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Abstract

Let G be a graph without loops or bridges and a, b be positive
real numbers with b ≥ a(a + 2). We show that the Tutte polynomial
of G satisfies the inequality TG(b, 0)TG(0, b) ≥ TG(a, a). Our result
was inspired by a conjecture of Merino and Welsh that TG(1, 1) ≤
max{TG(2, 0), TG(0, 2)}.

1 Introduction

The Tutte polynomial, or dichromate, of a graph G = (V,E) was discovered
by Tutte [7]. It has wide ranging applications from knot theory to statistical
mechanics. The polynomial can be defined by the closed formula

TG(x, y) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A) (1)

where r(A) = |V | − ω(V,A), and ω(V,A) denotes the number of compo-
nents in the graph (V,A). It can also be calculated recursively by putting
TG(x, y) ≡ 1 when E(G) = ∅, and using the following fundamental lemma.

Lemma 1 [7] Let G be a graph and e ∈ E(G). Then
(a) TG(x, y) = TG−e(x, y) + TG/e(x, y) if e is neither a loop not a bridge,
(b) TG(x, y) = xTG−e(x, y) if e is a bridge,
(c) TG(x, y) = yTG−e(x, y) if e is a loop.
(d) Furthermore, if G = G1 ∪ G2, where E(G1) ∩ E(G2) = ∅ and |V (G1) ∩
V (G2)| ≤ 1, then TG(x, y) = TG1

(x, y)TG2
(x, y).
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A proof of this lemma together with further information on Tutte polynomi-
als can also be found in the text book by Tutte [8], and in the survey article
of Brylawski and Oxley [1]. We may use Lemma 1 and induction to deduce
that the Tutte polynomial of a graph with at least one edge has nonnegative
coefficients and zero constant term.

The Tutte polynomial of a graph contains a large amount of information
about the graph. It follows from equation (1) that TG(1, 1) is equal to
the number of spanning trees of a connected graph G. Stanley [6] showed
that TG(2, 0) is the number of acyclic orientations of G. It also follows
from either Greene and Zaslavsky [3] or Las Vergnas [4], see [1, Example
6.3.8], that TG(0, 2) is the number of totally cyclic orientations of G i.e.
orientations in which every arc lies in a directed cycle. Merino and Welsh
[5] conjectured that the following intriguing inequality holds between these
three evaluations of the Tutte polynomial.

Conjecture 2 For all 2-connected graphs G,

TG(1, 1) ≤ max{TG(2, 0), TG(0, 2)}.

Some evidence in favour of the conjecture has recently been given by Conde
and Merino in [2]. They also state the following stronger conjecture.

Conjecture 3 For all 2-connected graphs G,

TG(2, 0)TG(0, 2) ≥ TG(1, 1)2.

Note that Conjectures 2 and 3 become false if we allow loops or bridges. If
G has a loop then TG(2, 0) = 0 and if G has a bridge then TG(0, 2) = 0.
Since TG(1, 1) can be arbitrarily large in both cases, Conjecture 3 would not
hold. To see that Conjecture 2 becomes false if we allow loops or bridges
but not both, consider the graph G obtained from a circuit of length m by
adding a loop. We have TG(x, y) = y(xm−1 + xm−2 + . . . + x + y). Thus
TG(2, 0) = 0, TG(0, 2) = 4 and TG(1, 1) = m. So for m ≥ 5, TG(1, 1) >
max{TG(2, 0), TG(0, 2)}. On the other hand, we may use Lemma 1(d) to
deduce that Conjecture 3 is equivalent to the apparently stronger conjecture
that TG(2, 0)TG(0, 2) ≥ TG(1, 1)2 for all loopless bridgeless graphs G.

The main purpose of this paper is prove the following result which runs
in the same vein as Conjecture 3.

Theorem 4 Suppose G is a graph without loops and bridges, and a ≥ 0,
b ≥ a(a + 2) are real numbers. Then

TG(b, 0)TG(0, b) ≥ TG(a, a)2.
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Putting a = 1 and b = 3 we may deduce that TG(3, 0)TG(0, 3) ≥ TG(1, 1)2

for all graphs G without loops and bridges.
Our proof of Theorem 4 is given in Section 3. It is an inductive proof

based on Lemma 1. The main difficulty in the proof is to stay within the
family of loopless bridgeless graphs. We accomplish this by using parallel
and series reductions which are described in Section 2.

