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A NEW APPROACH TO THE RAMSEY-TYPE GAMES AND
THE GOWERS DICHOTOMY IN F-SPACES

G. ANDROULAKIS, S. J. DILWORTH, AND N. J. KALTON

ABSTRACT. We give a new approach to the Ramsey-type results of Gowers on
block bases in Banach spaces and apply our results to prove the Gowers dichotomy
in F-spaces.

1. INTRODUCTION

Our aim in this note is to establish the Gowers dichotomy [4] in a general F-
space (complete metric linear space). We say that an F-space X is hereditarily
indecomposable if it is impossible to find two separated infinite-dimensional closed
subspaces V, W, i.e. such that VN W = {0} and V + W is closed (or equivalently
that the natural projection from V + W onto V is continuous). Our main result
is that an F-space either contains an unconditional basic sequence or an infinite-
dimensional HI subspace. In order to prove such a result we give a new and, we
hope, interesting approach to the Gowers Ramsey-type result about block bases in
a Banach space. We now state this result (terminology is explained in §2/ and in [5],

[6]):

Theorem 1.1 ([4],[5], [6]). Let X be a Banach space with a basis. Let 0Bx denote
the unit sphere of X i.e. OBx = {x € X : |z|]| = 1}. Let 0 C Yco(0Bx).
Let © = (6;); be a sequence of positive numbers. If o is large then there exists a
block subspace Y of X such that og is strategically large for Y, where og is the set
of all finite block bases {uy,...,un} such that for some {vi,...,v,} € o we have
Hul — ’UZH < b;.

In [5] and [6] the statement of Theorem [L[1] is announced for 0By replaced by
the unit ball except the origin, i.e. B = Bx \ {0} ={x € X : 0 < ||z|| < 1}. There
appears to be a slight problem in the non-normalized case in [, page 805, line -9
and [6, page 1092, line -2]. Theorem [I.1] (including the non-normalized case) follows
from our Theorem [3.8]

Gowers also considers an infinite version of the same result (Theorem 4.1 of [5]):

Theorem 1.2 ([5], [6]). Let X be a Banach space with a basis. Let 0 C ¥ (0Bx).
Let © = (6;); be a sequence of positive numbers. If o is analytic and large then
there exists a block subspace Y of X such that og is strategically large for Y,
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where og is the set of all infinite block bases {uq,...,up,...} such that for some
{v1,...,0pn,...} € 0 we have ||u; — v;|| < 6;.

Other proofs of these results can be found in the work of Bagaria and Lopez-Abad
[1], [2]. Direct proofs of the dichotomy result without these theorems can be found
in [I3] and [3]; see also [14].

Our main objective is to prove Theorem in a form that is suitable for our
intended applications. We take a somewhat different viewpoint (see Theorem [.4]
below) by treating this theorem as a result about block bases in a countable dimen-
sional space E with no topology assumed. We consider in fact only the intrinsic
topology on E i.e. the finest vector space topology. We then give a proof which
is rather distinct from that given by Gowers, and we feel has some advantages. A
benefit of this approach is that we are able to apply the result very easily to the
setting of a general F-space.

In §8lwe prove that the Gowers dichotomy extends to general F-spaces and discuss
connections with similar (but easier) dichotomies for the existence of basic sequence.
In the final section, §6] we prove the result of Gowers and Maurey [7] that on a com-
plex Hl-space every operator is the sum of a scalar and a strictly singular operator
in the context of quasi-Banach spaces. This generalization is not entirely trivial and
requires a few new tricks, although we broadly follow the same ideas as Gowers and
Maurey.

2. COUNTABLE DIMENSIONAL VECTOR SPACES

Let E be a real or complex vector space of countable algebraic dimension. There
is a natural intrinsic topology 7 = Tg on E defined as follows: a set U is T —open
if UN F is open relative to F for every finite-dimensional subspace F. The topology
T is a vector topology on E and is, indeed, the finest vector topology on E. It is
known that (F,T) is in fact locally convex. More precisely if (e;)52; is any fixed
Hamel basis then the topology is induced by the family of norms

m
| Z ajejlly = max Ajlay|
7j=1
where \ = ()\j);";l is any sequence of positive numbers. In the case when \; = 1 for
all j we denote the resulting norm by || - ||oc-

We will also be concerned with the product EN. On this there are two natural
topologies: the product topology 7, and the box topology. The box topology Ty, is
a topology which makes EY a topological group but not a topological vector space.
A base of neighborhoods of the origin is given by sets of the form [[>7, U, where
each U, is a T —neighborhood of zero in E. A base can also be given by sets of
the form [[>° {x : ||z|x < d,} for some fixed norm || - || and a sequence §,, > 0.
We observe the obvious fact that if V' is an infinite-dimensional subspace of E then
TelV =Ty and Tg | VY = Tvpe

Now let us suppose that F has a given fixed Hamel basis (e,)2° ;. Let E, =
le1,...,en] and EM™ = [e,41,€nq0,...]. A sequence (vg)E_q where 1 < n < oo is
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called a block basis of (ey)72 if each vi, # 0 and
Pk
Vi = Z a;€;j
J=pr-1+1

for some increasing sequence pg = 0 < p; < p2 < ---. A subspace V of F is called a
block subspace if V is the linear span of a block basis.

We let Yo (E) be the subset of EN consisting of all infinite block bases. For each
n € N we let ¥,,(E) be the subset of EN of all block bases of length n. We also let
Y0(E) be the one-point set with a single member (). Let Yoo (E) denote the union
of all 3, (F) for 0 < n < co. If A is a subset of E we denote by ¥,,(A), etc., the
subset of X,,(E) with each element in A. In particular we will be interested in the
sets

A ={z€FE: 0<|z]|oc <1}, Sso ={z € E: (2] = 1}.

Lemma 2.1. Let || - || be any norm on E so that (ep)52 is a Schauder basis of
the completion E of (E,| -||). Then, on the space Yoo (E) the product topology T,
coincides with the product topology induced by ||-||. In particular (X, T,) is a Polish
space.

Proof. Let &, = (§u1)72, be a sequence in ¥ (F) so that for some & = (&), €
Yoo (E), limy o0 [|€nk — &k |l = 0 for each k. Let us suppose §ur € [ep, 1415+ -5 €py ]
where ppo < pn1 < --- and that & € [ep,_,+1,-..,€p,]. Then it is clear that

lim sup pp, p—1 < pi k=1,2,...

n—o0

using the fact that (e, )22 is a Schauder basis. It follows that each sequence (&),
is contained in some fixed finite-dimensional space and so the convergence is also in
Tp-

For the product-norm topology it is also easy to see that Yo (E) is a closed subset
of (E'\ {0})Y and hence is Polish. O

Let B = B(FE) be the collection of all infinite-dimensional block subspaces of
(er)i2,- If V € B then V is the span of a block basis (vy);2; and we write B(V) for
the collection of infinite-dimensional block subspaces of V' with respect to (v,)5°
(this is clearly independent of the choice of the block basis). We will use the notation
(v1,...,vp) < (ug,...,us) to mean that (vy,...,v,) is a block basis of (ug, ..., us).

