A NEW APPROACH TO THE RAMSEY-TYPE GAMES AND THE GOWERS DICHOTOMY IN F-SPACES

G. ANDROULAKIS, S. J. DILWORTH, AND N. J. KALTON

ABSTRACT. We give a new approach to the Ramsey-type results of Gowers on block bases in Banach spaces and apply our results to prove the Gowers dichotomy in F-spaces.

1. INTRODUCTION

Our aim in this note is to establish the Gowers dichotomy [4] in a general Fspace (complete metric linear space). We say that an F-space X is hereditarily indecomposable if it is impossible to find two separated infinite-dimensional closed subspaces V, W, i.e. such that $V \cap W = \{0\}$ and V + W is closed (or equivalently that the natural projection from V + W onto V is continuous). Our main result is that an F-space either contains an unconditional basic sequence or an infinitedimensional HI subspace. In order to prove such a result we give a new and, we hope, interesting approach to the Gowers Ramsey-type result about block bases in a Banach space. We now state this result (terminology is explained in §2 and in [5], [6]):

Theorem 1.1 ([4],[5], [6]). Let X be a Banach space with a basis. Let ∂B_X denote the unit sphere of X i.e. $\partial B_X = \{x \in X : ||x|| = 1\}$. Let $\sigma \subseteq \sum_{<\infty} (\partial B_X)$. Let $\Theta = (\theta_i)_i$ be a sequence of positive numbers. If σ is large then there exists a block subspace Y of X such that σ_{Θ} is strategically large for Y, where σ_{Θ} is the set of all finite block bases $\{u_1, \ldots, u_n\}$ such that for some $\{v_1, \ldots, v_n\} \in \sigma$ we have $||u_i - v_i|| < \theta_i$.

In [5] and [6] the statement of Theorem 1.1 is announced for ∂B_X replaced by the unit ball except the origin, i.e. $B = B_X \setminus \{0\} = \{x \in X : 0 < ||x|| \le 1\}$. There appears to be a slight problem in the non-normalized case in [5, page 805, line -9] and [6, page 1092, line -2]. Theorem 1.1 (including the non-normalized case) follows from our Theorem 3.8.

Gowers also considers an infinite version of the same result (Theorem 4.1 of [5]):

Theorem 1.2 ([5], [6]). Let X be a Banach space with a basis. Let $\sigma \subseteq \Sigma_{\infty}(\partial B_X)$. Let $\Theta = (\theta_i)_i$ be a sequence of positive numbers. If σ is analytic and large then there exists a block subspace Y of X such that σ_{Θ} is strategically large for Y,

¹⁹⁹¹ Mathematics Subject Classification. 46A16, 91A05, 91A80.

The second author was supported by NSF grant DMS-0701552. The third author was supported by NSF grant DMS-0555670.

where σ_{Θ} is the set of all infinite block bases $\{u_1, \ldots, u_n, \ldots\}$ such that for some $\{v_1, \ldots, v_n, \ldots\} \in \sigma$ we have $||u_i - v_i|| < \theta_i$.

Other proofs of these results can be found in the work of Bagaria and Lopez-Abad [1], [2]. Direct proofs of the dichotomy result without these theorems can be found in [13] and [3]; see also [14].

Our main objective is to prove Theorem 1.2 in a form that is suitable for our intended applications. We take a somewhat different viewpoint (see Theorem 4.4 below) by treating this theorem as a result about block bases in a countable dimensional space E with no topology assumed. We consider in fact only the intrinsic topology on E i.e. the finest vector space topology. We then give a proof which is rather distinct from that given by Gowers, and we feel has some advantages. A benefit of this approach is that we are able to apply the result very easily to the setting of a general F-space.

In §5 we prove that the Gowers dichotomy extends to general F-spaces and discuss connections with similar (but easier) dichotomies for the existence of basic sequence. In the final section, §6 we prove the result of Gowers and Maurey [7] that on a complex HI-space every operator is the sum of a scalar and a strictly singular operator in the context of quasi-Banach spaces. This generalization is not entirely trivial and requires a few new tricks, although we broadly follow the same ideas as Gowers and Maurey.

2. Countable dimensional vector spaces

Let E be a real or complex vector space of countable algebraic dimension. There is a natural intrinsic topology $\mathcal{T} = \mathcal{T}_E$ on E defined as follows: a set U is \mathcal{T} -open if $U \cap F$ is open relative to F for every finite-dimensional subspace F. The topology \mathcal{T} is a vector topology on E and is, indeed, the finest vector topology on E. It is known that (E, \mathcal{T}) is in fact locally convex. More precisely if $(e_j)_{j=1}^{\infty}$ is any fixed Hamel basis then the topology is induced by the family of norms

$$\|\sum_{j=1}^{m} a_j e_j\|_{\lambda} = \max_{1 \le j \le m} \lambda_j |a_j|$$

where $\lambda = (\lambda_j)_{j=1}^{\infty}$ is any sequence of positive numbers. In the case when $\lambda_j = 1$ for all j we denote the resulting norm by $\|\cdot\|_{\infty}$.

We will also be concerned with the product $E^{\mathbb{N}}$. On this there are two natural topologies: the product topology \mathcal{T}_p and the box topology. The box topology \mathcal{T}_{bx} is a topology which makes $E^{\mathbb{N}}$ a topological group but not a topological vector space. A base of neighborhoods of the origin is given by sets of the form $\prod_{n=1}^{\infty} U_n$ where each U_n is a \mathcal{T} -neighborhood of zero in E. A base can also be given by sets of the form $\prod_{n=1}^{\infty} \{x : \|x\|_{\lambda} < \delta_n\}$ for some fixed norm $\|\cdot\|_{\lambda}$ and a sequence $\delta_n > 0$. We observe the obvious fact that if V is an infinite-dimensional subspace of E then $\mathcal{T}_E |V = \mathcal{T}_V$ and $\mathcal{T}_{E,bx}|V^{\mathbb{N}} = \mathcal{T}_{V,bx}$.

Now let us suppose that E has a given fixed Hamel basis $(e_n)_{n=1}^{\infty}$. Let $E_n = [e_1, \ldots, e_n]$ and $E^{(n)} = [e_{n+1}, e_{n+2}, \ldots]$. A sequence $(v_k)_{k=1}^n$ where $1 \le n \le \infty$ is

called a *block basis* of $(e_k)_{k=1}^{\infty}$ if each $v_k \neq 0$ and

$$v_k = \sum_{j=p_{k-1}+1}^{p_k} a_j e_j$$

for some increasing sequence $p_0 = 0 < p_1 < p_2 < \cdots$. A subspace V of E is called a block subspace if V is the linear span of a block basis.

We let $\Sigma_{\infty}(E)$ be the subset of $E^{\mathbb{N}}$ consisting of all infinite block bases. For each $n \in \mathbb{N}$ we let $\Sigma_n(E)$ be the subset of $E^{\mathbb{N}}$ of all block bases of length n. We also let $\Sigma_0(E)$ be the one-point set with a single member \emptyset . Let $\Sigma_{<\infty}(E)$ denote the union of all $\Sigma_n(E)$ for $0 \leq n < \infty$. If A is a subset of E we denote by $\Sigma_n(A)$, etc., the subset of $\Sigma_n(E)$ with each element in A. In particular we will be interested in the sets

$$A_{\infty} = \{ x \in E : \ 0 < \|x\|_{\infty} \le 1 \}, \ S_{\infty} = \{ x \in E : \ \|x\|_{\infty} = 1 \}.$$

Lemma 2.1. Let $\|\cdot\|$ be any norm on E so that $(e_n)_{n=1}^{\infty}$ is a Schauder basis of the completion \tilde{E} of $(E, \|\cdot\|)$. Then, on the space $\Sigma_{\infty}(E)$ the product topology \mathcal{T}_p coincides with the product topology induced by $\|\cdot\|$. In particular $(\Sigma_{\infty}, \mathcal{T}_p)$ is a Polish space.

Proof. Let $\xi_n = (\xi_{nk})_{k=1}^{\infty}$ be a sequence in $\Sigma_{\infty}(E)$ so that for some $\xi = (\xi_k)_{k=1}^{\infty} \in \Sigma_{\infty}(E)$, $\lim_{n\to\infty} ||\xi_{nk} - \xi_k|| = 0$ for each k. Let us suppose $\xi_{nk} \in [e_{p_{n,k-1}+1}, \ldots, e_{p_{nk}}]$ where $p_{n0} < p_{n1} < \cdots$ and that $\xi_k \in [e_{p_{k-1}+1}, \ldots, e_{p_k}]$. Then it is clear that

$$\limsup_{n \to \infty} p_{n,k-1} \le p_k \qquad k = 1, 2, \dots$$

using the fact that $(e_n)_{n=1}^{\infty}$ is a Schauder basis. It follows that each sequence $(\xi_{nk})_{n=1}^{\infty}$ is contained in some fixed finite-dimensional space and so the convergence is also in \mathcal{T}_p .

For the product-norm topology it is also easy to see that $\Sigma_{\infty}(E)$ is a closed subset of $(\tilde{E} \setminus \{0\})^{\mathbb{N}}$ and hence is Polish.

Let $\mathcal{B} = \mathcal{B}(E)$ be the collection of all infinite-dimensional block subspaces of $(e_k)_{k=1}^{\infty}$. If $V \in \mathcal{B}$ then V is the span of a block basis $(v_n)_{n=1}^{\infty}$ and we write $\mathcal{B}(V)$ for the collection of infinite-dimensional block subspaces of V with respect to $(v_n)_{n=1}^{\infty}$ (this is clearly independent of the choice of the block basis). We will use the notation $(v_1, \ldots, v_r) \prec (u_1, \ldots, u_s)$ to mean that (v_1, \ldots, v_r) is a block basis of (u_1, \ldots, u_s) .

Let σ be a subset of $\Sigma_{\infty}(E)$. We shall say that σ is *large* if for every $V \in \mathcal{B}(E)$ we have $\sigma \cap \Sigma_{\infty}(V) \neq \emptyset$.

A strategy is a map $\Phi: \Sigma_{<\infty}(E) \times \mathcal{B}(E) \to \Sigma_{<\infty}(E)$ if for all $(u_1, \ldots, u_n) \in \Sigma_n(E)$ we have $\Phi(u_1, u_2, \ldots, u_n; V) = (u_1, \ldots, u_n, u_{n+1})$ with $u_{n+1} \in V$.

