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On the limit of large girth graph sequences∗
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Abstract

Let d ≥ 2 be given and let µ be an involution-invariant probability
measure on the space of trees T ∈ Td with maximum degrees at most d.
Then µ arises as the local limit of some sequence {Gn}

∞

n=1 of graphs with
all degrees at most d. This answers Question 6.8 of Bollobás and Riordan
[4].

1 Introduction

Let Graphd denote the set of all finite simple graphs G (up to isomorphism)
for which deg(x) ≤ d for every x ∈ V (G). For a graph G and x, y ∈ V (G) let
dG(x, y) denote the distance of x and y, that is the length of the shortest path
from x to y. A rooted (r, d)-ball is a graph G ∈ Graphd with a marked vertex
x ∈ V (G) called the root such that dG(x, y) ≤ r for every y ∈ V (G). By U r,d

we shall denote the set of rooted (r, d)-balls.
If G ∈ Graphd is a graph and x ∈ V (G) then Br(x) ∈ U r,d shall denote

the rooted (r, d)-ball around x in G. For any α ∈ U r,d and G ∈ Graphd

we define the set T (G,α)
def
= {x ∈ V (G) : Br(x) ∼= α} and let pG(α)

def
=

|T (G,α)|
|V (G)| . A graph sequence G = {Gn}

∞
n=1 ⊂ Graphd is weakly conver-

gent if limn→∞ |V (Gn)| = ∞ and for every r and every α ∈ U r,d the limit
limn→∞ pGn(α) exists (see [3]).
Let Grd denote the set of all countable, connected rooted graphs G for which
deg(x) ≤ d for every x ∈ V (G). IfG,H ∈ Grd let dg(G,H) = 2−r, where r is the
maximal number such that the r-balls around the roots of G resp. H are rooted
isomorphic. The distance dg makes Grd a compact metric space. Given an
α ∈ U r,d let T (Grd, α) = {(G, x) ∈ Grd : Br(x) ∼= α}. The sets T (Grd, α) are
closed-open sets. A convergent graphs sequence {Gn}

∞
n=1 define a local limit

measure µG on Grd, where µG(T (Grd, α)) = limn→∞ pGn(α). However, not
all the probability measures on Grd arise as local limits. A necessary condition
for a measure µ being a local limit is its involution invariance (see Section
2). The goal of this paper is to answer a question of Bollobás and Riordan
(Question 6.8 [4]):
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Theorem 1 Any involution-invariant measure µ on Grd concentrated on trees
arises as a local limit of some convergent graph sequence.

As it was pointed out in [4] such graph sequences are asymptotically treelike,
thus µ must arise as the local limit of a convergent large girth sequence.

2 Involution invariance

Let ~Grd be the compact space of all connected countable rooted graphs ~G (up
to isomorphism) of vertex degree bound d with a distinguished directed edge

pointing out from the root. Note that ~G and ~H are considered isomorphic if
there exists a rooted isomorphism between them mapping distinguished edges
into each other. Let ~U r,d be the isomorphism classes of all rooted (r, d)-graphs ~α

with a distinguished edge e(~α) pointing out from the root. Again, T ( ~Grd, ~α) is

well-defined for any ~α ∈ ~U r,d and defines a closed-open set in ~Grd. Clearly, the
forgetting map F : ~Grd → Grd is continuous. Let µ be a probability measure
on Grd. Then we define a measure ~µ on ~Grd the following way.
Let ~α ∈ ~U r,d and let F(~α) = α ∈ U r,d be the underlying rooted ball. Clearly,

F(T ( ~Grd, ~α)) = T (Grd, α).Let

~µ(T ( ~Grd, ~α)) := l ,

where l is the number of edges e pointing out from the root such that there
exists a rooted automorphism of α mapping e(~α) to e. Observe that

~µ(F−1(T (Grd, α)) = deg(α)µ(T (Grd, α)) .

We define the map T : ~Grd → ~Grd as follows. Let T (~G) = ~H , where :

• the underlying graphs of ~G and ~H are the same,

• the root of ~H is the endpoint of e(~G),

• the distinguished edge of ~H is pointing to the root of ~G.

Note that T is a continuous involution. Following Aldous and Steele [2], we call
µ involution-invariant if T∗(~µ) = ~µ. It is important to note [2],[1] that the
limit measure of convergent graphs sequences are always involution-invariant.
We need to introduce the notion of edge-balls. Let ~G ∈ ~Grd. The edge-ball
Ber(~G) of radius r around the root of ~G is the following spanned rooted subgraph

of ~G:

• The root of Ber(
~G) is the same as the root of ~G.