Let o be a subset of ¥ (F). We shall say that o is large if for every V' € B(E)
we have 0 N X (V) # 0.

A strategyis amap @ : oo (E) X B(E) = Ycoo(E) if for all (uq, ..., u,) € Xy (E)
we have ®(uy,ug,...,up; V) = (u1,...,Upn, Upt1) With upy; € V.

If (V])‘;i1 is a sequence of block subspaces then we will write

D(ug, .oy un; Viyoo oy Vig) = (U1, -+, Umgn)
and
D(ug,y .oy un; Viyo ooy Viny o) = (U1, - ooy Uy - - +)

where u, ) = ®(u1, ..., Upsrp—1; Vi) for & > 1. In the case when n = 0 we write
O(Vi, ..., V) or @(Vi, ..., Vp,...) for ®(0; V4, ..., Vi) or @(0; V4, ...V, .. 0)
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A subset 0 of X (E) is called strategically large for V € B(F) and (uq,...,u,) €
Y coo(F) if there is a strategy ® with the property that for every sequence (V])]Oil
with V; C V' we have

D(up,...,up;Vi,oooyVin,...) € 0.
o is strategically large for V € B(E) if it is strategically large for V € B(FE) and 0.

3. FUNCTIONS ON SUBSETS OF Yo (FE)

If V,W are subspaces of E let us write V' C, W to mean that there exists a finite
dimensional subspace F' so that V C W + F.

Lemma 3.1 (Stabilization Lemma). Let E be a countable dimensional space with
fized Hamel basis (er)7>,. Let X be a separable topological space and suppose that,

for each V € B(E), fy : X — R is a continuous function. Suppose further that

fvi(x) > fin(x) reX

whenever Vi C, Vo . Then there is a block subspace W of E so that fv = fw
whenever V.C W.
More generally suppose (Xp,)

[eS)
n=1

for eachV € B andn € N, f‘(,") : X5, = R is a continuous function. Suppose further
that

is a sequence of separable topological spaces and

@) = @) wex,

whenever Vi C, Va. Then there is a block subspace W of E so that f‘(/n) = 1517/1)
whenever V.C, W and n € N.

Proof. We prove the first part. We define block subspaces V,, for every countable
ordinal o by transfinite induction, so that « < 8 = V3 C, V,. Set Vi = E. For
each a which is not a limit ordinal, say a = 8+ 1 define V, C Vj3 so that fy, # fv,
if possible; otherwise let V,, = V3. If o is a limit ordinal then o = sup,, 8, for some
increasing sequence (3,,)22; with 3, < a. Thus Vg, C, Vs, if m > n. In this case we
may by a diagonal argument find V,, so that V,, C, Vj, for every n (simply choose
a block basis v, with v, € Vg, N---N V3, ). Now it follows that the functions fy,
are increasing in « for 1 < o < wy. If D is a countable dense set in X there must
therefore exist a countable ordinal 8 so that

fvs(2) = fv, (@) zeD, B<a.

Thus fy, , = fy, so that W = Vp satisfies the conclusion.
The second part reduces to the first if we consider X = U2, X, topologized as a
disjoint union and fy : X — R given by fy(x) = f‘(,n) (z) when z € X,,. 0
Consider a function f : Yo(A) — [0,00) where A = S, or A = Ay. We
shall say that f is uniformly Tp.— continuous if given e > 0 there is a sequence

(Un)22y of T—neighborhoods of 0 such that if (uy,...,u,), (vi,...,v,) € cao(A)
and u; —v; € Uj for 1 < j < r then

|f(ut, .. up) = flog,. .. 0] <e
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In effect if we induce maps fI" on £, (A) by

f["}(ul,...,uk,...) = fuy,...,up)

oo
n=1

this requires that the family of functions ()
the box topology Tps.

We will need a slightly weaker notion for maps f : Ycoo(As) — [0,00). We will
say that f is admissible if it is bounded and
(i) Given € > 0, there is a sequence (U,); of T—neighborhoods of 0 such that if
(Ut, ..y up), (V1,..., ) € ¥eoo(Ss) and uj —wv; € Uj for 1 < j < then

is equi-uniformly continuous for

\f()\lul, - ,)\rur) — f()\lvl, .. '7)\7“7)7’)‘ <€ ()\1,. .. 7)\7“) S (O, 1]T,

and
(ii) Given € > 0 and (ug,...,ur) € Ycoo(Sso) there exists 6 = d(uy, ..., u,,€) > 0so
that if 0 < A\j, pu; <1 for 1 <j <r and maxi<j<,|A; — pj| <6 then

’f()‘lulw .. 7)‘TUT7U17 s 71)8) - f(ﬂth- coy MpUp, VL, e 7'08)‘ < €,

whenever (w1, ..., U, v1,...,05) € Xeoo(Axo)-
The following Lemma is easy and its proof is omitted:

Lemma 3.2. (i) Suppose [ : Ycoo(Aso) — [0,00) is bounded and uniformly Tp,-
continuous; then f is admissible.

(11) Suppose f : ¥coo(Seo) — [0, 00) is uniformly Ty, -continuous; then g : ¥ coo(Aso) —
[0,00) is admissible where g(uy, ... ,up) = f(ur/[|uilloos - - s un/||tnlloo)-

Lemma 3.3. If [ : ¥coo(Ax) — [0,00) is admissible then for each m € N the map
Fr i (0,1]™ x %,,,(Seo) = [0,00) defined by

F()\l, N ,)\m,ul, N ,um) = f()\lul, N ,)\mum)
is continuous when ¥, (Sx) C (E,T)™ is given the subset topology.

Proof. Suppose € > 0. We pick T —neighborhoods of zero in E, Uy,...,U,, so that
u; —v; € Uj for 1 < j < m implies that

]f()\lvl, C ,)\mvm) — f()\lul, R ,)\mum)] < 6/2

for every (Ai,...,A\m) € (0,1]™. If (v1,...,0m) € Lpm(Ep N Se) we then pick § =
d(vi,...,v,) > 0 so that if [A; — ;| < 6 for 1 < j < m we have

’f()\lvla sy )\mvm) - f(ﬂlvla s nufmvm)’ < 6/2
Combining gives
’f()\lula ceey )\mum) - f(ﬂlvla s ,vam)’ <€

whenever maxi<j<m |[Aj — pj| < 6 and u; —v; € U; for 1 < j < m. Thus F is
continuous at each point (f1, ..., by, V1, .., Um)- O



6 G. ANDROULAKIS, S. J. DILWORTH, AND N. J. KALTON

Suppose f : Ycoo(Ax) — [0,00) is any admissible function. Let us adopt the
convention that the function f takes the value 4oc at any point of EN\ ¥ (As).
For any V' € B(E) let

frlur, ... uy) =
lim inf{f(ul,...,un,vl,...,vs): v1,...,v0s €V EM, 821}.
m—0o0

Note that V' C, W implies that f{, > fi,.
The following is more or less immediate:

Lemma 3.4. If f : ¥ (Ax) — [0,00) is admissible, then the each of the functions
Ji t Bcoo(Aso) = [0,00) is admissible.