If $(V_j)_{j=1}^{\infty}$ is a sequence of block subspaces then we will write

$$\Phi(u_1,\ldots,u_n;V_1,\ldots,V_m)=(u_1,\ldots,u_{m+n})$$

and

$$\Phi(u_1,\ldots,u_n;V_1,\ldots,V_m,\ldots)=(u_1,\ldots,u_{m+n},\ldots)$$

where $u_{n+k} = \Phi(u_1, \ldots, u_{n+k-1}; V_k)$ for $k \ge 1$. In the case when n = 0 we write $\Phi(V_1, \ldots, V_m)$ or $\Phi(V_1, \ldots, V_m, \ldots)$ for $\Phi(\emptyset; V_1, \ldots, V_m)$ or $\Phi(\emptyset; V_1, \ldots, V_m, \ldots)$

A subset σ of $\Sigma_{\infty}(E)$ is called strategically large for $V \in \mathcal{B}(E)$ and $(u_1, \ldots, u_n) \in \Sigma_{<\infty}(E)$ if there is a strategy Φ with the property that for every sequence $(V_j)_{j=1}^{\infty}$ with $V_j \subset V$ we have

$$\Phi(u_1,\ldots,u_n;V_1,\ldots,V_m,\ldots)\in\sigma.$$

 σ is strategically large for $V \in \mathcal{B}(E)$ if it is strategically large for $V \in \mathcal{B}(E)$ and \emptyset .

3. Functions on subsets of $\Sigma_{<\infty}(E)$

If V, W are subspaces of E let us write $V \subset_a W$ to mean that there exists a finite dimensional subspace F so that $V \subset W + F$.

Lemma 3.1 (Stabilization Lemma). Let E be a countable dimensional space with fixed Hamel basis $(e_k)_{k=1}^{\infty}$. Let X be a separable topological space and suppose that, for each $V \in \mathcal{B}(E)$, $f_V : X \to \mathbb{R}$ is a continuous function. Suppose further that

$$f_{V_1}(x) \ge f_{V_2}(x) \qquad x \in X$$

whenever $V_1 \subset_a V_2$. Then there is a block subspace W of E so that $f_V = f_W$ whenever $V \subset W$.

More generally suppose $(X_n)_{n=1}^{\infty}$ is a sequence of separable topological spaces and for each $V \in \mathcal{B}$ and $n \in \mathbb{N}$, $f_V^{(n)} : X_n \to \mathbb{R}$ is a continuous function. Suppose further that

$$f_{V_1}^{(n)}(x) \ge f_{V_2}^{(n)}(x) \qquad x \in X_n$$

whenever $V_1 \subset_a V_2$. Then there is a block subspace W of E so that $f_V^{(n)} = f_W^{(n)}$ whenever $V \subset_a W$ and $n \in \mathbb{N}$.

Proof. We prove the first part. We define block subspaces V_{α} for every countable ordinal α by transfinite induction, so that $\alpha \leq \beta \implies V_{\beta} \subset_a V_{\alpha}$. Set $V_1 = E$. For each α which is not a limit ordinal, say $\alpha = \beta + 1$ define $V_{\alpha} \subset V_{\beta}$ so that $f_{V_{\alpha}} \neq f_{V_{\beta}}$ if possible; otherwise let $V_{\alpha} = V_{\beta}$. If α is a limit ordinal then $\alpha = \sup_n \beta_n$ for some increasing sequence $(\beta_n)_{n=1}^{\infty}$ with $\beta_n < \alpha$. Thus $V_{\beta_m} \subset_a V_{\beta_n}$ if m > n. In this case we may by a diagonal argument find V_{α} so that $V_{\alpha} \subset_a V_{\beta_n}$ for every n (simply choose a block basis v_n with $v_n \in V_{\beta_1} \cap \cdots \cap V_{\beta_n}$). Now it follows that the functions $f_{V_{\alpha}}$ are increasing in α for $1 \leq \alpha < \omega_1$. If D is a countable dense set in X there must therefore exist a countable ordinal β so that

$$f_{V_{\beta}}(x) = f_{V_{\alpha}}(x) \qquad x \in D, \ \beta \le \alpha.$$

Thus $f_{V_{\beta+1}} = f_{V_{\beta}}$ so that $W = V_{\beta}$ satisfies the conclusion.

The second part reduces to the first if we consider $X = \bigcup_{n=1}^{\infty} X_n$ topologized as a disjoint union and $f_V : X \to \mathbb{R}$ given by $f_V(x) = f_V^{(n)}(x)$ when $x \in X_n$. \Box

Consider a function $f : \Sigma_{<\infty}(A) \to [0,\infty)$ where $A = S_{\infty}$ or $A = A_{\infty}$. We shall say that f is uniformly \mathcal{T}_{bx} -continuous if given $\epsilon > 0$ there is a sequence $(U_n)_{n=1}^{\infty}$ of \mathcal{T} -neighborhoods of 0 such that if $(u_1,\ldots,u_r), (v_1,\ldots,v_r) \in \Sigma_{<\infty}(A)$ and $u_j - v_j \in U_j$ for $1 \leq j \leq r$ then

$$|f(u_1,\ldots,u_r) - f(v_1,\ldots,v_r)| < \epsilon$$

In effect if we induce maps $f^{[n]}$ on $\Sigma_{\infty}(A)$ by

$$f^{[n]}(u_1,\ldots,u_k,\ldots) = f(u_1,\ldots,u_n)$$

this requires that the family of functions $(f^{[n]})_{n=1}^{\infty}$ is equi-uniformly continuous for the box topology \mathcal{T}_{bx} .

We will need a slightly weaker notion for maps $f: \Sigma_{<\infty}(A_{\infty}) \to [0, \infty)$. We will say that f is *admissible* if it is bounded and

(i) Given $\epsilon > 0$, there is a sequence $(U_n)_{n=1}^{\infty}$ of \mathcal{T} -neighborhoods of 0 such that if $(u_1, \ldots, u_r), (v_1, \ldots, v_r) \in \Sigma_{<\infty}(S_{\infty})$ and $u_j - v_j \in U_j$ for $1 \le j \le r$ then

$$|f(\lambda_1 u_1, \dots, \lambda_r u_r) - f(\lambda_1 v_1, \dots, \lambda_r v_r)| < \epsilon \qquad (\lambda_1, \dots, \lambda_r) \in (0, 1]^r,$$

and

(ii) Given $\epsilon > 0$ and $(u_1, \ldots, u_r) \in \Sigma_{<\infty}(S_{\infty})$ there exists $\delta = \delta(u_1, \ldots, u_r, \epsilon) > 0$ so that if $0 < \lambda_j, \mu_j \le 1$ for $1 \le j \le r$ and $\max_{1 \le j \le r} |\lambda_j - \mu_j| \le \delta$ then

$$|f(\lambda_1 u_1, \ldots, \lambda_r u_r, v_1, \ldots, v_s) - f(\mu_1 u_1, \ldots, \mu_r u_r, v_1, \ldots, v_s)| < \epsilon,$$

whenever $(u_1, \ldots, u_r, v_1, \ldots, v_s) \in \Sigma_{<\infty}(A_{\infty}).$

The following Lemma is easy and its proof is omitted:

Lemma 3.2. (i) Suppose $f : \Sigma_{<\infty}(A_{\infty}) \to [0,\infty)$ is bounded and uniformly \mathcal{T}_{bx} continuous; then f is admissible.

(ii) Suppose $f: \Sigma_{<\infty}(S_{\infty}) \to [0,\infty)$ is uniformly \mathcal{T}_{bx} -continuous; then $g: \Sigma_{<\infty}(A_{\infty}) \to [0,\infty)$ is admissible where $g(u_1,\ldots,u_n) = f(u_1/||u_1||_{\infty},\ldots,u_n/||u_n||_{\infty})$.

Lemma 3.3. If $f: \Sigma_{<\infty}(A_{\infty}) \to [0,\infty)$ is admissible then for each $m \in \mathbb{N}$ the map $F_m: (0,1]^m \times \Sigma_m(S_{\infty}) \to [0,\infty)$ defined by

$$F(\lambda_1,\ldots,\lambda_m,u_1,\ldots,u_m) = f(\lambda_1u_1,\ldots,\lambda_mu_m)$$

is continuous when $\Sigma_m(S_\infty) \subset (E, \mathcal{T})^m$ is given the subset topology.

Proof. Suppose $\epsilon > 0$. We pick \mathcal{T} -neighborhoods of zero in E, U_1, \ldots, U_m so that $u_j - v_j \in U_j$ for $1 \leq j \leq m$ implies that

$$|f(\lambda_1 v_1, \dots, \lambda_m v_m) - f(\lambda_1 u_1, \dots, \lambda_m u_m)| < \epsilon/2$$

for every $(\lambda_1, \ldots, \lambda_m) \in (0, 1]^m$. If $(v_1, \ldots, v_m) \in \Sigma_m(E_n \cap S_\infty)$ we then pick $\delta = \delta(v_1, \ldots, v_r) > 0$ so that if $|\lambda_j - \mu_j| < \delta$ for $1 \le j \le m$ we have

$$|f(\lambda_1 v_1, \ldots, \lambda_m v_m) - f(\mu_1 v_1, \ldots, \mu_m v_m)| < \epsilon/2.$$

Combining gives

$$|f(\lambda_1 u_1, \dots, \lambda_m u_m) - f(\mu_1 v_1, \dots, \mu_m v_m)| < \epsilon$$

whenever $\max_{1 \leq j \leq m} |\lambda_j - \mu_j| < \delta$ and $u_j - v_j \in U_j$ for $1 \leq j \leq m$. Thus F is continuous at each point $(\mu_1, \ldots, \mu_r, v_1, \ldots, v_m)$.

Suppose $f: \Sigma_{<\infty}(A_{\infty}) \to [0,\infty)$ is any admissible function. Let us adopt the convention that the function f takes the value $+\infty$ at any point of $E^{\mathbb{N}} \setminus \Sigma_{<\infty}(A_{\infty})$. For any $V \in \mathcal{B}(E)$ let

$$f'_{V}(u_{1}, \dots, u_{n}) = \lim_{m \to \infty} \inf \Big\{ f(u_{1}, \dots, u_{n}, v_{1}, \dots, v_{s}) : v_{1}, \dots, v_{s} \in V \cap E^{(m)}, \ s \ge 1 \Big\}.$$

Note that $V \subset_a W$ implies that $f'_V \ge f'_W$. The following is more or less immediate:

Lemma 3.4. If $f : \Sigma_{<\infty}(A_{\infty}) \to [0, \infty)$ is admissible, then the each of the functions $f'_V : \Sigma_{<\infty}(A_{\infty}) \to [0, \infty)$ is admissible.

