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Abstract

A common generalization of two theorems on the face numbers of Cohen–Macaulay
(CM, for short) simplicial complexes is established: the first is the theorem of Stan-
ley (necessity) and Björner-Frankl-Stanley (sufficiency) that characterizes all possible
face numbers of a-balanced CM complexes, while the second is the theorem of Novik
(necessity) and Browder (sufficiency) that characterizes the face numbers of CM sub-
complexes of the join of the boundaries of simplices.

1 Introduction

A basic invariant of a simplicial complex ∆ is its f -vector, f(∆) = (f−1, f0, . . . , fdim∆),
where fi denotes the number of i-dimensional faces of ∆. Can one characterize the set of all
f -vectors of various interesting families of simplicial complexes?

In the mid-sixties, Kruskal [8] and Katona [7] (independently) provided an answer for
the family of all simplicial complexes. Their result started the still continuing quest for
finding characterizations of the f -vectors of other important subfamilies of complexes. In
particular, Stanley [14] characterized the f -vectors of all Cohen–Macaulay (CM, for short)
simplicial complexes. His theorem was then refined in [15] (necessity) and [2] (sufficiency) to
a characterization of all possible f -vectors of a-balanced CM complexes. More recently, in
connection to complexes endowed with a proper group action, the class of CM subcomplexes
of the join of the boundaries of simplices was considered, and its collection of f -vectors
characterized — see [12] (necessity) and [3] (sufficiency). Our goal here is to provide a
simultaneous and natural generalization of both of these results. We thank Anders Björner
for suggesting that such a generalization might exist.

∗Novik’s research is partially supported by Alfred P. Sloan Research Fellowship and NSF grant DMS-
0801152
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To state our main result we need a bit of notation. The complexes we consider are
full-dimensional subcomplexes of

Λd = Λd(n, a) = Λd(V1, . . . ,Vm, a) := Skeld−1

(

Skela1−1V1 ∗ · · · ∗ Skelam−1Vm

)

. (1)

Here n := (n1, . . . , nm) ∈ Zm
+ and a := (a1, . . . , am) ∈ Zm

+ are m-dimensional integer vectors,
V1, . . . ,Vm are pairwise disjoint sets of sizes n1, . . . , nm, resp., Vi denotes the simplex on
the vertex set Vi, ∗ stands for the join of simplicial complexes, and Skela−1(∆) is the (a−1)-
dimensional skeleton of ∆— the subcomplex of ∆ consisting of all faces of ∆ whose dimension
is strictly smaller than a.

Modulo the results of [2, 14, 15], it is perhaps not so surprising that our characterization
depends on the notion of a multicomplex. Specifically, letX0,X1, . . . ,Xm be pairwise disjoint
sets of variables, X their union, and a0 = ∞. For 0 ≤ i ≤ m, denote by S(Xi, ai) the poset
of all monomials on Xi (ordered by divisibility) of degree at most ai. Let S(X, (∞, a)) be
the product of these posets, and S = Sd(X, (∞, a)) its subset of monomials of degree at
most d: that is, S consists of all monomials µ = µX0µX1 · · ·µXm

of degree no greater than
d, where for 0 ≤ i ≤ m, µXi

is a monomial on Xi of degree no greater than ai. For µ ∈ S
and Y ⊆ X, we also denote by µY the part of µ supported in Y .

The main result of this paper is the following. We postpone the discussion of the relevant
definitions, including those of the h- and F -vectors, to the next section.

Theorem 1.1. Let d be a positive integer and let h = (h0, . . . , hd) ∈ Zd+1. If a =
(a1, . . . , am) ∈ Zm and n = (n1, . . . , nm) ∈ Zm are such that ni ≥ ai > 0 for 1 ≤ i ≤ m and
∑m

i=1 ai ≥ d, then the following are equivalent:

1. h is the h-vector of a (d− 1)-dimensional Q-CM subcomplex of Λd = Λd(n, a),

2. h is the h-vector of a (d− 1)-dimensional shellable subcomplex of Λd = Λd(n, a),

3. h is the F -vector of a multicomplex M ⊆ Sd(X, (∞, a)), where |X0| = (
∑m

i=1 ai) − d
and |Xi| = ni − ai for all 1 ≤ i ≤ m,

4. h is the F -vector of a (0)-compressed multicomplex M ⊆ Sd(X, (∞, a)), where |X0| =
(
∑m

i=1 ai)− d and |Xi| = ni − ai for all 1 ≤ i ≤ m.

In the case of
∑m

i=1 ai = d, the full-dimensional subcomplexes of Λd are precisely the a-
balanced complexes of [2, 15] and Theorem 1.1 reduces to (the f -vector rather than flag
f -vector version of) [2, Theorem 1], while in the case of ni − ai ∈ {0, 1} for all 1 ≤ i ≤ m,
one obtains complexes considered in [3, 12] and recovers [3, Cor. 1].

A pure simplicial complex is completely balanced if it is a-balanced with a = (1, 1, . . . , 1).
It is worth remarking that for completely balanced CM complexes, the main result of [6]
turns Theorem 1.1 into a numerical characterization of the h-numbers of such complexes.
Similarly, in the case of ni − ai ∈ {0, 1} for all 1 ≤ i ≤ m, the Clements-Lindström theorem
[4] combined with Theorem 1.1 provides a numerical characterization of the h-numbers of
such CM complexes. However, for a general a, no numerical characterization of the F -vectors
of sub-multicomplexes of Sd(X, (∞, a)) is known at present.
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Question 1.2. Can one use the combinatorial characterization of the h-numbers given by
Theorem 1.1 to arrive at a numerical characterization of the h-numbers?

The rest of the paper is structured as follows. Section 2 contains basics on simplicial
complexes and Stanley-Reisner rings. The implication 1. → 3. is proved in Section 3. The
main technique employed in the proof of this part is the study of combinatorics of the (non-
generic) initial ideal of the Stanley-Reisner ideal of the complex in question. The notion of
(0)-compressed multicomplexes is introduced in Section 4. The same section contains the
proof of 3. → 4. part. The implication 4. → 2. is the most technical one and is established
in Sections 5 and 6. Finally, the implication 2. → 1. follows from the well-known fact [16,
Thm. III.2.5] that every shellable complex is CM. The flavor of the proofs of 3. → 4. and
4.→ 2. is motivated by and somewhat similar to the proofs in [2].

2 Preliminaries

Here we briefly review several notions and results related to simplicial complexes and Stanley-
Reisner rings. An excellent reference to this material is Stanley’s book [16].