• y is a vertex of Ber(
~G) if d(x, y) ≤ r or d(x′, y) ≤ r, where x is the root of

~G and x′ is the endpoint of the directed edge e(~G).

• The distinguished edge of Ber(
~G) is ( ~x, x′).
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Let ~Er,d be the set of all edge-balls of radius r up to isomorphism. Then if
~φ ∈ ~Er,d, let s(~φ) ∈ ~U r,d be the rooted ball around the root of ~φ. Also, let

t(~φ) ∈ ~U r,d be the r-ball around x′ with distinguished edge ( ~x′, x).

The involution T r,d : ~Er,d → ~Er,d is defined the obvious way and t(T r,d(~φ)) =

s(~φ), s(T r,d(~φ)) = t(~φ). Since ~µ is a measure we have

~µ(T ( ~Grd, ~α)) =
∑

~φ,s(~φ)=~α

~µ(T ( ~Grd, ~φ)). (1)

Also, by the involution-invariance

~µ(T ( ~Grd, ~φ)) = ~µ(T ( ~Grd, T
r,d(~φ)), (2)

since T (T ( ~Grd, ~φ)) = T ( ~Grd, T
r,d(~φ). Therefore by (1),

~µ(T ( ~Grd, ~α)) =
∑

~φ,t(~φ)=~α

~µ(T ( ~Grd, ~φ)) (3)

3 Labeled graphs

Let ~Grnd be the isomorphism classes of

• connected countable rooted graphs with vertex degree bound d

• with a distinguished edge pointing out from the root

• with vertex labels from the set {1, 2, . . . , n}.

Note that if ~G∗ and ~H∗ are such graphs then they called isomorphic if there
exists a map ρ : V (~G∗) → V ( ~H∗) preserving both the underlying ~Grd-structure

and the the vertex labels. The labeled r-balls ~U r,dn and the labeled r-edge-

balls ~Er,dn are defined accordingly. Again, ~Grnd is a compact metric space and

T ( ~Grnd , ~α∗),T ( ~Grnd ,
~φ∗) are closed-open sets, where ~α∗ ∈ ~U r,d, ~φ∗ ∈ ~Er,dn . Now

let µ be an involution-invariant probability measure on Grd with induced mea-

sure ~µ. The associated measure ~µn on ~Grnd is defined the following way.

Let ~α ∈ ~U r,d and κ1, κ2 be vertex labelings of ~α by {1, 2, . . . , n}. We say that
κ1 and κ2 are equivalent if there exists a rooted automorphism of ~α preserving
the distinguished edge and mapping κ1 to κ2. Let C(κ) be the equivalence class
of the vertex labeling κ of ~α. Then we define

~µn(T ( ~Grnd , [κ])) :=
|C(κ)|

n|V (~α)|
~µ(T ( ~Grd, ~α)) .

Lemma 3.1 a) ~µn extends to a Borel-measure.

b) ~µ(T ( ~Grd, ~α)) =
∑

~α∗,F(~α∗)=~α
~µn(T ( ~Gr

n
d , ~α∗)) .
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Proof. The second equation follows directly from th definition. In order to prove
that ~µn extends to a Borel-measure it is enough to prove that

~µn(T ( ~Grnd , ~α∗)) =
∑

~β∗∈Nr+1(~α∗)

~µn(T ( ~Grnd ,
~β∗)) ,

where ~α∗ ∈ ~U r,dn and Nr+1(~α∗) is the set of elements ~β∗ in ~U r+1,d
n such that the

r-ball around the root of ~β∗ is isomorphic to ~α∗. Let ~α = F(~α∗) ∈ ~U r,d and let

Nr+1(~α) ⊂ ~U r,d be the set of elements ~β such that the r-ball around the root

of ~β is isomorphic to ~α. Clearly

~µ(T ( ~Grd, ~α)) =
∑

~β∈Nr+1(~α)

~µ(T ( ~Grd, ~β)) . (4)

Let κ be a labeling of ~α by {1, 2, . . . , n} representing ~α∗. For ~β ∈ Nr+1(~α)

let L(~β) be the set of labelings of ~β that extends some labeling of ~α that is
equivalent to κ.
Note that

~µn(T ( ~Grnd , ~α∗)) = ~µ(T ( ~Grd, ~α))
|C(κ)|

n|V (~α)|
.

Also,

∑

~β∗∈Nr+1(~α∗)

~µn(T ( ~Grnd ,
~β∗)) =

∑

~β∈Nr+1(~α)

~µ(T ( ~Grd, ~β))
|L(~β)|

n|V (~β)|
.

