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k-nets embedded in a projective plane over a

field

G. Korchmáros∗ G. P. Nagy† and N. Pace‡.

Abstract

We investigate k-nets with k ≥ 4 embedded in the projective
plane PG(2,K) defined over a field K; they are line configurations
in PG(2,K) consisting of k pairwise disjoint line-sets, called compo-
nents, such that any two lines from distinct families are concurrent
with exactly one line from each component. The size of each com-
ponent of a k-net is the same, the order of the k-net. If K has zero
characteristic, no embedded k-net for k ≥ 5 exists; see [10, 13]. Here
we prove that this holds true in positive characteristic p as long as
p is sufficiently large compared with the order of the k-net. Our ap-
proach, different from that used in [10, 13], also provides a new proof
in characteristic zero.

1 Introduction

An (abstract) k-net is a point-line incidence structure whose lines are parti-
tioned in k subsets, called components, such that any two lines from distinct
components are concurrent with exactly one line from each component. The
components have the same size, called the order of the k-net and denoted by
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n. A k-net has n2 points and kn lines. A k-net (embedded) in PG(2,K) is a
subset of points and lines such that the incidence structure induced by them
is a k-net.

In the complex plane, there are known plenty of examples and even infin-
ity families of 3-nets but only one 4-net up to projectivity; see [10, 11, 12, 13].
This 4-net, called the classical 4-net, has order 3 and it exists since PG(2,C)
contains an affine subplane AG(2,F3) of order 3, unique up to projectivity,
and the four parallel line classes of AG(2,F3) are the components of a 4-net
in PG(2,C). By a result of Stipins [10], see also [13], no k-net with k ≥ 5
exists in PG(2,C). Since Stipins’ proof works over any algebraically closed
field of characteristic zero, his result holds true in PG(2,K) provided that K
has zero characteristic.

Our present investigation of k-nets in PG(2,K) includes groundfields K
of positive characteristic p, and as a matter of fact, many more examples.
This phenomena is not unexpected since PG(2,K) with K of characteristic
p > 0 contains an affine subplane AG(2,Fp) of order p from which k-nets for
3 ≤ k ≤ p+1 arise taking k parallel line classes as components. Similarly, if
PG(2,K) also contains an affine subplane AG(2,Fph), in particular if K = Fq

with q = pr and h|r, then k-nets of order ph for 3 ≤ k ≤ ph + 1 exist in
PG(2,K). Actually, more families of k-nets in PG(2,Fq) when q = pr with
r ≥ 3 exist; see Example 5.3. On the other hand, no 5-net of order n with
p > n is known to exist. This suggests that for sufficiently large p compared
with n, Stipins’ theorem remains valid in PG(2,K). Our Theorem 5.2 proves
it for p > 3ϕ(n

2−n) where ϕ is the classical Euler ϕ function, and in particular
for p > 3n

2/2. Our approach also works in zero characteristic and provides a
new proof for Stipins’ result.

A key idea in our proof is to consider the cross-ratio of four concurrent
lines from different components of a 4-net. Proposition 3.1 states that the
cross-ratio remains constant when the four lines vary without changing com-
ponent. In other words, every 4-net in PG(2,K) has constant cross-ratio.
By Theorem 4.2 in zero charactersitic, and by Theorem 4.3 in characteris-
tic p with p > 3ϕ(n

2−n), the constant cross-ratio is restricted to two values
only, namely to the roots of the polynomial X2 − X + 1. From this, the
non-existence of k-nets for k ≥ 5 easily follows both in zero characteristic
and in characteristic p with p > 3ϕ(n

2−n). It should be noted that without a
suitable hypothesis on n with respect to p, the constant cross-ratio of a 4-net
may assume many different values, even for finite fields, see Example 5.3.

In PG(2,K), k-nets naturally arise from pencils of curves, the components
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of the k-net being the completely reducible curves in the pencil. This has
given a motivation for the study of k-nets in Algebraic geometry; see [2], and
[12]. We discuss this relationship in Section 2 and state an equation that will
be useful in Section 3.