Complexes and multicomplexes. A simplicial complex ∆ on the vertex set V is a
collection of subsets of V that is closed under inclusion. (We do not require that ∆ contains
all singletons {v} for v ∈ V.) The elements of ∆ are called its faces. For τ ∈ ∆, set
dim τ := |τ | − 1 and define the dimension of ∆, dim∆, as the maximal dimension of its
faces. The facets of ∆ are maximal (under inclusion) faces of ∆. We say that ∆ is pure if
all of its facets have the same dimension. The f -vector of ∆ is f(∆) = (f−1, f0, . . . , fd−1),
where d − 1 = dim∆ and fj is the number of j-dimensional faces of ∆. It is sometimes
more convenient to work with the h-vector, h(∆) = (h0, h1, . . . , hd), that carries the same
information as f(∆) and is defined by

∑d

i=0 hix
d−i =

∑d

i=0 fi−1(x− 1)d−i.
Similarly, a multicomplex M on the set of variables X is a collection of monomials sup-

ported in X that is closed under divisibility. The F -vector of a multicomplex M is the vector
F (M) = (F0, F1, . . .), where Fj = Fj(M) := |{µ ∈ M : deg µ = j}|. Thus a simplicial
complex can be naturally identified with a multicomplex all of whose elements are squarefree
monomials. Under this identification, the f -vector of a simplicial complex differs from its
F -vector only by a shift in the indexing.

If ∆1 and ∆2 are simplicial complexes on disjoint vertex sets V1 and V2, then their join
is the following simplicial complex on V1 ∪V2: ∆1 ∗∆2 := {τ1 ∪ τ2 : τ1 ∈ ∆1, τ2 ∈ ∆2}.

Shellability. Let ∆ be a pure (d − 1)-dimensional simplicial complex. For τ ∈ ∆, denote
by τ the simplex τ together with all its faces. A shelling of ∆ is an ordering (τ1, τ2, . . . , τs)
of its facets such that for all 1 < i ≤ s, the complex τ i ∩ (∪j<iτ j) is pure of dimension d− 2.
Such an ordering is then called a shelling. Equivalently, L = (τ1, τ2, . . . , τs) is a shelling if
for every 1 ≤ i ≤ s, the face RL(τi) := {v ∈ τi : τi − {v} ⊆ τj for some j < i} is the
unique minimal face of τi− (∪j<iτ j), called the restriction of τi. It was realized by McMullen
[10] that the h-vector of a shellable complex ∆ can be easily computed from its shelling
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L = (τ1, τ2, . . . , τs):
hi = |{τj : |RL(τj)| = i}| , i = 0, 1, . . . , d. (2)

Stanley-Reisner rings and Cohen-Macaulay complexes. Let ∆ be a simplicial com-
plex on the vertex set V, and let X̃ = {xv : v ∈ V} be the corresponding set of variables.
Fix a field k of characteristic 0 (e.g. Q), and consider k[X̃] — the polynomial ring over k

in variables X̃ with the grading deg x = 1 for x ∈ X̃. The Stanley-Reisner ideal of ∆, I∆, is
the ideal generated by the squarefree monomials corresponding to non-faces:

I∆ = (xv1 · · ·xvj : {v1, . . . , vj} /∈ ∆).

The Stanley-Reisner ring (also known as the face ring) of ∆ is k[∆] := k[X̃]/I∆. This ring
is graded, and we denote by k[∆]i its ith homogeneous component.

If ∆ is a (d− 1)-dimensional simplicial complex, then by [16, Theorem II.1.3], the Krull
dimension of k[∆] (i.e., the maximum number of algebraically independent elements over k
in k[∆]) is d. Moreover, since k is infinite and k[∆] is generated (as an algebra) by k[∆]1,
it follows from the Noether Normalization Lemma that there exists a sequence θ1, . . . , θd ∈
k[∆]1 of d linear forms such that k[∆]/(θ1, . . . , θd) is a finite-dimensional k-space. Such a
sequence is called a linear system of parameters (l.s.o.p.) for k[∆].

A simplicial (d − 1)-dimensional complex ∆ is k-Cohen-Macaulay (CM, for short) if for
every l.s.o.p. θ1, . . . , θd, one has

dimk (k[∆]/(θ1, . . . , θd))i = hi(∆) for all 0 ≤ i ≤ d. (3)

We refer our readers to Chapter II of [16] for several other equivalent definitions of CM
complexes. One of them is a result of Reisner [13] that Cohen-Macaulayness of a complex
is equivalent to vanishing of certain simplicial homologies. Some immediate corollaries of
Reisner’s result are (i) a CM complex is pure, and (ii) any triangulated sphere is CM. In
addition, one can use Reisner’s criterion to show that all shellable complexes are CM.

Revlex order and initial ideals. In several parts of the proof of Theorem 1.1 we use the
notion of the (homogeneous) reverse lexicographic order (on sets and on monomials), which
we review now. Fix a total order ≻ on V. For S, T ⊆ V, we write S ≻rl T (or simply
S ≻ T ), if |S| = |T | and the least element of (S−T )∪ (T −S) w.r.t. ≻ is in T . For instance,
if 1 ≻ 2 ≻ 3 ≻ 4, then {1, 2} ≻ {1, 3} ≻ {2, 3} ≻ {1, 4} ≻ {2, 4} ≻ {3, 4}. Similarly,
for a total order ≻ on X̃, and two monomials µ1 and µ2 on X̃, µ1 is revlex larger than µ2

if deg µ1 = deg µ2 and the least variable (w.r.t ≻) that appears in µ1/µ2 has a negative
exponent. Thus, if x1 ≻ x2 ≻ x3, then x

2
1 ≻ x1x2 ≻ x22 ≻ x1x3 ≻ x2x3 ≻ x23.

If ≻ is a fixed order on X̃ and I is a homogeneous ideal of k[X̃], then denote by In(I)
the reverse lexicographic initial ideal of I — the monomial ideal generated by the leading
(w.r.t revlex order) monomials of all homogeneous elements of I ([5, Section 15.2]).

3 From CM complexes to multicomplexes

Proof outline. Given a (d−1)-dimensional CM complex ∆ ⊆ Λd, how does one construct a
multicomplex M∆ ⊆ S = Sd(X, (∞, a)) whose F -vector equals the h-vector of ∆? The idea
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(introduced in [12]) is very simple: instead of working with the ideal I∆, consider a suitably
chosen graded automorphism g : k[X̃] → k[X̃] and the ideal gI∆ — the image of I∆ under
g. Fix a total order ≻ on X̃, and let L ⊂ X̃ be the set of d last (w.r.t. ≻) variables of X̃.
Then J∆ := gI∆+ (x : x ∈ L) is a homogeneous ideal, and hence In(J∆) — the revlex initial
ideal of J∆ — is well-defined.

