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k-nets embedded in a projective plane over a

field

G. Korchmaros* G. P. Nagy' and N. Pace!

Abstract

We investigate k-nets with k > 4 embedded in the projective
plane PG(2,K) defined over a field K; they are line configurations
in PG(2,K) consisting of k£ pairwise disjoint line-sets, called compo-
nents, such that any two lines from distinct families are concurrent
with exactly one line from each component. The size of each com-
ponent of a k-net is the same, the order of the k-net. If K has zero
characteristic, no embedded k-net for k > 5 exists; see [10, [13]. Here
we prove that this holds true in positive characteristic p as long as
p is sufficiently large compared with the order of the k-net. Our ap-
proach, different from that used in [10] [13], also provides a new proof
in characteristic zero.

1 Introduction

An (abstract) k-net is a point-line incidence structure whose lines are parti-
tioned in k subsets, called components, such that any two lines from distinct
components are concurrent with exactly one line from each component. The
components have the same size, called the order of the k-net and denoted by
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n. A k-net has n? points and kn lines. A k-net (embedded) in PG(2,K) is a
subset of points and lines such that the incidence structure induced by them
is a k-net.

In the complex plane, there are known plenty of examples and even infin-
ity families of 3-nets but only one 4-net up to projectivity; see [10], 111 12} 13].
This 4-net, called the classical 4-net, has order 3 and it exists since PG(2,C)
contains an affine subplane AG(2,F3) of order 3, unique up to projectivity,
and the four parallel line classes of AG(2,F3) are the components of a 4-net
in PG(2,C). By a result of Stipins [10], see also [I3], no k-net with & > 5
exists in PG(2,C). Since Stipins’ proof works over any algebraically closed
field of characteristic zero, his result holds true in PG(2,K) provided that K
has zero characteristic.

Our present investigation of k-nets in PG(2,K) includes groundfields K
of positive characteristic p, and as a matter of fact, many more examples.
This phenomena is not unexpected since PG(2,K) with K of characteristic
p > 0 contains an affine subplane AG(2,F,) of order p from which k-nets for
3 <k <p+1 arise taking k parallel line classes as components. Similarly, if
PG(2,K) also contains an affine subplane AG(2,F 1), in particular if K = F,
with ¢ = p” and h|r, then k-nets of order p" for 3 < k < p" + 1 exist in
PG(2,K). Actually, more families of k-nets in PG(2,F,) when ¢ = p” with
r > 3 exist; see Example 5.3l On the other hand, no 5-net of order n with
p > n is known to exist. This suggests that for sufficiently large p compared
with n, Stipins’ theorem remains valid in PG(2,K). Our Theorem proves
it for p > 3¢("*~") where  is the classical Euler ¢ function, and in particular
for p > 37*/2. Our approach also works in zero characteristic and provides a
new proof for Stipins’ result.

A key idea in our proof is to consider the cross-ratio of four concurrent
lines from different components of a 4-net. Proposition B.1] states that the
cross-ratio remains constant when the four lines vary without changing com-
ponent. In other words, every 4-net in PG(2,K) has constant cross-ratio.
By Theorem in zero charactersitic, and by Theorem E.3] in characteris-
tic p with p > 39"~ the constant cross-ratio is restricted to two values
only, namely to the roots of the polynomial X? — X + 1. From this, the
non-existence of k-nets for k > 5 easily follows both in zero characteristic
and in characteristic p with p > 3#(*=n) Tt should be noted that without a
suitable hypothesis on n with respect to p, the constant cross-ratio of a 4-net
may assume many different values, even for finite fields, see Example 5.3

In PG(2,K), k-nets naturally arise from pencils of curves, the components

2



of the k-net being the completely reducible curves in the pencil. This has
given a motivation for the study of k-nets in Algebraic geometry; see [2], and
[12]. We discuss this relationship in Section 2] and state an equation that will
be useful in Section Bl