Lemma 3.5. If \mathcal{F} is a countable family of admissible functions, then there exists $V \in \mathcal{B}(E)$ so that for every $W \in \mathcal{B}(V)$ and every $f \in \mathcal{F}$ we have $f'_W = f'_V$.

Proof. For $W \in \mathcal{B}(E)$ and m < n define $g_{m,n,W} : (0,1]^m \times \Sigma_m(S_\infty \cap E^n) \to \mathbb{R}$ by

$$g_{m,n,W}(\lambda_1,\ldots,\lambda_m,u_1,\ldots,u_m)=f'_W(\lambda_1u_1,\ldots,\lambda_mu_m).$$

Thus $g_{m,n,W}$ is continuous by Lemma 3.3. Since $(0,1]^m \times \Sigma_m(S_{\infty} \cap E^n)$ is separable for each m, n, we can apply the Stabilization Lemma 3.1.

We can thus assume, under the hypotheses of the Lemma, (by passing to a block subspace) that f has the property that $f'_V = f'_E$ for all block subspaces V. If this happens we shall say that f is *stable* and we write f' for f'_E . Note that f' is admissible.

Proposition 3.6. Let f be a stable admissible function. Suppose $(u_1, \ldots, u_r) \in \Sigma_{<\infty}(A_{\infty})$ and V is a block subspace. Then for any $\epsilon > 0$ there exists $\xi \in V \setminus \{0\}$ so that either:

(a)
$$f(u_1, ..., u_r, \xi) < f'(u_1, ..., u_r) + \epsilon$$
 or
(b) $f'(u_1, ..., u_r, \xi) < f'(u_1, ..., u_r) + \epsilon$.

Proof. Let us assume that $(u_1, \ldots, u_r) \in \Sigma_r(E)$. Let us further assume that V is a block subspace so that for any $\xi \in V$ we have

$$(3.1) \ f(u_1, \dots, u_r, \xi) \ge f'(u_1, \dots, u_r) + \epsilon, \qquad f'(u_1, \dots, u_r, \xi) \ge f'(u_1, \dots, u_r) + \epsilon.$$

Let $(v_j)_{j=1}^{\infty}$ be a block basis which is a basis of V. We choose an increasing sequence of integers $(q_k)_{k=1}^{\infty}$ as follows. Let $q_1 = 1$. Assume q_1, \ldots, q_k have been chosen. Let m_0 be the smallest integer so that $v_{q_k} \in E_{m_0}$. Then for every $\xi \in S_{\infty} \cap [v_{q_1}, \ldots, v_{q_k}]$ (3.1) holds. We may pick a neighborhood U of 0 in (E, \mathcal{T}) so that

$$|f(u_1,\ldots,u_r,\lambda\xi,w_1\ldots,w_s) - f(u_1,\ldots,u_r,\lambda\eta,w_1,\ldots,w_s)| < \epsilon/8$$

when $\xi - \eta \in U$, $(w_1, \ldots, w_s) \in \Sigma_{<\infty}(A_{\infty} \cap E^{(m_0)})$ and $0 < \lambda \leq 1$. By compactness there is a finite subset (ξ_1, \ldots, ξ_t) of $S_{\infty} \cap [v_{q_1}, \ldots, v_{q_k}]$ such that $\eta \in S_{\infty} \cap [v_{q_1}, \ldots, v_{q_k}]$ implies $\eta - \xi_j \in U$ for some j. Now pick an integer N large enough so that $|\lambda - \mu| < 1/N$ implies

$$|f(u_1,\ldots,u_r,\lambda\xi_j,w_1,\ldots,w_s) - f(u_1,\ldots,u_r,\mu\xi_j,w_1,\ldots,w_s)| < \epsilon/8$$

whenever $(w_1, \ldots, w_s) \in \Sigma_{<\infty}(E^{(m_0)})$. Now by our assumptions we can pick $m \ge m_0$ so that

$$f(u_1,\ldots,u_r,\frac{k}{N}\xi_j,w_1,\ldots,w_s) > f'(u_1,\ldots,u_r) + \frac{3}{4}\epsilon$$

whenever $1 \le j \le t, 1 \le k \le N$ and $(w_1, \ldots, w_s) \in \Sigma_{<\infty}(E^{(m)})$. Hence

 $f(u_1,\ldots,u_r,\lambda\xi_j,w_1,\ldots,w_s) > f'(u_1,\ldots,u_r) + \frac{5}{8}\epsilon$

whenever $1 \le j \le t, 0 < \lambda \le 1$ and $(w_1, \ldots, w_s) \in \Sigma_{<\infty}(E^{(m)})$, and thus

(3.2)
$$f(u_1, \dots, u_r, \lambda \xi, w_1, \dots, w_s) > f'(u_1, \dots, u_r) + \frac{1}{2}\epsilon$$

whenever $0 < \lambda \leq 1$ and $\xi \in S_{\infty} \cap [v_{q_1}, \dots, v_{q_k}]$.

Then we pick $q_{k+1} > q_k$ so that $v_{q_{k+1}} \in E^{(m)}$. This completes the inductive construction. Now let $W = [v_{q_1}, v_{q_2}, \ldots]$. There exists $(w_1, \ldots, w_s) \in \Sigma_s(W)$ (where s > 0) so that $f(u_1, \ldots, u_r, w_1, \ldots, w_s) < f'(u_1, \ldots, u_r) + \epsilon/2$.

If s = 1 then $\xi = w_1$ contradicts (3.1). If s > 1 let $\lambda \xi = w_1 = \sum_{j=1}^l a_j v_{q_j}$ where $a_l \neq 0$. Then by the selection of q_{l+1} and (3.2) we see that $f(u_1, \ldots, u_r, w_1, \ldots, w_s) > f'(u_1, \ldots, u_r) + \epsilon/2$, a contradiction.

Lemma 3.7. If $f: \Sigma_{<\infty}(A_{\infty}) \to [0,\infty)$ is admissible then the function $g: \Sigma_{<\infty}(A_{\infty}) \to [0,\infty)$ given by $g(u_1,\ldots,u_r) = 1$ if r = 0 or r = 1 and

$$g(u_1, \dots, u_r) = \inf\{f(v_1, \dots, v_s) : (v_1, \dots, v_s) \prec (u_1, \dots, u_r), \ 1 \le s < r, \ \} \qquad (r > 1)$$

is admissible.

Proof. Note that g satisfies $g(\lambda_1 u_1, \ldots, \lambda_m u_m) = g(u_1, \ldots, u_m)$ if $(u_1, \ldots, u_m) \in \Sigma_{<\infty}(S_{\infty})$ and $(\lambda_1, \ldots, \lambda_m) \in (0, 1]^m$. Hence it suffices to show that g is uniformly \mathcal{T}_{bx} -continuous on $\Sigma_{<\infty}(S_{\infty})$. Note that, if for $\operatorname{all}(u_1, \ldots, u_m) \in \Sigma_{<\infty}(S_{\infty})$ we define

$$h(u_1,\ldots,u_m) = \inf\{f(\lambda_1 u_1,\ldots,\lambda_m u_m): (\lambda_1,\ldots,\lambda_m) \in (0,1]^m\},\$$

then h is uniformly \mathcal{T}_{bx} -continuous and

$$g(u_1, \dots, u_r) = \inf\{h(v_1, \dots, v_s) : (v_1, \dots, v_s) \prec (u_1, \dots, u_r), 1 \le s < r, \}$$
 (r > 1)
Suppose $\epsilon > 0$. Then there is a sequence $(U_r)^{\infty}$, of \mathcal{T} -neighborhoods of zero so

Suppose $\epsilon > 0$. Then there is a sequence $(U_n)_{n=1}^{\infty}$ of \mathcal{T} -neighborhoods of zero so that if $(u_1, \ldots, u_n), (v_1, \ldots, v_n) \in \Sigma_{<\infty}(S_{\infty})$ and $u_j - v_j \in U_j$ for $1 \leq j \leq n$ then

$$|h(u_1,\ldots,u_n)-h(v_1,\ldots,v_n)|<\epsilon.$$

Pick a sequence of circled neighborhoods of zero, $(U'_n)_{n=1}^{\infty}$, so that $U'_n + U'_{n+1} + \dots + U'_{n+k} \subset U_n$ whenever $k \geq n$. Then suppose $(u_1, \dots, u_n), (v_1, \dots, v_n) \in \Sigma_{<\infty}(S_{\infty})$ with $u_j - v_j \in U'_j$ for $1 \leq j \leq n$. Assume $\eta > 0$ and pick $(x_1, \dots, x_r) \prec (u_1, \dots, u_n)$ with r < n so that $h(x_1, \dots, x_r) < g(u_1, \dots, u_n) + \eta$. If $x_j = \sum_{i=k+1}^l a_i v_i$. Then $|a_i| \leq 1$ and so $x_j - y_j \in U'_{k+1} + \dots + U'_l \subset U_j$ since $j \leq k+1$. Hence

$$h(y_1,\ldots,y_r) < g(u_1,\ldots,u_n) + \epsilon + \eta$$

and so

$$g(v_1,\ldots,v_n) \le g(u_1,\ldots,u_n) + \epsilon$$

By symmetry

$$|g(v_1,\ldots,v_n) - g(u_1,\ldots,u_n)| \le \epsilon$$

and hence g is uniformly \mathcal{T}_{bx} -continuous.

We shall say that a strategy Φ is (ϵ, V) -effective for f where $\epsilon > 0$ and $V \in \mathcal{B}(E)$ if for every sequence of block subspaces $V_j \subset V$ there exists $n \in \mathbb{N}$ so that

$$f(\Phi(\emptyset, V_1, \dots, V_n)) < \sup_{W \in \mathcal{B}(E)} f'_W(\emptyset) + \epsilon.$$

If $(u_1, \ldots, u_r) \in \Sigma_{<\infty}(E)$ we shall say that a strategy Φ is $(\epsilon, u_1, \ldots, u_r, V)$ -effective for f where $\epsilon > 0$ and $V \in \mathcal{B}(E)$ if for every sequence of block subspaces $V_j \subset V$ there exists $n \in \mathbb{N}$ so that

$$f(\Phi(u_1,\ldots,u_r,V_1,\ldots,V_n)) < \sup_{W \in \mathcal{B}(E)} f'_W(u_1,\ldots,u_r) + \epsilon.$$

Theorem 3.8. Suppose $f : \Sigma_{<\infty}(A_{\infty}) \to [0,\infty)$ is admissible. Then, given $\epsilon > 0$ there is a block subspace V and a strategy Φ which is (ϵ, V) -effective for f.