2 k-nets and completely irreducible curves in

a pencil of curves

Let λ1, λ2, λ3 be three components of a k-net of order n embedded in PG(2,K).
Let ri = 0, wi = 0, ti = 0 (i = 1, . . . , n) be the equations of the lines in
λ1, λ2, λ3, respectively. The completely reducible polynomials R = r1 · · · rn,
W = w1 · · ·wn and T = t1 · · · tn define three plane curves of degree n, say R,
W and T . Consider the pencil Λ generated by R and W. Since λ1, λ2, λ3 are
the components of a 3-net of order n, there exist α, β ∈ K∗ such that T and
the curve H of Λ with equation αR + βW = 0 have n2 + 1 common points
but no common components. From Bézout’s theorem, T = H. Therefore,

αr1 · · · rn + βw1 · · ·wn + γt1 · · · tn = 0 (1)

holds for a homogeneous triple (α, β, γ) with coordinates K∗. Changing the
projective coordinate system in PG(2,K) the equations of the lines in the
components of the 3-net change but the homogeneous triple (α, β, γ) remains
invariant.

Conversely, assume that an irreducible pencil Λ of plane curves of degree
n contains k curves each splitting into n distinct lines, that is, k completely
reducible curves. Let λi with 1 ≤ i ≤ k be the set of the n lines which
are the factors of a completely reducible curve. Then λ1, λ2, . . . , λk are the
components of a k-net embedded in PG(2,K).

3 The invariance of the cross-ratio of a 4-net

Consider a 4-net of order n embedded in PG(2,K) and label their components
with λi for i = 1, 2, 3, 4. We say that the 4-net λ = (λ1, λ2, λ3, λ4) has
constant cross-ratio if for every point P of λ the cross-ratio (ℓ1, ℓ2, ℓ3, ℓ4) of
the four lines ℓi ∈ λi through P is constant.

Proposition 3.1. Every 4-net in PG(2,K) has constant cross-ratio.
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Proof. In a projective reference system, let ri = 0, wi = 0, ti = 0, si = 0
with 1 ≤ i ≤ n be the lines of a 4-net λ = (λ1, λ2, λ3, λ4) respectively. Then
there exist α, β, γ ∈ K∗ such that (1) holds and α′, β ′, γ′ ∈ K such that

α′r1r2 · · · rn + β ′w1w2 · · ·wn + γ′s1s2 · · · sn = 0. (2)

As observed in Section 2, the coefficients α, β, γ, α′, β ′, γ′ remain invariant
when the reference system is changed. Take a point P of λ and relabel the
lines of λ such that r1 = 0, w1 = 0, t1 = 0 and s1 = 0 are the four lines of λ
passing through P . We temporarily introduce the notation (x1, x2, x3) for the
homogeneous coordinates of a point, and we arrange the reference system in
such a way that P coincides with the point (0, 0, 1), the line x3 = 0 contains
no point from λ1 or λ2 while r1 = x1 and w1 = x2. Also, non-homogeneous
coordinates x = x1/x3 and y = x2/x3 can be used so that r1 = x and w1 = y.
Note that we have arranged the coordinates so that ri, wi, ti, si have a zero
constant term if and only if i = 1. Let

ρ =
n
∏

i=2

ri(0, 0), ω =
n
∏

i=2

wi(0, 0), τ =
n
∏

i=2

ti(0, 0), σ =
n
∏

i=2

si(0, 0).

Observe that

0 = αr1 · · · rn + βw1 · · ·wn + γt1 · · · tn = αρx+ βωy + γτt1 + [· · · ],

where [. . .] stands for the sum of terms of degree at least 2. From (1),

αρ

γτ
x+

βω

γτ
y + t1 = 0.

Similarly,
α′ρ

γ′σ
x+

β ′ω

γ′σ
y + s1 = 0.