Observe that |L(~β)| = |C(κ)|n|V (~β)|−V (~α)|. Hence

∑

~β∗∈Nr+1(~α∗)

~µn(T ( ~Grnd ,
~β∗)) =

∑

~β∈Nr+1(~α)

~µ(T ( ~Grd, ~β))
|C(κ)|

n|V (~α)|
.

Therfore using equation (4) our lemma follows.

The following proposition shall be crucial in our construction.

Proposition 3.1 For any ~α∗ ∈ ~U r,dn and ~ψ∗ ∈ ~Er,dn

• ~µn(T ( ~Gr
n
d , ~α∗)) =

∑
~φ∗∈ ~E

r,d
n , s(~φ∗)=~α∗

~µn(T ( ~Gr
n
d ,
~φ∗))

• ~µn(T ( ~Gr
n
d , ~α∗)) =

∑
~φ∗∈ ~E

r,d
n , t(~φ∗)=~α∗

~µn(T ( ~Gr
n
d ,
~φ∗))

• ~µn(T ( ~Gr
n
d ,
~ψ∗)) = ~µn(T ( ~Gr

n
d , T

r,d
n (~ψ∗)) .

Proof. The first equation follows from the fact that ~µn is a Borel-measure. Thus
the second equation will be an immediate corollary of the third one. So, let us
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turn to the third equation. Let F(~ψ∗) = ~ψ ∈ ~Er,d and let κ be a vertex-labeling

of ~ψ representing ~ψ∗. It is enough to prove that

~µn(T ( ~Grnd ,
~ψ∗)) =

|C(κ)|

n|V (~ψ)|
~µ(T ( ~Grd, ~ψ)) ,

where C(κ) is the set of labelings of ~ψ equivalent to κ. Let Nr+1(~ψ) ∈ ~U r,d be

the set of elements ~β such that the edge-ball of radius r around the root of ~β is
isomorphic to ~ψ. Then

~µ(T ( ~Grd, ~ψ)) =
∑

~β∈Nr+1(~ψ)

~µ(T ( ~Grd, ~β)) . (5)

Observe that

~µn(T ( ~Grnd ,
~ψ∗)) =

∑

~β∈Nr+1(~ψ)

~µ(T ( ~Grd, ~β))
k(~β, ~ψ∗)

n|V (~β)|
,

where k(~β, ~ψ∗) is the number of labelings of ~β extending an element that is

equivalent to κ. Notice that k(~β, ~ψ∗) = |C(κ)|n|V (~β)|−|V (~ψ)| . Hence by (5)

~µn(T ( ~Grnd ,
~ψ∗)) =

|C(κ)|

n|V (~ψ)|
~µ(T ( ~Grd, ~ψ)) , thus our proposition follows.

4 Label-separated balls

Let Grnd be the isomorphism classes of

• connected countable rooted graphs with vertex degree bound d

• with vertex labels from the set {1, 2, . . . , n}.

Again, we define the space of labeled r-balls U r,dn . Then Grnd is a compact
space with closed-open sets T (Grnd ,M),M ∈ U r,dn . Similarly to the previous
section we define an associated probability measure µn, where µ in an involution-
invariant probability measure on Grd.
Let M ∈ U r,dn and let R(M) be the set of elements of ~U r,dn with underlying
graph M . If A ∈ R(M), then the multiplicity of A, lA is the number of edges
e pointing out from the root of A such that there is a label-preserving rooted
automorphism of A moving the distinguished edge to e. Now let

µn(M) :=
1

deg(M)

∑

A∈R(M)

lA~µn(A) .

The following lemma is the immediate consequence of Lemma 3.1.

Lemma 4.1 µn is a Borel-measure on Gr
n
d and

∑
M∈M(α) µn(M) = µ(A) if

α ∈ U r,d and M(α) is the set of labelings of α by {1, 2, . . . , n}.
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Definition 4.1 M ∈ U r,dn is called label-separated if all the labels of M are
different.

Lemma 4.2 For any α ∈ U r,d and δ > 0 there exists an n > 0 such that

|
∑

M∈M(α),M is label-separated

µn(T (Grd,M))− µ(T (Grd, α))| < δ .

Proof. Observe that

∑

M∈M(α),M is label-separated

µn(T (Grd,M)) =
T (n, α)

n|V (α)|
µ(T (Grd, α)) ,

where T (n, α) is the number of {1, 2, . . . , n}-labelings of α with different labels.

Clearly, T (n,α)
n|V (α)| → 1 as n→ ∞.

5 The proof of Theorem 1

Let µ be an involution-invariant probability measure on Grd supported on trees.
It is enough to prove that for any r ≥ 1 and ǫ > 0 there exists a finite graph G
such that for any α ∈ U r,d

|pG(α)− µ(T (Grd, α))| < ǫ .