Proof. We assume (after stabilization) that $f'_V(\emptyset) = 0$ for all $V \in \mathcal{B}(E)$; indeed if $a = \sup_{V \in \mathcal{B}(E)} f'_V(\emptyset)$ then replace f by $\max(f - a, 0)$. We consider the admissible function

$$h(u_1, \dots, u_r) = f(u_1, \dots, u_r) + 2(\epsilon - 2g(u_1, \dots, u_r))_+$$

By Lemma 3.4 we can pass to a block subspace where h is stable; so let us assume h is stable on E.

We first claim that if $(u_1, \ldots, u_n, \ldots) \in \Sigma_{\infty}(A_{\infty})$ then there exists n so that $h'(u_1, \ldots, u_n) > \epsilon$. Indeed, let $W = [u_1, \ldots, u_n, \ldots]$. Then, since $f'_W(\emptyset) = 0$, there exists $(v_1, \ldots, v_s) \in \Sigma_{<\infty}(W)$ with $f(v_1, \ldots, v_s) < \epsilon/4$. Then we may find r > s so that $(v_1, \ldots, v_s) \prec (u_1, \ldots, u_r)$. Hence for any (x_1, \ldots, x_t) such that $(u_1, \ldots, u_r, x_1, \ldots, x_t) \in \Sigma_{<\infty}(A_{\infty})$ we have

$$h(u_1,\ldots,u_r,x_1,\ldots,x_t) \ge 2(\epsilon - 2f(v_1,\ldots,v_s))$$

so that

$$h'(u_1,\ldots,u_r) \ge 2(\epsilon - 2f(v_1,\ldots,v_s)) > \epsilon_s$$

which proves the claim.

On the other hand, given any block subspace V, there exists a minimal $s \ge 1$ so that we can find $(v_1, \ldots, v_s) \in \Sigma_{<\infty}(V)$ with $f(v_1, \ldots, v_s) < \epsilon/2$. Thus $g(v_1, \ldots, v_s) \ge \epsilon/2$ which implies $h(v_1, \ldots, v_s) < \epsilon/2$. Hence $h'(\emptyset) < \epsilon/2$.

We now use a strategy for h indicated by Proposition 3.6. Suppose $\epsilon_j > 0$ for each $j \ge 0$ and $\sum \epsilon_r < \epsilon/2$. Given $(u_1, \ldots, u_r) \in \sum_{<\infty}(E)$ and $V \in \mathcal{B}(E)$ we define $\Phi(u_1, \ldots, u_r, V)$ to be (u_1, \ldots, u_r, ξ) where $\xi \in V \setminus \{0\}$ is chosen so that $h'(u_1, \ldots, u_r, \xi) < h'(u_1, \ldots, u_r) + \epsilon_r$ or $h(u_1, \ldots, u_r, \xi) < h'(u_1, \ldots, u_r) + \epsilon_r$. Let $(V_j)_{j=1}^{\infty}$ be a sequence in $\mathcal{B}(E)$ and let $(u_1, \ldots, u_r, \ldots) = \Phi(\emptyset; V_1, \ldots)$. Then, by our previous claim there exists a first $n \ge 1$ so that $h'(u_1, \ldots, u_n) > h'(u_1, \ldots, u_{n-1}) + \epsilon_{n-1}$. Hence

$$h(u_1, \dots, u_n) < h'(u_1, \dots, u_{n-1}) + \epsilon_{n-1} < h'(\emptyset) + \sum_{j=0}^{n-1} \epsilon_j < \epsilon.$$

We need an obvious extension of this result.

Theorem 3.9. Suppose $f : \Sigma_{<\infty}(A_{\infty}) \to [0, \infty)$ is admissible. Then there is a block subspace V such that for each $(u_1, \ldots, u_r) \in \Sigma_{<\infty}(A_{\infty})$ there is a strategy Φ_{u_1, \ldots, u_r} which is $(\epsilon, u_1, \ldots, u_r, V)$ -effective for f.

Proof. It is easy to obtain, for each (u_1, \ldots, u_r) the existence of a block subspace V_{u_1,\ldots,u_r} and a strategy Ψ_{u_1,\ldots,u_r} which is $(\epsilon/2, u_1, \ldots, u_r, V_{u_1,\ldots,u_r})$ -effective for f. Indeed, suppose $u_r \in E_m$; define

$$f_1(v_1, \dots, v_s) = f(u_1, \dots, u_r, v_1, \dots, v_s) \qquad (v_1, \dots, v_s) \in \Sigma_{<\infty}(A_{\infty} \cap E^{(m)})$$

and apply the preceding theorem to f_1 . $(\Psi_{u_1,\ldots,u_r}$ has to be defined in some arbitrary fashion for (w_1,\ldots,w_s) which do not have (u_1,\ldots,u_r) as an initial segment.) Furthermore it can be seen that for each block subspace W we can choose $V_{u_1,\ldots,u_r} \subset W$.

To obtain a single block subspace V we first construct a dense countable subset $D_{m,r}$ in each $\Sigma_r(E_m \cap \mathcal{A}_\infty)$. We arrange the elements of $D = \bigcup_{m,r} D_{m,r}$ as a sequence and hence find a descending sequence of subspaces (V_n) so that the strategy Φ_{u_1,\ldots,u_r} is $(\epsilon/2, u_1,\ldots,u_r, V_n)$ -effective for f when (u_1,\ldots,u_r) is the nth. member of D. If we select V to be block subspace so that $V \subset V_n + F_n$ for some finite-dimensional F_n for each n, then (via a simple modification) each Φ_{u_1,\ldots,u_r} is $(\epsilon/2, u_1, \ldots, u_r, V)$ -effective for f. Finally we observe that if $(v_1, \ldots, v_r) \in \Sigma_r(E_m)$ is arbitrary and we then choose $(u_1, \ldots, u_r) \in D$ close enough, we can define a strategy by

$$\Phi_{v_1,\dots,v_r}(v_1,\dots,v_r,w_1,\dots,w_s) = \Psi_{u_1,\dots,u_r}(u_1,\dots,u_r,w_1,\dots,w_s)$$

(and arbitrarily otherwise) then we will have that Φ_{v_1,\ldots,v_n} is $(\epsilon, v_1,\ldots,v_r,V)$ -effective for f.

4. The infinite case

We now turn to the infinite case. Suppose $f : \Sigma_{\infty}(A_{\infty}) \to [0, \infty)$ is a bounded uniformly \mathcal{T}_{bx} -continuous function. We may define $f'_{V} : \Sigma_{<\infty}(A_{\infty}) \to [0, \infty)$ in a precisely analogous way. As before we adopt the convention that $f = +\infty$ on $E^{\mathbb{N}} \setminus \Sigma_{\infty}(A_{\infty})$. Let

$$f'_{V}(u_{1},...,u_{r}) = \lim_{m \to \infty} \inf \left\{ f(u_{1},...,u_{r},v_{1},...,v_{s},...): v_{j} \in V \cap E^{(m)}, \ j = 1,2,... \right\}$$

It is clear that the functions $\{f'_V : V \in \mathcal{B}(E)\}$ are equi-uniformly \mathcal{T}_{bx} -continuous. Proceeding in the same manner as before we can show:

Proposition 4.1. If $f_n : \Sigma_{\infty}(A_{\infty}) \to \mathbb{R}$ is any countable family of bounded \mathcal{T}_{bx} uniformly continuous functions, there is a block subspace V of E so that $f'_W = f'_V$ whenever $W \in \mathcal{B}(V)$.

We shall say that f is stable if $f'_E = f'_V$ for every $V \in \mathcal{B}(E)$.

Lemma 4.2. Let $f_n : \Sigma_{\infty}(A_{\infty}) \to [0, \infty)$ be a sequence of bounded uniformly \mathcal{T}_{bx} continuous functions and suppose $f = \inf f_n$ is also \mathcal{T}_{bx} -uniformly continuous. Assume that each f_n and f are stable. Let $h : \Sigma_{<\infty}(A_{\infty}) = \inf_n f'_n$. Then for every $V \in \mathcal{B}(E)$ we have $h'_V \leq f'$.

Proof. Let $V \in \mathcal{B}(E)$. Let us assume $h'_V(u_1, \ldots, u_r) > \lambda > f'(u_1, \ldots, u_r)$ for some $(u_1, \ldots, u_r) \in \Sigma_{<\infty}(A_{\infty} \cap V)$. Then there exists m so that if $(v_1, \ldots, v_s) \in \Sigma_{<\infty}(E^{(m)} \cap V)$ with $s \ge 1$ we have

$$h(u_1,\ldots,u_r,v_1,\ldots,v_s) > \lambda.$$

Thus

$$f'_n(u_1,\ldots,u_r,v_1,\ldots,v_s) > \lambda, \qquad n = 1,2\ldots$$

Let us pick $w_1 \in A_{\infty} \cap E^{(m)} \cap V$. We will construct a sequence $(w_n)_{n=1}^{\infty}$ in Vby induction. Suppose (w_1, \ldots, w_n) have been selected and let $W_n = [w_1, \ldots, w_n]$. Then by compactness we can find p so that $W_n \subset E_p$ and if $1 \leq k \leq n$ and $(v_1, \ldots, v_k) \in \Sigma_k(W_n \cap A_{\infty})$ then

$$f_k(u_1,\ldots,u_r,v_1,\ldots,v_k,x_1,\ldots) > \lambda$$

for all choices of $(x_j)_{j=1}^{\infty}$ in $E^{(p)}$. Pick $w_{n+1} \in E^{(p)} \cap V$.

Now let $W = [w_j]_{j=1}^{\infty}$. Our construction guarantees that for every n it is true that

$$f_n(u_1, \dots, u_r, x_1, \dots) > \lambda$$
 $x_j \in W, \ j = 1, 2, \dots$

Indeed we have $(x_1, \ldots, x_n) \in \Sigma_n([w_1, \ldots, w_m])$ where m > n and so this follows from our inductive construction. Thus

$$f'(u_1,\ldots,u_r) \ge \lambda,$$

contradicting our initial hypothesis.

We now use the space $\mathbb{N}^{\mathbb{N}}$ with the usual product topology; this can be regarded as the space of all infinite words of the natural numbers. We will write $\mathbb{N}^{<\infty} = \bigcup_{n=0}^{\infty} \mathbb{N}^k$ which is the space of all finite words of the natural numbers, including the empty word. We will use (n_1, \ldots, n_k) or (n_1, n_2, \ldots) to denote a typical member of $\mathbb{N}^{<\infty}$ or $\mathbb{N}^{\mathbb{N}}$.