Lemma 3.5. If F is a countable family of admissible functions, then there exists
V € B(E) so that for every W € B(V') and every f € F we have f{, = f{,.

Proof. For W € B(E) and m < n define gp, nw : (0,1]" X £,,(Seo N E™) — R by

gm”mw()\l, vy )\m, ULy ,um) = f{/[/()\lul, . ,)\mum).
Thus gm, n,w is continuous by Lemma[3.3 Since (0, 1]™ x £,,,(Soc N E™) is separable
for each m, n, we can apply the Stabilization Lemma [3.1] O

We can thus assume, under the hypotheses of the Lemma, (by passing to a block
subspace) that f has the property that f{, = f5 for all block subspaces V. If
this happens we shall say that f is stable and we write f’ for f;. Note that f is
admissible.

Proposition 3.6. Let f be a stable admissible function. Suppose (uq,...,u,) €
Yeoo(Ax) and V is a block subspace. Then for any € > 0 there exists £ € V' \ {0}
so that either:

((1) f(ulv"' 7“"‘76) < f/(u17"' 7u7“) +eor

(b) f’(Uh... 7u7“7£) < f,(ulv"' 7u7“) + e

Proof. Let us assume that (uq,...,u,) € X,.(F). Let us further assume that V is a
block subspace so that for any & € V we have

(3.1) flug,-.,ur, &) > f(ur,...,ur)+e, fut, .. um &) > f'(ug,. .. up) +e

Let (fuj)‘;il be a block basis which is a basis of V. We choose an increasing sequence
of integers (qi);2; as follows. Let ¢; = 1. Assume gy, ...,q; have been chosen. Let

mo be the smallest integer so that vy, € E,,. Then for every £ € Soc N [vg, ..., Vg, ]
(B holds. We may pick a neighborhood U of 0 in (E,T) so that

If(ugy .oy up, A wr ooy ws) — fug, .o e, Ay wy, .. ws)| < €/8

when € —n € U, (wi,...,ws) € Leo(Ao NE™)) and 0 < A < 1. By com-
pactness there is a finite subset (§1,...,&) of Se N [vg,,...,vq,] such that n €
Soo N [Ugys---,0g,] implies n — §; € U for some j. Now pick an integer N large
enough so that |A — u| < 1/N implies

Lf(ut, . ue, A, wi, . ws) — flu, . U, p&,wi, .. ws)| < €/8
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whenever (wq,...,ws) € E<OO(E(7”0)). Now by our assumptions we can pick m > mg
so that
flug, ... up, %ﬁj,wl,... sws) > f(ur, ... up) + %e
whenever 1 < j <t,1 <k <N and (wy,...,ws) € Xoo(E™). Hence
flut, .. up, A, wi, .. ws) > fllug,. .. u) + %e
whenever 1 < j <t,0 <A <1and (wy,...,ws) € Lo (EM™), and thus
(3.2) flut, .. um, A wr, . ws) > f(ug, .. uy) + %e
whenever 0 < A <1 and £ € Soo N [vg,,- -, Vg,

Then we pick g1 > gx so that vy, € E(M)_ This completes the inductive
construction. Now let W = [vg,, Vg, - . .]. There exists (wi, ..., ws) € Xs(W) (where
s> 0) so that f(uy,...,up,wy,...,ws) < f'(u1,...,u;) +€/2.

If s =1 then £ = wy contradicts (BI). If s > 1 let A§ = wy = 2221 a;jvg, where
a; # 0. Then by the selection of g;41 and (B.2]) we see that f(uq,...,ur, w1,...,ws) >
f(ug, ..., u.) + €/2, a contradiction. O

Lemma 3.7. If f : ¥ oo (Ax) — [0, 00) is admissible then the function g : Ycoo(Aso) —
[0,00) given by g(ui,...,uy) =1 ifr=0orr=1 and

glug, ... up) =inf{f(v1,...,0s) : (V1,...,0s) < (ug,...,u.), 1 <s<r } (r>1)
is admissible.

Proof. Note that g satisfies g(Aju1, ..., Aptm) = g(ur, ..., um) if (u1,...,uy) €

Ycoo(Sso) and (A1,..., A\p) € (0,1]™. Hence it suffices to show that ¢ is uniformly
T —continuous on X« (S0 ). Note that, if for all(uy, ..., up) € Lcoo(Seo) we define

h(ui, ..., um) = nf{f(Aut, ..., Aptm) : (A1,...,Am) € (0,1]™},
then h is uniformly 7y, —continuous and
g(ui,...,uy) = inf{h(vy,...,vs) 0 (v1,...,0s) < (U1,...,u), 1 <s<r } (r>1)

Suppose € > 0. Then there is a sequence (U,)5; of T—neighborhoods of zero so
that if (u1,...,upn), (V1,...,0n) € Ecoo(Sx) and u; —v; € U; for 1 < j < n then

’h(ula s 7un) - h(Ul, te 7”")’ <€
Pick a sequence of circled neighborhoods of zero, (U},)52, so that U, + U], +---+

n=1’
U1, C Un whenever k > n. Then suppose (u1,...,un), (V1,...,0n) € Ycoo(Soo)
with u; —v; € Uj for 1 < j <n. Assume 1 > 0 and pick (z1,...,2;) < (u1,..., up)

with 7 < n so that h(zq,...,2,) < g(uw,...,u,) + 0. If z; = Zé:k—i—l a;u; let
yj = Zﬁzkﬂawi. Then |a;] < 1 and so zj —y; € Uy, +--- + U C Uj since
J < k+1. Hence
h(yi, -y yr) < glur,...,up) +e+n

and so

gty .. vp) < glug, ... u,) + e
By symmetry

lg(v1, ... on) — gut, ... un)| <€
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and hence g is uniformly 7, —continuous. O

We shall say that a strategy ® is (e, V')-effective for f where e > 0 and V' € B(FE)
if for every sequence of block subspaces V; C V' there exists n € N so that
@0, V,..., V) < sup  fiy(0) +e.
WeB(E)
If (w1, ..., up) € Yoo (E) we shall say that a strategy @ is (e, uq, ..., u,, V)-effective
for f where e > 0 and V' € B(E) if for every sequence of block subspaces V; C V
there exists n € N so that
F(@(uy,. .. ur, Vi,..., Vo)) < sup  fiy(ug, ..., up) + e
WeB(E)
Theorem 3.8. Suppose [ : ¥coo(Aso) — [0,00) is admissible. Then, given € > 0
there is a block subspace V' and a strategy ® which is (e, V' )—effective for f.