Therefore, the cross-ratio of the lines of λ passing through P is equal to

κ =
αβ ′

α′β
(3)

and hence it is independent of the choice of the point P . �

As an illustration of Proposition 3.1 we compute the constant cross-ratio
of the known 4-net embedded in the complex plane.
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Example 3.2. Let n = 3, and take a primitive third root of unity ξ. In
homogeneous coordinates (x, y, z) of PG(2,K), let

r1 := x, r2 := y, r3 := z,

w1 := x+ y + z, w2 := x+ ξy + ξ2z, w3 := x+ ξ2y + ξz,

t1 := ξx+ y + z, t2 := x+ ξy + z, t3 := x+ y + ξz,

s1 := ξ2x+ y + z, s2 := x+ ξ2y + z, s3 := x+ y + ξ2z.

Then these lines form a 4-net λ order 3. Moreover,

t1t2t3 = 3(2ξ + 1)r1r2r3 + ξw1w2w3,

s1s2s3 = −3(2ξ + 1)r1r2r3 + ξ2w1w2w3.

Hence, the constant cross-ratio of λ is κ = −1/ξ.

4 Some constraints on the constant cross-ratio

of a 4-net

It is well known that the cross-ratio of four distinct concurrent lines can take
six possible different values depending on the order in which the lines are
given. If κ is one of them then κ 6= 0, 1 and these six cross-ratios are

κ,
1

κ
, 1− κ,

1

1− κ
,

κ

κ− 1
, 1− 1

κ
.

It may happen, however, that some of these values coincide, and this is the
case if and only if either κ ∈ {−1, 1/2, 2}, or

κ2 − κ + 1 = 0. (4)

Proposition 3.1 says that the cross-ratio of four concurrent lines of a 4-net
takes the above six values for a given κ 6= 0, 1, and each of these values can be
considered as the constant cross-ratio of the 4-net. Now, the problem consists
in computing κ. We are able to do it in zero characteristic showing that κ
satisfies Equation (4). In positive characteristic there are more possibilities.
This will be discussed after proving the following result.

Proposition 4.1. Let λ be a 4-net of order n embedded in PG(2,K). Then
the cross-ratio κ of λ is an N–th root of unity of K such that N = n(n− 1)
and

(κ− 1)N = 1. (5)
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Proof. We prove first that κN = 1. Let Pij be the common point of the lines
ri and wj with 1 ≤ i, j ≤ n. Then the unique line from λ3 through Pij has
equation σijri+τijwj with σij , τij ∈ K∗. Moreover, for any k = 1, . . . , n there
is a unique index j such that tk = σijri + τijwj. For every i = 1, . . . , n,

αr1 · · · rn + βw1 · · ·wn + γ[(σi1ri + τi1w1) · · · (σinri + τinwn)] = 0. (6)

Take a point Q on the line ri = 0 such that wj(Q) 6= 0 for every 1 ≤ j ≤ n.
Then

w1(Q) · · ·wn(Q)(β + γ
n
∏

j=1

τij) = 0

yields

− β

γ
=

n
∏

j=1

τij (7)

for any fixed index i. The above argument applies to any line wj and gives

− α

γ
=

n
∏

i=1

σij (8)

for any fixed index j. Therefore,
(

β

α

)n

=

n
∏

i=1

n
∏

j=1

τij
σij

. (9)

A similar argument can be carried out for λ4. The unique line from λ4

through Pij has equation δijri + ωijwj with δij , ωij ∈ K∗. Then
(

β ′

α′

)n

=

n
∏

i=1

n
∏

j=1

ωij

δij
. (10)

From Lemma 3.1,
τij
σij

· δij
ωij

= κ

for every 1 ≤ i, j ≤ n. Then Equations (9) and (10) yield κn = κn2

whence

κN = 1. (11)