Theorem 4.3. Suppose $F : \mathbb{N}^{\mathbb{N}} \times \Sigma_{\infty}(A_{\infty}) \to [0,\infty)$ is a bounded map. Define $f_{n_1,n_2,\ldots}: \Sigma_{\infty}(A_{\infty}) \to [0,\infty)$ by

$$f_{n_1,n_2,\ldots}(u_1,u_2,\ldots) = F(n_1,n_2,\ldots;u_1,u_2,\ldots).$$

Suppose

(i) The maps $\{f_{n_1,n_2,\ldots}: (n_1,n_2,\ldots) \in \mathbb{N}^{\mathbb{N}}\}$ are equi-uniformly \mathcal{T}_{bx} -continuous. (ii) The map $F: \mathbb{N}^{\mathbb{N}} \times \Sigma_{\infty}(A_{\infty}) \to [0,\infty)$ is lower semi-continuous for the product topology on $\mathbb{N}^{\mathbb{N}} \times (\Sigma_{\infty}(A_{\infty}), \mathcal{T}_p)$.

Let

$$f(u_1, u_2, \ldots) = \inf_{(n_1, n_2, \ldots) \in \mathbb{N}^{\mathbb{N}}} F(n_1, n_2, \ldots; u_1, u_2, \ldots).$$

If $f'_V(\emptyset) = 0$ for every block subspace V, then given $\epsilon > 0$ there is a block subspace V so that $\{f < \epsilon\}$ is V-strategically large.

Proof. For each $(n_1, \ldots, n_k) \in \mathbb{N}^{<\infty}$ we define

$$f_{n_1,n_2,\dots,n_k}(u_1,u_2,\dots) = \inf_{m_1,m_2\dots} F(n_1,\dots,n_k,m_1,m_2,\dots;u_1,u_2,\dots).$$

The family f_{n_1,n_2,\ldots,n_k} is \mathcal{T}_{bx} -equi-uniformly continuous. By passing to a block subspace we can assume that each f_{n_1,n_2,\ldots,n_k} is stable. Of course the family f'_{n_1,\ldots,n_k} is also \mathcal{T}_{bx} -equi-uniformly continuous. Let

$$h_{n_1,\dots,n_k}(u_1,\dots,u_r) = \inf_{m \in \mathbb{N}} f'_{n_1,\dots,n_k,m}(u_1,\dots,u_r) \qquad (u_1,\dots,u_r) \in \Sigma_{<\infty}(A_{\infty}).$$

This family is also equi-uniformly \mathcal{T}_{bx} -continuous. Passing to a further block subspace we can suppose that this family is also stable.

By Lemma 4.2 we have that $h'_{n_1,\dots,n_k} \leq f'_{n_1,\dots,n_k}$. Let us choose a sequence $(\epsilon_r)_{r=0}^{\infty}$ with $\sum \epsilon_r = \epsilon' < \epsilon$. Again exploiting the countability of the family h_{n_1,\ldots,n_k} we can pass to a further block subspace and, by relabelling as E, suppose that for each $(n_1, \ldots, n_k) \in \mathbb{N}^{<\infty}$ and $(u_1, \ldots, u_r) \in \Sigma_{<\infty}(A_{\infty})$ there is a strategy $\Phi_{n_1,\ldots,n_k,u_1,\ldots,u_r}$ with the property that if $(V_j)_{j=1}^{\infty}$ is any sequence of subspaces then for some $p \ge 1$,

$$h_{n_1,\dots,n_k} \Phi_{n_1,\dots,n_k,u_1,\dots,u_r}(u_1,\dots,u_r,V_1,\dots,V_p) < h'_{n_1,\dots,n_k}(u_1,\dots,u_r) + \epsilon_k.$$

We will now define a strategy Ψ . To do this we first define maps $\theta: \Sigma_{<\infty}(A_{\infty}) \to$ $\mathbb{N}^{<\infty}$ and $\varphi: \Sigma_{<\infty}(A_{\infty}) \to \mathbb{N}$ such that $\varphi(u_1, \ldots, u_r) \leq r$. This is done inductively on the length of (u_1, \ldots, u_r) . We define $\theta(\emptyset) = \emptyset$ and $\varphi(\emptyset) = 0$. Suppose that θ and φ have been defined for all ranks up to r and consider (u_1, \ldots, u_{r+1}) .

Let $\theta(u_1,\ldots,u_r) = (n_1,\ldots,n_k)$ and $\varphi(u_1,\ldots,u_r) = s$. If

$$h_{n_1,\dots,n_k}(u_1,\dots,u_{r+1}) < h'_{n_1,\dots,n_k}(u_1,\dots,u_s) + \epsilon_k$$

then we can choose $m \in \mathbb{N}$ so that

$$f'_{n_1,\dots,n_k,m}(u_1,\dots,u_{r+1}) < h'_{n_1,\dots,n_k}(u_1,\dots,u_s) + \epsilon_k.$$

Let $\theta(u_1, \ldots, u_{r+1}) = (n_1, n_2, \ldots, n_k, m)$ and $\varphi(u_1, \ldots, u_{r+1}) = r+1$.

Otherwise we simply put $\theta(u_1, \ldots, u_{r+1}) = (n_1, \ldots, n_k)$ and $\varphi(u_1, \ldots, u_{r+1}) = s$. To define Ψ we set

$$\Psi(u_1,\ldots,u_r,V) = \Phi_{n_1,\ldots,n_k,u_1,\ldots,u_s}(u_1,\ldots,u_r,V)$$

where $(n_1, ..., n_k) = \theta(u_1, ..., u_r)$ and $s = \varphi(u_1, ..., u_r)$.

Finally, we must show that if $(V_j)_{j=1}^{\infty}$ is any sequence of subspaces the sequence $(u_1, u_2, \ldots) = \Psi(\emptyset, V_1, V_2, \ldots)$ is in $\{\tilde{f} < \epsilon\}$.

Let k(r) be the length of $\theta(u_1, \ldots, u_r)$. Then $k(r) \leq r$ for all r. Suppose k(r)remains bounded. Then there exists s so that $\varphi(u_1,\ldots,u_r) = s$ for all $r \geq s$ and $\theta(u_1,\ldots,u_k) = (n_1,\ldots,n_t)$ for some fixed $(n_1,n_2,\ldots,n_t) \in N^{<\infty}$ when $k \ge s$. Thus

$$(u_1, \dots, u_r) = \Phi_{n_1, \dots, n_t, u_1, \dots, u_s}(u_1, \dots, u_s, V_{s+1}, \dots, V_r) \qquad r \ge s.$$

It follows that for some r > s we have

$$h_{n_1,...,n_t}(u_1,...,u_r) < h'_{n_1,...,n_t}(u_1,...,u_s) + \epsilon_t$$

which implies that $\varphi(r) = r$ which is a contradiction. Hence $k(r) \uparrow \infty$. Let r_j be the first natural number at which k(r) = j. Then there exists $(n_1, n_2, \ldots) \in \mathbb{N}^{\mathbb{N}}$ so that

$$\theta(u_1,\ldots,u_{r_j})=(n_1,\ldots,n_j).$$

By construction

$$f'_{n_1}(u_1,\ldots,u_{r_1}) < h'(\emptyset) + \epsilon_0$$

and then for $j \ge 1$,

$$f'_{n_1,\dots,n_{j+1}}(u_1,\dots,u_{r_{j+1}}) < h'_{n_1,\dots,n_j}(u_1,\dots,u_{r_j}) + \epsilon_j.$$

Since $h'_{n_1,\dots,n_i} \leq f'_{n_1,\dots,n_i}$ we conclude that

$$f_{n_1,\ldots,n_j}'(u_1,\ldots,u_{k_j})<\epsilon$$

for all j. But this implies the existence of $(n_{j,1}, n_{j,2}...) \in \mathbb{N}^{\mathbb{N}}$ and $(u_{j,1}, u_{j,2}, ...) \in \Sigma_{\infty}(A_{\infty})$ so that $n_{j,i} = n_i$ for $i \leq j$ and $u_{j,i} = u_i$ for $i \leq k_j$ and

$$F(n_{j,1}, n_{j,2}, \dots; u_{j,1}, u_{j,2}, \dots) < \epsilon' \qquad j = 1, 2, \dots$$

Finally we invoke lower semi-continuity:

$$F(n_1, n_2, \ldots, ; u_1, u_2, \ldots) < \epsilon$$

and so $f(u_1, u_2, \ldots,) < \epsilon$.

 $(v_1, v_2, \ldots) \in \Sigma_{\infty}(E)$

We now recall (Lemma 2.1) that $\Sigma_{\infty}(E)$ is a Polish space for the topology \mathcal{T}_p . Thus every Borel set is analytic (i.e. a continuous image of $\mathbb{N}^{\mathbb{N}}$).

Theorem 4.4. Let σ be a large subset of $\Sigma_{\infty}(E)$. Suppose:

(a) There is a sequence of absolutely convex sets C_n such that $C_n \cap F$ is compact for all finite-dimensional subspaces F and $\sigma \subset \prod_{n=1}^{\infty} C_n$. (b) σ is analytic as a subset of $(\Sigma_{\infty}(E), \mathcal{T}_p)$.

Let ρ_n be any sequence of F-norms on E and define for $u = (u_1, u_2, \ldots), v =$

$$d(u,v) = \sum_{j=1}^{\infty} \rho_j (u_j - v_j).$$

Let $\sigma_{\epsilon} = \{u = (u_j)_{j=0}^{\infty} : d(u, \sigma) = \inf_{v \in \sigma} d(u, v) < \epsilon\}$. Then for every $\epsilon > 0$ there is a block subspace V so that σ_{ϵ} is strategically large for V.

Proof. We start by reducing this to the case when $C_n = \{x : \|x\|_{\infty} \leq 1\}$. To do this first observe that each C_n is \mathcal{T} -closed. Since σ is large the linear space generated by C_n is of finite codimension; if E_n is a complementary space we can replace C_n by the bigger set $C_n + K_n$ where K_n is a compact absolutely convex neighborhood of the origin in E_n . So we can suppose C_n is absorbent and hence generates a norm $\|\cdot\|_n$ on E. By induction, we can find a sequence of positive numbers δ_n so that $\|x\| = \sum_{n=1}^{\infty} \delta_n \|x\|_n < \infty$ for all $x \in E$. Thus we can assume that each $C_n = \{x : \|x\| \leq M_n\}$ for a single norm $\|\cdot\|$.