Proof. We assume (after stabilization) that f{,(0) = 0 for all V' € B(E); indeed if
a = Supycg(p) f1/(0) then replace f by max(f — a,0). We consider the admissible
function
h(ut,...,up) = f(ui,...,up) +2(e = 2g(u, ..., up))+.
By Lemma [3.4] we can pass to a block subspace where h is stable; so let us assume
h is stable on F.
We first claim that if (u1,...,up,...) € Yoo(Ax) then there exists n so that

h'(u1,...,un) > e Indeed, let W = [uy,...,up,...]. Then, since f{,(0) = 0,
there exists (vi,...,vs) € Yeoo(W) with f(v1,...,vs) < €/4. Then we may find
r > s so that (v1,...vs) < (u1,...,u,). Hence for any (xi,...,x¢) such that
(Upy ooy Upy T1y e, @) € Yeoo(Aso) We have

h(ut, ... tp, @1y, x¢) > 2(e — 2f (v1,...,05))

so that
B (ug,. .. up) > 2(e — 2f (v1,...,05)) > ¢,
which proves the claim.

On the other hand, given any block subspace V, there exists a minimal s > 1 so
that we can find (vy,...,vs) € ¥coo(V) with f(v1,...,vs) < €/2. Thus g(v1,...,vs) >
€/2 which implies h(vy,...,vs) < €/2. Hence h'(Q) < €/2.

We now use a strategy for h indicated by Proposition Suppose €; > 0 for
each j > 0 and > ¢ < €/2. Given (uj,...,u,) € Ycoo(E) and V € B(E) we
define ®(uy,...,ur, V) to be (ug,...,u,, &) where £ € V \ {0} is chosen so that
B(uy, .. ur, &) < B(ut,...,ur) + € or h(ug,...,ur&) < W' (uy,...,u;) + €. Let
(Vj)52, be a sequence in B(E) and let (u1,...,uy,...) = ®(@;V1,...,). Then, by our
previous claim there exists a first n > 1 so that h'(u1,...,u,) > B (ug, ..., up—1) +
€n,—1. Hence

n—1
h(ul, . ,un) < h/(ul, . ,un_l) +en—1 < h/((b) + Z €; <E€.
=0
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We need an obvious extension of this result.

Theorem 3.9. Suppose f : Ycoo(Ax) — [0,00) is admissible. Then there is a block
subspace V' such that for each (uq,...,uy) € Y¥coo(Aso) there is a strategy Do, . v,
which is (e,uq,...,u,, V)—effective for f.

Proof. 1t is easy to obtain, for each (ui,...,u,) the existence of a block subspace
Vur,...w, and a strategy W, . which is (e/2,uq,...,up, Vi, 4, )—effective for f.
Indeed, suppose u, € E,,; define

filvr, .o vs) = f(ut, oo U, 01, 0s) (U1, Us) € Seoo(Ase N E™)

and apply the preceding theorem to fi. (Wy, .. ., has to be defined in some arbitrary
fashion for (wq,...,ws) which do not have (ug,...,u,) as an initial segment.) Fur-
thermore it can be seen that for each block subspace W we can choose V,,, .. ., C W.

To obtain a single block subspace V we first construct a dense countable sub-
set Dy, in each X,(E, N Ax). We arrange the elements of D = U, Dy, , as
a sequence and hence find a descending sequence of subspaces (V) so that the
strategy @y, u, is (¢/2,u1,...,u,, Vy)—effective for f when (uy,...,u,) is the nth.
member of D. If we select V' to be block subspace so that V' C V,, + F,, for some
finite-dimensional F;, for each n, then (via a simple modification) each ®,, ., is
(e/2,uq,...,uy, V)—effective for f. Finally we observe that if (v1,...,v,) € E,(Ep)
is arbitrary and we then choose (uj,...,u,) € D close enough, we can define a
strategy by

Do (U1, w1, ws) =Wy (U, U, W W)

(and arbitrarily otherwise) then we will have that ®,,, . is (€, v1,...,v,, V) —effective
for f. O

4. THE INFINITE CASE

We now turn to the infinite case. Suppose f : X (As) — [0,00) is a bounded

uniformly 7p,-continuous function. We may define f{, : ¥coo(Ao) — [0,00) in
a precisely analogous way. As before we adopt the convention that f = +oo on
EN\ ¥ (As). Let
fo(ut, ... u.) =
lim inf{f(ul,...,ur,ful,...,fus,...) Dy € VNEM, j= 1,2,...}.
m—00

It is clear that the functions {f{, : V € B(E)} are equi-uniformly 7;,—continuous.
Proceeding in the same manner as before we can show:

Proposition 4.1. If f, : ¥ (Ax) — R is any countable family of bounded Ty,
uniformly continuous functions, there is a block subspace V' of E so that f{,, = fi,
whenever W € B(V).

We shall say that f is stable if f, = f{, for every V € B(E).
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Lemma 4.2. Let f,, : ¥oo(Ax) — [0,00) be a sequence of bounded uniformly Tps-
continuous functions and suppose f = inf f,, is also Tp,—uniformly continuous. As-
sume that each f, and [ are stable. Let h : ¥ (As) = infy, f. Then for every
V € B(E) we have hy, < f'.

Proof. Let V. € B(E). Let us assume h{, (ui,...,u;) > X > f'(ui,...,u,) for
some (Ug,...,Ur) € Yeoo(As NV). Then there exists m so that if (vy,...,vs) €
Y oo (EM™ NV) with s > 1 we have

h(ut, ... U, 01,...,0s) > A

Thus
Frut, .o e, 1, 05) > A, n=12....
Let us pick w1 € Ase N EM™ NV. We will construct a sequence (wp)2y in V
by induction. Suppose (wy,...,w,) have been selected and let W,, = [wy,...,wy].

Then by compactness we can find p so that W,, C E, and if 1 < k < n and
(v1,...,0%) € (W, N Ax) then

fk(ul,...,ur,vl,...,fuk,xl,...) > A

for all choices of (z;)72, in E®) Pick w1 € E® NV,

Now let W = [w;]32,. Our construction guarantees that for every n it is true that
folur, .oy up,xy,.0) > A zyeW, j=1,2,...

Indeed we have (z1,...,2,) € Ep([wi,...,wy]) where m > n and so this follows
from our inductive construction. Thus

flut, .. un) >N,

contradicting our initial hypothesis. O

We now use the space NI with the usual product topology; this can be regarded as
the space of all infinite words of the natural numbers. We will write N<> = U  /NF
which is the space of all finite words of the natural numbers, including the empty
word. We will use (nq,...,ng) or (n1,n2,...) to denote a typical member of N<*
or NN,

Theorem 4.3. Suppose F : NN x ¥ (Ay) — [0,00) is a bounded map. Define
frima,... : Yoo(Aso) = [0,00) by
frama,...(u1,ug,...) = F(ni,ng,...;ui,ug,...).

Suppose
(1) The maps {fn, no.... : (N1,02,...) € NVYare equi-uniformly Ty, — continuous.
(ii) The map F : NN x ¥ (As) — [0,00) is lower semi-continuous for the product
topology on NN x (X4 (Aso), Tp)-

Let

flur,ug,...) = ( inf)GNN F(ni,na,...;u1,ug,...).
n1,n2,...

If £{,(0) = 0 for every block subspace V', then given € > 0 there is a block subspace
V' so that {f < €} is V-strategically large.
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Proof. For each (ny,...,n;) € N<* we define
frimo,mp(U1,u2,...) = inf  F(ng,...,ng,mi,me,...;ui,us,...).
mi,ms...