From the discussion at the beginning of this section, Equation (11) holds true
when κ is replaced with any of the other five cross-ratio values. Therefore,
(5) also holds. �
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In the complex plane, the cross-ratio equation has only two solutions,
namely the roots of (4). In fact, let κ = x + yi with x, y ∈ R. Then with
respect to the complex norm, (11) and (5) imply |x+ iy| = x2 + y2 = 1 and
|x − 1 + iy| = (x − 1)2 + y2 = 1. It hence follows that κ = 1

2
(1 ±

√
3i), or

equivalently (4).
To extend this result to any field of characteristic zero, and discuss the

positive characteristic case, look at

f(X) =
XN − 1

X − 1
and g(X) =

(X − 1)N − 1

X

as polynomials in Z[X ]. From the preceding discussion on the complex case,
their maximum common divisor is either X2 − X + 1, or 1 according as 6
divides N or does not. In the former case, divide both by X2 − X + 1 and
then replace f(X) and g(X) by them accordingly. Now, f(X) and g(X) are
coprime, and hence their resultant is a non-zero integer R. Using a basic
formula on resultants, see [4, Lemma 2.3], R may be computed in terms of a
primitive N -th root of unity ξ, namely

R =
∏

1≤i,j≤N−1

(1 + ξi − ξj), when 6 ∤ N,

and
R =

∏

1≤i,j≤N−1
i,j 6=N/6, 5N/6

(1 + ξi − ξj), when 6 | N,

hold in the N -th cyclotomic field Q(ξ). Therefore, R 6= 0 provided that K
has zero characteristic.

Theorem 4.2. Let K be a field of characteristic 0. If a 4-net λ is embedded
in PG(2,K) then −3 is a square in K and the constant cross-ratio κ of λ
satisfies (4).

To investigate the positive characteristic case, we will use the well known
result that Q(ξ) is a cyclic Galois extension of Q of degree ϕ(N) where ϕ is
the classical Euler function. Let α be a generator of the Galois group. Then
α(ξ) = ξm for a positive integer m prime to N . Therefore, α permutes the
factors in the right hand side. Given such a factor 1 + ξi − ξj, its cyclotomic
norm

‖ 1 + ξi − ξj ‖= (1 + ξi − ξj) · (1 + ξi − ξj)α · . . . · (1 + ξi − ξj)α
N−1
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is in Q. Actually, it is an integer since the factors are algebraic integers.
Hence, the prime divisors of R come from the prime divisors of the norms
‖ 1+ξi−ξj ‖. Therefore, to find an upper bound on the largest prime divisor
of R it is enough to find an upper bound on these norms. Obviously,

| ‖ 1+ξi−ξj ‖ | ≤ |1+ξi−ξj | · |1+ξim−ξjm| · . . . · |1+ξi(ϕ(N)−1))−ξj(ϕ(N)−1))|.

Since |1− ξi + ξj| ≤ 3, this shows that | ‖ 1 + ξi − ξj ‖ | ≤ 3ϕ(N). Hence the
largest prime divisor of R is at most 3ϕ(N). Therefore, the following result is
proven.

Theorem 4.3. Let K be a field of characteristic p > 0. If p > 3ϕ(n
2−n) then

Theorem 4.2 holds.

For planes over finite fields, Equations (11) and (5) may provide further
non-existence results on embedded 4-nets.

Theorem 4.4. Let K = Fq be a finite field of order q = ph with p prime. If
p 6= 3, then there exists no 4-net of order n embedded in PG(2,Fq) for

gcd(n(n− 1), q − 1) ≤ 2.

Proof. From Equation (11), either κ = 1 and p = 2 or κ2 = 1 and p > 2. On
the other hand, κ 6= 1. Hence κ = −1 and p > 2. Now, Equation (5) yields
p = 3, a contradiction. �

The following example shows that the hypothesis p 6= 3 in Theorem 4.4
is essential.