We can now pass to block basis which is a normalized basic sequence in the completion of $(E, \|\cdot\|)$. Intersecting σ with $\Sigma_{\infty}(V)$ for a block subspace gives again an analytic set since $\Sigma_{\infty}(V)$ is closed; thus we can relabel so that the block subspace

is already E. It now follows that each C_n is included in a set $\{x : ||x||_{\infty} \leq M'_n\}$ where M'_n is some sequence of positive numbers. Finally we put $\sigma' = \{(u_1, u_2, \ldots) : (M'_1u_1, M'_2u_2, \ldots) \in \sigma\}$ and note that $\sigma' \subset \Sigma_{\infty}(A_{\infty})$. Clearly it is enough to prove the result for σ' with ρ_j replaced by $\rho'_j(x) = \rho_j(M'_jx)$.

We therefore assume that $\sigma \subset \Sigma_{\infty}(A_{\infty})$.

Now there is a continuous surjective map $g: \mathbb{N}^{\mathbb{N}} \to \sigma$ for the \mathcal{T}_p -topology. We will define

$$F: \mathbb{N}^{\mathbb{N}} \times \Sigma_{\infty}(A_{\infty}) \to [0,\infty)$$

by

$$F(n_1, n_2, \dots; u_1, u_2, \dots) = \min\left(1, d((u_1, u_2, \dots), g(n_1, n_2, \dots))\right)$$

It is clear that the family $f_{n_1,n_2,\ldots}$, given by

$$f_{n_1,n_2,\dots}(u_1,u_2,\dots) = F(n_1,n_2,\dots;u_1,u_2,\dots)$$

is equi-uniformly \mathcal{T}_{bx} -continuous. It is also clear that F is lower semi-continuous for the \mathcal{T}_p -topology in the second factor.

The result now follows directly from Theorem 4.3.

5. Applications to F-spaces

We now apply these results to obtain the Gowers dichotomy for F-spaces. Before doing this we make some remarks on basic sequences in F-spaces. There is an Fspace (indeed a quasi-Banach space) which contains no basic sequence [10]. It turns out that there is a dichotomy result for the existence of basic sequences with a very similar flavor to that of the Gowers dichotomy, which has been known for some time.

We will need some background (see [11]). Let X be an F-space and let ρ be an F-norm inducing the topology. A basic sequence $(x_n)_{n=1}^{\infty}$ is called *regular* if $\inf_n \rho(x_n) > 0$. We denote by ω the space of all sequences (i.e. the countable product of lines). The canonical basis of ω is not regular, and ω contains no regular basic sequence. The following Lemma is elementary.

Proposition 5.1. Suppose X contains no subspace isomorphic to ω . Then given a basic sequence $(x_n)_{n=1}^{\infty}$ we may choose $a_n > 0$ so that $(a_n x_n)_{n=1}^{\infty}$ is regular.

Proof. Indeed if not we have $\inf_{n \in \mathbb{N}} \sup_{t \in \mathbb{R}} \rho(te_n) = 0$. Then some subsequence of $(e_n)_{n=1}^{\infty}$ is equivalent to the canonical basis of ω .

Two subspaces Y, Z of an F-space X are called separated if $Y \cap Z = \{0\}$ and the canonical projection $Y + Z \to Y$ is continuous. An F-space is called HI if no two infinite dimensional subspaces are separated.

Proposition 5.2. Suppose X has a regular basis $(e_n)_{n=1}^{\infty}$. If there exist two separated infinite-dimensional subspaces Y, Z of X then there exist two separated block subspaces of X.

Proof. Since X is regular the seminorm $||x||_{\infty} = \sup |e_n^*(x)|$ defines a continuous norm on X. Now, fixing $0 < \epsilon < 1/8$ we may inductively define a sequence $(x_n)_{n=1}^{\infty} \in X$ and a block basic sequence $(u_n)_{n=1}^{\infty}$ such that:

(i) $||x_n||_{\infty} = 1$ for all n,

(ii) $\rho(x_n - u_n) + ||x_n - u_n||_{\infty} < \epsilon/2^n$ for all n and

(iii) $x_n \in Y$ for n odd, $x_n \in Z$ for n even.

Note that $||u_n||_{\infty} \ge 1 - \epsilon > 1/2$.

Let P_Y be the canonical projections of Y + Z onto Y with kernel Z. For $v = \sum_{j=1}^{n} a_j u_j$ in the linear span of the sequence $(u_n)_{n=1}^{\infty}$ we define $Kv = \sum_{j=1}^{n} a_j(x_j - u_j)$. Then

$$\rho(Kv) \le \epsilon \max_{1 \le j \le n} |a_j| \le 2\epsilon \|v\|_{\infty}$$

so that K is continuous. Furthermore

$$||Kv||_{\infty} \le 2\epsilon \max_{1 \le j \le n} |a_j| \sup ||u_n||_{\infty} \le 4\epsilon ||v||_{\infty}.$$

Thus T = I + K extends to a continuous operator $T : [u_n]_{n=1}^{\infty} \to Y + Z$. Now

$$||Tv||_{\infty} \ge (1-4\epsilon) ||v||_{\infty} \ge 1/2 ||v||_{\infty}, \qquad v \in [u_n]_{n=1}^{\infty}.$$

If $(v_n)_{n=1}^{\infty}$ is a sequence such that $\lim_{n\to\infty} \rho(Tv_n) = 0$ then $\lim_{n\to\infty} ||Tv_n||_{\infty} = 0$ and so $\lim_{n\to\infty} ||v_n||_{\infty} = 0$. Thus $\lim_{n\to\infty} \rho(Kv_n) = 0$ and hence $\lim_{n\to\infty} \rho(v_n) = 0$. Hence T is an isomorphism of $[u_n]_{n=1}^{\infty}$ into Y + Z. Consider the operator $S = T^{-1}P_YT$: then S is a projection of $[u_n]_{n=1}^{\infty}$ onto $[u_{2n-1}]_{n=1}^{\infty}$ and the block subspaces $V = [u_{2n-1}]_{n=1}^{\infty}$ and $W = [u_{2n}]_{n=1}^{\infty}$ are separated. \Box

Theorem 5.3. Let X be an F-space with a regular basis containing no unconditional basic sequence. Then X has an HI subspace Y.

Proof. We assume that X has a regular basis $(e_n)_{n=1}^{\infty}$.

We now consider the countable dimensional E with Hamel basis $(e_n)_{n=1}^{\infty}$. Note that the norm $\|\cdot\|_{\infty}$ on E is continuous with respect to the F-space topology since $(e_n)_{n=1}^{\infty}$ is regular. For any block basic sequence $(u_n)_{n=1}^{\infty}$ we say that $(u_n)_{n=1}^{\infty}$ is somewhat unconditional if the map

$$\sum_{j=1}^{\infty} a_j u_j \to \sum_{j=1}^{\infty} (-1)^j a_j u_j$$

(defined for $(a_j)_{j=1}^{\infty} \in c_{00}$) is continuous for the F-space topology restricted to E. Let σ_0 be the collection of all somewhat unconditional sequences. We claim that with respect to \mathcal{T}_p this set is a Borel subset of $\Sigma_{\infty}(E)$. Indeed let $(U_m)_{m=1}^{\infty}$ be a base of open neighborhoods of zero. Let $\sigma_0(m, n)$ be the set of $(u_j)_{j=1}^{\infty}$ so that

$$\sum_{j=1}^{\infty} a_j u_j \in U_m \implies \sum_{j=1}^{\infty} (-1)^j a_j u_j \in \overline{U}_n.$$

Then $\sigma_0(m,n)$ is \mathcal{T}_p -closed and $\sigma_0 = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \sigma_0(m,n)$.

We define σ to be the subset of $\Sigma_{\infty} E$ of all block basic sequences $(u_n)_{n=1}^{\infty}$ such that $||u_n||_{\infty} = 1$ for all n and $(u_n)_{n=1}^{\infty}$ fails to be somewhat unconditional. Then σ is also Borel in \mathcal{T}_p . Furthermore, since X contains no unconditional basic sequence we conclude that σ is large.

Fix some $0 < \epsilon < 1$ and let σ' be the subset of $\Sigma_{\infty}(E)$ of all sequences $(v_j)_{j=1}^{\infty}$ such that

$$\inf\{\sum_{j=1}^{\infty} (\|u_j - v_j\|_{\infty} + \rho(u_j - v_j)): (u_j)_{j=1}^{\infty} \in \sigma\} < \epsilon.$$

Note that if $(v_j)_{j=1}^{\infty} \in \sigma'$ there exists $(u_j)_{j=1}^{\infty} \in \sigma$ which is equivalent to $(v_j)_{j=1}^{\infty}$. Hence each $(v_j)_{j=1}^{\infty} \in \sigma'$ fails to be somewhat unconditional.

According to Theorem 4.4 we can find a block subspace V so that σ' is strategically large for V. Let Y be the closure of V. We show that Y is HI. Y has a regular basis $(u_n)_{n=1}^{\infty}$ which is a block basis of $(e_n)_{n=1}^{\infty}$. According to Proposition 5.2 we need only check that if W_1, W_2 are two block subspaces of V then W_1 and W_2 cannot be separated.

Let Φ be the strategy guaranteed by the fact that σ' is strategically large. Then $\Phi(W_1, W_2, W_1, W_2, \ldots) = (v_1, v_2, \ldots)$ and the sequence $(v_j)_{j=1}^{\infty}$ fails to be somewhat unconditional so that W_1, W_2 are not separated.

Let us now recall the criterion of the existence of basic sequences given in [8] (see also [12]). An F-space X is called *minimal* if there is no strictly weaker Hausdorff topology on X.

Proposition 5.4. If X is a non-minimal F-space then X contains a regular basic sequence.

Let us call an infinite-dimensional F-space X strongly HI (SHI) if it contains a non-zero vector e so that $e \in L$ for every infinite-dimensional closed subspace L of X. We remark that it is possible to consider spaces X which satisfy the slightly stronger condition that any two infinite-dimensional closed subspaces have nontrivial intersection; this condition implies X contains no basic sequence, but it is not clear if it implies that X is SHI. The problem is that we do not know if, under this condition, the intersection of any three infinite-dimensional closed subspaces is non-trivial. This is related to the fact, discussed later, that the sum of two strictly singular operators need not be strictly singular (see the discussion after Theorem 6.1).

Theorem 5.5. Let X be an F-space containing no basic sequence. Then X has an SHI-subspace Y.

Proof. We may assume that X is separable. Let us say that a collection \mathcal{L} of closed subspaces of X is a subspace-filter in X if each $L \in \mathcal{L}$ is infinite-dimensional and $L_1 \cap L_2 \in \mathcal{L}$ whenever $L_1, L_2 \in \mathcal{L}$; we say that a subspace-filter \mathcal{L} is a subspaceultrafilter if it is not contained properly in any other subspace-filter. We then pick \mathcal{L} to be a subspace-filter such that $H = \cap \{L : L \in \mathcal{L}\}$ has minimal dimension $(1 \leq \dim H \leq \infty)$.