Define M∆ to be the set of all monomials on X̃ that do not belong to In(J∆). Then M∆

is a multicomplex on X := X̃−L. This follows immediately from the fact that In(J∆) is an
ideal and that all x ∈ L are elements of J∆. What are the F -numbers ofM∆? If g is “generic
enough” so that {g−1(x) : x ∈ L} is an l.s.o.p. for k[∆] = k[X̃]/I∆, then the elements of L
form an l.s.o.p. for k[X̃]/gI∆. As k[X̃]/gI∆ is an isomorphic image of k[∆], eq. (3) yields
that dimk(k[X̃]/J∆)i = hi(∆) for all 0 ≤ i ≤ d. Theorem 15.3 of [5] asserting that M∆ is
a k-basis for k[X̃]/J∆ then implies that Fi(M∆) = dimk(k[X̃]/J∆)i = hi(∆). On the other
hand, by choosing g to be not completely generic but in a way that “respects the structure”
of Λd, certain monomials can be forced to be in In(J∆), and hence not in M∆, ensuring
that M∆ a subset of S. Specifying ≻ and g, and verifying that for a given CM subcomplex
∆ ⊆ Λd the above procedure does produce a multicomplex M∆ ⊆ S with F (M∆) = h(∆) is
the goal of this section.

Specifying ≻. Recall the definition of Λd = Λd(n, a) = Λd(V1, . . . ,Vm, a), see eq. (1). It
is a simplicial complex on V = ∪m

i=1Vi, where |Vi| = ni ≥ ai. Thus for each 1 ≤ i ≤ m,
we can split Vi into two disjoint sets: Vi of size ni − ai and Wi of size ai. Denote the set of
variables corresponding to vertices in Vi by Xi and to vertices in Wi by Yi, 1 ≤ i ≤ m. Let
Xm+1 := ∪m

i=1Yi and X̃ := ∪m+1
i=1 Xi. Fix any total order ≻ on X̃ with the property that for

x ∈ Xi and y ∈ Xj, x ≻ y if 1 ≤ i < j ≤ m+ 1. (In other words, the order ≻ first lists the
elements of X1, then those of X2, . . . ,Xm,Xm+1.)

Defining g. For this part we replace k by a larger field K — the field of rational functions
over k in indeterminates ∪m+1

i=1 {αi
xy : x, y ∈ Xi} ∪ ∪m

i=1{β
i
xy : x ∈ Xi, y ∈ Yi}, and perform

all computations inside K[X̃] rather than k[X̃]. In particular, we regard I∆ and IΛd
as ideals

of K[X̃].
Let Ai = (αi

xy)x,y∈Xi
(i = 1, . . . , m) be an (ni − ai) × (ni − ai)-matrix whose rows

and columns are indexed by elements of Xi, let Bi = (βi
xy)x∈Xi,y∈Yi

(i = 1, . . . , m) be an
(ni − ai)× ai-matrix whose rows are indexed by elements of Xi and columns by Yi, and let
C = (αm+1

xy )x,y∈Xm+1 be a (
∑m

i=1 ai)× (
∑m

i=1 ai)-matrix whose rows and columns are indexed
by elements of Xm+1. Define A to be a block-diagonal square matrix that has A1, A2, . . . , Am

on the main diagonal and zeros everywhere else. Similarly, let B be a block-diagonal (but not
square) matrix that has blocks B1, . . . , Bm on the main diagonal and zeros everywhere else.
Then ABC is a well-defined matrix whose rows are indexed by ∪m

i=1Xi and whose columns
are indexed by Xm+1. This leads to the main definition of this section — a square matrix g
whose rows and columns are indexed by X̃. We define

g−1 :=

[

−A ABC
O C

]

, so that g =

[

−A−1 B
O C−1

]

,

where O stands for the zero-matrix. As g is invertible, it defines a graded automorphism of
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K[X̃] via g(x) =
∑

y∈X̃ gxyy.

Let L be the set of least (w.r.t. ≻) d variables of X̃. Since |Xm+1| =
∑m

i=1 ai ≥ d,
L ⊆ Xm+1. The following two lemmas are the main steps in the proof of the implication
1. → 3. of Theorem 1.1. For subsets G,H of X̃, we denote by g−1

G,H the submatrix of g−1

whose rows are indexed by G and columns by H .

Lemma 3.1. If τ is an arbitrary facet of Λd and H ⊂ X̃ is the corresponding set of variables,
then the submatrix g−1

H,L is nonsingular.

Lemma 3.2. The ideal In(gIΛd
) contains all monomials of degree ai + 1 that are supported

in Xi for all 1 ≤ i ≤ m.

Proof of 1. → 3.: Using the above notation, let X0 = Xm+1 − L, X = ∪m
i=0Xi, and define

M∆ as in the proof outline. Since ∆ is a subcomplex of Λd, I∆ ⊇ IΛd
. Thus, J∆ ⊇ JΛd

⊇ gIΛd
,

and hence In(J∆) ⊇ In(gIΛd
), which together with Lemma 3.2 implies that for i = 1, . . . , m,

no monomial of degree ai + 1 that is supported in Xi belongs to M∆. Since M∆ is a
multicomplex, it follows that M∆ ⊆ S(X, (∞, a)).

Lemma III.2.4(a) of [16] provides a criterion for when a set of linear forms of k[∆] is an
l.s.o.p. Since ∆ is a pure full-dimensional subcomplex of Λd, every facet of ∆ is a facet of
Λd, and we infer from this criterion and Lemma 3.1 that {g−1(x) : x ∈ L} is an l.s.o.p. for
k[∆]. As explained in the proof outline, this yields that F (M∆) = h(∆). �

Proof of Lemma 3.1: We need to check that det g−1
H,L 6= 0 for every subset H ⊂ X̃

corresponding to the vertex set of a facet of Λd. For 1 ≤ i ≤ m, let Hi = H ∩ Xi and
H ′

i = H ∩Yi. It follows from the definition of Λd that the set Hi ∪H
′
i corresponds to a face

of Skelai−1(V i), and hence |Hi|+ |H ′
i| ≤ ai = |Yi|.

Write I = IXm+1,Xm+1 for the identity matrix. Since L ⊆ Xm+1, we have

g−1
H,L =

[

ABC
C

]

H,L

=

([

AB
I

]

C

)

H,L

,

where AB is a block-diagonal (non-square) matrix whose ith block, AiBi, has rows indexed
by elements of Xi and columns by elements of Yi, 1 ≤ i ≤ m. By the Cauchy-Binet formula,

det g−1
H,L =

∑

T ⊆ Xm+1,

|T | = |H| = d

det

[

AB
I

]

H,T

· detCT,L. (4)

We claim that the determinant of
»

AB

I

–

H,T

vanishes if T 6⊇ H ′
i or if |T ∩Yi| > |Hi|+ |H ′

i|

for some i = 1, . . . , m. Indeed, in the latter case, the columns of
»

AB

I

–

H,T∩Yi

are linearly

dependent, while in the former case, IH′
i,T

contains a row of zeros. Thus eq. (4) yields

det g−1
H,L =

∑

T = ∪m
i=1(Ti ∪ H′

i)
Ti ⊆ Yi − H′

i, |Ti| = |Hi|

det(A1B1)H1,T1 · . . . · det(AmBm)Hm,Tm
· detCT,L. (5)
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The sum on the right-hand-side of (5) is not empty: this is because |Hi|+ |H ′
i| ≤ ai = |Yi|

for all 1 ≤ i ≤ m. Each of its summands is a non-zero polynomial in the indeterminates
(αj

xy)x,y∈Xj
, 1 ≤ j ≤ m+1, and (βj

xy)x∈Xj ,y∈Yj
, 1 ≤ j ≤ m. Moreover, there are no cancella-

tions between different summands as for two sets T 6= T ′, no monomial in (αm+1
xy )x,y∈Xm+1 that

appears in the expansion of detCT,L appears in the expansion of detCT ′,L. Thus det g
−1
H,L 6= 0.