The family fy, n,....n,. 15 Toz-equi-uniformly continuous. By passing to a block sub-
space we can assume that each fp, n, ., is stable. Of course the family f; ~  is
also Tpz-equi-uniformly continuous. Let

I (VA PO 7% S (U - ) (Upy .oy tUy) € Beoo(Ano)-

= inf

meN
This family is also equi-uniformly 7,,-continuous. Passing to a further block sub-
space we can suppose that this family is also stable.

By Lemma 2 we have that hy, ., < f, . .

Let us choose a sequence (e,)22, with Y €, = € < e. Again exploiting the count-
ability of the family Ay, .. ,, we can pass to a further block subspace and, by rela-
belling as F, suppose that for each (nq,...,ng) € NS and (uq,...,u;) € Yeoo(Aoo)
there is a strategy ®,, . n,.u1,..u. With the property that if (V]);‘;l is any sequence
of subspaces then for some p > 1,

/
hnl,...,nk<I>n1,...,nk,u1,...,ur(u1, e U, VL ‘/p) < hnl,,,,7nk (uh cee 7u7‘) + €.

We will now define a strategy ¥. To do this we first define maps 0 : Yo (As) —
N<*® and ¢ : ¥oo(As) — N such that ¢(ug,...,u,) < r. This is done inductively
on the length of (uq,...,u,). We define () = 0 and ¢(f)) = 0. Suppose that 6 and
¢ have been defined for all ranks up to r and consider (uq,...,up+1).

Let O(uy,...,uy) = (n1,...,ng) and @(uy,...,u,) =s. If

hnh___mk (ul, e 7ur+1) < héblwn,”k (ul, e ,us) + €,

then we can choose m € N so that

fr/u,...,nk,m(ulv ... ,ur+1) < h;"fl,---,nk (ul, c.. ,us) + €.
Let 0(u1,...,upry1) = (n1,n92,...,n,m) and @(uq,...,up41) =7+ 1.
Otherwise we simply put 6(u1,...,ur41) = (n1,...,nk) and (u1,...,Up41) = S.

To define ¥ we set
\I/(Ul, vy Up, V) = q)nl,...,nk,ul,...,us (u17 vy Up, V)

where (n1,...,n,) =0(uq,...,u,) and s = @(uq, ..., uy).
Finally, we must show that if (V])]Oil is any sequence of subspaces the sequence

(ug,ug,...) =V(0,Vq,Va,...)is in {f < €}.
Let k(r) be the length of 6(uy,...,u,). Then k(r) < r for all r. Suppose k(r)

remains bounded. Then there exists s so that ¢(ug,...,u,) = s for all » > s and
O(u1,...,ux) = (ng,...,ns) for some fixed (ny,ng,...,n;) € N when k > s. Thus
(Ul, L) 7u7“) = q)n17---,7lt,u17---,us (Ul, LR 7u87 ‘/;+17 sy V;’) r 2 S.

It follows that for some r > s we have

hnl,...,nt (Ul, ce 7u7") < hézl,...,nt (Ul, e 7u5) + €t
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which implies that ¢(r) = r which is a contradiction. Hence k(r) 1 co. Let r; be the
first natural number at which k(r) = j. Then there exists (n1,ns,...) € N so that

O(ut, ..., up) = (n1,...,m5).
By construction

f,lll(ul, . ,url) < h/(@) + €
and then for j > 1,

frlzl,...,nj+1 (ulv s 7uTj+1) < hizl,...,nj (uh s 7u’f‘j) + €j-
Since hy,  n. < fny,..n, We conclude that
fr/u,...,nj (Ul, tee 7ukj) < 6/

for all j. But this implies the existence of (n;1,n;2...) € NY and (uj1,uj2,...) €
Yoo(Ax) so that nj; = n; for i < j and u;; = u; for i < k; and

F(nj71,nj72, U1, U2,y ) <é j=12,....
Finally we invoke lower semi-continuity:
F(nl,ng,...,;ul,ug,...) <e€
and so f(uy,ug,...,) <e. O

We now recall (Lemma 2.1)) that ¥ (E) is a Polish space for the topology 7.
Thus every Borel set is analytic (i.e. a continuous image of NY).

Theorem 4.4. Let o be a large subset of Yoo(E). Suppose:
(a) There is a sequence of absolutely convex sets Cy, such that C, N F is compact
for all finite-dimensional subspaces F and o C [[72; Ch.
(b) o is analytic as a subset of (X (E), Tp)-

Let py, be any sequence of F-norms on E and define for u = (uy,ug,...), v =
(Ul,’l)g, .. ) S EOO(E)

d(u,v) = ij(uj — vj).
j=1

Let oc = {u = (u)j2g : d(u,0) = infye, d(u,v) < e}. Then for every e > 0 there
s a block subspace V' so that o is strategically large for V.

Proof. We start by reducing this to the case when C,, = {z : ||z| < 1}. To do this
first observe that each C,, is T —closed. Since o is large the linear space generated
by C,, is of finite codimension; if F,, is a complementary space we can replace C,,
by the bigger set C,, + K,, where K,, is a compact absolutely convex neighborhood
of the origin in E,. So we can suppose (), is absorbent and hence generates a
norm | - ||, on E. By induction, we can find a sequence of positive numbers d,
so that [|z]| = D07 dnllz]ln < oo for all z € E. Thus we can assume that each
Cp ={z:|z| < M,} for a single norm || - ||.

We can now pass to block basis which is a normalized basic sequence in the
completion of (E, || -||). Intersecting o with X, (V') for a block subspace gives again
an analytic set since ¥, (V') is closed; thus we can relabel so that the block subspace
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is already E. It now follows that each C,, is included in a set {z : ||z]s < M)}
where M, is some sequence of positive numbers. Finally we put o/ = {(u1,ua,...):
(Mjuy, Mus,...) € o} and note that ¢’ C Xoo(Ax). Clearly it is enough to prove
the result for o' with p; replaced by p’(z) = p;(M;z).

We therefore assume that 0 C Yoo (Aso)-

Now there is a continuous surjective map g : NY¥ — o for the Tp,—topology. We
will define

F:NV X ¥ (As) — [0,00)
by
F(ny,n2,...;u1,uz,...) = min (Ld((ul,u% o )yg(ni,ng, .. -)))-

It is clear that the family f,, n,,.. given by

fm,n%___(ul,uQ, .. ) = F(nl,ng, ceey U, U9, . )
is equi-uniformly 7,-continuous. It is also clear that F' is lower semi-continuous for

the T,-topology in the second factor.
The result now follows directly from Theorem 3] O

5. APPLICATIONS TO F-SPACES

We now apply these results to obtain the Gowers dichotomy for F-spaces. Before
doing this we make some remarks on basic sequences in F-spaces. There is an F-
space (indeed a quasi-Banach space) which contains no basic sequence [10]. It turns
out that there is a dichotomy result for the existence of basic sequences with a very
similar flavor to that of the Gowers dichotomy, which has been known for some time.

