.4. As previously, we will restrict
our considerations to edge-rooted unlabeled dissections, as every edge-rooted

dissection gives rise to precisely (n−1)!
2 labeled dissections.

We start by stating the following lemma that is a special case of Theo-
rem 1.4. In fact we count the number of edges in a random dissection, and
this will actually correspond to the induction basis in the proof of Theo-
rem 1.4.

Lemma 3.10. Let e(G) denote the number of edges of a graph G and define

ce :=
1

2−
√
2
. Then for every logn√

n
<ε=ε(n)<1 and sufficiently large n

P [ e(Dn) ∈ (1± ε)cen ] ≥ 1− e−
ε2

2
n.

Proof. We will prove that the number of edges of a dissection built by the
sampler Γ̃D(n) belongs to (1± ε)cen with at least the claimed probability

(recall that Γ̃D(n) is the sampler that calls ΓD(ρD) n
3 times, and returns
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a dissection on n vertices with probability at least 1−e−n). Then the lemma
follows by applying Proposition 2.2.

By applying Lemma 3.5, ii) and iii), we see that the number of edges in

the output of Γ̃D(n) is equal to the number of random values used by the
sampler during the run that returned this object, and this is precisely the
number of values until the (n−1)st occurrence of the value “2” in this list.
The position P

(
i, 1

ce

)
of the ith “2” is distributed as the sum of i independent

geometric variables with parameter
ρ2D

D(ρD) =
1
ce

(the latter equality follows

from (3.1) and the fact that ρD=3−2
√
2), thus we expect that the (n−1)st

occurrence of a “2” will be at position ce(n−1). To bound the probability
that the sum of independent geometric variables assumes a value far from
its expected value, we make use of the following simple observation.

P

[
P

(
i,

1

ce

)
> m

]
= P

[
Bin

(
m,

1

ce

)
< i

]
and

P

[
P

(
i,

1

ce

)
≤ m

]
= P

[
Bin

(
m,

1

ce

)
≥ i

]
.

If we consider n3 (infinite) lists of random values chosen according to (3.2),
then by applying Lemma 3.7 we obtain that with probability at least 1−
2n3e−ce

ε2

3
n, in every list the (n−1)st occurrence of a “2” will be at a position

in the interval (1± ε)cen. Since the probability that Γ̃D(n) will output a
dissection on n vertices is at least 1−e−n, we obtain with room to spare that
for large n that with probability at least 1−e−ε2n/2 the number of edges in
this dissection will be in the interval (1±ε)cen.

To prove Theorem 1.4 we introduce some new notation. First, let S be
an induced biconnected subgraph of a dissection D. We now describe how
we uniquely root this subgraph. In the internal dual tree of D, the vertices
corresponding to the faces of S form a subtree. We root S at the edge of D
crossed by the last edge of the unique path connecting the root vertex of TD

to this subtree. Let us call this edge eS , and orient it in such a way that the
outer face of S is on the right side of eS .

Now let H be a fixed unlabeled biconnected outerplanar graph. Let H be
the set of edge-rooted dissections that can be obtained from H by rooting an
edge that is contained in the external face – see Figure 5 for an illustration
– and define rH of Theorem 1.4 to be |H|. Now let Ĥ ∈H. We say that an

induced copy of H in D is a rooted copy of Ĥ in D, if the dissection obtained
by rooting that copy in the way we defined above is isomorphic to Ĥ. Note
that every copy ofH inD corresponds in this way to a rooted copy of exactly
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Figure 4. Example of rooting induced copies of two different graphs S and S′

in a dissection.

Figure 5. A subgraph H and its corresponding set H.

one graph in H in D. An illustration of this is given in Figure 6, where the
copies of the graph in Figure 5 are highlighted.

Figure 6. Different rooted copies of the subgraph H of Figure 5 in a dissection D.

For a dissection D, let rcopy(Ĥ;D) be the number of rooted copies of Ĥ
in D. Then the above discussion leads immediately to the following state-
ment.

Lemma 3.11. Let H={Ĥ1, . . . , ĤrH}. Then

copy (H;D) =

rH∑

i=1

rcopy(Ĥi;D).