�

To complete the proof of 1. → 3., it only remains to verify Lemma 3.2. Its proof is an
easy consequence of the structure of g and a few known facts about revlex (generic) initial
ideals.

Proof of Lemma 3.2: Fix 1 ≤ i ≤ m, and let I = I(i) ⊂ K[X̃] be the ideal generated by
all squarefree monomials of degree ai + 1 supported in Xi ∪Yi. Since, as follows from the
definition of Λd, I ⊆ IΛd

, and hence In(gI) ⊆ In(gIΛd
), to prove the lemma it is enough to

show that In(gI) contains all monomials of degree ai + 1 supported in Xi.
By definition of g, g(x) =

∑

y∈Xi
(−A−1

i )xyy if x ∈ Xi, while g(x) =
∑

y∈Xi
βi
xyy +

∑

y∈Xm+1
(C−1)xyy if x ∈ Yi, and so all monomials that belong to In(gI)ai+1 are supported

in Xi∪Xm+1. Consider a specialization of g, g̃, obtained by replacing all (C−1)xy for y /∈ Yi

with zero. Recall that any element of Xi is ≻-larger than any element of Xm+1 ⊇ Yi. Thus
g̃ induces an automorphism of K[Xi ∪Yi] that is generic in the sense of Theorem 15.18 of
[5] and the definition following it. Since charK = 0, |Yi| = ai, and Iai+1 is the K-span of all
squarefree monomials on Xi∪Yi of degree ai+1, it then follows, e.g., from [1, Cor. 1.6], that
In(g̃I)ai+1 is the K-span of all monomials of degree ai+1 supported in Xi. Finally, since for
every minimal generator of I, and hence also for every polynomial ψ ∈ Iai+1, all monomials
that appear in the expansion of g(ψ) − g̃(ψ) involve some elements of Xm+1, and thus are
revlex-smaller than any monomial of In(g̃I)ai+1, we infer that In(gI)ai+1 = In(g̃I)ai+1. �

Question 3.3. Does the implication 1.→ 3. continue to hold if one relaxes the condition of
h being the h-vector of a Q-CM subcomplex of Λd to being the h-vector of a k-CM subcomplex
for some field k of an arbitrary (rather than zero) characteristic?

4 Compression

To move from multicomplexes to shellable complexes, we use a generalization of the com-
pression method of Macaulay [9]. It allows one to replace a general multicomplex with a
more structured multicomplex having the same F -vector. This follows [2], whose generaliza-
tion of Macaulay’s theorem to colored multicomplexes we extend with our specialized notion
of “(0)-compression,” and [3] (which uses a different generalization due to Clements and
Lindström, [4]).

As in the introduction, let X0,X1, . . . ,Xm be pairwise disjoint finite sets of variables and
let X = ∪m

i=0Xi. Let a = (a1, a2, . . . , am) be an integer vector and set S = Sd(X, (∞, a)).
Fix a total order ≻ on X such that x ≻ y if x ∈ Xi and y ∈ Xj with i < j. Note that this
is distinct from the order used in the proof of 1.→ 3. in the previous section! In particular,
all of the elements of X0 occur before those in Xi for i > 0, as opposed to after.
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Let M ⊆ S be a multicomplex and suppose that 1 ≤ i ≤ m. Then M is called (0, i)-
compressed if whenever µ ∈M and µ′ is a monomial on X such that

1. deg(µ′) = deg(µ),

2. µX−(X0∪Xi) = µ′
X−(X0∪Xi)

, and

3. µ′
X0∪Xi

≻ µX0∪Xi
,

then µ′ ∈ M . If M is (0, i)-compressed for each integer i with 1 ≤ i ≤ m, then M is called
(0)-compressed.

It follows from a result of Mermin and Peeva [11, Theorem 4.1] that if m = 1, so that S is
the set of monomials µ of degree no greater than d on X0 ∪X1 with deg(µX1) ≤ a1, then all
possible F -vectors of multicomplexes in S are obtained by (0)-compressed multicomplexes.
In this case, it simply means that for M a multicomplex in S, the set containing the first
Fi(M) elements of S in degree i for each i is a multicomplex. We may use this result to
obtain the following theorem, which specializes to 3.→ 4.

Theorem 4.1. Let M ⊆ Sd(X, (∞, a)) be a multicomplex. Then there exists a multicomplex
M ′ ⊆ Sd(X, (∞, a)) such that M ′ is (0)-compressed and F (M ′) = F (M).

Proof: For M a multicomplex in S and 1 ≤ i ≤ m, let M(i) = {µX−(X0∪Xi) : µ ∈ M}. For
ν ∈M(i), let Mν be the set of monomials µ in X0∪Xi such that µν ∈M . Observe that Mν

is a multicomplex. In particular, by [11] the set M ′
ν containing the first Fj(Mν) elements of

Sd(X0 ∪Xi, (∞, ai)) of degree j for each j ≤ d is a multicomplex.
Define Ci(M) := ∪ν∈M(i)M

′
νν. Then Ci(M) is (0, i)-compressed and F (Ci(M)) = F (M).

We next show that Ci(M) is a multicomplex.
Suppose µν ∈ Ci(M) where ν is supported inX−(X0∪Xi) and µ is supported inX0∪Xi.

Any divisor of µν is of the form µ′ν ′ where ν ′ and µ′ are supported in X − (X0 ∪Xi) and
X0 ∪Xi, respectively. Then ν

′|ν, and as M is a multicomplex, Mν ⊆Mν′ . Thus M
′
ν ⊆M ′

ν′ .
In particular, since µ ∈M ′

ν , µ ∈M ′
ν′ . Finally, since µ

′|µ andM ′
ν′ is a multicomplex, µ′ ∈M ′

ν′

and µ′ν ′ ∈ Ci(M).
Let mM =

∏

µ∈M µ. It is immediate from the definition that deg(mM) = deg(mCi(M)) and
mCi(M) � mM , with equality if and only if Ci(M) =M , in which caseM is (0, i)-compressed.