Example 4.5. Let q = 3r, and regard PG(2,Fq) as the projective closure
of the affine plane AG(2,Fq). The four line sets λ1, λ2, λ3, λ4 form a 4-net of
order q embedded in AG(2,Fq) where λ1 and λ2 consist of all horizontal and
vertical lines respectively, while λ3 and λ4 consist of all lines with slope 1 or
−1, respectively. The constant cross-ratio of this 4-net equals −1.

5 Nets with more than four components

We prove the non-existence of 5-nets embedded in PG(2,K) over a field K of
characteristic 0. This result was previously proved by Stipins [10]; see also
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[13]. Those authors used results and techniques from Algebraic geometry.
Here, we present a simple combinatorial proof depending on Theorem 4.2.
Our proof also works in positive characteristic p whenever p is big enough
compared to the order n of 4-net; for example, when p > 3ϕ(n

2−n) so that
Theorem 4.3 holds. However, the non-existence result fails in general. This
will be illustrated by means of some examples.

We begin with a technical lemma.

Lemma 5.1. Let A,B,C,D,D′ be collinear points in PG(2,K) with cross-
ratios κ = (ABCD) and 1 − κ = (ABCD′). If (4) holds then (ABDD′) =
−κ.

Proof. Without loss of generality, A = (1, 0, 0), B = (0, 1, 0), C = (1, 1, 0).
Then D = (κ, 1, 0), D′ = (1 − κ, 1, 0), and the result follows by a direct
computation. �

Theorem 5.2. If the characteristic of the field K is either 0 or greater than
3ϕ(n

2−n), then there exists no 5-net of order n embedded in PG(2,K).

Proof. Let Λ = (λ1, λ2, λ3, λ4, λ5) be a 5-net of order n embedded in PG(2,K).
Then Λ5 = (λ1, λ2, λ3, λ4), Λ4 = (λ1, λ2, λ3, λ5), and Λ45 = (λ1, λ2, λ4, λ5) are
three different 4-nets and so we can compare their cross-ratios, say

κ5 = (l1, l2, l3, l4), κ4 = (l1, l2, l3, l5), κ45 = (l1, l2, l4, l5),

for five lines from different components and concurrent at a point of Λ. From
Proposition 4.1 each of them is a root of the polynomial X2 −X + 1. Since
Λ5 and Λ4 only differ in the last component, κ5 6= κ4. Therefore, κ4 = 1−κ5.
From Lemma 5.1, κ45 = −κ5. This shows that κ45 is not a root of X2−X+1
contradicting Proposition 4.1. �

Example 4.5 can be generalized for finite fields Fq with q = pr showing
that k-nets arise from affine subplanes of PG(2,K). Such k-nets have order
ph with h|r. Here, we give further k-nets of p-power order. The construction
relies on an idea of G. Lunardon [7]. For the sake of simplicity, we describe
the construction in terms of a dual k-net, that is, the components are sets
of points such that a line connecting two points of different components hits
any third component in precisely one point.
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Example 5.3. Let K = Fq such that q = rs with s ≥ 3. Take elements
u, v ∈ Fq such that 1, u, v are linearly independent over the subfield Fr. Take
a basis b1,b2 of F2

q and put b0 = ub1 + vb2. For any α ∈ Fr, we define the
points sets

Aα = {αb0 + λb1 + µb2 | λ, µ ∈ Fr}
in AG(2, q). Then the Aα’s (α ∈ Fr) are components of a dual r-net of order
r2. In order to see this, take the points

Pi = αib0 + λib1 + µib2, i = 1, 2, 3.

P1, P2, P3 are collinear in AG(2, q) if and only if the vectors

(α1−α2)b0+(λ1−λ2)b1+(µ1−µ2)b2 and (α1−α3)b0+(λ1−λ3)b1+(µ1−µ3)b2

(12)
are linearly dependent over Fq. By the definition of b0 and the independence
of b1,b2, (12) is equivalent with

((α1 − α2)u+ λ1 − λ2)((α1 − α3)v + µ1 − µ3)−
((α1 − α3)u+ λ1 − λ3)((α1 − α2)v + µ1 − µ2) = 0. (13)

Sorting by u and v, we obtain

0 = u[(α1 − α2)(µ1 − µ3)− (α1 − α3)(µ1 − µ2)]

+v[(α1 − α3)(λ1 − λ2)− (α1 − α2)(λ1 − λ3)]

+(λ1 − λ2)(µ1 − µ3)− (µ1 − µ2)(λ1 − λ3).