Proof. Every induced copy of H in D can be uniquely rooted in the way we
defined above. Therefore the set of induced copies of H in D is partitioned
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into sets of rooted copies isomorphic to the elements ofH, and the statement
follows.

The next lemma is the crucial point of the proof of Theorem 1.4. It states
that in order to count the number of induced copies of a given H in Dn it
is enough to fix one element of H and to count the number of rooted copies
of this element.

Lemma 3.12. Let Ĥ ∈ H, n̂ := |V (Ĥ)| and q := 2−
√
2

2 . Then for every
logn√
n8−nH

<ε=ε(n)<1

(3.10) P

[
rcopy(Ĥ ;Dn) ∈ (1± ε)

1

2
qbn−3n

]
≥ 1− e−2

`
1
8

´
bn
ε2n.

Proof. We prove that the statement is true for the object returned by Γ̃D(n)
(recall that this is the sampler that calls ΓD(ρD) n3 times, and returns a
dissection on n vertices with probability at least 1−e−n). Then the lemma
follows by applying Proposition 2.2. The proof has many similarities with
the proof for the degree sequence (Section 3), and therefore we will only
explain the main differences. We proceed by induction on the number of
faces f

bH in Ĥ.

If f
bH
=0, then Ĥ is just a single edge, i.e., we want to count how many

edges there are in the output of Γ̃D(n). (3.10) is in this case an immediate
consequence of Lemma 3.10.

Let us now discuss the induction step. We assume that the statement is
true for all subgraphs of Ĥ that are dissections obtained by removing exactly
one non-root face from Ĥ. Let T

bH
be the internal dual tree corresponding to

Ĥ as defined in Section 3, and observe that T
bH is an embedded tree, i.e., if

we change the order of the children of one vertex, we will obtain a different
tree. Suppose that we always draw T

bH
with its root at the bottom, and

letting it grow upwards. We define a dissection Ĥ ′ as follows. If Ĥ is a single
bounded face, then Ĥ ′ is the dissection consisting of a single rooted edge.
Else, let T

bH′ be the tree obtained from T
bH by removing the rightmost leaf

(which corresponds to deleting the “rightmost” face of Ĥ). Ĥ ′ is then the

dissection corresponding to T
bH′ . Notice that n̂

′ := |V (Ĥ ′)|= n̂−(s−2), where
s denotes the number of vertices in the face which was removed from Ĥ to
obtain Ĥ ′. By applying the induction hypothesis on Ĥ ′ we obtain that

(3.11) P

[
rcopy

(
Ĥ ′; Γ̃D(n)

)
∈
(
1± ε

2

)1
2
qbn′−3n

]
≥ 1− exp

{
−
(1
8

)
bn′ ε2

4
n
}
.
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Now let us consider the execution of a slightly modified version of ΓD(ρD).

Let ΓD(L= bH ,L �= bH) be the sampler that receives as input two lists of the
form

(3.12) L= bH = (α1, α2, . . . ) and L �= bH = (β1, β2, . . . ),

namely two (infinite) sequences of variables drawn independently accord-

ing to the distribution (3.2), where x= ρD. Then ΓD(L= bH ,L �= bH) proceeds
as ΓD(ρD), with the difference that every time that it has to make a ran-
dom choice, it picks a variable from one of the two lists according to the
following rules.

(R1) In the beginning the sampler draws from L �= bH if and only if f
bH
≥2.

(R2) Let Di be the partial dissection generated by a call to ΓD(L= bH ,L �= bH)

after having read in total exactly i values from L= bH and L �= bH . Moreover,
suppose that the execution of the sampler is not finished, i.e., Di is not

the output of ΓD(L= bH ,L �= bH). Denote by ei = {vi,v′i} the edge on the
border of Di which is going to be identified with the root edge of the
dissection that will be generated in the next recursive call to the sampler,
such that vi is identified with the root vertex of that dissection. Then

ΓD(L= bH ,L �= bH) will draw the next value from L= bH if and only if the
edge ei is such that attaching to it a cycle of size s would create a rooted
copy of Ĥ (in Di+1).

