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Abstract

We prove that every rayless graph has an unfriendly partition.

1 Introduction

A bipartition of the vertex set of a graph is unfriendly if every vertex has at least
as many neighbours in the other class as in its own. The following conjecture is
one of the best-known open problems in infinite graph theory.

Unfriendly Partition Conjecture. Every countable graph admits an un-
friendly partition of its vertex set.

Clearly, every finite graph has an unfriendly partition: just take any biparti-
tion that maximizes the number of edges between the partition classes. For in-
finite graphs however, few results are known. Shelah and Milner [4] constructed
uncountable graphs that admit no unfriendly partitions, thereby disproving the
original folklore conjecture that every graph has an unfriendly partition. (They
attribute this conjecture to R. Cowan and W. Emerson, unpublished.) It is
an easy exercise in compactness to deduce from the finite theorem that every
locally finite graph has an unfriendly partition, see [2]. Aharoni, Milner and
Prikry [1] strengthened this fact by proving that every graph with only finitely
many vertices of infinite degree has an unfriendly partition.

At the other end of the spectrum, it is easy to prove that countable graphs
in which only finitely many vertices have finite degree have unfriendly parti-
tions. Since the counterexamples from [4] have no vertices of finite degree, the
countability assumption here cannot be dropped.

The main aim of this paper is to prove that all rayless graphs, countable or
not, have unfriendly partitions:

Theorem 1.1. Every rayless graph has an unfriendly partition.
⇤Supported by a GIF grant.
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For the proof of this theorem we used a tool developed by Schmidt [3], which
assigns to every rayless graph an ordinal number, its rank . This rank enables
us to prove Theorem 1.1 by transfinite induction.

Closer inspection of the proof reveals that it does not depend on the graphs
being rayless, but only on the existence of such a kind of rank. Extending the
method to more general rank functions, one can indeed strengthen Theorem 1.1
in various ways. One such strengthening obtained in Section 4 is this:

Theorem 1.2. Every graph not containing a ray linked disjointly to infinitely
many vertices of infinite degree has an unfriendly partition.

2 Definitions and statement of main result

Recall that a cofinal subset of an ordered set A is a subset B such that for every
a 2 A there is a b 2 B such that a  b. The cofinality of an ordinal ↵ is the
smallest ordinal � which is the order type of a cofinal subset of ↵. The cofinality
of an ordinal is always a cardinal, but we will not need to make use of this fact.

For general graph-theoretic terminology we refer the reader to [2]. Given a
graph G and a vertex x 2 V (G), we let dU (x) denote the number of neighbours
of x in a subset U ✓ V (G). For convenience, if C is a subgraph of G, or a set of
subgraphs of G, or a set of sets of subgraphs of G, we will simply write dC(x)
—to avoid more cumbersome notation of the form dV (

S
C)(x)— for the number

of neighbours of x (nested) in C.
A partition of a set V or a graph G = (V,E) is a function ⇡ : V ! {0, 1}. For

a partition ⇡ of G and a vertex x 2 V (G), we say that a neighbour y of x is an
opponent (respectively, a friend) of x in ⇡ if ⇡(y) 6= ⇡(x) (resp. ⇡(y) = ⇡(x)).
We write a⇡(x) for the number of opponents of x in ⇡. Moreover, if U is a
subset of V (G) or a subgraph of G, then we write a⇡(x,U) for the number of
opponents of x in ⇡ that lie in U . A vertex is happy in a partition ⇡ if it has
at least as many opponents as it has friends. In particular, if a vertex x has
infinite degree then it is happy in ⇡ if and only if d(x) = a⇡(x). A partition is
unfriendly if every vertex is happy in it, and it is unfriendly for a vertex set Y
if every vertex in Y is happy.

A graph G is pre-partitionable if for every U ✓ V (G) and every partition ⇡
of U there is a partition ⇡0 of G extending ⇡ so that every vertex in V (G)\U
is happy in ⇡0. In particular, since we can choose U to be the empty set, every
pre-partitionable graph has an unfriendly partition. Clearly, every finite graph
is pre-partitionable: given U and ⇡, choose ⇡0 so as to maximize the number of
edges incident with V (G)\U whose endvertices lie in di↵erent partition classes.

Schmidt [3] observed that it is possible to construct all rayless graphs by a
recursive, transfinite procedure, starting with the class of finite graphs and then,
in each step, glueing graphs constructed in previous steps along a common finite
vertex set, to obtain new rayless graphs. We are going to generalise Schmidt’s
construction by replacing the class of finite graphs by larger classes.