To complete the proof we apply Ci repeatedly to obtain our (0)-compressed multicomplex.
LetM =M0 and inductively defineMi+1 = Cj(Mi), where 1 ≤ j ≤ m and i+1 ≡ j mod m.
Then mM0 � mM1 � mM2 � · · · . As this sequence cannot increase indefinitely there must be
some k such that mMk

= mMj
for all j > k. In particular Ci(Mk) =Mk for each i = 1, . . . , m,

and so Mk is a (0)-compressed multicomplex. �

5 From multicomplexes to shellable complexes

We are now in a position to lay the groundwork for our proof of the implication 4. → 2.
in Theorem 1.1. Throughout this section and the next fix V = V1 ∪ V2 ∪ · · · ∪ Vm,
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a = (a1, a2, . . . , am) a non-negative integer vector with ai ≤ |Vi|, and 1 ≤ d ≤
∑

ai.
Let n = |V|. For brevity let Λ = Λd(V1,V2, . . .Vm, a). Let fac(Λ) denote the set of
facets of Λ. Order the elements of V such that if v ∈ Vi and v′ ∈ Vj with i < j, then
v ≻ v′. Let X = X0 ∪ X1 ∪ · · · ∪ Xm, where |Xi| = |Vi| − ai for i = 1, . . . , m and
|X0| = (

∑m

i=1 ai) − d. Order the elements of X such that x ≻ x′ if x ∈ Xi, x
′ ∈ Xj and

i < j, and let S = Sd(X, (∞, a)).

Outline of 4. → 2. The structure of the proof is as follows: first, we let Lex be the listing
of the facets of Λ in the revlex order, i.e, Lex = (τ1, τ2, . . .) where τ1 ≻ τ2 ≻ · · · , and show
in Lemma 5.4 that this is a shelling of Λ. In doing so we explicitly determine its restriction
function RLex. We then establish the following theorem, which we prove in Section 6. The
implication 4.→ 2. in Theorem 1.1 follows (see Corollary 5.2).

Theorem 5.1. There exists a bijection Φ : fac(Λ) → S such that for each τ ∈ fac(Λ),
deg(Φ(τ)) = |RLex(τ)|, and whenever RLex(τ) * γ ⊂ τ , there is a facet τ ′ of Λ, divisor µ′′

of µ = Φ(τ) and integer i such that

(a) γ ⊂ τ ′,

(b) τ ′ ≻ τ ,

(c) deg(Φ(τ ′)) = deg(µ′′),

(d) Φ(τ ′)X0∪Xi
� µ′′

X0∪Xi
,

(e) Φ(τ ′)X−(X0∪Xi) = µ′′
X−(X0∪Xi)

.

Corollary 5.2. Let M be a (0)-compressed multicomplex in S and Γ the simplicial complex
whose facets are exactly Φ−1(M). Then Γ is shellable, and h(Γ) = F (M).

Proof: Since deg(Φ(τ)) = |RLex(τ)|, by eq. (2) it suffices to show that by putting the
elements of Φ−1(M) in revlex order we obtain a shelling of Γ whose restriction function is
simply the restriction of RLex to Φ−1(M).

First, we note that there is no facet τ ′ ≻ τ of Γ containingRLex(τ): indeed, by Lemma 5.4,
Lex is a shelling of Λ and each facet of Γ is a facet of Λ. On the other hand, suppose
RLex(τ) * γ ⊂ τ for some facet τ of Γ. Let τ ′ and µ′′ be the facet of Λ and divisor of
µ = Φ(τ) given by Theorem 5.1. Since µ′′ divides µ, and µ ∈ M , µ′′ ∈ M . Then, by
properties (c), (d) and (e), Φ(τ ′) must be in M , as M is (0)-compressed. In particular, τ ′ is
a facet of Γ, contains γ and occurs earlier than τ in the revlex order. Thus RLex(τ) is the
unique minimal face of τ − (∪τ ′≻τ, τ ′∈Φ−1(M)τ ′). �

The Shelling. Recall our definition of the restriction function, RLex(τ) = {v ∈ τ : τ −v ⊆
τ ′ for some τ ′ ≻ τ}. For v ∈ τ , any other facet of Λ containing τ−v is of the form (τ−v)∪w
for some w /∈ τ , and occurs earlier than τ if and only if w ≻ v. In other words, the elements
of RLex(τ) are precisely those v ∈ τ such that we may “swap” v for some w ≻ v, w /∈ τ ,
without leaving Λ.

9



Which vertices are these? To start, there must be some w /∈ τ with w ≻ v. Now, w ∈ Vi

for some i; if |τ ∩ Vi| = ai, (τ − v) ∪ w may contain too many elements of Vi and thus
not be in Λ. To distinguish such Vi, we define full(τ) = {i : |τ ∩Vi| = ai}; that is, full(τ)
is the collection of indices of sets Vi from which τ contains the maximum allowed number
of vertices (so τ ’s intersection with these sets is “full”). Let Gap(τ) be the earliest element
of V which is in neither τ nor any Vi with i ∈ full(τ), if such an element exists; then if
Gap(τ) ≻ v, we may take w = Gap(τ). The set of such v’s forms a “tail” of τ ,

tail(τ) := {v ∈ τ : v ≺ Gap(τ)}.

If every element of V − τ is contained in some Vi with i ∈ full(τ), set tail(τ) = ∅.
On the other hand, suppose the only w ≻ v which are not in τ are in Vi where i ∈ full(τ).

Then (τ − v) ∪ w is in Λ if and only if w and v are both in Vi. This case occurs when v
occurs after the first element of Vi not in τ . Hence we let fgap(τ, i) = max≻(Vi − τ) be the
“first gap” in Vi ∩ τ , for each i ∈ full(τ) such that Vi ∩ τ 6= Vi. Let

low(τ) := {v ∈ V : v ∈ Vi, i ∈ full(τ), Vi ∩ τ 6= Vi, and v ≺ fgap(τ, i)}

be the “lower” part of τ in the segments of the partition it intersects maximally. Then
RLex(τ) = low(τ) ∪ tail(τ).

Example 5.3. Suppose V = V1 ∪V2 ∪V3, where V1 = {v11, v
1
2, v

1
3, v

1
4}, V2 = {v21, v

2
2, v

2
3},

and V3 = {v31, v
3
2, v

3
3}, and let a = (2, 2, 1). Order V such that vsj ≻ vti if either s < t or

s = t and j < i. We depict V pictorially, with columns corresponding to the parts Vi of our
partition. The order reads top to bottom, left to right.

Taking d = 4, τ = {v11, v
1
4, v

2
2, v

3
2} is a facet of Λ.

The first and third columns are “full”; i.e., full(τ) = {1, 3}. So Gap(τ) is the first missing
element of V2, v

2
1, and tail(τ) = {v22, v

3
2}.
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On the other hand, low(τ) = {v14, v
3
2}, the lower elements of the full columns.

Now consider low(τ) ∪ tail(τ):

Observe that this is the unique minimal subset of τ that is contained in no facet occuring
earlier in the reverse lexicographic order.

Lemma 5.4. For every facet τ of Λ, RLex(τ) is the unique minimal face of τ − (∪τ ′≻ττ ′).
In particular, Lex is a shelling of Λ.