The idea we follow is close to the one used by Bowen in [5]. First, let n > 0 be
a natural number such that

|
∑

M∈M(α),M is label-separated

µn(T (Grd,M))− µ(T (Grd, α))| <
ǫ

10
. (6)

Then we define a directed labeled finite graph H to encode some information
on ~µn. If A ∈ ~U r+1,d

n then let LA be the unique element of ~Er,dn contained in A.

The set of vertices of H ; V (H) := ~U r+1,d
n . If A,B ∈ ~U r+1,d

n and LA = L−1
B (we

use the inverse notation instead of writing out the involution operator) then
there is a directed edge (A,LA, B) from A to B labeled by LA and a directed
edge (B,LB, A) from B to A labeled by LB = L−1

A . Note that we might have
loops. We define the weight function w on H by

• w(A) = ~µn(T ( ~Grnd , A)).

• w(A,LA, B) = µ(T ( ~Grnd , LA,B)) , where LA,B ∈ ~Er+1,d
n the unique ele-

ment such that s(LA,B) = A, t(LA,B) = B.

By Proposition 3.1 we have the following equation for all A,B that are connected
in H :

w(A,LA, B) = w(B,L−1
A , A) . (7)
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Also,

w(A) =
∑

w(A,LA,B)∈E(H)

w(A,LA, B) (8)

w(A) =
∑

w(B,L−1
A
,A)∈E(H)

w(B,L−1
A , A) (9)

Also if M ∈ U r+1,d
n then

µn(M) =
1

deg (M)

∑

A∈R(M)

lAw(A), (10)

where lA is the multiplicity of w(A).

Since the equations (7), (8), (9) have rational coefficients we also have weight
functions wδ on H

• taking only rational values

• satisfying equations (7), (8), (9)

• such that |wδ(A) − w(A)| < δ for any A ∈ V (H), where the exact value
of δ will be given later.

Now let N be a natural number such that

• Nwδ(A)
lA

∈ N if A ∈ V (H).

• Nwδ(A,LA, B) ∈ N if (A,LA, B) ∈ E(H).

Step 1. We construct an edge-less graph Q such that:

• V (Q) = ∪A∈V (H)Q(A) (disjoint union)

• |Q(A)| = Nwδ(A)

• each Q(A) is partitioned into ∪(A,LA,B)∈E(H)Q(A,LA, B) such that
|Q(A,LA, B)| = Nwδ(A,LA, B).

Since wδ satisfy our equations such Q can be constructed.

Step 2. We add edges to Q in order to obtain the graph R. For each pair
A,B that are connected in the graph H form a bijection ZA,B : Q(A,LA, B) →
Q(B,LB, A). If there is a loop in H consider a bijection ZA,A. Then draw an
edge between x ∈ Q(A,LA, B) and y ∈ Q(B,LB, A) if ZA,B(x) = y.

Step 3. Now we construct our graph G. If M ∈ U r+1,d
n is a rooted labeled

tree such that µn(M) 6= 0 let Q(M) = ∪A∈R(M)Q(A). We partition Q(M) into
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∪sMi=1Qi(M) such a way that each Qi(M) contains exactly lA elements from the
set Q(A). By the definition of N , we can make such partition.
The elements of V (G) will be the sets {Qi(M)}

M∈Ur+1,d
n ,1≤i≤sM

. We draw one

edge between Qi(M) and Qj(M
′) if there exists x ∈ Qi(M), y ∈ Qj(M

′) such
that x and y are connected in R. We label the vertex Qi(M) by the label of the
root of M . Let Qi(M) be a vertex of G such that M is a label-separated tree.
Note that if M is not a rooted tree then µn(M) = 0. It is easy to see that the
r + 1-ball around Qi(M) in the graph G is isomorphic to M as rooted labeled
balls. Also if M is not label-separated then the r + 1-ball around Qi(M) can
not be a label-separated tree. Therefore

∑

L∈Ur,dn , L is not a label-separated tree

pG(L) = (11)

=
∑

L∈Ur,dn , L is not a label-separated tree

∑

A∈R(L)

wδ(L) ≤
ǫ

10
+ δd|U r,dn | . (12)

Also, if M is a label-separated tree then

|pG(M)− µn(T (Grd,M))| ≤ |R(M)|δ ≤ dδ . (13)

Thus by (6),(11),(13) if δ is choosen small enough then for any α ∈ U r+1,d

|pG(α)− µ(T (Grd, α))| < ǫ .

Thus our Theorem follows.
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