We will argue that dim H > 0. Indeed if $H = \{0\}$ then we define a topology τ on X by taking as a base of neighborhoods sets of the form U + L where U is a neighborhood of zero in the F-space topology and $L \in \mathcal{L}$. If $H = \{0\}$ then τ is Hausdorff. By Proposition 5.4 we have that τ coincides with the original topology. Then we may find a strictly decreasing sequence $L_n \in \mathcal{L}$ so that $L_n \subset \{x : \rho(x) < 0\}$ 2^{-n} }. If we pick $x_n \in L_n \setminus L_{n+1}$, it is easy to verify that $(x_n)_{n=1}^{\infty}$ is a basic sequence equivalent to the canonical basis of ω .

If dim $H = \infty$ then it follows from maximality that H has no proper closed infinite-dimensional subspace and so we may take Y = H and y any non-zero element of Y. If dim $H < \infty$ we first argue by Lindelof's theorem that since X is separable we can find a descending sequence of subspaces $L_n \in \mathcal{L}$ so that $\cap L_n = H$. We may suppose this sequence is strictly descending and take $x_n \in L_n \setminus L_{n+1}$ for $n \ge 1$. Let $V_n = [x_k]_{k \ge n}$ so that $V_n \subset L_n$. Suppose W is any closed infinite-dimensional subspace of V_1 ; then dim $V_n \cap W = \infty$ for each n. Let \mathcal{L}' be any subspace-ultrafilter containing each V_n and W. Then $\cap \{L : L \in \mathcal{L}'\} \subset H$ but the inclusion cannot be strict because the original minimality assumption on dim H. Hence $H \subset W$. Thus we can take $Y = V_1$ and $y \in H \setminus \{0\}$.

An examination of the proof shows that we have actually proved a slightly stronger result:

Corollary 5.6. Let X be an F-space containing no basic sequence. Then X has an SHI-subspace Y with the property that if E is the intersection of all infinitedimensional subspaces of Y then there is a descending sequence of infinite-dimensional subspaces $(L_n)_{n=1}^{\infty}$ of Y with $\bigcap_{n=1}^{\infty} L_n = E$.

We are now ready to establish the full force of the Gowers dichotomy for F-spaces.

Theorem 5.7. Let X be an F-space. If X contains no unconditional basic sequence, then X contains an HI subspace.

Proof. If X contains no basic sequence then X contains a SHI subspace (Theorem 5.5). So we may assume X has a basis. Clearly X cannot contain a copy of ω so we can assume the basis is regular (Proposition 5.1). Now apply Theorem 5.3.

We conclude this section with:

Theorem 5.8. Let X be an HIF-space. Suppose X has a closed infinite-dimensional subspace containing no basic sequence. Then X contains no basic sequence.

Proof. We will show that if $(V_n)_{n=1}^{\infty}$ is any descending sequence of closed infinitedimensional subspaces of X then $\bigcap_{n=1}^{\infty} V_n \neq \{0\}$. We use Corollary 5.6 to deduce the existence of a descending sequence of infinite-dimensional closed subspaces $(L_n)_{n=1}^{\infty}$ such that, if $E = \bigcap_{n=1}^{\infty} L_n$, then $E \neq \{0\}$ and E is contained in any infinite-dimensional subspace of L_1 . Consider the sequence $(L_n \cap V_n)_{n=1}^{\infty}$. Then if $\dim L_n \cap V_n = \infty$ for all n we have $E \subset \bigcap_{n=1}^{\infty} L_n \cap V_n \subset \bigcap_{n=1}^{\infty} V_n$.

If not then there exists n_0 such that $\dim(L_n \cap V_n)$ is finite and constant for $n \ge n_0$. Hence $L_n \cap V_n = F$ some fixed finite dimensional subspace for $n \ge n_0$. We show $\dim F > 0$. If for some $n \ge n_0$ we have $L_n \cap V_n = \{0\}$ then $L_n + V_n$ cannot be closed since X is HI. Thus there are sequences $(x_k)_{k=1}^{\infty}$ in L_n and $(v_k)_{k=1}^{\infty} \in V_n$ so that $\lim \rho(x_k + v_k) = 0$ but $\rho(x_k) \ge \delta > 0$ for all k. Consider the metric topology on L_n defined by the F-norm $x \to d(x, V_n) := \inf\{\rho(x + v) : v \in V\}$. This is topology is Hausdorff on L_n and strictly weaker than the ρ -topology. Hence L_n contains a basic sequence by Proposition 5.4, and this is a contradiction. Hence $\dim F > 0$ and $F \subset \bigcap_{n=1}^{\infty} V_n$.

6. Strictly singular maps

In [7] the following Theorem is shown:

Theorem 6.1. Let X be a complex Banach space. If X is HI then every bounded linear operator $T: X \to X$ is of the form $T = \lambda I + S$ where S is strictly singular.

We do not know whether such a theorem can hold for a complex F-space but we show that it holds equally for complex quasi-Banach spaces. There are some small wrinkles in the proof as the reader will see.

¿From now on we will deal with quasi-Banach space X (or Y, etc.) with a given quasi-norm which is assumed to be p-subadditive (for a suitable 0) i.e.

$$||x+y||^p \le ||x||^p + ||y||^p, \qquad x, y \in X.$$

A linear operator $T: X \to Y$ is an *isomorphic embedding* if there exists c > 0so that $||Tx|| \ge c||x||$ for $x \in X$. T is called *strictly singular* if $T|_V$ fails to be an isomorphic embedding for every infinite-dimensional subspace V of X. T is called *semi-Fredholm* if ker T is finite-dimensional and T(X) is closed. T is called *Fredholm* if T is semi-Fredholm and dim $Y/T(X) < \infty$.

T is semi-Fredholm if and only if for every bounded sequence $(x_n)_{n=1}^{\infty}$ such that $\lim_{n\to\infty} ||Tx_n|| = 0$ we can extract a convergent subsequence. Thus it is clear the restriction of a semi-Fredholm operator to an infinite-dimensional closed subspace remains semi-Fredholm.

Let us make some remarks. Suppose X is a SHI space and let E_X be the intersection of all closed infinite-dimensional subspaces of X. If dim $E_X = \infty$ then E_X is an *atomic space* i.e. it has no proper closed infinite-dimensional subspace. The existence of atomic spaces is still open (the only known results in this direction are in [15]). However it is known that there exist quasi-Banach spaces X for which E_X is finite-dimensional and non-trivial, even with dim $E_X > 1$ ([9], Theorem 5.5). The quotient map $Q: X \to X/E_X$ is then both semi-Fredholm and strictly singular (this cannot happen for operators on Banach spaces). Furthermore if dim $E_X > 1$ then let L_1, L_2 be two distinct one-dimensional subspaces of E_X . Then the quotient maps $Q_1: X \to X/L_1$ and $Q_2: X \to X/L_2$ are both strictly singular and semi-Fredholm. However the map $x \to (Q_1x, Q_2x)$ from X into $X/L_1 \oplus X/L_2$ is an isomorphism. Thus the sum of two strictly singular operators need not be strictly singular!

The key fact we will need is the following:

Theorem 6.2. Let X be an infinite-dimensional complex quasi-Banach space and suppose $T: X \to X$ is a bounded operator. Then there exists $\lambda \in \mathbb{C}$ so that $T - \lambda I$ is not semi-Fredholm.

This Theorem is proved for Banach spaces by Gowers and Maurey [7]. The proof for quasi-Banach spaces requires some additional tricks. These tricks are necessitated by the fact that finite-dimensional subspaces are not always complemented.

We list the relevant facts we need:

Proposition 6.3. If X is a complex quasi-Banach space and $T : X \to X$ is a bounded linear operator then $Sp(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible}\}$ is a non-empty compact set and $\max_{\lambda \in Sp(T)} |\lambda| = \lim_{n \to \infty} ||T^n||^{1/n}$.

This is due to Zelazko [16]. We point out that the key ideas in the proof involve a reduction to the Banach algebra case. One starts with the fact ([16]) that on a commutative quasi-Banach algebra the formula $r(x) = \lim_{n\to\infty} ||T^n||^{1/n}$ defines a seminorm. Using this one can prove the Gelfand-Mazur theorem (see e.g. [11]) in this context and develop the basic theory of commutative quasi-Banach algebras. The Proposition is obtained by looking at the double commutant of T.

Proposition 6.4. Let X be a complex quasi-Banach space and let \mathcal{G}_1 denote the subset of $\mathcal{L}(X)$ consisting of all isomorphic embeddings and \mathcal{G}_2 be the collection of all surjections. Then \mathcal{G}_1 and \mathcal{G}_2 are both open sets and $\mathcal{G}_1 \cap \mathcal{G}_2$ is a clopen subset relative to \mathcal{G}_1 and relative to \mathcal{G}_2 .

See [11] pp. 132-134.

Proposition 6.5. Let X be an infinite-dimensional complex Banach space and suppose $T : X \to X$ is quasi-nilpotent, i.e. $Sp(T) = \{0\}$. Then T cannot be semi-Fredholm.

See [7] Lemma 19. We will now need to prove this Proposition for a general complex quasi-Banach space. We do this is in several very simple steps. Assume throughout that X is an infinite-dimensional complex quasi-Banach space.

Lemma 6.6. Suppose $T : X \to X$ is any bounded operator and $\lambda \in \partial Sp(T)$. Then $T - \lambda I$ can be neither an isomorphic embedding nor a surjection.

Proof. This follows from Proposition 6.4.

Lemma 6.7. Suppose X has trivial dual. If $T : X \to X$ is quasi-nilpotent then T cannot be Fredholm.

Proof. If T(X) has finite codimension in X then T is onto in this case. We then use Lemma 6.6.

Lemma 6.8. If X is any infinite-dimensional complex quasi-Banach space and $T: X \to X$ is quasi-nilpotent then T cannot be Fredholm.