Proof: Let τ be a facet of Λ. As RLex(τ) = {v ∈ τ : τ − v ⊆ τ ′ for some τ ′ ≻ τ}, any face
of τ not containing RLex(τ) is in (∪τ ′≻ττ ′), so every face of τ−(∪τ ′≻τ τ ′) contains RLex. Thus
it suffices to show that RLex ∈ τ − (∪τ ′≻ττ ′); that is, there is no facet τ ′ ≻ τ of Λ containing
RLex = low(τ) ∪ tail(τ).

Suppose, in order to obtain a contradiction, that there is such a facet τ ′. As τ ′ ≻ τ , there
is vertex v such that v ∈ τ , v /∈ τ ′, and τ and τ ′ agree on all vertices after v. Then, since
τ and τ ′ contain the same number of elements, there must be some w ≻ v such that w ∈ τ ′

and w /∈ τ .
Can it happen that v ≺ Gap(τ)? No, since then we would have v ∈ tail(τ) ⊆ τ ′, a

contradiction. Thus v ≻ Gap(τ). Now let L be the set of elements in V strictly less than
v, and U be the set of elements of V strictly greater than v. In particular, we see that
|τ ′ ∩ U | = |τ ∩ U |+ 1. Hence there must be some i such that |Vi ∩ τ ∩ U | < |Vi ∩ τ

′ ∩ U |.
For such an i, τ cannot contain all of Vi ∩ U , and so since v ≻ Gap(τ), we must have

i ∈ full(τ). If v ∈ Vi, then there is an element of Vi that is not in τ and is greater than
v, and hence as i ∈ full(τ), v ∈ low(τ). But then v ∈ τ ′, a contradiction. Thus v /∈ Vi. In
particular, τ ∩Vi = (τ ∩Vi ∩ L) ∪ (τ ∩Vi ∩ U), and we obtain that

|τ ′ ∩Vi| = |τ ′ ∩Vi ∩ L|+ |τ ′ ∩Vi ∩ U | > |τ ∩Vi ∩ L|+ |τ ∩Vi ∩ U | = ai,

which is again a contradiction. Therefore, no such τ ′ may exist. �
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6 The Bijection

In this section we complete the proof of our main theorem — Theorem 1.1. To do this, it
only remains to verify Theorem 5.1 on the existence of Φ. Our bijection Φ is a generalization
of one used in [2], and is similarly built starting from a map corresponding to what in our
notation is the case m = 1, d = a1 (i.e., V = V1 and X = X1). Let V be a finite set of
vertices, a ≤ |V | a positive integer and X a set of |V | − a variables. Put some total order ≻
on V and label its elements v1 ≻ v2 ≻ · · · accordingly. For τ an a-subset of V , we may write
τ = {v1, v2, . . . , vt, vi1, vi2 , . . . , vis} where t, s ≥ 0, i1 > t + 1, and t+ s = a. Then define

φ(V,X)(τ) = xi1−(t+1)xi2−(t+2) · · ·xis−(t+s).

Thus φ(V,X) maps the set of a-subsets of V into the set of monomials in X with degree no
greater than a. On the other hand, for µ a monomial in X with degree no greater than a,
we may write µ = xi1 · · ·xis with i1 ≤ i2 ≤ . . . ≤ is and define

σ(X, V )(µ) = {v1, v2, . . . , va−s},

ρ(X, V )(µ) = {vi1+a−(s−1), vi2+a−(s−2), . . . , vis+a},

ψ(X, V )(µ) = σ(X, V )(µ) ∪ ρ(X, V )(µ).

Then ψ(X, V ) maps the set of monomials in X of degree no greater than a into the set of
a-subsets of V . It is easy to see that φ(V,X) and ψ(X, V ) are inverse to each other. The
usefulness of these bijections is explained by the following lemma.

Lemma 6.1. Let τ, τ ′ be a-subsets of V taken to µ, µ′, respectively, by φ(V,X). If τ ′ ≻ τ and
deg(µ′) ≤ deg(µ), then there is a divisor µ′′ of µ such that deg(µ′′) = deg(µ′) and µ′ � µ′′.

Proof: Write
µ = xi1 · · ·xis and µ′ = xi′1 · · ·xi′s′ ,

with i1 ≤ i2 ≤ . . . ≤ is and i
′
1 ≤ i′2 ≤ . . . ≤ i′s′ , so that

τ = {v1, v2, . . . , va−s} ∪ {vi1+a−(s−1), vi2+a−(s−2), . . . , vis+a},

τ ′ = {v1, v2, . . . , va−s′} ∪ {vi′1+a−(s′−1), vi′2+a−(s′−2), . . . , vi′
s′
+a}.

Now, as τ ′ ≻ τ , there is some vj such that vj ∈ τ , vj /∈ τ ′, and τ , τ ′ agree on all vertices
after vj . In particular, j > a− s′ ≥ a − s (as vj /∈ τ ′ and s′ ≤ s). Thus j = is−r + (a− r),
for some 0 ≤ r < s. Since τ and τ ′ agree after vj , the last r elements of each are the same,
i.e, r ≤ s′ and for l = 1, . . . r,

is−r+l + a− (r − l) = i′s′−r+l + a− (r − l), and so

is−r+l = i′s′−r+l.

On the other hand, as vj /∈ τ ′, in the case of r < s′, we also have

i′s′−r + a− r < j = is−r + a− r, hence i′s′−r < is−r.

12



It follows that if we let µ′′ =
∏s

l=s−s′+1 xil , then deg(µ′′) = s′ = deg(µ′) and µ′ � µ′′. �

We now build Φ from φ. Let τ ∈ fac(Λ), 1 ≤ i ≤ m, and consider τ ∩ Vi. We would
like to apply φ(Vi,Xi), but we note that τ ∩ Vi may contain fewer than ai elements, in
which case it is not in the domain. So define τ [i; ai] to be the reverse lexicographically first
ai-subset of Vi containing τ ∩Vi, and set Φi(τ) := φ(Vi,Xi)(τ [i; ai]).

Next, let V[τ ] be the subset of V which contains the first ai − deg(Φi(τ)) elements of
Vi for 1 ≤ i ≤ m, and let τ [0] = τ ∩V[τ ]. Our aim is to apply φ(V[τ ],X0) to τ [0]. To do
so we must show that τ [0] is in the domain. This is done in Lemma 6.3. We then define
Φ0(τ) := φ(V[τ ],X0)(τ [0]), and finally set

Φ(τ) :=
m
∏

i=0

Φi(τ).

Example 6.2. Return to the Λ and τ of Example 5.3. The corresponding set of variables
is X = X0 ∪ X1 ∪ X2 ∪ X3 where |X1| = 2, |X2| = 1, |X3| = 2 and |X0| = 1. Label
these X0 = {w}, X1 = {x1, x2}, X2 = {y}, X3 = {z1, z2}, ordered accordingly. Then
τ [1; 2] = τ ∩V1 = {v11, v

1
4}, and so Φ1(τ) = x2. Similary τ [3; 1] = τ ∩V3 = {v32}, and hence

Φ3(τ) = z1. On the other hand, τ [2; 2] = {v21, v
2
2}, so Φ2(τ) = 1. Thus V[τ ] = {v11, v

2
1, v

2
2}, so

that τ [0] = {v11, v
2
2} and Φ0(τ) = w. Putting all this together, we obtain that Φ(τ) = wx2z1.