The independence of 1, u, v over Fr implies the system of equations

0 = (α1 − α2)(µ1 − µ3)− (α1 − α3)(µ1 − µ2), (14)

0 = (α1 − α3)(λ1 − λ2)− (α1 − α2)(λ1 − λ3), (15)

0 = (λ1 − λ2)(µ1 − µ3)− (µ1 − µ2)(λ1 − λ3). (16)

With given points P1, P2, α1 6= α2, (14) and (15) has the unique solution

λ3 =
λ1(α3 − α2) + λ2(α1 − α3)

α1 − α2

,

µ3 =
µ1(α3 − α2) + µ2(α1 − α3)

α1 − α2
,

10



which is a solution for (16), as well. This means that the line P1P2 hits Aα3

in the unique point

P3 =
α3 − α2

α1 − α2
P1 +

α1 − α3

α1 − α2
P2.

This formula further shows that the constant cross-ratio can take any value
in Fr \ {0, 1}.

We are able to describe the geometric structure of k-nets (k ≥ 4) where
one component is contained in a line pencil.

Theorem 5.4. Let λ = (λ1, . . . , λk), k ≥ 4, be a k-net of order n embedded
in PG(2,K). Assume that the component λ1 is contained in a line pencil.
Then the following hold.

1. The order of λ is n = pe where p > 0 is the characteristic of K.

2. For each component λi, i > 1, there is an elementary Abelian p-group
of collineations acting regularly on the lines of λi.

3. The components λ2, . . . , λk are projectively equivalent.

4. If any other component is contained in a line pencil then all components
are, and the base points of the pencils are collinear.

Proof. It suffices to prove the theorem for k = 4. We give the proof for the
dual k-net by assuming that the component λ1 is contained in the line ℓ.
Let κ be the constant cross-ratio of (λ2, λ3, λ4, λ1) and for any point S 6∈ ℓ
denote by uS the (S, ℓ)-perspectivity such that for any point P and its image
P ′ = uS(P ), the cross-ratio of S, P, P ′ and PP ′ ∩ ℓ is κ. Then, for any
S ∈ λ2, uS induces a bijection between λ3 and λ4. In particular, λ3 and λ4

are projectively equivalent. Let S, T ∈ λ2, S 6= T , and assume that u−1
S uT

has a fixed point R 6∈ ℓ, that is, uS(R) = uT (R) = R′. Then, S, T ∈ RR′ and
with R′′ = RR′ ∩ ℓ the cross-ratios (S,R,R′, R′′), (T,R,R′, R′′) are equal to
κ. This implies S = T , a contradiction. This means that for all S, T ∈ λ2,
S 6= T , the collineation u−1

S uT is an elation with axis ℓ, and {u−1
S uT | S, T ∈

λ2} generate an elementary Abelian p-group U of collineations, leaving λ3

invariant. Moreover, U acts transitively, hence regularly on λ3. This finishes
the proof. �
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Example 5.5. In Example 5.3, we constructed a dual r-net of order r2 in
AG(2, rs), s ≥ 3. For P1 ∈ Aα1

, P2 ∈ Aα2
, the line P1P2 has direction vectors

(u+ λ)b1 + (v + µ)b2.

These are linearly independent for different choices of λ, µ ∈ Fr, hence they
determine r2 points at infinity. Let λ0 be the set of corresponding infinite
points. Then, (λ0, λ1, . . . , λr) is a dual (r + 1)-net with component λ0 con-
tained in a line.
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