In order to do so, we call a class U of graphs finitely closed if it is closed under
taking finite disjoint unions and also under adding finitely many new vertices
and joining them arbitrarily to each other and to the old vertices. Starting with
any finitely closed class U it is possible to recursively construct a larger class U
as follows.
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Definition 2.1. Let U be a finitely closed class of graphs. For every ordinal µ
we define recursively a class U(µ):

• U(0) := U ; and

• if U(�) is defined for every � < µ, we include a graph G in U(µ) if it has
a finite vertex set S such that for every component C of G�S there is an
ordinal � < µ such that U(�) contains C.

The closure U of U is the union of the classes U(�) for all ordinals �. For a
graph G in U we define its rank to be the smallest ordinal rU (G) = r(G) such
that U(r(G)) contains G.

The prime example of a finitely closed class is the class F of finite graphs,
and the rayless graphs are precisely those in F [3]. The locally finite graphs
clearly do not form a finitely closed class; but the graphs with only finitely
many vertices of infinite degree do, and so do the graphs with only finitely
many vertices of finite degree. Another class, which contains all these, will be
defined in Section 4.

We note two properties of the above construction that are not hard to prove.

Lemma 2.2. Let G be a graph in U for some finitely closed class U of graphs,
and let S be a finite vertex set so that r(C) < r(G) for every component C of
G� S.

(i) If C1, . . . , Cn are components of G� S then r(G[S [
Sn

i=1 Ci]) < r(G).

(ii) If S is ✓-minimal with the property that r(C) < r(G) for each component
C of G� S then each vertex in S has infinite degree.

Proof. To see (i), we show that r(G[S [
Sn

i=1 Ci])  maxi r(Ci) which is by
assumption smaller than r(G). Suppose first that all Ci have rank 0, i.e. lie
in U . Then so does G[S [

Sn
i=1 Ci] as U is finitely closed. Otherwise, for every

1  i  n with r(Ci) > 0 let Si be a finite vertex set in Ci such that the rank
of every component of Ci � Si is less than r(Ci). Then S [

S
Si is a finite set

witnessing the fact that r(G[S [
Sn

i=1 Ci])  maxi r(Ci).
For (ii), note that if x 2 S has finite degree then the components of G �

(S \{x}) are precisely the components of G�S that are not adjacent to x, plus
one new component obtained by merging x and the finitely many components
of G� S adjacent to x. By an argument similar to that of (i), the rank of this
new component is at most the maximum of the ranks of the components that
got merged. But then r(C) < r(G) for every component C of G � (S \ {x}),
contradicting the minimality of S with this property.

Here is the main result of this paper:

Theorem 2.3. If U is a finitely closed class of graphs and every graph in U is
pre-partitionable, then every graph in U is pre-partitionable.

As every finite graph is pre-partitionable and every pre-partitionable graph has
an unfriendly partition, Theorem 2.3 with U = F implies Theorem 1.1.

We prove Theorem 2.3 in Section 3. In Section 4 we use it to prove that a
considerably larger class than the rayless graphs have unfriendly partitions.
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3 Proof of the main result

We now prove Theorem 2.3.

Proof of Theorem 2.3. Let G = (V,E) be a graph in U . We perform transfinite
induction on r(G). If r(G) = 0 then G is pre-partitionable by assumption, so
suppose that r(G) = ↵ > 0 and the assertion is true for all ordinals � < ↵.
Let S ✓ V (G) be a minimal separator such that r(C) < ↵ for every component
of G � S, and let C be the set of those components. We will prove that G is
pre-partitionable by a second transfinite induction on  := |C|. By Lemma 2.2,
 must be infinite. We will treat the first step of the induction (i.e. the case
 = !) more or less in the same way as the induction step; so assume from
now on that either  = ! or  > ! and, by the induction hypothesis, any
subgraph of G spanned by S and less than  elements of C is pre-partitionable;
by Lemma 2.2, we can assume this even if  = !.

Let S0 be the set of vertices s 2 S for which there is a subset Cs of C of
cardinality less than  with dCs(s) = d(s); then let S1 := S\S0. Let X0 :=S

s2S0
Cs, and assume, without loss of generality, that

N(s) ✓ S [
S
X0 for every s 2 S0 with d(s) < , (1)

where N(s) denotes the set of vertices adjacent with s.
We claim that

if s 2 S1 then either d(s) =  or d(s) is a singular cardinal of cofinality
.