2 Parallel and Series Reductions

We may define an equivalence relation on the edges of a graph G by saying
that two edges e, f ∈ E(G) are equivalent if either e = f or {e, f} induces a
circuit in G. We denote the equivalence class of e by PG(e), or P (e) when it
is clear which graph we are referring to, and refer to it as the parallel class
of e in G. The series class SG(e), or S(e), is defined analogously by saying
that e, f ∈ E(G) are equivalent if either e = f or {e, f} induces a cocircuit
in G i.e. {e, f} forms an edge-cut in G. We say that P (e) is a multiple bridge
in G if e is a bridge in G − (P (e) − e), and that S(e) is a subdivided loop in
G if e is a loop in G/(S(e) − e). The following lemma extends Lemma 1(a)
and can be easily deduced from Lemma 1.

Lemma 5 Let G be a graph and e ∈ E(G).

(a) Let P (e) be the parallel class of e. If |P (e)| = p and P (e) is not a
multiple bridge then

TG(x, y) = TG−P (e)(x, y) + (yp−1 + yp−2 + . . . + 1)TG/P (e)(x, y).

(b) Let S(e) be the series class of e. If |S(e)| = s and S(e) is not a subdivided
loop then

TG(x, y) = (xs−1 + xs−2 + . . . + 1)TG−S(e)(x, y) + TG/S(e)(x, y).

We may have to apply Lemma 5 iteratively to a graph which is loopless
and bridgeless to eventually arrive at other graphs in the same family. To
do this we use the following lemma.

Lemma 6 Let G be a 2-connected graph and e ∈ E(G).

(a) Suppose PG(e) 6= E(G). Let P = PG(e) and H = G−(P −e). Then H is
2-connected and PH(e) = {e}. Furthermore, if S = SH(e) and |S| = s ≥ 2,
then TG−P (x, y) = xs−1TH−S(x, y) and

TG/P (x, y) = (xs−2 + xs−3 + . . . + 1)TH−S(x, y) + TH/S(x, y).
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(b) Suppose SG(e) 6= E(G). Let S = SG(e) and H = G/(S − e). Then H is
2-connected and SH(e) = {e}. Furthermore, if P = PH(e) and |P | = p ≥ 2,
then TG/S(x, y) = xp−1TH/P (x, y) and

TG−S(x, y) = TH−P (x, y) + (yp−2 + yp−3 + . . . + 1)TH/P (x, y).

Proof: (a) The fact that H is 2-connected follows from the hypotheses that
G is 2-connected, and PG(e) 6= E(G) (and hence |V (G)| ≥ 3). The fact that
PH(e) = {e} follows immediately from the definitions of PG(e) and H. The
equality TG−P (x, y) = xs−1TH−S(x, y) follows from Lemma 1(b) using the
facts that H − S = (G − P ) − (S − e) and each edge in S − e is a bridge of
G − P . The second equality follows from Lemma 5(b) using the fact that
S − e is a series class of G/P .

(b) The proof is similar to that of (a). •

Let G be a 2-connected graph and e ∈ E(G). We say that the graph G−
(P (e)−e) is the parallel reduction of G at e, and that the graph G/(S(e)−e)
is the series reduction of G at e. When |PG(e)| ≥ 2 and PG(e) 6= E(G), we
define the parallel/series reduction sequence of G at e to be the sequence of
graphs (G = G0, G1, . . . , Gk+1) such that:

• for all even i, 0 ≤ i ≤ k, |PGi
(e)| ≥ 2, PGi

(e) 6= E(Gi), and Gi+1 is
the parallel reduction of Gi at e;

• for all odd i, 0 ≤ i ≤ k, |SGi
(e)| ≥ 2, SGi

(e) 6= E(Gi), and Gi+1 is the
series reduction of Gi at e;

• either PGk+1
(e) = E(Gk+1), or SGk+1

(e) = E(Gk+1), or |PGk+1
(e)| =

1 = |SGk+1
(e)|.

An illustration of the parallel/reduction sequence of a graph is given in
Figure 1.

When |SG(e)| ≥ 2 and SG(e) 6= E(G), the series/parallel reduction se-
quence of G at e is defined analogously, beginning with the series reduction
of G at e.