2 k-nets and completely irreducible curves in
a pencil of curves

Let A1, A2, A3 be three components of a k-net of order n embedded in PG(2, K).
Let r; = 0, w; = 0, t;, =0 (i = 1,...,n) be the equations of the lines in
A1, A2, Az, respectively. The completely reducible polynomials R = ry-- -7,
W =w---w, and T = t; - - - t,, define three plane curves of degree n, say R,
W and T . Consider the pencil A generated by R and V. Since A1, Ao, A3 are
the components of a 3-net of order n, there exist «, 8 € K* such that 7 and
the curve H of A with equation aR + W = 0 have n? + 1 common points
but no common components. From Bézout’s theorem, 7 = H. Therefore,

ary - 1y + fwrwy + Yt oty =0 (1)

holds for a homogeneous triple («, 3,7) with coordinates K*. Changing the
projective coordinate system in PG(2,K) the equations of the lines in the
components of the 3-net change but the homogeneous triple (o, 3,~) remains
invariant.

Conversely, assume that an irreducible pencil A of plane curves of degree
n contains k curves each splitting into n distinct lines, that is, £ completely
reducible curves. Let \; with 1 < ¢ < k be the set of the n lines which
are the factors of a completely reducible curve. Then A{, Ao, ..., A\; are the
components of a k-net embedded in PG(2,K).

3 The invariance of the cross-ratio of a 4-net

Consider a 4-net of order n embedded in PG(2,K) and label their components
with \; for ¢ = 1,2,3,4. We say that the 4-net A = (Aq, Ay, A3, A\4) has
constant cross-ratio if for every point P of A the cross-ratio (¢1, (s, l3,¢4) of
the four lines ¢; € \; through P is constant.

Proposition 3.1. Every 4-net in PG(2,K) has constant cross-ratio.



Proof. In a projective reference system, let r;, = 0, w; = 0, ¢, =0, s; =0
with 1 <4 < n be the lines of a 4-net A = (A1, A2, A3, A\4) respectively. Then
there exist «, 5,7 € K* such that ({) holds and o/, ', € K such that

a'riry -y + fwwy - wn + 75152+ -5, = 0. (2)

As observed in Section 2], the coefficients «, 3,7, </, 5',7 remain invariant
when the reference system is changed. Take a point P of A and relabel the
lines of A such that r; =0, wy; =0, t; = 0 and s; = 0 are the four lines of A
passing through P. We temporarily introduce the notation (z1, xo, x3) for the
homogeneous coordinates of a point, and we arrange the reference system in
such a way that P coincides with the point (0,0, 1), the line 3 = 0 contains
no point from A; or Ay while r; = z; and w; = x5. Also, non-homogeneous
coordinates x = z1/x3 and y = x5 /x3 can be used so that r; = x and w; = y.
Note that we have arranged the coordinates so that r;, w;,t;, s; have a zero
constant term if and only if 1 = 1. Let

n n n

p:Hm(0,0), w:Hwi(0,0), T:Hti(0,0), a:Hsi(0,0).

i=2 i=2 i=2 i=2

Observe that

O=oar;--ry+ Bwy - wy + 9ty -ty = apr + Pwy + vty + [+ -],

where [...] stands for the sum of terms of degree at least 2. From (),
a w
U -
T T
Similarly,
/ /
gx ﬁlwy + 51 =0.
v'o v'o
Therefore, the cross-ratio of the lines of A passing through P is equal to
af’
= 3
R Q
and hence it is independent of the choice of the point P. |

As an illustration of Proposition 3.1l we compute the constant cross-ratio
of the known 4-net embedded in the complex plane.
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Example 3.2. Let n = 3, and take a primitive third root of unity £&. In
homogeneous coordinates (x,y, z) of PG(2,K), let

r =, Ty (=1, s = 2,
wyi=r+y+ 2z, wy =z + y + £z, wy =+ &Y + &z,
ti=ECr+uy+ 2, ty =+ &y + 2, t3: =1 +y+§&z,
s1: =& +y+ 2, sy =2+ Y+ 2, s3 1= +y+ 2.

Then these lines form a 4-net A order 3. Moreover,
titaty = 3(2§ + 1)rirars + Swiwaws,
§18983 = —3(2£ —+ 1)7’17’27"3 + §2w1w2w3.

Hence, the constant cross-ratio of A is k = —1/¢.