Note that deg(Φ(τ)) = 3 = |RLex(τ)|.

To complete our definition of Φ, it only remains to check the followng.

Lemma 6.3. |V[τ ]| − |τ [0]| = |X0|.

Proof: It follows from the definition of Φi that τ [i; ai] consists of its initial segment and
deg(Φi(τ)) elements outside of it. These last deg(Φi(τ)) elements all belong to τ , while
the initial segment, whose length is ai − deg(Φi(τ)), contains |τ [0] ∩Vi| elements of τ and
(possibly) a few added elements. Thus

d = |τ | = |τ [0]|+
m
∑

i=1

deg(Φi(τ)), and so

|V[τ ]| =
m
∑

i=1

(ai − deg Φi(τ)) = (

m
∑

i=1

ai)− (d− |τ [0]|) = |X0|+ |τ [0]|,

as required. �

To complete the proof of our main theorem, it only remains to show that Φ satisfies the
conditions of Theorem 5.1. We start by showing that Φ is a bijection. To do so, we explicity
construct its inverse.

Let µ ∈ S. Then for 1 ≤ i ≤ m, deg(µXi
) ≤ ai, so we may define Ψi(µ) = ρ(Xi,Vi)(µXi

).
Next, let V[µ] be the subset of V containing the first ai − deg(µXi

) elements of Vi for each
i = 1, . . . , m.
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Notice that µX0 has degree no greater than d−
∑m

i=1 deg(µXi
), while ψ(X0,V[µ]) takes

monomials on X0 of degree no greater than

|V[µ]| − |X0| =
m
∑

i=1

(ai − deg(µXi
))−

(

(

m
∑

i=1

ai)− d

)

= d−
m
∑

i=1

deg(µXi
)

to subsets of V[µ] of size d−
∑m

i=1 deg(µXi
). Thus if we let Ψ0(µ) = ψ(X0,V[µ])(µX0), and

set
Ψ(µ) := ∪m

i=0Ψi(µ),

then Ψ(µ) is a d-subset of V. Next note that for 1 ≤ i ≤ m,

|Ψ(µ) ∩Vi| = |Ψ(µ) ∩Vi ∩V[µ]|+ |Ψ(µ) ∩Vi ∩ (V −V[µ])|

= |Ψ(µ) ∩Vi ∩V[µ]|+ |Ψi(µ)|

≤ |Vi ∩V[µ]|+ |Ψi(µ)|

= ai − deg(µXi
) + deg(µXi

) = ai.

In other words, Ψ(µ) is a facet of Λ.

Example 6.4. Return to the Λ and S of the previous two examples. Let µ = x2z1. Then
Ψ1(µ) = {v14}, Ψ2(µ) = ∅ and Ψ3(µ) = {v32}. Furthermore, V[µ] = {v11, v

2
1, v

2
2}, and Ψ0(µ) =

{v11, v
2
1}. Thus Ψ(µ) = {v11, v

1
4, v

2
1, v

3
2}. For comparison, if we instead take ν = wx2z1 we

obtain the same Ψ1,Ψ2,Ψ3 and V[ν], but Ψ0(ν) = {v11, v
2
2}, so Ψ(ν) = {v11, v

1
4, v

2
2, v

3
2}, that

is, τ from the earlier examples (as we should hope if Ψ is to invert Φ).

Lemma 6.5. Ψ and Φ are inverse.

Proof: It follows from the implication 1. → 3. of Theorem 1.1 (proved in Section 3), that
the h-vector of Λ is the F -vector of a sub-multicomplex of S. Thus

| fac(Λ)| = fd−1(Λ) =

d
∑

i=0

hi(Λ) ≤
d
∑

i=0

Fi(S) = |S|.

Since Φ : fac(Λ) → S and Ψ : S → fac(Λ), to prove the lemma it suffices to show that the
composition Φ ◦Ψ : S → S is the identity map.

Let µ ∈ S and let τ = Ψ(µ). Observe that for 1 ≤ i ≤ m, the earliest ai-subset of Vi

containing τ ∩Vi is that which contains the deg(µXi
) elements of Ψi(µ) and all ai−deg(µXi

)
elements of V[µ] ∩Vi. Hence

τ [i; ai] = Ψi(µ) ∪ σ(Xi,Vi)(µXi
) = ρ(Xi,Vi)(µXi

) ∪ σ(Xi,Vi)(µXi
) = ψ(Xi,Vi)(µXi

),

so that
Φi(τ) = φ(Vi,Xi)(τ [i; ai]) = φ(Vi,Xi)(ψ(Xi,Vi)(µXi

)) = µXi
, (6)

as φ(Vi,Xi) and ψ(Xi,Vi) are inverses. Futhermore, this implies that V[τ ] = V[µ]. Thus

τ ∩V[τ ] = τ ∩V[µ] = Ψ(µ) ∩V[µ] = Ψ0(µ) = ψ(X0,V[µ])(µX0),

14



and so

Φ0(τ) = φ(V[τ ],X0)(τ ∩V[τ ]) = φ(V[µ],X0)(ψ(X0,V[µ])(µX0)) = µX0 . (7)

Equations (6) and (7) imply that Φ(Ψ(µ)) = Φ(τ) = µ, and the assertion follows. �

Lemma 6.6. For each facet τ of Λ, deg(Φ(τ)) = |RLex(τ)|.

Proof: Let τ be a facet of Λ and let µ = Φ(τ) (so τ = Ψ(µ)). Observe that

deg(µ) =
m
∑

i=0

deg(µXi
) = |ρ(X0,V[µ])(µX0)|+

m
∑

i=1

|ρ(Xi,Vi)(µXi
)|.

Thus it will suffice to show that RLex(τ) = ρ(X0,V[µ])(µX0) ∪ (∪m
i=1ρ(Xi,Vi)(µXi

)).
In the case of v ∈ ρ(Xi,Vi)(µXi

) for some i, 1 ≤ i ≤ m, it follows from the definition
of σ that the element of Vi in position (ai − deg(µXi

) + 1) is not in σ(Xi,Vi)(µXi
). This

element is also not in V[µ]. In particular, this is an element of Vi (the set containing v) that
occurs before v and is not in τ . Hence either v ∈ low(τ) or v ∈ tail(τ), and so v ∈ RLex(τ).

In the case of v ∈ ρ(X0,V[µ])(µX0), there is an element w ∈ V[µ] that is not in τ and
occurs before v. Suppose, in order to obtain a contradiction, that w ∈ Vi where i ∈ full(τ).
Then τ [i; ai] = τ ∩Vi, so τ contains the first ai − deg(µXi

) elements of Vi. But these are all
of the elements of V[τ ] ∩Vi, including w, a contradiction. Hence v ∈ tail(τ) ⊆ RLex(τ).