Lemma 7 Let G be a 2-connected graph, e ∈ E(G) with |PG(e)| ≥ 2 and
PG(e) 6= E(G). Let (G0, G1, . . . , Gk+1) be the parallel/series reduction se-
quence of G at e. Let |PGi

(e)| = pi and |SGi
(e)| = si for 0 ≤ i ≤ k + 1. Put

Qi = PGi
(e) for i even, and Qi = SGi

(e) for i odd, 0 ≤ i ≤ k. Then Gi is
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Figure 1: The parallel/series reduction sequence of the graph G = G0 at the
edge e.

2-connected, for all 0 ≤ i ≤ k + 1, |Si(e)| = 1 for all even i, and |Pi(e)| = 1
for all odd i. Furthermore, for all 0 ≤ i ≤ k,

TG(x, y) = di(x, y)TGi−Qi
(x, y) + ci(x, y)TGi/Qi

(x, y),

where di(x, y) and ci(x, y) are defined recursively by putting: d0(x, y) = 1
and c0(x, y) = yp0−1+yp0−2+. . .+1; di+1(x, y) = xsi+1−1di(x, y)+(xsi+1−2+
xsi+1−3 + . . . + 1)ci(x, y) and ci+1(x, y) = ci(x, y) for all even i, 0 ≤ i ≤ k;
di+1(x, y) = di(x, y) and ci+1(x, y) = (ypi+1−2 + ypi+1−3 + . . . + 1)di(x, y) +
ypi+1−1ci(x, y) for all odd i, 1 ≤ i ≤ k.

Proof: The lemma follows by induction on i using Lemma 5(a) for the base
case and Lemma 6 for the inductive step. For example, if i is even then
Qi = PGi

(e) = Pi say, Qi+1 = SGi+1
(e) = Si say, and Gi+1 is the parallel

reduction of Gi at e. By induction we have

TG(x, y) = di(x, y)TGi−Pi
(x, y) + ci(x, y)TGi/Pi

(x, y).

Lemma 6(a) implies that TGi−Pi
(x, y) = xsi+1−1TGi+1−Si+1

(x, y) and

TGi/Pi
(x, y) = (xsi+1−2 +xsi+1−3 + . . .+1)TGi+1−Si+1

(x, y)+TGi+1/Si+1
(x, y).

This gives

TG(x, y) = di+1(x, y)TGi+1−Qi+1
(x, y) + ci+1(x, y)TGi+1/Qi+1

(x, y).
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•

In order to prove our main result we will need the following rather tech-
nical lemmas concerning evaluations of the functions di(x, y) and ci(x, y).
We adopt the notation of Lemma 7, and the convention that an empty
product is equal to one. Given x ∈ R and a positive integer t, put g(x, t) =
xt−1 + xt−2 + . . . + 1.

Lemma 8 For all 0 ≤ i ≤ k and all real a ≥ 0 we have:

(a) di(x, 0) =
∏i−1

j=0 g(x, sj) and ci(x, 0) =
∏i

j=0 g(x, sj) when i is even, and

di(x, 0) =
∏i

j=0 g(x, sj) and ci(x, 0) =
∏i−1

j=0 g(x, sj) when i is odd;

(b) di(0, y) =
∏i−1

j=0 g(y, pj) and ci(0, y) =
∏i

j=0 g(y, pj) when i is even, and

di(0, y) =
∏i

j=0 g(y, pj) and ci(0, y) =
∏i−1

j=0 g(y, pj) when i is odd;

(c) di(a, a) ≤ ∏i−1
j=0 g(a, sj)g(a, pj) and ci(a, a) ≤ ∏i

j=0 g(a, sj)g(a, pj) when

i is even, and di(a, a) ≤ ∏i
j=0 g(a, sj)g(a, pj) and ci(a, a) ≤ ∏i−1

j=0 g(a, sj)g(a, pj)
when i is odd.

Proof: The lemma follows from the recursive definition of di and ci by
using induction on i and the facts that pi = 1 for i odd and si = 1 for i
even. It is straightforward to check that the base case i = 0 holds. We give
two examples of the inductive step.

Consider statement (a) in the case when i is even. We have

di+1(x, 0) = xsi+1−1di(x, 0) + g(x, si+1 − 1)ci(x, 0)

= xsi+1−1
i−1
∏

j=0

g(x, sj) + g(x, si+1 − 1)

i
∏

j=0

g(x, sj)

=

i+1
∏

j=0

g(x, sj),

by induction and the fact that si = 1 (so g(x, si) = 1). Similarly

ci+1(x, 0) = ci(x, 0) =

i
∏

j=0

g(x, sj).