(2)

Indeed, all vertices in S with degree less than  lie in S0, thus d(s) � . If s
has degree � >  then � is a singular cardinal of cofinality at most  as it is
the sum of  cardinals smaller than �, namely of dC(s) for all C 2 C (we know
that dC(s) < � because s 62 S0). It remains to verify that the cofinality of � is
not smaller than .

Suppose, on the contrary, that � is the sum of cardinals �↵, ↵ < �, where
� <  and every �↵ is smaller than �. Then for every ↵ there is a component
C↵ 2 C such that dC↵(s) � �↵; for if not, then �  |C| ·�↵ < �, a contradiction.
But then, the components C↵, ↵ < � contain � = d(s) many of the neighbours
of s, and as � <  this contradicts s 62 S0.

It is possible to partition C\X0 into  finite sets X� , � <  so that

for every s 2 S1 and every subset Z of {X�}�< with |Z| =  there
holds dZ(s) = d(s). (3)

Indeed, given s 2 S1, it is easy, in both cases of (2), to find a sequence (Cs
�)�<

of distinct elements of C such that for every subset Z 0 of {Cs
� | � < } with

|Z 0| =  there holds dZ0(s) = d(s). Furthermore, let (D�)�<� be a sequence
indexed by some ordinal �   containing all elements D of C that are not in
a sequence (Cs

�)�< for any s 2 S1. Depending on whether  = ! or not, we
now define the Xi, i < , recursively as follows. If  > !, then for every s 2 S1

we let Cs
mi

be the first member of (Cs
�)�< that is not an element of

S
�<i X� ,

and let Xi := {Di} [ {Cs
mi

| s 2 S1} if i < � and Xi := {Cs
mi

| s 2 S1}
otherwise. If  = !, we define Xi in a slightly di↵erent way. Namely, we let
Xi := {Di}[

S
s2S1

Cs
i if i < � and Xi :=

S
s2S1

Cs
i otherwise, where Cs

i is a finite
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subset of {Cs
�}�<\

S
�<i Xi containing Cs

mi
such that dCs

i
(s) > dS(s) + dX0(s);

easily, such a Cs
i exists by (2) and the definition of S1. It is now easy to check

that (3) is indeed satisfied, and moreover for the case  = ! we have in addition,
for every Z and every s as in (3), that

dX(s) > dS(s) + dX0(s) for every X 2 Z. (4)

Now let U ✓ V , and let ⇡U be any partition of U . We have to show that
there is a partition � of V extending ⇡U that is unfriendly for V \U .

For every � < , let G� be the subgraph of G spanned by S and all com-
ponents in X0 [X� . Note that r(G�)  r(G) for every �, and G� � S has less
components than G � S because |X0| <  and |X� | < !. Thus by our second
induction hypothesis —or by our first induction hypothesis if r(G�) < r(G)—
there is a partition ⇢� of G� that extends ⇡U � (V (G�) \ U) and is unfriendly
for V (G�)\U .

Define the X0-stamp of ⇢� to be the set of vertices s 2 S0 that are given d(s)
opponents within

S
X0 by ⇢� , i.e. those for which a⇢� (s,

S
X0) = d(s) holds.

Since S is finite, there is a partition ⇢S of S, a subset S0 of S0, and a subsequence
(⇢↵)↵2J of (⇢�)�< with |J | =  such that ⇢↵ � S = ⇢S and the X0-stamp of ⇢↵

is S0 for every ↵ 2 J . Using this subsequence, we will now construct a partition
⌧ of G that is unfriendly for all but finitely many of the vertices in V \U , and
later modify ⌧ to obtain the desired partition � that is unfriendly for V \U . For
every ↵ 2 J , we partition X↵ as in ⇢↵; formally, for every vertex x in

S
X↵,

let ⌧(x) := ⇢↵(x). We proceed similarly with X0: we pick some ↵0 2 J and
then for every vertex x in

S
X0, we let ⌧(x) := ⇢↵0(x). In order to partition

the remaining vertices of the graph, we define the partition ⇡U[S := ⇡U [ ⇢S ;
this is well-defined since ⇢S is by construction compatible with ⇡U . Now for
every � 2 \J we pick a partition ⇢0� of the graph G0

� := G[S [ V (
S

X�)] that
extends ⇡U[S � G0

� and is unfriendly for V (G0
�)\(U [ S) — such a partition

exists by our first inductive hypothesis, since r(G0
�) < r(G) — and again we

partition the vertices in
S

X� according to ⇢0� : for every vertex x in
S

X� , we
let ⌧(x) := ⇢�(x).