We will need some background (see [11]). Let X be an F-space and let p be
an F-norm inducing the topology. A basic sequence ()02, is called regular if
inf,, p(z,) > 0. We denote by w the space of all sequences (i.e. the countable
product of lines). The canonical basis of w is not regular, and w contains no regular
basic sequence. The following Lemma is elementary.

Proposition 5.1. Suppose X contains no subspace isomorphic to w. Then given a
basic sequence (x,)22, we may choose an > 0 so that (anx,)2 is reqular.

Proof. Indeed if not we have inf,cnsup,cg p(te,) = 0. Then some subsequence of

(er)9 is equivalent to the canonical basis of w. O

Two subspaces Y, Z of an F-space X are called separated if YN Z = {0} and the
canonical projection Y + Z — Y is continuous. An F-space is called HI if no two
infinite dimensional subspaces are separated.

Proposition 5.2. Suppose X has a regular basis (e,)02 . If there exist two sepa-
rated infinite-dimensional subspaces Y, Z of X then there exist two separated block
subspaces of X.

Proof. Since X is regular the seminorm ||z| = sup |e)(z)| defines a continuous
norm on X. Now, fixing 0 < € < 1/8 we may inductively define a sequence (x,); €
X and a block basic sequence (u, )22 such that:

(1) [|znlleo = 1 for all n,
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(ii) p(xn — upn) + ||Tn — unlleo < €/2™ for all n and
(iii) @, € Y for n odd, z,, € Z for n even.

Note that ||uy|lcc > 1—€>1/2.

Let Py be the canonical projections of Y + Z onto Y with kernel Z. For v =
> _j—1 aju; in the linear span of the sequence (uy,)p2; we define Kv =" a;(z; —
u;). Then

p(Kv) < ellgnjagnl%l < 2¢]v]|0o
so that K is continuous. Furthermore

[K0] [0 < 2¢ max |a;[sup [[unloc < 4€][v]oo-
1<j<n

Thus T' = I + K extends to a continuous operator 1" : [u,]52; — Y + Z. Now

[Tv]loc > (1 —4e)|vfloc = 1/2[[v]lc, v € [unlpZy-

If (v,)52 is a sequence such that lim, . p(Tv,) = 0 then lim, o || T0n|lcc = 0
and so limy, 0 ||Un|loc = 0. Thus lim,,—, o p(Kv,) = 0 and hence lim,,_, o, p(vy,) = 0.
Hence T is an isomorphism of [u,|0%; into Y + Z. Consider the operator S =
T~1PyT: then S is a projection of [u,]%; onto [ug,—1]°; and the block subspaces

V = [ugn—1]22, and W = [ug, |0, are separated. O

Theorem 5.3. Let X be an F-space with a reqular basis containing no unconditional
basic sequence. Then X has an HI subspace Y .

Proof. We assume that X has a regular basis (e,)52 ;.

We now consider the countable dimensional E with Hamel basis (ey)2 ;. Note
that the norm | - || on E is continuous with respect to the F-space topology since
(en)o2 is regular. For any block basic sequence (u,)22; we say that (u,)02, is
somewhat unconditional if the map

oo oo
Z a;u; — Z(—l)]ajuj
j=1 7=1

(defined for (a;)32; € coo) is continuous for the F-space topology restricted to E.
Let oy be the collection of all somewhat unconditional sequences. We claim that
with respect to 7, this set is a Borel subset of ¥ (E). Indeed let (Up,)5°_; be a base
of open neighborhoods of zero. Let og(m,n) be the set of (u;)72; so that

[S) oo '
Zajuj el,, = Z(—l)]ajuj eU,.
J=1 Jj=1

Then og(m,n) is Tp—closed and og = N2, UX_; og(m, n).

We define o to be the subset of ¥ E of all block basic sequences (uy)22; such
that ||un|lec = 1 for all » and (u,)52 fails to be somewhat unconditional. Then o
is also Borel in 7,. Furthermore, since X contains no unconditional basic sequence
we conclude that o is large.
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Fix some 0 < € < 1 and let o’ be the subset of Xoo(E) of all sequences (v;)32;
such that

[e.e]
(> (luj = vjlloo + pluj —v5)) + (u))321 € 0} <e.
j=1
Note that if (v;)32; € o' there exists (u;)52; € o which is equivalent to (v;)52;.
Hence each (v;)32; € o' fails to be somewhat unconditional.

According to Theorem .4l we can find a block subspace V so that ¢’ is strategically
large for V. Let Y be the closure of V. We show that Y is HI. Y has a regular basis
(un )02, which is a block basis of (e,)52 ;. According to Proposition we need
only check that if W7, W5 are two block subspaces of V' then W; and W5 cannot be
separated.

Let @ be the strategy guaranteed by the fact that o’ is strategically large. Then
O (W1, Wo, W1, Wy, ...) = (v1,v2,...) and the sequence (vj)jo-’;l fails to be somewhat
unconditional so that Wy, Wy are not separated. O

Let us now recall the criterion of the existence of basic sequences given in [8] (see
also [12]). An F-space X is called minimal if there is no strictly weaker Hausdorff
topology on X.

Proposition 5.4. If X is a non-minimal F-space then X contains a reqular basic
sequence.

Let us call an infinite-dimensional F-space X strongly HI (SHI) if it contains a
non-zero vector e so that e € L for every infinite-dimensional closed subspace L of
X. We remark that it is possible to consider spaces X which satisfy the slightly
stronger condition that any two infinite-dimensional closed subspaces have non-
trivial intersection; this condition implies X contains no basic sequence, but it is
not clear if it implies that X is SHI. The problem is that we do not know if, under
this condition, the intersection of any three infinite-dimensional closed subspaces is
non-trivial. This is related to the fact, discussed later, that the sum of two strictly
singular operators need not be strictly singular (see the discussion after Theorem

6.1).
Theorem 5.5. Let X be an F-space containing no basic sequence. Then X has an
SHI-subspace Y .

Proof. We may assume that X is separable. Let us say that a collection L of closed
subspaces of X is a subspace-filter in X if each L € L is infinite-dimensional and
LiN Ly € £ whenever L1, Ly € L; we say that a subspace-filter £ is a subspace-
ultrafilter if it is not contained properly in any other subspace-filter. We then pick
L to be a subspace-filter such that H = N{L : L € £} has minimal dimension
(1 <dimH < o0).

We will argue that dim H > 0. Indeed if H = {0} then we define a topology 7
on X by taking as a base of neighborhoods sets of the form U + L where U is a
neighborhood of zero in the F-space topology and L € L. If H = {0} then 7 is
Hausdorff. By Proposition [5.4] we have that 7 coincides with the original topology.
Then we may find a strictly decreasing sequence L,, € L so that L, C {z : p(x) <
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9]
n=1

27"}, If we pick x,, € Ly, \ L1, it is easy to verify that (x;,) is a basic sequence
equivalent to the canonical basis of w.