Consider statement (c) in the case when i is odd. We have

di+1(a, a) = di(a, a) ≤
i

∏

j=0

g(a, sj)g(a, pj),
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and

ci+1(a, a) = g(a, pi+1 − 1)di(a, a) + api+1−1ci(a, a)

≤ g(a, pi+1 − 1)

i
∏

j=0

g(a, sj)g(a, pj) + api+1−1
i−1
∏

j=0

g(a, sj)g(a, pj)

≤ g(a, pi+1)

i
∏

j=0

g(a, sj)g(a, pj) =

i+1
∏

j=0

g(a, sj)g(a, pj),

since g(a, pi)g(a, si) ≥ 1, and si+1 = 1 (so g(a, si+1) = 1). •

Lemma 9 For all 0 ≤ i ≤ k, and all real a ≥ 0 and b ≥ a(a + 2), we have:

(a) di(b, 0)di(0, b) ≥ di(a, a)2;

(b) ci(b, 0)ci(0, b) ≥ ci(a, a)2.

Proof: We prove (a) in the case when i is even. The other proofs are
similar. By Lemma 8 we have

di(b, 0)di(0, b) =
i−1
∏

j=0

g(b, sj)g(b, pj) ≥
i−1
∏

j=0

g(a, sj)
2g(a, pj)

2 ≥ di(a, a)2,

since g(b, t + 1) ≥ g(a, t + 1)2 for all nonnegative integers t. The latter
statement follows since

g(b, t + 1) ≥ at(a + 2)t + at−1(a + 2)t−1 + . . . + 1

≥ at(a + 2)t +
t−1
∑

i=0

ai2i

≥
t

∑

i=0

a2t−i2i +
t−1
∑

i=0

ai2i

≥
t

∑

i=0

(i + 1)a2t−i +
t−1
∑

i=0

(i + 1)ai

= g(a, t + 1)2.

•
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3 Proof of Theorem 4

We proceed by contradiction. We assume the theorem is false and choose a
counterexample (G, a, b) such that |E(G)| is as small as possible. If E(G) = ∅
then TG(x, y) ≡ 1 and the theorem holds for G. Thus E(G) 6= ∅. Since
TG(x, y) ≥ 0 for x, y ≥ 0, we have a > 0.

Claim 10 G is 2-connected.

Proof: Suppose G is separable. Then there exist two loopless and bridge-
less proper subgraphs G1, G2 of G such that TG(x, y) = TG1

(x, y)TG2
(x, y).

By the minimality of G, the theorem holds for G1 and G2. Lemma 1(d) now
implies that the theorem holds for G. •

Claim 11 (a) There exists a real number z0 such that

TG(b, 0) + z2
0TG(0, b) < 2z0TG(a, a).

(b) For all loopless and bridgeless graphs H with |E(H)| < |E(G)| and all
real numbers z1, z2, we have

z2
1TH(b, 0) + z2

2TH(0, b) ≥ 2z1z2TH(a, a).

Proof: (a) Suppose TG(b, 0)+zTG(0, b)−2zTG(a, a) ≥ 0 for all z ∈ R. Then
TG(b, 0) + z2TG(0, b) − 2zTG(a, a) has at most one real root. This implies
that TG(a, a)2 − TG(b, 0)TG(0, b) ≤ 0 which contradicts the choice of G.

(b) The minimality of G implies that TH(a, a)2 − TH(b, 0)TH (0, b) ≤ 0.
Thus TH(b, 0) + z2TH(0, b) − 2zTH(a, a) has at most one real root. Since
H is bridgeless and b > 0, TH(0, b) > 0. Hence TH(b, 0) + z2TH(0, b) −
2zTH(a, a) ≥ 0 for all z ∈ R. Putting z = z2/z1 for z1 6= 0 we deduce that
z2
1TH(b, 0) + z2

2TH(0, b) ≥ 2z1z2TH(a, a). The latter inequality also holds
trivially when z1 = 0. •

Claim 12 Let e ∈ E(G). Then either G − e contains a bridge or G/e
contains a loop.

Proof: Suppose not. Then G− e and G/e are both loopless and bridgeless.
Furthermore TG(x, y) = TG−e(x, y) + TG/e(x, y). By Claim 11(b),

TG−e(b, 0) + z2
0TG−e(0, b) ≥ 2z0TG−e(a, a)2
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and
TG/e(b, 0) + z2

0TG/e(0, b) ≥ 2z0TG/e(a, a)2.

Adding these two inequalities and using Lemma 1(a) we obtain

TG(b, 0) + z2
0TG(0, b) ≥ 2z0TG(a, a)2.