4 Some constraints on the constant cross-ratio
of a 4-net

It is well known that the cross-ratio of four distinct concurrent lines can take
six possible different values depending on the order in which the lines are
given. If k is one of them then x # 0,1 and these six cross-ratios are

1 1 K 1

K, ) ]-_"{7 ) ) I—-.
K 1—r k—1 K

It may happen, however, that some of these values coincide, and this is the
case if and only if either k € {—1,1/2,2}, or

K —Kk+1=0. (4)

Proposition B.1] says that the cross-ratio of four concurrent lines of a 4-net
takes the above six values for a given x # 0, 1, and each of these values can be
considered as the constant cross-ratio of the 4-net. Now, the problem consists
in computing x. We are able to do it in zero characteristic showing that x
satisfies Equation (]). In positive characteristic there are more possibilities.
This will be discussed after proving the following result.

Proposition 4.1. Let A be a 4-net of order n embedded in PG(2,K). Then
the cross-ratio k of X is an N—th root of unity of K such that N = n(n — 1)

and
(k—1N =1. (5)



Proof. We prove first that £ = 1. Let P;; be the common point of the lines
r; and w; with 1 <4,7 <n. Then the unique line from A3 through F;; has
equation o;;r; + 7;;w; with o5, 7;; € K*. Moreover, for any k = 1,...,n there
is a unique index j such that t; = oy;7; + 7;;w;. For every i = 1,...,n,

ary - rp 4 fwr - wy + [(oar; + Taw) - (G + Tipws)] = 0. (6)

Take a point @) on the line r; = 0 such that w;(Q) # 0 for every 1 < j < n.
Then

yields

—é:HTz’j (7)

= H%’ (8)

for any fixed index j. Therefore,
(3) -T2 ©)
=1 j=1

A similar argument can be carried out for A\4. The unique line from A4
through P;; has equation 6;;7; + w;jw; with 0,5, w;; € K*. Then

5, n n n wij
(a) ~1MI5 (10)

From Lemma [3.1],

Tij 6@']’
Oij  Wij N
for every 1 < i,j < n. Then Equations (@) and (I0) yield " = " whence
KN =1. (11)

From the discussion at the beginning of this section, Equation (1) holds true

when k is replaced with any of the other five cross-ratio values. Therefore,
(B) also holds. ]



In the complex plane, the cross-ratio equation has only two solutions,
namely the roots of (). In fact, let Kk = x + yi with x,y € R. Then with
respect to the complex norm, (1)) and (B) imply |z + iy| = 22 + y* = 1 and
|z — 1+ idy| = (z — 1)* + y* = 1. It hence follows that x = (1 £ v/3i), or
equivalently (4)).

To extend this result to any field of characteristic zero, and discuss the
positive characteristic case, look at

XN -1
X -1

(X -1V —1
X

f(X) and g(X) =
as polynomials in Z[X]. From the preceding discussion on the complex case,
their maximum common divisor is either X? — X + 1, or 1 according as 6
divides N or does not. In the former case, divide both by X? — X + 1 and
then replace f(X) and g(X) by them accordingly. Now, f(X) and g(X) are
coprime, and hence their resultant is a non-zero integer R. Using a basic
formula on resultants, see |4, Lemma 2.3], R may be computed in terms of a
primitive N-th root of unity &, namely

R= H (14 ¢ —¢%), when61 N,

1<i,j<N—-1

and . '
R= H (14+& —¢), when6 | N,

1<i,j<N—1
i,j#2N/6,5N/6

hold in the N-th cyclotomic field Q(§). Therefore, R # 0 provided that K
has zero characteristic.

Theorem 4.2. Let K be a field of characteristic 0. If a 4-net X\ is embedded
in PG(2,K) then —3 is a square in K and the constant cross-ratio k of A

satisfies ().

To investigate the positive characteristic case, we will use the well known
result that Q(¢) is a cyclic Galois extension of Q of degree ¢(N) where ¢ is
the classical Euler function. Let a be a generator of the Galois group. Then
a(§) = ™ for a positive integer m prime to N. Therefore, a permutes the
factors in the right hand side. Given such a factor 1+ &' — &7, its cyclotomic
norm

[1+E - ll=(1+6-¢) -1+ -g) ... 1+ g
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is in Q. Actually, it is an integer since the factors are algebraic integers.
Hence, the prime divisors of R come from the prime divisors of the norms
| 1+&"—&7 ||. Therefore, to find an upper bound on the largest prime divisor
of R it is enough to find an upper bound on these norms. Obviously,

1€ =€ [ < 14 =] L+ =g 146N @M=D),

Since |1 — & + &7| < 3, this shows that | || 1+ & — & || | < 3¢M). Hence the
largest prime divisor of R is at most 3?(V). Therefore, the following result is
proven.