If dimH = oo then it follows from maximality that H has no proper closed
infinite-dimensional subspace and so we may take Y = H and y any non-zero element
of Y. If dim H < oo we first argue by Lindelof’s theorem that since X is separable
we can find a descending sequence of subspaces L,, € £ so that NL,, = H. We may
suppose this sequence is strictly descending and take x,, € L, \ Lp41 for n > 1.
Let V,, = [zk]g>n so that V;, C L,. Suppose W is any closed infinite-dimensional
subspace of Vq; then dim V,, N W = oo for each n. Let £’ be any subspace-ultrafilter
containing each V,, and W. Then N{L : L € L'} C H but the inclusion cannot be
strict because the original minimality assumption on dim H. Hence H C W. Thus

we can take Y =Vj and y € H \ {0}. O

An examination of the proof shows that we have actually proved a slightly stronger
result:

Corollary 5.6. Let X be an F-space containing no basic sequence. Then X has
an SHI-subspace Y with the property that if E is the intersection of all infinite-
dimensional subspaces of Y then there is a descending sequence of infinite-dimensional
subspaces (Ly)s2, of Y with NS L, = E.

We are now ready to establish the full force of the Gowers dichotomy for F-spaces.

Theorem 5.7. Let X be an F-space. If X contains no unconditional basic sequence,
then X contains an HI subspace.

Proof. If X contains no basic sequence then X contains a SHI subspace (Theorem
(.5). So we may assume X has a basis. Clearly X cannot contain a copy of w so we
can assume the basis is regular (Proposition (5.1). Now apply Theorem O

We conclude this section with:

Theorem 5.8. Let X be an HI F-space. Suppose X has a closed infinite-dimensional
subspace containing no basic sequence. Then X contains no basic sequence.

Proof. We will show that if (V,,)2°; is any descending sequence of closed infinite-
dimensional subspaces of X then N°2,V, # {0}. We use Corollary to de-
duce the existence of a descending sequence of infinite-dimensional closed subspaces
(Lp)S2 such that, if £ = N2 ,L,, then £ # {0} and F is contained in any
infinite-dimensional subspace of L;. Consider the sequence (L, NV,,)>2 . Then if
dim L, NV, = oo for all n we have E C N2, L, NV, C N>, V,.

If not then there exists ng such that dim(L,,NV},) is finite and constant for n > ny.
Hence L, NV, = F some fixed finite dimensional subspace for n > ng. We show
dim F' > 0. If for some n > ny we have L, NV, = {0} then L, + V,, cannot be
closed since X is HI. Thus there are sequences (x1)32; in L, and (v)32, € V;, so
that lim p(zx +v) = 0 but p(z) > ¢ > 0 for all k. Consider the metric topology on
L,, defined by the F-norm z — d(z,V,,) := inf{p(z +v) : v € V}. This is topology
is Hausdorff on L, and strictly weaker than the p—topology. Hence L,, contains a
basic sequence by Proposition 5.4l and this is a contradiction. Hence dim F' > 0 and
Fcnee, V. O
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6. STRICTLY SINGULAR MAPS

In [7] the following Theorem is shown:

Theorem 6.1. Let X be a complex Banach space. If X is HI then every bounded
linear operator T : X — X is of the form T = Al + S where S is strictly singular.

We do not know whether such a theorem can hold for a complex F-space but we
show that it holds equally for complex quasi-Banach spaces. There are some small
wrinkles in the proof as the reader will see.

JFrom now on we will deal with quasi-Banach space X (or Y, etc.) with a given
quasi-norm which is assumed to be p-subadditive (for a suitable 0 < p < 1) i.e.

[z +yllP < [le]” + llyll”, =y e X

A linear operator T : X — Y is an isomorphic embedding if there exists ¢ > 0
so that [|[Tx| > c||z|| for x € X. T is called strictly singular if T|y fails to be an
isomorphic embedding for every infinite-dimensional subspace V of X. T is called
semi-Fredholm if ker T is finite-dimensional and T'(X) is closed. T is called Fredholm
if T is semi-Fredholm and dimY/T'(X) < oc.

T is semi-Fredholm if and only if for every bounded sequence (x,)52 such that
lim;, o0 || T2y || = 0 we can extract a convergent subsequence. Thus it is clear the
restriction of a semi-Fredholm operator to an infinite-dimensional closed subspace
remains semi-Fredholm.

Let us make some remarks. Suppose X is a SHI space and let Ex be the inter-
section of all closed infinite-dimensional subspaces of X. If dim Fxy = oo then Ex
is an atomic space i.e. it has no proper closed infinite-dimensional subspace. The
existence of atomic spaces is still open (the only known results in this direction are
n [I5]). However it is known that there exist quasi-Banach spaces X for which Ex
is finite-dimensional and non-trivial, even with dim Ex > 1 (][9], Theorem 5.5). The
quotient map @ : X — X/FEx is then both semi-Fredholm and strictly singular (this
cannot happen for operators on Banach spaces). Furthermore if dim Fx > 1 then
let L1, Lo be two distinct one-dimensional subspaces of Ex. Then the quotient maps
Q1:X — X/L; and Q2 : X — X/Lo are both strictly singular and semi-Fredholm.
However the map z — (Q1z,Q2z) from X into X/L; & X/Ls is an isomorphism.
Thus the sum of two strictly singular operators need not be strictly singular!

The key fact we will need is the following;:

Theorem 6.2. Let X be an infinite-dimensional complex quasi-Banach space and
suppose T : X — X is a bounded operator. Then there exists A\ € C so that T — \I
s not semi-Fredholm.

This Theorem is proved for Banach spaces by Gowers and Maurey [7]. The proof
for quasi-Banach spaces requires some additional tricks. These tricks are necessi-
tated by the fact that finite-dimensional subspaces are not always complemented.

We list the relevant facts we need:

Proposition 6.3. If X is a complex quasi-Banach space and T : X — X is a
bounded linear operator then Sp(T) = {\ € C : T — X 1is not invertible} is a
non-empty compact set and maxycgp(r) |A| = limp o0 leagiRea
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This is due to Zelazko [16]. We point out that the key ideas in the proof involve
a reduction to the Banach algebra case. One starts with the fact ([I6]) that on a
commutative quasi-Banach algebra the formula r(z) = lim, s |77]'/" defines a
seminorm. Using this one can prove the Gelfand-Mazur theorem (see e.g. [II]) in
this context and develop the basic theory of commutative quasi-Banach algebras.
The Proposition is obtained by looking at the double commutant of 7'

Proposition 6.4. Let X be a complexr quasi-Banach space and let G1 denote the
subset of L(X) consisting of all isomorphic embeddings and Gy be the collection of
all surjections. Then Gi and Go are both open sets and Gy N Gs is a clopen subset
relative to G1 and relative to Gs.

See [11] pp. 132-134.

Proposition 6.5. Let X be an infinite-dimensional complex Banach space and sup-
pose T : X — X is quasi-nilpotent, i.e. Sp(T) = {0}. Then T cannot be semi-
Fredholm.

See [7] Lemma 19. We will now need to prove this Proposition for a general
complex quasi-Banach space. We do this is in several very simple steps. Assume
throughout that X is an infinite-dimensional complex quasi-Banach space.