By construction, ⌧ extends ⇡U . Moreover, it is straightforward to check that

⌧ is unfriendly for V \(S1 [ U). (5)

Since the ⇢↵ have the same X0-stamp for every ↵ 2 J , it follows that

for every s 2 S0, either a⌧ (s,
S
X0) = d(s) or for every ↵ 2 J there

holds a⌧ (s,
S

X↵) = d(s) (or both). (6)

Let F ✓ S1 be the set of vertices of V \U that are not happy in ⌧ . We claim
that

for every r 2 F there holds d(r) = . (7)

Indeed, pick any r 2 S1 \ U with d(r) > . We need to show that this choice
implies r /2 F . By the definition of S0 and since r /2 S0, r cannot have full
degree in

S
X0, i.e. � := dX0(d) < d(r). Define Z 0 to be the set of those X↵,

↵ 2 J , for which dX↵(r)  �. Since |Z 0|  |J | =  < d(r) and � < d(r), we
obtain that dZ0(r)   · � < d(r). Hence, from (3) it follows that |Z 0| <  and
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thus the set Z := {X↵ : ↵ 2 J } \ Z 0 has cardinality . Using (3) again yields
dZ(r) = d(r).

Now consider one such X↵ 2 Z. Recall that r is happy in the partition ⇢↵

of the graph G↵, which we defined to be the induced subgraph on S together
with all components in X0 [X↵. Since dX↵(r) > � = dX0(r), this means that
r has, with respect to ⇢↵, dX↵(r) opponents in

S
X↵. Since ⌧ and ⇢↵ coincide

on
S

X↵ by the definition of ⌧ , this implies that a⌧ (r,
S

X↵) = dX↵(r). As, on
the other hand, we have found that dZ(r) = d(r), we deduce that r has d(r)
opponents in ⌧ and is therefore happy. Since F comprises unhappy vertices, we
have proved (7).

We claim that F is empty if  = !. Indeed, if  = ! then every vertex r in
F has degree ! by (7) and so dX0(r) is finite. Thus by (4) and the fact that ⌧
coincides with the partition ⇢↵ of G↵, which is unfriendly for V (G↵)\U , ⌧ gives
r an opponent in X↵ for every ↵ 2 J . But then r has |J | =  = ! opponents
in ⌧ , contradicting the assumption that r 2 F . Thus F = ; if  = !, which
means that ⌧ is unfriendly for V \U and we are done. So we may from now on
assume that

 is an uncountable cardinal. (8)

Denote by ⌧ 0 the partition obtained from ⌧ by flipping F , i.e. by moving each
vertex in F from its partition class in ⌧ to the other partition class (formally,
by changing the image under ⌧ of every vertex in F ). Then, ⌧ 0 is unfriendly for
S\U , as all vertices in S have infinite degree by Lemma 2.2, but there might
be vertices in the rest of the graph that were made unhappy by flipping F . It
follows from (5) and (7) that the set Y of elements of C\X0 (we will turn our
attention to X0 later) that contain vertices that are unhappy in ⌧ 0 has cardinality
less than , because each vertex in F had less than  opponents in ⌧ .

We now modify ⌧ 0 within Y to obtain a new partition � of G that is unfriendly
for V \(V (

S
X0) [ U). For every component C 2 Y, let U 0 := (U \ V (C)) [ S,

and pick a partition �C of G[S [ V (C)] that extends ⌧ 0 � U 0 and is unfriendly
for V (C)\U 0; such a partition exists by our first induction hypothesis as r(C) <
r(G). Then, for every x 2 V (C) put �(x) := �C(x). Vertices that are not
contained within Y we leave unchanged: for every x 2 V \V (

S
Y) put �(x) :=

⌧ 0(x).
We claim that

� is unfriendly for V \(V (
S
X0) [ U). (9)

Indeed, � is by construction unfriendly for V \(V (
S
X0)[U [S). To see that it

is unfriendly for S\U as well, recall that ⌧ 0 was unfriendly for S\U , and suppose
there is an s 2 S unhappy in �. Since s was happy in ⌧ 0, it follows that s has
d(s) many neighbours within Y, which puts s in S0 as |Y| < . But then by (6)
if s is not given d(s) opponents in X0 by ⌧ , and thus also by �, then s is given
d(s) opponents in each of the  many X↵ with ↵ 2 J that do not contain a
component in Y, a contradiction. This establishes Claim (9).