Theorem 4.3. Let K be a field of characteristic p > 0. If p > 3°™*=1) then
Theorem [{.3 holds.

For planes over finite fields, Equations (II]) and (5l) may provide further
non-existence results on embedded 4-nets.

Theorem 4.4. Let K =T, be a finite field of order ¢ = p" with p prime. If
p # 3, then there exists no 4-net of order n embedded in PG(2,F,) for

ged(n(n —1),q—1) < 2.

Proof. From Equation (LI, either x = 1 and p =2 or k> = 1 and p > 2. On
the other hand, k # 1. Hence k = —1 and p > 2. Now, Equation (Bl yields
p = 3, a contradiction. [ |

The following example shows that the hypothesis p # 3 in Theorem [£4]
is essential.

Example 4.5. Let ¢ = 3", and regard PG(2,F,) as the projective closure
of the affine plane AG(2,F,). The four line sets A1, A2, A3, Ay form a 4-net of
order ¢ embedded in AG(2,F,) where A\; and A, consist of all horizontal and
vertical lines respectively, while A3 and A4 consist of all lines with slope 1 or
—1, respectively. The constant cross-ratio of this 4-net equals —1.

5 Nets with more than four components

We prove the non-existence of 5-nets embedded in PG(2,K) over a field K of
characteristic 0. This result was previously proved by Stipins [10]; see also
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[13]. Those authors used results and techniques from Algebraic geometry.
Here, we present a simple combinatorial proof depending on Theorem [4.2
Our proof also works in positive characteristic p whenever p is big enough
compared to the order n of 4-net; for example, when p > 39"~ so that
Theorem holds. However, the non-existence result fails in general. This
will be illustrated by means of some examples.

We begin with a technical lemma.

Lemma 5.1. Let A, B,C, D, D’ be collinear points in PG(2,K) with cross-
ratios k = (ABCD) and 1 — k = (ABCD"). If ({4) holds then (ABDD') =

—K.

Proof. Without loss of generality, A = (1,0,0), B = (0,1,0), C = (1,1,0).
Then D = (k,1,0), D' = (1 — k,1,0), and the result follows by a direct
computation. [ |

Theorem 5.2. If the characteristic of the field K is either O or greater than
39(*=n) then there exists no 5-net of order n embedded in PG(2,K).

Proof. Let A = (A1, A2, A3, A4, A5) be a 5-net of order n embedded in PG(2, K).
Then A5 = ()\1, )\2, )\3, )\4), A4 = ()\1, )\2, )\3, )\5), and A45 = ()\1, )\2, )\4, )\5) are
three different 4-nets and so we can compare their cross-ratios, say

ks = (i, 1o, I3, 1a), ka = (L1, 1o, 13, 15), kas = (I3, 12,14, 15),

for five lines from different components and concurrent at a point of A. From
Proposition Bl each of them is a root of the polynomial X? — X + 1. Since
A5 and A4 only differ in the last component, k5 # k4. Therefore, Ky = 1 — k5.
From Lemma 5.1 k45 = —k5. This shows that k45 is not a root of X? — X +1
contradicting Proposition [4.11 |

Example can be generalized for finite fields F, with ¢ = p”" showing
that k-nets arise from affine subplanes of PG(2,K). Such k-nets have order
ph with hlr. Here, we give further k-nets of p-power order. The construction
relies on an idea of G. Lunardon [7]. For the sake of simplicity, we describe
the construction in terms of a dual k-net, that is, the components are sets
of points such that a line connecting two points of different components hits
any third component in precisely one point.