This contradicts Claim 11(a). •

It follows from Claim 12 that every edge of G belongs to either a circuit
of size two or a cocircuit of size two. No edge can belong to both by Claim
10. Thus, for every edge e of G, we have either P (e) = {e} and |S(e)| ≥ 2,
or S(e) = {e} and |P (e)| ≥ 2.

Claim 13 For all e ∈ E(G), P (e) 6= E(G) 6= S(e).

Proof: Suppose P (e) = E(G). Then TG(x, y) = x + yp−1 + yp−2 + . . . + y,
where p = |P (e)| ≥ 2. Putting t = p−1 and g(b, t) = tp−1+tp−2+ . . .+1, we
have TG(b, 0) = b, TG(0, b) = g(b, t+1)−1, and TG(a, a) = a+g(a, t+1)−1.
We may now use the fact that g(b, t) ≥ g(a, t)2 (as was shown in the proof
of Lemma 9) to deduce that

TG(b, 0)TG(0, b) = b[g(b, t + 1) − 1]

= b[bt + bt−1 + . . . + b]

= b2g(b, t)

≥ 4a2g(a, t)2

= [2at + 2at−1 + . . . + 2a]2

≥ [a + at + at−1 + . . . + a]2

= [a + g(a, t + 1) − 1]2 = TG(a, a)2

since b2 ≥ 4a2 for b ≥ a(a + 2).
If S(e) = E(G) then TG(x, y) = xs−1 + xs−2 + . . . + x + y, where

s = |S(e)| ≥ 2, and we may proceed similarly; or, more elegantly, we may
use that facts that G is planar, TG(x, y) = TG∗(y, x) where G∗ is the planar
dual of G, and PG∗(e) = E(G∗). •

Choose e ∈ E(G). We consider the case when |P (e)| ≥ 2 and let
(G0, G1, . . . , Gk+1) be the parallel/series reduction sequence of G at e. (The
case when |S(e)| ≥ 2 can be treated analogously using the series/parallel
reduction sequence of G at e.) Let pi, si, Qi be as defined in Lemma 7 for
0 ≤ i ≤ k + 1.
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Claim 14 Either PGk+1
(e) = E(Gk+1) or SGk+1

(e) = E(Gk+1).

Proof: Suppose not. Then we have must |PGk+1
(e)| = 1 = |SGk+1

(e)| and
PGk+1

(e) = {e} = SGk+1
(e). Since Gk+1 is 2-connected we may deduce that

Gk −Qk = Gk+1 − e and Gk/Qk = Gk+1/e are both loopless and bridgeless.
By Lemma 7,

TG(x, y) = dk(x, y)TGk−Qk
(x, y) + ck(x, y)TGk/Qk

(x, y),

where dk(x, y) and ck(x, y) are as defined in the lemma. We may now use
Claim 11(b) and Lemma 9 to deduce that

TG(b, 0) + z2
0TG(0, b) = dk(b, 0)TGk−Qk

(b, 0) + ck(b, 0)TGk/Qk
(b, 0) +

z2
0dk(0, b)TGk−Qk

(0, b) + z2
0ck(0, b)TGk/Qk

(0, b)

= dk(b, 0)TGk−Qk
(b, 0) + z2

0dk(0, b)TGk−Qk
(b, 0) +

ck(b, 0)TGk/Qk
(b, 0) + z2

0ck(0, b)TGk/Qk
(0, b)

≥ 2z0[
√

dk(b, 0)dk(0, b)TGk−Qk
(a, a) +

√

ck(b, 0)ck(0, b)TGk/Qk
(a, a)]

≥ 2z0[dk(a, a)TGk−Qk
(a, a) + ck(a, a)TGk/Qk

(a, a)]

= 2z0TG(a, a).

This contradicts Claim 11(a). •

We can now complete the proof of the theorem. We consider the case
when PGk+1

(e) = E(Gk+1). (The case when SGk+1
(e) = E(Gk+1) can be

handled similarly.) Since Gk+1 is 2-connected we have pk+1 ≥ 2. Hence
k + 1 is even and Qk = SGk

(e). By Lemma 7,

TG(x, y) = dk(x, y)TGk−Qk
(x, y) + ck(x, y)TGk/Qk

(x, y).