Proof. Denote by X^* the dual of X; this is a Banach space but it can be quite small (even $\{0\}$). We assume $X^* \neq \{0\}$ as this case is covered in Lemma 6.7. Assume $T : X \to X$ is quasi-nilpotent and Fredholm. Then $T^* : X^* \to X^*$ is Fredholm. In fact $T^*(X^*) = \ker(T)^{\perp}$; this depends on the fact that every continuous linear functional y^* on T(X) can be extended to $x^* \in X^*$ since dim $X/T(X) < \infty$. Since $||(T^*)^n|| \leq ||T^n||$ the spectral radius formula shows that T^* is quasi-nilpotent. By Proposition 6.5 we must have dim $X^* < \infty$. Let $X_0 = \{x \in X : x^*(x) = 0 \forall x^* \in X^*\}$. Then X_0 is invariant for T and of finite-codimension in X. Clearly $X_0^* = \{0\}$ and $T|_{X_0 \to X_0}$ remains Fredholm so we can apply Lemma 6.7 to get a contradiction.

Lemma 6.9. If X is any infinite-dimensional complex quasi-Banach space and $T: X \to X$ is quasi-nilpotent then T cannot be semi-Fredholm.

18

Proof. Assume T is semi-Fredholm. Then by a Baire Category argument there exists $x \in X$ so that $T^n x \neq 0$ for every $n \in \mathbb{N}$. Let $Y = [T^n x]_{n=1}^{\infty}$. Then $T : Y \to Y$ is Fredholm and remains quasi-nilpotent (using Proposition 6.3). Clearly $T|_{Y\to Y}$ is not nilpotent so dim $Y = \infty$. This is a contradiction by Lemma 6.8.

Proof of Theorem 6.2. The remaining steps in the proof of Theorem 6.2 are very similar to those in [7] for the Banach space case. Assume $T - \lambda I$ is semi-Fredholm for all $\lambda \in \mathbb{C}$. We suppose $\lambda \in \partial \operatorname{Sp}(T)$ is an accumulation point of $\partial \operatorname{Sp}(T)$. Let $\lambda_n \to \lambda$ with $\lambda_n \neq \lambda$ and $\lambda_n \in \partial \operatorname{Sp}(T)$. Each λ_n is an eigenvalue of T (by Lemma 6.6, since $T - \lambda_n I$ is semi-Fredholm), say with eigenvector x_n . Let $Y = [x_n]_{n=1}^{\infty}$. Then Y is invariant for T and $\lambda \in \partial \operatorname{Sp}(T|_{Y \to Y})$. However $(T - \lambda I)|_{Y \to Y}$ has dense range and is semi-Fredholm. Hence $(T - \lambda I)|_{Y \to Y}$ is surjective and we have a contradiction by Lemma 6.6.

It follows that $\partial \operatorname{Sp}(T)$ has no accumulation points and hence is a finite set. Thus $\operatorname{Sp}(T)$ is also finite say $\operatorname{Sp}(T) = \{\lambda_1, \ldots, \lambda_n\}$. Then $S = \prod_{k=1}^n (T - \lambda_k I)$ is semi-Fredholm and $\operatorname{Sp}(S) = \{0\}$. This contradicts Lemma 6.9.

Theorem 6.10. Let X be an infinite-dimensional complex quasi-Banach space. If $T: X \to X$ is strictly singular then T cannot be semi-Fredholm.

Remark. Note that this is false for operators $T: X \to Y$ by the remarks above.

Proof. In fact $T - \lambda I$ is always semi-Fredholm if $\lambda \neq 0$ (Theorem 7.10 of [11]). The result follows from Theorem 6.2.

Theorem 6.11. Let X be an infinite-dimensional complex quasi-Banach space. If $T: X \to X$ is a bounded linear operator then exactly one of the following two conditions holds:

(i) For every $\epsilon > 0$ there is an infinite-dimensional closed subspace V of X such that $||T|_V|| < \epsilon$.

(ii) T is semi-Fredholm.

If X is HI then (i) is equivalent to

(i)' T is strictly singular.

Proof. Assume (ii). Then there is a constant c > 0 so that $||Tx|| \ge cd(x, F)$ for $x \in X$, where $F = \ker T$. If V is an infinite-dimensional closed subspace we can find a sequence $(v_n)_{n=1}^{\infty}$ in the unit ball so $||v_m - v_n|| \ge 1/2$ for $m \ne n$. Assuming that the norm is p-convex, by a simple compactness argument we can then show the existence of a pair $m \ne n$ so that $(d(v_m, F)^p + d(v_n, F)^p)^{1/p} \ge 1/4$. Hence $||Tv_m||^p + ||Tv_n||^p \ge (1/4)^p .c^p$ This implies a lower bound on $||T|_V||$.

Now assume (ii) fails and that $F = \ker(T)$ is finite dimensional. Then T factors in the form $T = T_0 Q$ where $Q: X \to X/F$ is the quotient map and $T_0: X/F \to X$ is one-one but not an isomorphic embedding. Then there is a normalized sequence $\xi_n \in X/F$ so that $||T_0\xi_n|| < 2^{-n}$. Now using Theorem 4.6 of [11] we can assume by passing to a subsequence that $(\xi_n)_{n=1}^{\infty}$ satisfies an estimate

$$\max_{1 \le k \le n} |a_k| \le C \| \sum_{k=1}^n a_k \xi_k \|, \qquad a_1, \dots, a_n \in \mathbb{C}.$$

In particular if $V_k = Q^{-1}[\xi_j]_{j \ge k}$ then each V_k is infinite-dimensional and $||T|_{V_k}|| \to 0$. Thus (i) holds.

Now assume X is HI. Suppose T satisfies (i) and is not strictly singular. Then there is an infinite-dimensional subspace W so that $||Tw|| \ge \delta ||w||$ for $w \in W$ where $\delta > 0$. Pick $\epsilon = \delta/2$ and then choose V as in (i) for this ϵ . Clearly $V \cap W = \{0\}$.

Now assume $v \in V, w \in W$ with ||v + w|| = 1. Then

$$\begin{aligned} \|v\|^{p} &\leq 1 + \|w\|^{p} \\ &\leq 1 + 2^{-p} \|v\|^{p} + \|w\|^{p} - 2^{-p} \|v\|^{p} \\ &\leq 1 + 2^{-p} \|v\|^{p} + \delta^{-p} \|Tw\|^{p} - 2^{-p} \epsilon^{-p} \|Tv\|^{p} \\ &= 1 + 2^{-p} \|v\|^{p} + \delta^{-p} (\|Tw\|^{p} - \|Tv\|^{p}) \\ &\leq 1 + 2^{-p} \|v\|^{p} + \delta^{-p} \|T(v+w)\|^{p} \\ &\leq 1 + 2^{-p} \|v\|^{p} + \delta^{-p} \|T\|^{p}. \end{aligned}$$

Thus

$$||v|| \le \left(\frac{1+\delta^{-p}||T||^p}{1-2^{-p}}\right)^{1/p}$$

This contradicts the fact that X is HI.

Conversely if T is strictly singular it cannot be semi-Fredholm by Theorem 6.10 and so (i) must hold. \Box

Theorem 6.12. Let X be an infinite-dimensional complex quasi-Banach space. If X is HI then every bounded linear operator $T : X \to X$ is of the form $T = \lambda I + S$ where S is strictly singular.

Proof. There exists λ so that $T - \lambda I$ is not semi-Fredholm by Theorem 6.2. By Theorem 6.11 this means $T - \lambda I$ is strictly singular.

In the case when X is SHI this result is much simpler. Indeed we have:

Theorem 6.13. Let X be an SHI space and suppose E is the intersection of all infinite-dimensional subspaces of X. Let $Q: X \to X/E$ be the quotient map (which is strictly singular). Then if $T: X \to X$ is a bounded operator, there exists $\lambda \in \mathbb{C}$ and a bounded operator $S: X/E \to X$ so that $T = \lambda I + SQ$.

Proof. Let us first give a simpler proof of Theorem 6.12. It is clearly that if $R : X \to X$ is an invertible operator then $R(E) \subset E$ and this implies that E is invariant for all operators on X. If E is atomic then E is rigid ([11] Theorem 7.22, p. 155). Otherwise E is finite-dimensional. In either case $T|_E$ has an eigenvalue λ and so $T - \lambda I$ factors through a quotient map $Q' : X \to X/F'$ where F' is a non-trivial subspace of E. Hence $T - \lambda I$ is strictly singular.

Now using Theorem 6.11 it is clear any strictly singular operator on X vanishes on E and so we get the desired factorization.

References

 J. Bagaria and J. López-Abad, Weakly Ramsey sets in Banach spaces, Adv. Math. 160 (2001), 133–174.

- [2] _____, Determinacy and weakly Ramsey sets in Banach spaces, Trans. Amer. Math. Soc. 354 (2002), 1327–1349 (electronic).
- [3] T. Figiel, R. Frankiewicz, R. Komorowski, and C. Ryll-Nardzewski, On hereditarily indecomposable Banach spaces, Ann. Pure Appl. Logic 126 (2004), 293–299.
- [4] W. T. Gowers, A new dichotomy for Banach spaces, Geom. Funct. Anal. 6 (1996), 1083–1093.
- [5] _____, An infinite Ramsey theorem and some Banach-space dichotomies, Ann. of Math. (2) 156 (2002), 797–833.
- [6] _____, Ramsey methods in Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1071–1097.
- W. T. Gowers and B. Maurey, *The unconditional basic sequence problem*, J. Amer. Math. Soc. 6 (1993), 851–874.
- [8] N. J. Kalton, Basic sequences in F-spaces and their applications, Proc. Edinburgh Math. Soc. (2) 19 (1974/75), 151–167.
- [9] _____, An elementary example of a Banach space not isomorphic to its complex conjugate, Canad. Math. Bull. 38 (1995), 218–222.
- [10] _____, The basic sequence problem, Studia Math. 116 (1995), 167–187.
- [11] N. J. Kalton, N. T. Peck, and J. W. Roberts, An F-space sampler, London Mathematical Society Lecture Note Series, vol. 89, Cambridge University Press, Cambridge, 1984.
- [12] N. J. Kalton and J. H. Shapiro, Bases and basic sequences in F-spaces, Studia Math. 56 (1976), 47–61.
- [13] B. Maurey, A note on Gowers' dichotomy theorem, Convex geometric analysis (Berkeley, CA, 1996), Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 149–157.
- [14] A. M. Pelczar, Some version of Gowers' dichotomy for Banach spaces, Univ. Iagel. Acta Math. (2003), no. 41, 235–243.
- [15] M. L. Reese, Almost-atomic spaces, Illinois J. Math. **36** (1992), 316–324.
- [16] W. Zelazko, On the radicals of p-normed algebras, Studia Math. 21 (1961/1962), 203–206.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208 *E-mail address:* giorgis@math.sc.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208 *E-mail address:* dilworth@math.sc.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI-COLUMBIA, COLUMBIA, MO 65211 *E-mail address:* nigel@math.missouri.edu