As ΓD(L= bH ,L �= bH) just imitates the execution of ΓD(ρD), due to Lemma 3.3
this is a Boltzmann sampler for D.

The above rules and Lemma 3.5, i), imply that for every dissection D

there is a quantity t= t(D) such that ΓD(L= bH ,L �= bH) reads t values from

list L= bH , and the remaining values from L �= bH such that it outputs D. Ob-
serve that t is exactly the number of rooted copies of Ĥ ′ present in D, since
there is exactly one edge in every rooted copy of Ĥ ′ that could be replaced
by a cycle so as to create a rooted copy of Ĥ. But then, due to (3.11) we

have that t∈(1±ε/2)12qbn′−3n with probability at least 1−exp
{
−
(
1
8

)
bn′

ε2

4 n
}
.

Moreover, notice that ΓD(L= bH ,L �= bH) creates one rooted copy of Ĥ every

time it reads the value s from list L= bH , which it accesses precisely t times.

To complete the proof, letX
(i)
s,n′ be the random variable counting the num-

ber of values among the first n′ values in L= bH
i that are equal to s. A straight-

forward application of Lemma 3.7 shows that for all 1 ≤ i ≤ n3 and n′ ∈
(1±ε/2)12 qbn′−3n we have X

(i)
s,n′∈(1±ε/3)12qbn−3n, with probability larger than
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1−2n4 exp
{
−1

3 ·
ε2

9 ·
1
2q

bn−3n
}
≥1−exp

{
− ε2

2 q
bnn

}
. By putting all facts together

we see that with probability at least 1−exp
{
−
(
1
8

)
bn′

ε2

4 n
}
−exp

{
− ε2

2 q
bnn

}
the

sampler Γ̃D(n) will output an object that has (1±ε)12 q
bn−3n rooted copies

of Ĥ. Since n̂′≤ n̂−1 we obtain for large n

exp
{
−
(1
8

)
bn′ ε2

4
n
}
+ exp

{
−ε2

2
qbnn

}
≤ 2 exp

{
−min

{
2
(1
8

)
bn
,
1

2
qbn
}
ε2n

}
,

which is due to q = 2−
√
2

2 and n̂ ≥ 3 smaller than exp
{
−2

(
1
8

)
bn
ε2n

}
. This

proves (3.10).

Proof of Theorem 1.4. Since the size of the interval (1±ε)12qbn−3n depends

only on the number of vertices of Ĥ (for fixed n and ε), which is the same
for all elements of H, with Lemma 3.11 we obtain that the total number of
induced copies of H in Dn is in (1± ε)rH

1
2q

bn−3n with probability at least

1−rHe−2( 1
8)

nH ε2n≥1−e−(
1
8)

nH ε2n. This concludes the proof of the theorem.

4. Triangulations

A simplification of dissections leads us to triangulations of convex polygons,
where each face (except for the outer face) is bounded by a triangle. The
decomposition and the sampler for triangulations are therefore very similar
to their corresponding counterparts for general dissections, and hence we
are going to sketch very briefly the straightforward modifications in our
proofs. The generating function for the class T of edge-rooted, unlabeled
triangulations can be directly derived and is

T (z) = z2 +
T (z)2

z
=

z

2
(1−

√
1− 4z),

which becomes singular at ρT =1/4.
To construct a random triangulation, one proceeds in a similar fashion as

in the case of dissections: we begin with the root edge, and then “expand”

it into a triangle with probability T (x)
x , and do the same for every newly

created edge. Thus the sampler ΓT (x) is essentially the same as ΓD(x),
with the only difference that the distribution in (3.2) has to be changed in
the following way, so that it only generates values of size 2 or 3.

P
[
Cyc′(x) = 	

]
=

⎧
⎪⎨

⎪⎩

x2

T (x) , if 	 = 2

T (x)
x , if 	 = 3

0, otherwise.
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With this in mind, everything else in the proof for the degree sequence
of dissections can be transferred to the simpler case of triangulations, as we
have to deal only with triangles instead of cycles of arbitrary length. By

observing that the expression T (x)
x equals 1

2 if we set x=ρT = 1
4 , we obtain

Theorem 1.5.
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