Finally, we turn our attention to the unhappy vertices in
S
X0. These ver-

tices were happy in ⌧ and thus had an opponent in ⌧ that is lost in �, which
means that they are adjacent to a vertex in F . Observe that

� := max{!,maxr2F a⌧ (r, V (
S
X0))} < . (10)
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Indeed, recall that ! <  by (8). Moreover, by the definition of S1 each vertex
r 2 F ✓ S1 has less than full degree in V (

S
X0), and thus a⌧ (r, V (

S
X0)) 

dX0(r) < dG(r). Since dG(r) =  by (7) the claim follows.
Let H := G[V (

S
X0)[S] and define S00 to be the set of vertices s 2 S0 with

a�(s, V (
S
X0)) < dG(s). Putting Ũ := (U \ V (H)) [ S00 [ S1 we shall find a

partition ⇢ of H with the following properties.

(i) ⇢ is unfriendly for V (H) \ Ũ ;

(ii) ⇢ extends � � Ũ ; and

(iii) for every x 2 V (H) if dH(x) > � then ⇢(x) = �(x).

Intuitively, what ⇢ accomplishes is to repartition the vertices in X0 and part
of the vertices in S0 in such a way that firstly, every vertex in X0 or S is
made happy, and secondly, any vertex in S0 whose partition class we changed
has relatively small degree. The latter condition on the degree will then help
make sure that the happiness of the vertices in

S
X↵ is not a↵ected by the

repartitioning imposed by ⇢.
Before we construct ⇢ let us check that it would indeed allow us to finish the

proof. For this, we modify � within H according to ⇢ to obtain a new partition
� of G: for every x 2 V (H) let �(x) := ⇢(x) and for every x 2 V \V (H) let
�(x) := �(x). The following table summarises the definitions of some of the
partitions of G we have defined so far, and indicates which vertices are happy
in each partition.

X0 C\X0 S0 F S1\F
⌧ X X X ⇥ X composed from the ⇢�

⌧ 0 ? ? X X X obtained from ⌧ by flipping F
� ? X X X X obtained from ⌧ 0 by changes in Y
� X X X X X obtained from � by changes in H

We claim that � is unfriendly for V \U . Indeed, any vertex x 2 V (
S
X0)\U

is clearly happy by condition (i). For a vertex s 2 S\U we distinguish three
cases. If s 2 S1 then s has less that dG(s) neighbours in

S
X0 by the definition

of S1, and thus by (ii) s is happy in � as it was happy in �. If s 2 S00 then, by
the definition of S00 and (9), it had dG(s) opponents outside

S
X0 in �. As �

and � coincide outside
S
X0 and as �(s) = �(s) by (ii), the vertex s is happy

in �. Finally, if s 2 S0\S00 then �(s) = ⇢(s). As s is happy in ⇢ (within H)
by (i) and as � coincides with ⇢ on H, we find that s is happy in � as well (note
that dH(s) = dG(s) since s 2 S0). It remains to check that every vertex in
V \(S [V (

S
X0)[U) is happy too. So consider a vertex x in

S
X↵\U for some

ordinal ↵. Such an x was happy in �, but since we changed the partition of S
we may have made it unhappy in �. This is however not the case: if s 2 S and
�(s) 6= �(s), then by (ii) and (iii) we have s 2 S0 and dG(s) = dH(s)  � < ,
where the last inequality is (10). Thus by (1) s has all its neighbours in

S
X0,

which means that s is not a neighbour of x. In conclusion, x is still happy in �
and this completes the proof that � is unfriendly for V \U .

To finish the proof of the theorem we still need to construct the partition ⇢.
Define A to be the set of all vertices a in H\Ũ with dH(a)  �. Denote by
K the union of the vertex sets of all the components of H[A] that contain an
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unhappy vertex (with respect to �). Observe that such an unhappy vertex must
have been an opponent in ⌧ of some vertex in F . Thus by (10) there are at
most � components of this kind, and as each of them has at most � vertices we
obtain

|K|  �. (11)

By our second induction hypothesis the graph H is pre-partitionable, thus
there is a partition ⇢ of H extending � � Ũ [ (V (H)\K) such that every vertex
in K\Ũ is happy. Clearly, ⇢ satisfies (ii) and (iii).

To see that every vertex x in V (H)\(K [ Ũ) is happy too, which would
complete the proof that (i) is satisfied as well, we note that ⇢ di↵ers from �
only within K, and distinguish two cases. If dH(x)  �, then since x 62 K, its
neighbourhood NH(x) does not meet K by the definition of A, thus � and ⇢
coincide in NH(x). By the definition of K it follows that x was happy in �,
thus it is also happy in ⇢ as its neighbourhood was not repartitioned. If, on the
other hand, dH(x) > �, then x was happy in � because |F | is finite, � is infinite,
and x was happy in ⌧ . But then x is happy in ⇢ by (11) since only vertices in
K were repartitioned while changing � to ⇢.