Lemma 6.6. Suppose T : X — X is any bounded operator and A € 0Sp(T'). Then
T — Al can be neither an isomorphic embedding nor a surjection.

Proof. This follows from Proposition O

Lemma 6.7. Suppose X has trivial dual. If T : X — X is quasi-nilpotent then T
cannot be Fredholm.

Proof. If T(X) has finite codimension in X then T is onto in this case. We then use
Lemma [6.6] O

Lemma 6.8. If X is any infinite-dimensional complex quasi-Banach space and
T : X — X is quasi-nilpotent then T cannot be Fredholm.

Proof. Denote by X* the dual of X; this is a Banach space but it can be quite
small (even {0}). We assume X* # {0} as this case is covered in Lemma
Assume T : X — X is quasi-nilpotent and Fredholm. Then T* : X* — X* is
Fredholm. In fact 7%(X*) = ker(T)*; this depends on the fact that every continuous
linear functional y* on T'(X) can be extended to z* € X* since dim X/T(X) < oo.
Since ||(T*)™|| < ||T™|| the spectral radius formula shows that 7™ is quasi-nilpotent.
By Proposition we must have dim X* < oo. Let Xg = {z € X : a*(z) =
0V z* € X*}. Then X is invariant for T" and of finite-codimension in X. Clearly
Xy = {0} and T'|x,-x, remains Fredholm so we can apply Lemma [6.7] to get a
contradiction. O

Lemma 6.9. If X is any infinite-dimensional complexr quasi-Banach space and
T : X — X is quasi-nilpotent then T cannot be semi-Fredholm.
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Proof. Assume T is semi-Fredholm. Then by a Baire Category argument there exists
x € X so that T"x # 0 for every n € N. Let Y = [T"z]>2 ;. Then T : Y — Y is
Fredholm and remains quasi-nilpotent (using Proposition [6.3]). Clearly T'|y_y is
not nilpotent so dimY = co. This is a contradiction by Lemma [6.8] O

Proof of Theorem[6.3. The remaining steps in the proof of Theorem are very
similar to those in [7] for the Banach space case. Assume 7' — A is semi-Fredholm
for all A € C. We suppose A € 9dSp(T) is an accumulation point of dSp(T). Let
An — A with A\, # X and A, € 9Sp(T'). Each )\, is an eigenvalue of T' (by Lemma
[6.6] since T'— A\, I is semi-Fredholm), say with eigenvector z,,. Let Y = [x,,]02 ;. Then
Y is invariant for 7" and A € 9Sp(T'|yy). However (T' — AI)|y_y has dense range
and is semi-Fredholm. Hence (T —AI)|y_y is surjective and we have a contradiction
by Lemma

It follows that OSp(7T') has no accumulation points and hence is a finite set. Thus
Sp(T') is also finite say Sp(T) = {A1,...,An}. Then S = [[}_(T — A\pI) is semi-
Fredholm and Sp(S) = {0}. This contradicts Lemma O

Theorem 6.10. Let X be an infinite-dimensional complex quasi-Banach space. If
T: X — X is strictly singular then T' cannot be semi-Fredholm.

Remark. Note that this is false for operators T': X — Y by the remarks above.

Proof. In fact T'— A1 is always semi-Fredholm if A # 0 (Theorem 7.10 of [I1]). The
result follows from Theorem O

Theorem 6.11. Let X be an infinite-dimensional complex quasi-Banach space. If
T : X — X is a bounded linear operator then exactly one of the following two
conditions holds:
(i) For every ¢ > 0 there is an infinite-dimensional closed subspace V of X such
that ||T|v| < e.
(ii) T is semi-Fredholm.

If X is HI then (i) is equivalent to
(i) T is strictly singular.

Proof. Assume (ii). Then there is a constant ¢ > 0 so that |Tz| > cd(z, F) for
x € X, where F' = kerT. If V' is an infinite-dimensional closed subspace we can
find a sequence (v,,)22; in the unit ball so v, — v,|| > 1/2 for m # n. Assuming
that the norm is p—convex, by a simple compactness argument we can then show
the existence of a pair m # n so that (d(vm, F)? + d(v,, F)P)Y/? > 1/4. Hence
I Tvm||P + || Tv,||P > (1/4)P.cP This implies a lower bound on ||y ||.

Now assume (ii) fails and that F' = ker(7T") is finite dimensional. Then T factors
in the form T' = TQ where @ : X — X/F is the quotient map and Ty : X/F — X
is one-one but not an isomorphic embedding. Then there is a normalized sequence
&n € X/F so that ||Thé,|| < 27™. Now using Theorem 4.6 of [I1] we can assume by
passing to a subsequence that (£,)5°; satisfies an estimate

n
121}3;{ﬂ|ak| §C’||kz_1ak§k||, ay,...,a, € C.
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In particular if Vi, = Q71[;];> then each Vj is infinite-dimensional and ||T'|y; || — 0.
Thus (i) holds.

Now assume X is HI. Suppose T satisfies (i) and is not strictly singular. Then
there is an infinite-dimensional subspace W so that ||Tw| > ¢||w|| for w € W where
d > 0. Pick € = §/2 and then choose V as in (i) for this e. Clearly VN W = {0}.

Now assume v € V,w € W with ||[v + w|| = 1. Then

[v][P <1+ [Jw][?
<14 27P[olP + flw]|? — 27P[jv[]P
<1+ 27P||u||P 4 7P| Tw|[P — 27PeP|| TP
=1+ 27P|[o||P + 6 P(||Twl|P — || Tv|P)
<1+ 277[olP + 6P| T (0 +w) P
<14 277|fo|P + 6P| TP,

|wu<<1+5ﬂwTw>”5

Thus

1—-2-p
This contradicts the fact that X is HI.

Conversely if T is strictly singular it cannot be semi-Fredholm by Theorem [6.10]
and so (i) must hold. O

Theorem 6.12. Let X be an infinite-dimensional complex quasi-Banach space. If
X is HI then every bounded linear operator T : X — X is of the form T = X[ + S
where S is strictly singular.

Proof. There exists A so that T — Al is not semi-Fredholm by Theorem By
Theorem [6.11] this means T' — A is strictly singular. g

In the case when X is SHI this result is much simpler. Indeed we have:

Theorem 6.13. Let X be an SHI space and suppose E is the intersection of all
infinite-dimensional subspaces of X. Let Q : X — X/E be the quotient map (which
is strictly singular). Then if T : X — X is a bounded operator, there exists A € C
and a bounded operator S : X/E — X so that T = X\ + SQ.

Proof. Let us first give a simpler proof of Theorem It is clearly that if R :
X — X is an invertible operator then R(E) C E and this implies that F is invariant
for all operators on X. If F is atomic then E is rigid ([II] Theorem 7.22, p. 155).
Otherwise E is finite-dimensional. In either case T'|p has an eigenvalue A and so
T — A factors through a quotient map @' : X — X/F’ where F’ is a non-trivial
subspace of E. Hence T — \I is strictly singular.

Now using Theorem it is clear any strictly singular operator on X vanishes
on E and so we get the desired factorization. O
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