Since Gk − Qk = Gk+1 − e and Gk/Qk = Gk+1/e, we have

TGk−Qk
(x, y) = [x + g(y, pk+1 − 1) − 1] and TGk/Qk

(x, y) = ypk+1−1,

where g(y, t) = yt−1 + yt−2 + . . . + 1 for all integers t ≥ 1. Thus

TG(x, y) = [x + g(y, pk+1 − 1) − 1]dk(x, y) + ypk+1−1ck(x, y).

We may use Lemma 8 to deduce:

TG(b, 0) = bdk(b, 0) = b

k
∏

j=0

g(b, sj); (2)
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TG(0, b) = [g(b, pk+1 − 1) − 1]dk(0, b) + bpk+1−1ck(0, b)

= [g(b, pk+1 − 1) − 1]

k
∏

j=0

g(b, pj) + bpk+1−1
k−1
∏

j=0

g(b, pj)]

= [g(b, pk+1) − 1]

k
∏

j=0

g(b, pj) (3)

since pk = 1 (so g(b, pk) = 1). Similarly we have

TG(a, a) = [a + g(a, pk+1 − 1) − 1]dk(a, a) + apk+1−1ck(a, a)

≤ [a + g(a, pk+1 − 1) − 1]

k
∏

j=0

g(a, sj)g(a, pj) +

apk+1−1
k−1
∏

j=0

g(a, sj)g(a, pj)

≤ [a + g(a, pk+1) − 1]
k

∏

j=0

g(a, sj)g(a, pj) (4)

since g(a, sk)g(a, pk) ≥ 1. We may use (2), (3), (4), and the facts that
g(b, t) ≥ g(a, t)2 and b[g(b, t + 1) − 1] ≥ [a + g(a, t + 1) − 1]2 for all integers
t ≥ 1 (as was shown in the proofs of Lemma 9 and Claim 13) to deduce that
TG(b, 0)TG(0, b) ≥ TG(a, a)2. •

4 Closing Remarks

(a) Conjecture 3 indicates that the hypothesis b ≥ a(a + 2) of Theorem 4
may not be best possible. This hypothesis is needed in our proof to establish
Claim 14. For example, suppose that |PG(e)| = 2 and that (G0, G1) is the
parallel/series reduction sequence of G. We have

TG(x, y) = d0(x, y)TG0−Q0
(x, y) + c0(x, y)TG0/Q0

(x, y)

= TG0−Q0
(x, y) + (y + 1)TG0/Q0

(x, y).

Thus

TG(b, 0) + z2
0TG(0, b) = TG0−Q0

(b, 0) + TG0/Q0
(b, 0) +

z2
0TG0−Q0

(0, b) + z2
0(b + 1)TG0/Q0

(0, b)
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= TG0−Q0
(b, 0) + z2

0TG0−Q0
(b, 0) +

TG0/Q0
(b, 0) + z2

0(b + 1)TG0/Q0
(0, b)

≥ 2z0[TG0−Q0
(a, a) +

√
b + 1TG0/Q0

(a, a)]

by Claim 11(b). On the other hand

2z0TG(a, a) = 2z0[TG0−Q0
(a, a) + (a + 1)TG0/Q0

(a, a)].

So, in order to deduce that TG(b, 0) + z2
0TG(0, b) ≥ 2z0TG(a, a), we need√

b + 1 ≥ a + 1, that is to say b ≥ a(a + 2).

(b) The proof of Theorem 4 is matroidal and can be used to obtain the
following extension to matroids.

Theorem 15 Suppose M is a matroid without loops and coloops, and a ≥ 0,
b ≥ a(a + 2) are real numbers. Then

TM (b, 0)TM (0, b) ≥ TM (a, a)2.

Indeed, the matroid proof would be in some sense simpler than the graph
theoretic proof since we could make use of matroid duality (for example to
deduce statements about series reduction from their dual statements about
parallel reduction). I have chosen to give the graph theoretic proof to make
it accessible to graph theorists unfamiliar with matroid theory.

(c) One may use the Cauchy-Schwarz inequality to deduce that, if p(x, y)
is a polynomial with nonnegative coefficients, then p(b, c)p(c, b) ≥ p(a, a)2

for all real numbers a, b, c ≥ 0 with bc ≥ a2. The inequality for Tutte
polynomials given in Theorem 4 does not hold for all 2-variable polynomials
with nonnegative coefficients. For example, if p(x, y) = x2 +8xy+y2, a = 1,
and b = 3, then b ≥ a(a + 2) but p(b, 0)p(0, b) < p(a, a)2.
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