4 More graphs with unfriendly partitions

In the rest of the paper we shall strengthen Theorem 1.1 by applying Theo-
rem 2.3 to a larger finitely closed class than just F . A proof of Theorem 1.2
will follow as a corollary.

Given a graph G = (V,E), let V1 be the set of all vertices of infinite degree,
and denote by V ⇤ the set of those vertices in V1 that have only finitely many
neighbours in V1. Let W be the class of countable graphs G such that V ⇤(G)
is finite. In particular, W contains all countable graphs G for which V1(G) or
V (G)\V1(G) is finite. Note that W also contains all uncountable graphs G for
which V1(G) is finite, since deleting V1(G) shows that G has rank 1 in W.
Clearly, W is finitely closed. We claim that

Theorem 4.1. Every graph in W is pre-partitionable. In particular, every such
graph has an unfriendly partition.

In order to prove this we will need the following lemma from [1, Lemma 3].

Lemma 4.2. Let G = (V,E) be a countable graph and let U be a subset of V
such that only finitely many vertices in V \U have infinite degree (in G). Then
for every partition ⇡ of G[U ] there exists a partition ⇡0 of G that extends ⇡ and
which is unfriendly for V \U .

Proof of Theorem 4.1. Consider a graph G in W. We will prove that G has an
unfriendly partition. It is easy to modify this proof in order to show that G is
pre-partitionable. The theorem then follows from Theorem 2.3.

First, let us construct an unfriendly partition ⇡ of G[V1\V ⇤]. Observe that
|V ⇤| < 1 implies that every vertex in G[V1\V ⇤] has infinite degree. Pick a
sequence (vi)i2N in which every vertex in V1\V ⇤ appears infinitely often. We
go through this sequence, and if ⇡(vi) has not been defined yet we set ⇡(vi) = 0.
Otherwise, we choose a neighbour y 2 V1\V ⇤ of vi with ⇡(y) still undefined
and set ⇡(y) := 1� ⇡(vi). It is now easy to check that ⇡ is indeed unfriendly.
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Next, Lemma 4.2 yields a partition ⇡0 of G extending ⇡ so that ⇡ is unfriendly
for V (G)\(V1\V ⇤). Since every vertex in V1\V ⇤ already had infinitely many
opponents in ⇡, it follows that ⇡0 is unfriendly for all of V (G).

The countable graphs in W can be characterised as follows.

Proposition 4.3. A countable graph G lies in W if and only if it contains no
comb with all teeth in V ⇤(G).

Proof. Suppose there are graphs in W that contain a comb with all teeth in
V ⇤(G). Then, there is such a graph G that has minimal rank among all those
graphs; let C be a comb in G with all its teeth in V ⇤(G). Clearly, G does not
have rank 0, so there is a finite set S of vertices such that all components of
G� S have rank smaller than r(G). But one of the components contains a tail
of C, contradicting the minimality of r(G).

Conversely, let G be a countable graph not in W. Then there is a component
C0 of G that does not lie in W (otherwise S = ; is a separator as in Definition 2.1
showing that G 2 W). Since C0 /2 W although C0 is countable, there is a vertex
v0 2 V ⇤ in C0. At least one component C1 of C0 � v0 is not in W, and thus
contains a vertex v1 2 V ⇤(G). Let P1 be a v0–v1 path in C1 [ {v0}. Now
recursively for i = 1, 2, . . . , let Ci be a component of Ci�1 � Pi�1 that is not
in W, let vi be a vertex of V ⇤ in Ci and let Pi be a V (Pi�1 \ Ci�1)–vi path in
G[Ci [ Pi�1]. It is not hard to see that

S
i<! Pi is a comb with teeth v0, v1, . . .

in V ⇤.

As remarked earlier, the class U of (countable or uncountable) graphs that
have only finitely many vertices of infinite degree is contained in W. And as in
the proof of Proposition 4.3 we see that any graph not in U contains a comb
whose leaves all have infinite degree; let us call such a comb a brush. Graphs
not containing a brush thus lie in U ✓ W = W, and we obtain Theorem 1.2 as
a corollary of Theorem 4.1:

Corollary 4.4. Every graph not containing a brush has an unfriendly partition.
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