Example 5.3. Let K = F, such that ¢ = r* with s > 3. Take elements
u,v € F, such that 1, u, v are linearly independent over the subfield IF,. Take
a basis by, by of Fg and put bg = ub; + vby. For any a € F,., we define the

points sets
A, = {abg+ Aby + uby | A\, u € F,}

in AG(2,q). Then the A,’s (a € F,.) are components of a dual r-net of order
r2. In order to see this, take the points

Pi :azbo_l_)\zbl_l_p“lb% 1= 172a3'
Py, Py, Py are collinear in AG(2, q) if and only if the vectors

(a1 —a2)bo+(A1—A2)b1+(p1—pe2)be and (g —ag)bo+(A1—A3) b1+t —pe3)bo

(12)
are linearly dependent over F,. By the definition of by and the independence
of by, by, (I2) is equivalent with

(a1 —ag)u+ A1 — Xo)((@1 — az)v + py — p3)—
(01 —ag)u+ Ay — A3)((a1 — a2)v + pg — pg) = 0. (13)

Sorting by u and v, we obtain

0 = wul(ar —ag)(p — p3) — (a1 — az) (1 — p2)]
+’U[(O&1 — Oég)()\l — >\2) — (Oél — 042)()\1 — )\3)]
(A= A2) (i — pa) — (1 — p2) (A = Ag).

The independence of 1, u,v over F, implies the system of equations

0= (a1 — ag)(p1 — p3) — (1 — az)(p1 — pi2), (14)
0 = (Oél — Oég)()\l — )\2) — (Oél — Oég)()\l — )\3), (15)
0= (A1 — A2) (1 — p3) — (p1 — p2) (A1 — Ag). (16)

With given points Py, Py, a; # aw, (I4]) and (I3) has the unique solution

_ )\1(0&3 — 042) + )\2(0&1 — 043)

)\3 ;
a1 — g

_ pa(az — ag) + pa(ar — asz)

3 ay — )
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which is a solution for (I6), as well. This means that the line P, P, hits A,,
in the unique point
az —
P3 == 3 2P1 +

Q1 — Qg a1 — Qg

Q1 — a3

Py.

This formula further shows that the constant cross-ratio can take any value
in F, \ {0,1}.

We are able to describe the geometric structure of k-nets (k > 4) where
one component is contained in a line pencil.

Theorem 5.4. Let A = (A,...,\¢), k >4, be a k-net of order n embedded
in PG(2,K). Assume that the component Ay is contained in a line pencil.
Then the following hold.

1. The order of \ is n = p® where p > 0 s the characteristic of K.

2. For each component \;, i > 1, there is an elementary Abelian p-group
of collineations acting reqularly on the lines of A;.

3. The components \o, ..., \x are projectively equivalent.

4. If any other component is contained in a line pencil then all components
are, and the base points of the pencils are collinear.

Proof. 1t suffices to prove the theorem for £ = 4. We give the proof for the
dual k-net by assuming that the component \; is contained in the line /.
Let k be the constant cross-ratio of (Ay, A3, A4, A1) and for any point S & ¢
denote by ug the (S, £)-perspectivity such that for any point P and its image
P = ug(P), the cross-ratio of S, P, P’ and PP’ N { is k. Then, for any
S € )Xo, ug induces a bijection between A3 and A4. In particular, A3 and A4
are projectively equivalent. Let S,T € )y, S # T, and assume that ug'ur
has a fixed point R ¢ ¢, that is, ug(R) = ur(R) = R'. Then, S,T € RR’ and
with R” = RR' N/ the cross-ratios (S, R, R, R"), (T, R, R', R") are equal to
k. This implies S = T, a contradiction. This means that for all S,T € Ag,
S # T, the collineation ugluT is an elation with axis ¢, and {u;luT | S,T €
Ao} generate an elementary Abelian p-group U of collineations, leaving A3
invariant. Moreover, U acts transitively, hence regularly on A3. This finishes
the proof. |
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Example 5.5. In Example 5.3, we constructed a dual r-net of order r? in
AG(2,r%), s > 3. For P, € A,,, P, € A,,, the line P, P, has direction vectors

(u+ A)by + (v + pu)bs.

These are linearly independent for different choices of A\, u € ., hence they
determine 7? points at infinity. Let \q be the set of corresponding infinite
points. Then, (Ao, A1,...,A.) is a dual (r + 1)-net with component Ay con-
tained in a line.
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