In the case of v ∈ τ and v /∈ ρ(X0,V[µ])(µX0) ∪ (∪m
i=1ρ(Xi,Vi)(µXi

)), we have v ∈
σ(X0,V[τ ])(µX0); in other words, v is in the initial segment of τ in V[τ ]. In particular,
v ∈ Vj for some j, and τ contains every element of Vj occurring before v, yielding that
v /∈ low(τ). Consider i < j. Then τ contains every element of V[τ ] ∩ Vi. As τ contains
deg(µXi

) elements of Vi outside of V[τ ], τ in total contains ai − deg(µXi
) + deg(µXi

) = ai
elements of Vi, and so i ∈ full(τ). Therefore every vertex occurring before v is either in Vi

with i ∈ full(τ) or in Vj, and hence in τ . Thus v /∈ tail(τ), and we infer that v /∈ RLex(τ).
�

We next describe the facet τ ′ in Theorem 5.1. For τ a facet of Λ and RLex(τ) * γ ⊂ τ ,
there is an element v of RLex which is not in γ. If v ∈ tail(τ), let w = Gap(τ). Otherwise,
v ∈ low(τ); let w = fgap(τ, i), where i is the index of the set Vi containing v. Then
τ〈γ〉 := (τ−v)∪w is a facet of Λ containing γ and τ〈γ〉 ≻ τ . Let µ = Φ(τ) and µ′ = Φ(τ〈γ〉).

Lemma 6.7. For τ and γ as above, |RLex(τ〈γ〉)| ≤ |RLex(τ)|. In particular, deg(µ′) ≤
deg(µ).

Proof: Let v and w be as in the definition of τ〈γ〉, and suppose v ∈ Vi. Since v ∈ RLex(τ) but
v /∈ RLex(τ〈γ〉), it will suffice to show that RLex(τ〈γ〉) ⊂ RLex(τ) ∪ w. Let u ∈ RLex(τ〈γ〉),
u 6= w (so, in particular, u ∈ τ). There are two possible cases.

Case 1: u ∈ tail(τ〈γ〉). If also u ∈ tail(τ), then u ∈ RLex(τ), and we are done. Thus assume
without loss of generality that u /∈ tail(τ). Then either Gap(τ〈γ〉) ∈ τ or Gap(τ〈γ〉) ∈ Vj

for some j ∈ full(τ).
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In the case of Gap(τ〈γ〉) ∈ τ , we have Gap(τ〈γ〉) = v. (This follows from the observation
that v is the only element of τ that is not in τ〈γ〉). Thus w ≻ v ≻ u. Now, w ∈ Vj for
some j; notice that j ∈ full(τ) or otherwise u would be in tail(τ). Then by our definition of
w, j = i. Since τ〈γ〉 must then contain the same number of elements in Vi as τ , we obtain
that i ∈ full(τ〈γ〉), a contradiction to the fact that v = Gap(τ〈γ〉).

In the case of Gap(τ〈γ〉) ∈ Vj for some j ∈ full(τ), we have, by definition of Gap(τ〈γ〉),
that j /∈ full(τ〈γ〉). Thus v ∈ Vj and w /∈ Vj (as this is the only way in which τ〈γ〉 may
contain fewer elements of Vj than τ). But this may only happen if w = Gap(τ) and occurs in
Vt with t < j = i. Hence Gap(τ) = w ≻ Gap(τ〈γ〉) ≻ u, a contradiction to our assumption
that u /∈ tail(τ).

Case 2: u ∈ low(τ〈γ〉). Let j be the index such that u ∈ Vj. If j ∈ full(τ), then u ∈ low(τ)
(as fgap(τ〈γ〉, j) � fgap(τ, j)), and the assertion follows. So suppose j /∈ full(τ). Then
w ∈ Vj, j < i (as this is the only way in which τ〈γ〉 may contain more elements from Vj

than does τ). But then fgap(τ〈γ〉, j) is not in τ : this is because the only vertex that is not
in τ〈γ〉 but is in τ is v, and v is not in Vj. Since fgap(τ〈γ〉, j) ≻ u and j /∈ full(τ), we obtain
that u ∈ tail(τ). �

Lemma 6.8. Let v and w be as in the definition of τ〈γ〉, and suppose v ∈ Vi, w ∈ Vj. Then
for 1 ≤ t ≤ m, t 6= i, τ [t; at] = τ〈γ〉[t; at], and so in particular µXt

= µ′
Xt
. Furthermore

τ [i; ai] � τ〈γ〉[i; ai], and deg(µ′
Xi
) ≤ deg(µXi

).

Proof: If t 6= i, j, then τ ∩Vt = τ〈γ〉 ∩Vt, and hence τ [t; at] = τ〈γ〉[t; at].
If t = j 6= i, we again have that τ [t; at] = τ〈γ〉[t; at]: indeed, as τ〈γ〉 ∩ Vj is obtained

from τ ∩Vj by adding the first missing element, the first aj-subsets of Vj containing them
are the same.

Now consider τ〈γ〉[i; ai] and τ [i; ai]. If v is in the initial segment of τ [i; ai] then τ〈γ〉[i; ai] =
τ [i; ai]. Otherwise, τ〈γ〉[i; ai] is obtained from τ [i; ai] by removing v and replacing it with
the first vertex in Vi missing from τ [i; ai]. Then τ [i; ai] � τ〈γ〉[i; ai] and it follows from the
m = 1, X0 = ∅ case of Lemma 6.7 that deg(µ′

Xi
) ≤ deg(µXi

). �

Corollary 6.9. With the notation as in the previous lemma, deg(µ′
(X0∪Xi)

) ≤ deg(µ(X0∪Xi)).

Furthermore, there is a divisor ν of µ(X0∪Xi) with degree equal to deg(µ′
(X0∪Xi)

), such that
µ′
(X0∪Xi)

� ν.

Proof: The first claim follows from Lemma 6.7 and the first part of Lemma 6.8.
To see the second, we note that by the second part of Lemma 6.8 and Lemma 6.1, there

is a divisor νi of µXi
with degree equal to that of µ′

Xi
and µ′

Xi
� νi. Now let ν be the revlex

last divisor of µ(X0∪Xi) with degree equal to that of µ′
(X0∪Xi)

. With νi chosen as in the proof
of Lemma 6.1, it is clear that νi divides ν, and as all the variables in Xi come after those in
X0, we must have µ′

(X0∪Xi)
� ν. �

Lemmas 6.5–6.8 and Corollary 6.9 put together imply that Φ satisfies Theorem 5.1 with
τ ′ = τ〈γ〉 and µ′′ = ν

∏

1≤t≤m,t6=i µXt
. This completes the proof of Theorem 1.1.
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